董 欣,王鵬宏,劉立意,左彥軍,李紫輝,賈富國(guó)
原糧包裝機(jī)凸輪撐袋機(jī)構(gòu)的設(shè)計(jì)與試驗(yàn)
董 欣,王鵬宏,劉立意※,左彥軍,李紫輝,賈富國(guó)
(東北農(nóng)業(yè)大學(xué)工程學(xué)院,哈爾濱 150030)
針對(duì)定量原糧包裝機(jī)由不同氣缸分別驅(qū)動(dòng)撐袋機(jī)構(gòu)與夾袋機(jī)構(gòu),導(dǎo)致同步難、效率低、低溫環(huán)境下氣動(dòng)系統(tǒng)易結(jié)露、以及工作環(huán)境粉塵較大而引起的氣動(dòng)部件動(dòng)作遲緩甚至失靈等問(wèn)題,該研究設(shè)計(jì)了一種隨夾袋機(jī)構(gòu)同步運(yùn)動(dòng)的凸輪撐袋機(jī)構(gòu)。利用一臺(tái)電機(jī)驅(qū)動(dòng)平面六桿機(jī)構(gòu)帶動(dòng)凸輪撐袋機(jī)構(gòu)與夾袋機(jī)構(gòu),實(shí)現(xiàn)撐袋、夾袋和復(fù)位的同步運(yùn)動(dòng);基于幾何坐標(biāo)變換和矢量法建立撐袋機(jī)構(gòu)的凸輪工作廓線參數(shù)方程和空間凸輪機(jī)構(gòu)的壓力角求解方法,確定撐袋運(yùn)動(dòng)規(guī)律和凸輪工作廓線;建立凸輪撐袋機(jī)構(gòu)三維模型,利用ADAMS軟件對(duì)凸輪撐袋機(jī)構(gòu)的撐袋運(yùn)動(dòng)規(guī)律進(jìn)行仿真分析,結(jié)果表明:撐袋運(yùn)動(dòng)規(guī)律理論計(jì)算與仿真分析結(jié)果基本一致,最大壓力角23°小于許用壓力角,滿足機(jī)構(gòu)工作要求;開展氣缸驅(qū)動(dòng)與電機(jī)驅(qū)動(dòng)撐夾袋機(jī)構(gòu)的對(duì)比試驗(yàn),得到后者的生產(chǎn)率達(dá)10袋/min,驗(yàn)證了機(jī)構(gòu)設(shè)計(jì)的合理性,研究可為北方寒區(qū)原糧包裝機(jī)設(shè)計(jì)提供一種設(shè)計(jì)思路和理論分析方法。
設(shè)計(jì);試驗(yàn);原糧包裝;凸輪機(jī)構(gòu);壓力角
原糧一般指未經(jīng)加工過(guò)的糧食總稱。原糧包裝是將收獲后的原糧完整高效地自動(dòng)裝袋封裝,以滿足后續(xù)原糧加工、存儲(chǔ)、運(yùn)輸和銷售等需要。原糧一般通過(guò)取袋套袋、夾袋與撐袋、充填物料、輸送封口等工序?qū)崿F(xiàn)包裝。中國(guó)是原糧產(chǎn)量大國(guó)[1],研制高質(zhì)高效的原糧包裝機(jī)對(duì)減少原糧包裝損失和保障糧食安全具有十分重要的現(xiàn)實(shí)意義。
撐袋機(jī)構(gòu)是原糧包裝機(jī)的重要組成部分,利用撐袋機(jī)構(gòu)與夾袋機(jī)構(gòu)相配合自動(dòng)地將包裝袋完全撐開夾緊,以便于后續(xù)原糧的充填裝袋。國(guó)內(nèi)外學(xué)者針對(duì)撐袋機(jī)構(gòu)開展了相關(guān)研究與報(bào)導(dǎo),如張肖慶等[2-3]采用氣缸帶動(dòng)吸盤實(shí)現(xiàn)撐袋動(dòng)作,該方式對(duì)包裝袋的氣密性無(wú)要求,并且對(duì)運(yùn)動(dòng)軌跡的要求較低;而針對(duì)氣密性較差的包裝袋,且傳動(dòng)過(guò)程復(fù)雜的機(jī)構(gòu),徐雪萌等[4-8]采用氣缸驅(qū)動(dòng)機(jī)械裝置的方式實(shí)現(xiàn)撐袋動(dòng)作;辜松等[9]采用氣缸驅(qū)動(dòng)安裝在機(jī)械裝置上的吸盤實(shí)現(xiàn)撐袋動(dòng)作,以實(shí)現(xiàn)復(fù)雜的操作要求,保障撐袋成功率,但成本隨之增高;李東星等[10-11]為進(jìn)一步保證開袋以及撐袋的順利進(jìn)行,采用氣缸驅(qū)動(dòng)機(jī)械裝置上的吸盤并配合充氣裝置的方式實(shí)現(xiàn)撐袋動(dòng)作。除了利用氣缸作驅(qū)動(dòng)外,電機(jī)驅(qū)動(dòng)也是常用的一種驅(qū)動(dòng)方式,其工作穩(wěn)定,受外部環(huán)境干擾較小,更適合粉塵、結(jié)露等影響氣缸正常工作的環(huán)境,楊傳民等[12-13]利用電機(jī)驅(qū)動(dòng)機(jī)械裝置實(shí)現(xiàn)撐袋動(dòng)作,范孝良等[14]利用電機(jī)驅(qū)動(dòng)安裝在機(jī)械裝置上的吸盤實(shí)現(xiàn)撐袋動(dòng)作;徐麗明等[15-16]設(shè)計(jì)了利用電機(jī)和氣缸共同進(jìn)行驅(qū)動(dòng)的撐袋裝置。
國(guó)外包裝機(jī)械自動(dòng)化程度較高,包裝機(jī)械撐袋機(jī)構(gòu)的基本工作原理和國(guó)內(nèi)大同小異。Shibagaki等[17-19]]利用電機(jī)驅(qū)動(dòng)機(jī)械裝置實(shí)現(xiàn)包裝機(jī)的撐袋動(dòng)作;荷蘭Visser公司[20]和Crea-Tech公司[21]生產(chǎn)的盆花包裝機(jī)以及日本紐朗生產(chǎn)的重袋全自動(dòng)包裝機(jī)均利用吸盤實(shí)現(xiàn)撐袋動(dòng)作;瑞士Gmuer等[22-23]通過(guò)氣缸驅(qū)動(dòng)配合吸盤和夾爪實(shí)現(xiàn)包裝袋的撐袋動(dòng)作。
綜上所述,國(guó)內(nèi)外對(duì)包裝機(jī)撐袋機(jī)構(gòu)的研究大多集中在氣缸驅(qū)動(dòng)系統(tǒng),且撐袋與夾袋工作由獨(dú)立的驅(qū)動(dòng)機(jī)構(gòu)完成;撐袋機(jī)構(gòu)在袋子兩側(cè)施加拉力或在內(nèi)部施加推力的方式將袋撐開[24],增加了包裝機(jī)設(shè)計(jì)的復(fù)雜性與成本,撐袋與夾袋難于同步,影響了包裝生產(chǎn)率。針對(duì)電機(jī)驅(qū)動(dòng)的原糧包裝機(jī)撐袋機(jī)構(gòu)的研究報(bào)道較少。
目前國(guó)內(nèi)生產(chǎn)中所使用的原糧定量半自動(dòng)包裝機(jī),大多由不同氣缸分別驅(qū)動(dòng)夾袋機(jī)構(gòu)與撐袋機(jī)構(gòu),實(shí)現(xiàn)包裝袋的夾袋與撐袋動(dòng)作。而中國(guó)北方地區(qū)原糧在秋季收獲后,進(jìn)入包裝作業(yè)期,由于受低溫影響,包裝機(jī)的氣動(dòng)系統(tǒng)易結(jié)露,作業(yè)環(huán)境粉塵較大,導(dǎo)致氣缸運(yùn)動(dòng)速度不穩(wěn)定、部件動(dòng)作遲緩甚至失靈,嚴(yán)重影響原糧包裝作業(yè)。針對(duì)上述問(wèn)題,本文提出一種隨電機(jī)驅(qū)動(dòng)夾袋機(jī)構(gòu)同步運(yùn)動(dòng)的空間凸輪撐袋機(jī)構(gòu),由一臺(tái)電機(jī)作為動(dòng)力源,驅(qū)動(dòng)平面六桿機(jī)構(gòu)帶動(dòng)夾袋機(jī)構(gòu)與撐袋機(jī)構(gòu)同步運(yùn)動(dòng)。結(jié)合原糧包裝工藝要求設(shè)計(jì)凸輪撐袋機(jī)構(gòu),基于幾何坐標(biāo)變換和矢量法建立撐袋空間凸輪廓線方程和凸輪機(jī)構(gòu)的壓力角求解方法;基于ADAMS軟件進(jìn)行運(yùn)動(dòng)學(xué)仿真分析,開展臺(tái)架對(duì)比試驗(yàn),探尋設(shè)計(jì)的凸輪撐袋機(jī)構(gòu)可行性和可靠性,旨在為原糧包裝機(jī)的設(shè)計(jì)、生產(chǎn)率的提高,生產(chǎn)實(shí)際需求方面提供理論依據(jù)。
撐袋和夾袋是原糧包裝機(jī)的重要工藝環(huán)節(jié)[25],為確保夾袋與撐袋作業(yè)可靠和包裝封口質(zhì)量,原糧包裝機(jī)撐夾袋機(jī)構(gòu)工作要求如下:
1)針對(duì)容量50 kg的原糧高密度塑料編織包裝袋(長(zhǎng)×寬:1 050 mm×595 mm),包裝作業(yè)生產(chǎn)率高于10袋/min,撐袋時(shí)間不高于0.45 s;夾袋機(jī)構(gòu)的末端結(jié)構(gòu)需適應(yīng)原糧包裝袋的幾何形狀,考慮原糧充填物料效率和結(jié)構(gòu)設(shè)計(jì)因素,夾袋寬度小于120 mm;
2)撐袋和夾袋的兩個(gè)執(zhí)行部件由同一動(dòng)力源驅(qū)動(dòng),實(shí)現(xiàn)撐袋機(jī)構(gòu)與夾帶機(jī)構(gòu)的同步運(yùn)動(dòng);
3)作業(yè)時(shí),夾袋機(jī)構(gòu)需滿足充填物料時(shí)包裝袋不脫落的工藝要求。
撐夾袋機(jī)構(gòu)由凸輪撐袋機(jī)構(gòu)、夾袋機(jī)構(gòu)、傳動(dòng)機(jī)構(gòu)及機(jī)架等構(gòu)成,如圖1a所示。其中,凸輪撐袋機(jī)構(gòu)由凸輪6(空間擺動(dòng)凸輪)和撐袋桿5組成;夾袋機(jī)構(gòu)由前咀夾板2、后咀夾板3、前夾袋板1、后夾袋板4等組成;傳動(dòng)機(jī)構(gòu)由電機(jī)與減速器10、轉(zhuǎn)臂9、拉桿7與推桿8和前、后咀夾板構(gòu)成的平面六桿機(jī)構(gòu)組成。
凸輪撐袋機(jī)構(gòu)的凸輪與前咀夾板焊合,撐袋桿與機(jī)架鉸接;夾袋機(jī)構(gòu)的前、后咀夾板與機(jī)架對(duì)稱配置,由軸承與軸承座11通過(guò)螺栓與機(jī)架固定連接,其轉(zhuǎn)軸12通過(guò)軸承與機(jī)架鉸接;前、后夾袋板與機(jī)架對(duì)稱配置,分別通過(guò)螺栓與機(jī)架固定連接;傳動(dòng)機(jī)構(gòu)中的推桿與拉桿分別與前、后咀夾板和轉(zhuǎn)臂通過(guò)鉸接實(shí)現(xiàn)連接,轉(zhuǎn)臂與電機(jī)減速器的輸出軸固定連接,電機(jī)減速器與機(jī)架通過(guò)螺栓進(jìn)行連接。
機(jī)構(gòu)運(yùn)動(dòng)簡(jiǎn)圖如圖1b所示,工作時(shí)人工取袋將包裝袋套在閉合的前、后咀夾板末端,電機(jī)驅(qū)動(dòng)減速器帶動(dòng)轉(zhuǎn)臂轉(zhuǎn)動(dòng),并將運(yùn)動(dòng)分別傳遞至拉桿和推桿,從而驅(qū)動(dòng)前、后咀夾板轉(zhuǎn)動(dòng)至前、后夾袋板位置與其配合夾緊袋口實(shí)現(xiàn)夾袋運(yùn)動(dòng);與此同時(shí),凸輪(與前咀夾板焊合)隨前咀夾板轉(zhuǎn)動(dòng),同步驅(qū)動(dòng)撐袋桿擺動(dòng)將袋口撐開;待原糧充填后,電機(jī)反轉(zhuǎn),凸輪撐夾袋機(jī)構(gòu)回程復(fù)位,包裝袋輸送至縫袋工序封口,完成原糧包裝。
1.前夾袋板 2.前咀夾板 3.后咀夾板 4.后夾袋板5.撐袋桿6.凸輪7.拉桿8.推桿 9.轉(zhuǎn)臂 10.電機(jī)與減速器 11.軸承與軸承座12.轉(zhuǎn)軸 13.機(jī)架
1.Front supporting plate2.Front clamping plate 3.Rear clamping plate 4.Rear supporting plate 5.Bag opening rod 6.Cam 7.Pull rod 8.Push rod 9.Rotating arm 10.Motor and gearbox 11.Bearing and bearing holder 12.Rotation shaft 13.Frame
注:點(diǎn)為轉(zhuǎn)臂轉(zhuǎn)動(dòng)中心,、點(diǎn)分別為前后咀夾板轉(zhuǎn)動(dòng)中心,點(diǎn)為撐袋桿擺動(dòng)中心,1、2點(diǎn)分別為前后夾袋板與機(jī)架的鉸接點(diǎn);、點(diǎn)分別為拉桿與轉(zhuǎn)臂和后咀夾板的鉸接點(diǎn),、點(diǎn)分別為推桿與轉(zhuǎn)臂和前咀夾板的鉸接點(diǎn),點(diǎn)為前后咀夾板末端初始位置;′、′點(diǎn)分別為拉桿和轉(zhuǎn)臂在后咀夾板終止位置的鉸接點(diǎn),′、′點(diǎn)分別為推桿與轉(zhuǎn)臂和前咀夾板的終止位置鉸接點(diǎn),1、2點(diǎn)分別為前后咀夾板末端的運(yùn)動(dòng)終止位置;為前、后咀夾板角位移,(°);0為前咀夾板初始位置角,(°);0、分別為轉(zhuǎn)臂初始位置角及其角位移,(°);實(shí)線為撐夾袋機(jī)構(gòu)初始位置;雙點(diǎn)劃線為撐夾袋機(jī)構(gòu)終止位置。
Note: Pointis the rotation center of rotating arm, pointandare the rotation centers of front and rear clamping plate, pointis the swing center of bag opening rod, point1and2are the jointing points of the front and rear supporting plate hinging on the frame;Pointandare the jointing points of the pull rod hinging on rotating arm and the rearc lamping plate, pointandare the jointing points of the push rod hinge on the rotating arm and the front clamping plate, pointis the initial position on the end of the front and rear clamping plates; Point′ and′ are the jointing points of the pull rod and the rotating arm on the end positions of the rear clamping, point′ and′ are the hinging points of the push rod and the rotating arm on the end positions of the front clamping plate, point1and2are the end positions of the movement of the front and rear clamping;is the angular displacement of the front and rear clamping plate, (°);0is the initial positional angle of the front clamping plate, (°);0andare the initial positional angle and angular displacement of the rotating arm, (°); The initial position of the bag opening and clamping mechanism is shown by the solid lines; The end position of the mechanism is shown by the double dot dash lines.
圖1 撐夾袋機(jī)構(gòu)
Fig.1 Bag opening and clamping mechanism
凸輪撐袋機(jī)構(gòu)由凸輪驅(qū)動(dòng)撐袋桿實(shí)現(xiàn)撐袋運(yùn)動(dòng)和對(duì)包裝袋的撐袋功能。其設(shè)計(jì)要求如下:
1)為進(jìn)一步提高原糧包裝效率,簡(jiǎn)化結(jié)構(gòu),撐袋桿與前、后咀夾板實(shí)現(xiàn)同步運(yùn)動(dòng),即前、后咀夾板與前、后夾袋板相配合夾緊包裝袋口同時(shí),凸輪驅(qū)動(dòng)撐袋桿需同步將袋口撐開。
2)為減少撐袋桿磨損,避免撐袋作業(yè)撐袋桿接觸點(diǎn)沿其軸線方向產(chǎn)生滑動(dòng),凸輪與撐袋桿的接觸位置應(yīng)保持始終位于初始接觸點(diǎn)矢徑平面的圓周上,且凸輪工作廓線與撐袋桿接觸點(diǎn)始終接觸,結(jié)構(gòu)互不干涉。
3)為實(shí)現(xiàn)撐袋工藝要求,撐袋桿的角位移應(yīng)滿足撐袋桿末端的撐開距離要求;為保證凸輪撐袋機(jī)構(gòu)具有良好的傳力特性,作業(yè)中,凸輪機(jī)構(gòu)的最大壓力角max應(yīng)小于許用壓力角[],即max≤[]=35°~45°[26]。
2.2.1 撐袋運(yùn)動(dòng)規(guī)律選擇
撐袋運(yùn)動(dòng)規(guī)律(即撐袋桿運(yùn)動(dòng)規(guī)律)是指撐袋桿的運(yùn)動(dòng)參數(shù)(角位移、角速度、角加速度)隨時(shí)間變化的規(guī)律。撐袋機(jī)構(gòu)的凸輪轉(zhuǎn)動(dòng)中心為前咀夾板轉(zhuǎn)軸中心(圖1b),前、后咀夾板張開與前、后夾袋板作用夾緊包裝袋口的同時(shí)驅(qū)動(dòng)固裝于前咀夾板上的凸輪以角速度順時(shí)針轉(zhuǎn)動(dòng)。當(dāng)凸輪轉(zhuǎn)過(guò)推程的最大角位移0(即推程角)時(shí),與其接觸的撐袋桿由凸輪驅(qū)動(dòng)轉(zhuǎn)過(guò)最大角位移0將袋口兩側(cè)完全撐開(完成撐袋),與此同時(shí)袋口前、后兩邊分別在前、后咀夾板與前、后夾袋板之間被夾緊(完成夾袋)。原糧下料充填后,電動(dòng)機(jī)反轉(zhuǎn)驅(qū)動(dòng)前、后咀夾板回程復(fù)位,凸輪同時(shí)隨前咀夾板反向轉(zhuǎn)過(guò)回程角′0(′0=0),撐袋桿回到初始位置,撐袋運(yùn)動(dòng)規(guī)律與凸輪廓線相對(duì)應(yīng)。
根據(jù)凸輪撐袋機(jī)構(gòu)的設(shè)計(jì)要求,考慮正弦加速度運(yùn)動(dòng)的角速度、角加速度連續(xù)變化,無(wú)剛性和柔性沖擊,適用于中高速輕載情況[27],故撐袋桿運(yùn)動(dòng)規(guī)律選擇正弦加速度運(yùn)動(dòng)(擺線運(yùn)動(dòng))。
作業(yè)時(shí),凸輪順時(shí)針轉(zhuǎn)動(dòng)角速度為,凸輪推程階段轉(zhuǎn)過(guò)角位移為時(shí)(即圖1b中的),撐袋桿行程角位移為,則凸輪撐袋桿的擺動(dòng)角位移、角速度與角加速度運(yùn)動(dòng)方程分別為
式中0為凸輪推程的最大角位移,(°);為凸輪推程的角速度,°/s;為凸輪推程的角加速度,°/s2;0為凸輪推程的撐袋桿最大角位移,(°);為凸輪推程的撐袋桿角位移,(°);為凸輪推程的撐袋桿角速度,°/s;為凸輪推程的撐袋桿角加速度,°/s2。
2.2.2 撐袋凸輪的角速度和角加速度
為求解撐袋桿的運(yùn)動(dòng)規(guī)律,需要分別建立凸輪角速度和角加速度與驅(qū)動(dòng)的傳遞關(guān)系。電機(jī)將運(yùn)動(dòng)傳遞至轉(zhuǎn)臂驅(qū)動(dòng)平面六桿機(jī)構(gòu)帶動(dòng)凸輪隨前咀夾板轉(zhuǎn)動(dòng),與此同時(shí)撐袋桿由凸輪驅(qū)動(dòng)形成復(fù)合運(yùn)動(dòng)。
由圖1b可知凸輪角位移
根據(jù)正弦定理與余弦定理,建立并推導(dǎo)得凸輪角位移關(guān)于轉(zhuǎn)臂角位移的函數(shù)關(guān)系式,即
凸輪角位移、角速度和角加速度關(guān)于轉(zhuǎn)臂角位移函數(shù)分別記為
2.2.3 撐袋桿擺動(dòng)最大角位移與撐袋距離
1)撐袋桿擺動(dòng)最大角位移
為求解從動(dòng)件的撐袋運(yùn)動(dòng)規(guī)律,需確定從動(dòng)撐袋桿擺動(dòng)的最大角位移0。撐袋與夾袋示意如圖2,為使撐袋桿的撐袋部分與包裝袋口形成面接觸,避免撐袋桿撐袋過(guò)程中扎破包裝袋,撐袋桿設(shè)計(jì)為由上部剛性段1和下部柔性段11構(gòu)成。
凸輪隨前咀夾板轉(zhuǎn)動(dòng)角位移0時(shí),同步驅(qū)動(dòng)撐袋桿撐開袋口達(dá)最大擺動(dòng)角位移0,即
1.前咀夾板 2.前夾袋板 3.包裝袋 4.撐袋桿 5.后咀夾板 6.后夾袋板 7.凸輪8.機(jī)架
1.Front clamping plate 2.Front supporting plate 3.Packing bag 4.Bag opening rod 5.Rear clamping plate 6.Rear supporting plate 7.Cam 8.Frame
注:點(diǎn)為撐袋桿擺動(dòng)中心;0點(diǎn)和1點(diǎn)分別為撐袋桿撐袋前、后與包裝袋的接觸點(diǎn);0點(diǎn)和1點(diǎn)分別為撐袋桿末端撐袋前、后的位置點(diǎn);在U-U剖面中,1點(diǎn)和1點(diǎn)分別為兩個(gè)撐袋桿撐袋后與包裝袋的接觸點(diǎn)投影,1點(diǎn)和1點(diǎn)為后咀夾板夾袋的終止位置點(diǎn)投影,1點(diǎn)和1點(diǎn)為前咀夾板夾袋的終止位置點(diǎn)投影,點(diǎn)和1點(diǎn)分別為前、后咀夾板的初始位置點(diǎn)投影;線段為前咀夾板側(cè)面投影;線段為前咀夾板至機(jī)架側(cè)面的距離;1線段為機(jī)架側(cè)面投影;1點(diǎn)為機(jī)架上表面端點(diǎn)。
Note: Pointis swing center of bag opening rod; Point0and1are the contact points between the bag opening rod and the bag before and after the bag being opened respectively; Point0and1are position points on the end of bag opening rod before and after the bag being opened respectively; On the section U-U, point1and1are contact point projections between two bag opening rods and the bag after the bag being opened respectively; Point1and1are projections of final position where the bag had been clamped by rear clamping plate respectively; Point1and1are projections of the final position where the bag had been clamped by front clamping plate respectively; Pointand1are projections of the initial position of front and rear clamping plate respectively; Lineis the side projection of front clamping plate; Lineis the distance between front clamping plate and the side of frame; Line1is the side projection of frame; Point1is the end point on the upper surface of the frame.
圖2 撐袋和夾袋示意圖
Fig.2 Schematic diagram of bag opening and clamping
2)撐袋距離
夾袋機(jī)構(gòu)的前、后咀夾板轉(zhuǎn)動(dòng)角位移0(即凸輪的最大角位移)與前、后夾袋板相互作用將袋口前、后張開夾緊完成夾袋,凸輪同步隨前咀夾板轉(zhuǎn)動(dòng)驅(qū)動(dòng)撐袋桿由初始位置擺動(dòng)至角位移0將袋口左、右撐開撐緊時(shí),撐袋桿水平擺動(dòng)的距離即為撐袋距離(圖2)。
忽略撐袋桿直徑和包裝袋厚度的影響,撐袋桿與包裝袋接觸簡(jiǎn)化為線接觸。由圖2包裝袋口被張開夾緊與撐緊的袋口截面幾何關(guān)系可知:
2.3.1 空間坐標(biāo)系建立
為建立凸輪工作廓線方程,需要建立空間坐標(biāo)系。為此,首先建立輔助平面、、、,如圖3所示。輔助平面面是通過(guò)固裝在機(jī)架上的前、后咀夾板兩轉(zhuǎn)軸(圖1)所構(gòu)成的平面;面為通過(guò)撐袋桿軸線,且與面轉(zhuǎn)軸垂直所構(gòu)建的平面;面為面平移l且與前咀夾板側(cè)面相重合的平面;面為通過(guò)從動(dòng)撐袋桿軸線與、、面相垂直的平面,撐袋桿由繞轉(zhuǎn)軸轉(zhuǎn)動(dòng)的凸輪驅(qū)動(dòng)在面實(shí)現(xiàn)間歇擺動(dòng)運(yùn)動(dòng)。
圖3的原點(diǎn)是面與前咀夾板轉(zhuǎn)軸的交點(diǎn),軸與凸輪旋轉(zhuǎn)軸線重合;原點(diǎn)1為撐袋桿軸線的初始位置與其擺動(dòng)軸線交點(diǎn),1軸為撐袋桿擺動(dòng)軸線,面上的1軸與撐袋桿初始位置軸線重合,1軸與撐袋桿初始位置軸線垂直;原點(diǎn)2與1重合,隨撐袋桿繞1軸轉(zhuǎn)動(dòng)。
1.撐袋桿 2.凸輪 1. Bag opening rod 2. Cam
注:為絕對(duì)坐標(biāo)系,1111為撐袋桿的絕對(duì)坐標(biāo)系,2222為固結(jié)在撐袋桿的動(dòng)坐標(biāo)系;0點(diǎn)為=0時(shí)刻凸輪與撐袋桿的初始接觸點(diǎn),點(diǎn)為時(shí)刻凸輪與撐袋桿的接觸點(diǎn);點(diǎn)為接觸點(diǎn)的擺動(dòng)中心,點(diǎn)為接觸點(diǎn)至222平面垂線的交點(diǎn);l、l、l為坐標(biāo)系1111向坐標(biāo)系轉(zhuǎn)換的坐標(biāo)平移參數(shù),mm;為接觸點(diǎn)擺動(dòng)距離,mm;F為凸輪對(duì)撐袋桿的作用力矢量,為撐袋桿接觸點(diǎn)速度矢量,為凸輪工作廓線切向矢量;為凸輪機(jī)構(gòu)的壓力角,(°);為凸輪旋轉(zhuǎn)角速度,(°)·s-1;、、、為輔助平面。
Note:is the absolute coordinate,1111is the absolute coordinate of bag opening rod,2222is the dynamic coordinate fixed on bag opening rod; Point0is the contact point between cam and bag opening rod at time=0, pointis the contact point between cam and bag opening rod at time; Pointis the swing center of the contact point, pointPis the intersection point obtained by making the contact pointperpendicular to the plane222;l,landlare the coordinate translation parameters from coordinate system1111to coordinate system, mm;l′is the swing distance of contact point, mm;Fis the force direction vector of the contact pointon the bag opening rod,is the motion direction vector of the contact point on the bag opening rod,is the tangential vector of the cam working profile;is the pressure angle at the contact point of the bag opening rod, (°);is the rotation angular velocity of the cam, (°)·s-1;,,andare auxiliary planes.
圖3 凸輪撐袋機(jī)構(gòu)空間坐標(biāo)系與壓力角
Fig.3 Spatial coordinate system and pressure angle of cam driven bag openingmechanism
2.3.2 凸輪工作廓線方程建立
在動(dòng)坐標(biāo)系2222中,撐袋桿接觸點(diǎn)位置向量:
式中為撐袋桿半徑,mm;為撐袋桿接觸點(diǎn)位置角,(°)。
在絕對(duì)坐標(biāo)系1111中,由坐標(biāo)系幾何變換關(guān)系[28-29],撐袋桿接觸點(diǎn)位置矢量為:
式中1為繞1軸的旋轉(zhuǎn)變換矩陣。
注:222平面為撐袋桿動(dòng)坐標(biāo)系2222沿2坐標(biāo)軸方向的投影;為撐袋桿半徑,mm;0為初始接觸點(diǎn)0處撐袋桿半徑與坐標(biāo)軸2正方向夾角,稱為初始接觸點(diǎn)的位置角,(°);為運(yùn)動(dòng)過(guò)程中接觸點(diǎn)處撐袋桿半徑與坐標(biāo)軸2正方向夾角,稱為接觸點(diǎn)位置角,(°)。
Note:222is the projection plane that the dynamic coordinate system of the bag opening rod that is projected along the direction2;is the radius of bag opening rod;0is the initial position angle of the initial contact point between the radius of the bag opening rod at the initial contact point0and the positive direction of the coordinate axis2, (°);is the position angle of the contact point between the radius of the bag opening rod at the contact pointand the positive direction of the coordinate axis2, (°).
圖4 撐袋桿接觸點(diǎn)的位置角
Fig.4 Positional angle of contact point on bag opening rod
由式(7)~式(8)得式(9):
在絕對(duì)坐標(biāo)系中,撐袋桿接觸點(diǎn)位置矢量為
由式(9)~式(10)得式(11):
[3]Astington,J.W.&J.M.,Jenkins.(1999).A Longitudinal Study of the Relation Between Language and Theory-of-Mind Development,Developmental Psychology,35(5).1311-1320.
式中T、T、分別為、、方向平移矩陣;l、l、l為坐標(biāo)平移參數(shù),mm。
式中2為繞軸的旋轉(zhuǎn)變換矩陣;為撐袋凸輪角位移,(°)。
由式(11)~式(12)得凸輪工作廓線方程為
2.4.1 壓力角公式建立
如圖3所示,凸輪撐袋機(jī)構(gòu)的凸輪隨前咀夾板繞轉(zhuǎn)軸(軸)沿逆時(shí)針方向轉(zhuǎn)動(dòng),運(yùn)動(dòng)時(shí)刻撐袋桿與凸輪工作廓線接觸點(diǎn)的擺動(dòng)中心點(diǎn)為(點(diǎn)是過(guò)接觸點(diǎn)至22平面垂線交點(diǎn)P,過(guò)此P點(diǎn)作與撐袋桿軸線平行線交2軸的交點(diǎn))。
為建立凸輪撐袋機(jī)構(gòu)的壓力角公式,需要確定速度矢量和力矢量F。
接觸點(diǎn)速度矢量簡(jiǎn)化為撐袋桿轉(zhuǎn)軸單位速度矢量為
撐袋桿力矢量
其中
在坐標(biāo)系下,接觸點(diǎn)至旋轉(zhuǎn)中心矢量、接觸點(diǎn)和其旋轉(zhuǎn)中心點(diǎn)的位置矢量分別為
由式(16)~式(17)分別求得:
將式(18)~式(19)代入式(15)得撐袋桿力矢量,即:
(20)
據(jù)向量數(shù)量積,凸輪撐袋機(jī)構(gòu)的壓力角為
2.4.2 壓力角影響因素
圖5 撐袋桿角位移與擺動(dòng)位置關(guān)系
影響凸輪撐袋機(jī)構(gòu)壓力角因素的撐袋桿角位移與接觸點(diǎn)位置角的關(guān)系=(),選擇線性擬合、指數(shù)擬合和多項(xiàng)式擬合三種擬合關(guān)系式(表1)。
表1 單因素試驗(yàn)設(shè)計(jì) Table1 Single factor test design
2.4.3 單因素試驗(yàn)設(shè)計(jì)與結(jié)果
依據(jù)選擇的各單因素取值范圍,利用控制變量法,設(shè)計(jì)了6組單因素試驗(yàn),如表1所示;由式(21)得各單因素不同水平下對(duì)壓力角的影響結(jié)果,如圖6所示。
圖6 各單因素對(duì)凸輪撐袋機(jī)構(gòu)的壓力角影響
1)撐袋桿半徑
撐袋桿半徑對(duì)壓力角的影響如圖6a所示,推程初始段凸輪角位移小于2°時(shí),初始?jí)毫请S撐袋桿半徑的減小呈逐漸減小趨勢(shì);當(dāng)凸輪角位移大于2°時(shí),撐袋桿半徑對(duì)凸輪撐袋機(jī)構(gòu)的壓力角影響很小;推程結(jié)束段凸輪角位移大于14°時(shí),壓力角隨撐袋桿半徑的增大呈逐漸減小變化趨勢(shì);凸輪角位移在8°時(shí),凸輪撐袋機(jī)構(gòu)的最大壓力角均值=34.29°<[]max。
2)撐袋桿角位移
撐袋桿角位移對(duì)壓力角的影響如圖6b所示,凸輪角位移大于1°時(shí),凸輪機(jī)構(gòu)的壓力角隨撐袋桿角位移的減小呈較明顯減小的變化趨勢(shì);凸輪角位移小于1°時(shí),撐袋桿擺動(dòng)角位移對(duì)壓力角影響不大;凸輪角位移8°時(shí),凸輪撐袋機(jī)構(gòu)的最大壓力角均值為=32°<[]max。
4)初始接觸點(diǎn)位置角0
初始接觸點(diǎn)的位置角0對(duì)壓力角影響如圖6d所示,凸輪角位移小于2°,凸輪機(jī)構(gòu)的壓力角隨初始接觸點(diǎn)位置角的增大呈逐漸減小趨勢(shì),凸輪角位移大于2°時(shí),壓力角隨初始接觸點(diǎn)位置角的增大呈逐漸增大趨勢(shì);當(dāng)初始接觸角為?180°和凸輪角位移8°時(shí),凸輪撐袋機(jī)構(gòu)的最大壓力角最小,凸輪角位移8°~9°時(shí),最大壓力角均值=33.43°<[]max。
5)接觸點(diǎn)位置角
接觸點(diǎn)位置角對(duì)壓力角影響如圖6e所示,凸輪角位移大于2°時(shí),凸輪機(jī)構(gòu)的壓力角隨接觸點(diǎn)位置角的增大呈先基本不變后逐漸增大的變化趨勢(shì),且壓力角峰值呈逐漸滯后的變化趨勢(shì);凸輪角位移小于2°時(shí),接觸點(diǎn)位置角的變化對(duì)凸輪撐袋機(jī)構(gòu)的壓力角影響不大;當(dāng)接觸點(diǎn)位置角-170°和凸輪角位移8°~10°時(shí),最大壓力角最小,凸輪撐袋機(jī)構(gòu)的最大壓力角均值=33.85°<[]max。
6)擬合關(guān)系=()
與擬合關(guān)系對(duì)壓力角的影響如圖6f所示,接觸點(diǎn)位置角與撐袋桿角位移的不同擬合關(guān)系對(duì)凸輪撐袋機(jī)構(gòu)的壓力角基本無(wú)影響;當(dāng)凸輪角位移8°時(shí),凸輪撐袋機(jī)構(gòu)的最大壓力角均值=34.36°<[]max。
3.1.1 撐袋運(yùn)動(dòng)規(guī)律確定
根據(jù)壓力角與各因素的關(guān)系結(jié)果,依據(jù)凸輪角位移與轉(zhuǎn)臂角位移關(guān)系式(3),并由機(jī)構(gòu)工作時(shí)間(0.41 s),電機(jī)減速器勻速運(yùn)動(dòng)輸出軸轉(zhuǎn)角(46°)與角速度(112.2°/s),最終由式(1)確定撐袋運(yùn)動(dòng)規(guī)律,即
3.1.2 凸輪工作廓線設(shè)計(jì)
根據(jù)壓力角與各因素的關(guān)系結(jié)果,由式(13)得到凸輪工作廓線方程式(23)。
3.1.3 凸輪撐袋機(jī)構(gòu)的壓力角校驗(yàn)
將上述影響壓力角因素的結(jié)果代入式(21),求解得到壓力角關(guān)系式,即
式中X、Y和Z分別為撐袋桿接觸點(diǎn)處受力、和方向的分量。
利用MATLAB由式(24)和撐袋運(yùn)動(dòng)規(guī)律得到凸輪撐袋機(jī)構(gòu)的壓力角變化曲線,如圖7所示。
圖7 壓力角變化
由圖7可知,作業(yè)時(shí)凸輪角位移=8°時(shí),壓力角達(dá)最大值,即max=23°。經(jīng)校驗(yàn)表明,凸輪撐袋機(jī)構(gòu)的最大壓力角max<[]=35°~40°,滿足設(shè)計(jì)要求。
為了驗(yàn)證凸輪撐袋機(jī)構(gòu)的撐袋桿在凸輪驅(qū)動(dòng)下的實(shí)際撐袋運(yùn)動(dòng)規(guī)律與理論計(jì)算的撐袋運(yùn)動(dòng)一致性,根據(jù)前述所得到的凸輪機(jī)構(gòu)參數(shù),對(duì)凸輪撐袋機(jī)構(gòu)相關(guān)零部件三維建模,考慮傳動(dòng)機(jī)構(gòu)初始位置關(guān)系完成虛擬樣機(jī)建模。
在不影響機(jī)構(gòu)實(shí)際運(yùn)動(dòng)分析結(jié)果的情況下,簡(jiǎn)化機(jī)構(gòu)模型導(dǎo)入ADAMS軟件;根據(jù)機(jī)構(gòu)運(yùn)動(dòng)原理及各運(yùn)動(dòng)副的相關(guān)作用,對(duì)各零件添加相應(yīng)的約束條件與驅(qū)動(dòng),即機(jī)架與地面添加固定副約束,電機(jī)輸出軸與機(jī)架、轉(zhuǎn)臂與推桿、推桿與前咀夾板、前咀夾板與機(jī)架、撐袋桿與機(jī)架添加轉(zhuǎn)動(dòng)副約束,凸輪與撐袋桿添加點(diǎn)-線約束;模擬機(jī)構(gòu)實(shí)際工作情況,在電機(jī)減速器輸出軸上添加旋轉(zhuǎn)驅(qū)動(dòng),根據(jù)實(shí)際電機(jī)輸出軸轉(zhuǎn)速設(shè)置驅(qū)動(dòng)、仿真時(shí)間及步數(shù),自由度和干涉檢測(cè)后對(duì)凸輪撐袋機(jī)構(gòu)進(jìn)行仿真分析,仿真模型如圖8所示。
圖8 凸輪撐袋機(jī)構(gòu)仿真模型
凸輪撐袋機(jī)構(gòu)的撐袋桿運(yùn)動(dòng)是由電機(jī)與減速器驅(qū)動(dòng)傳動(dòng)機(jī)構(gòu),通過(guò)帶動(dòng)前咀夾板轉(zhuǎn)動(dòng)同步驅(qū)動(dòng)固裝其上的凸輪帶動(dòng)撐袋桿擺動(dòng)所完成。將由式(22)得到的凸輪撐袋機(jī)構(gòu)的撐袋運(yùn)動(dòng)規(guī)律理論計(jì)算結(jié)果與仿真分析得到的角位移、角速度和角加速度的撐袋運(yùn)動(dòng)結(jié)果進(jìn)行對(duì)比分析,如圖9所示。
由圖9可知,撐袋運(yùn)動(dòng)過(guò)程中,撐袋運(yùn)動(dòng)規(guī)律的仿真分析與理論設(shè)計(jì)結(jié)果基本一致;角速度與角加速度運(yùn)動(dòng)曲線均連續(xù)變化沒有突變,避免了剛性沖擊和柔性沖擊的發(fā)生,減少了對(duì)凸輪工作廓面的磨損,撐袋桿角位移仿真值略高于理論設(shè)計(jì)值,凸輪角位移=10.49°時(shí),產(chǎn)生最大相對(duì)誤差2.25%;凸輪角位移=7.07°時(shí),角速度仿真值大于理論設(shè)計(jì)值,產(chǎn)生最大相對(duì)誤差3.34%;凸輪角位移分別為=4.27°和=9.95°時(shí),角加速度仿真分析與理論設(shè)計(jì)值產(chǎn)生最大相對(duì)誤差分別為6.10%和9.46%。產(chǎn)生上述誤差的原因,一方面是因?yàn)橥馆喒ぷ骼€建模誤差導(dǎo)致;另一方面是由于軟件條件所限導(dǎo)致凸輪機(jī)構(gòu)理論接觸點(diǎn)與仿真接觸點(diǎn)存在空間位置略有偏移所引起。仿真分析,初步驗(yàn)證了凸輪撐袋機(jī)構(gòu)結(jié)構(gòu)設(shè)計(jì)的合理性。
為進(jìn)一步驗(yàn)證凸輪撐袋機(jī)構(gòu)設(shè)計(jì)的合理性、撐袋機(jī)構(gòu)與夾袋機(jī)構(gòu)運(yùn)動(dòng)的同步性及其不同驅(qū)動(dòng)方式對(duì)包裝生產(chǎn)率的影響,對(duì)凸輪撐袋機(jī)構(gòu)物理樣機(jī)進(jìn)行加工,在原糧包裝撐夾袋機(jī)構(gòu)上開展了不同驅(qū)動(dòng)方式(氣缸驅(qū)動(dòng)和電機(jī)驅(qū)動(dòng))對(duì)原糧包裝生產(chǎn)率影響的臺(tái)架對(duì)比試驗(yàn)。
圖9 撐袋桿運(yùn)動(dòng)規(guī)律的理論設(shè)計(jì)結(jié)果與仿真結(jié)果
氣缸驅(qū)動(dòng)的撐袋機(jī)構(gòu)試驗(yàn)于2019年9月在哈爾濱友為科技有限公司的半自動(dòng)原糧包裝機(jī)上進(jìn)行(圖10a),試驗(yàn)裝置為氣缸驅(qū)動(dòng)的撐夾袋機(jī)構(gòu),試驗(yàn)材料為裝載容量50kg的塑料編織包裝袋;電機(jī)驅(qū)動(dòng)的凸輪撐夾袋機(jī)構(gòu)試驗(yàn)于2021年8月在東北農(nóng)業(yè)大學(xué)收獲加工重點(diǎn)實(shí)驗(yàn)室進(jìn)行,試驗(yàn)裝置為撐夾袋機(jī)構(gòu)試驗(yàn)臺(tái)架(圖10b),為便于試驗(yàn)觀察撐袋效果,試驗(yàn)材料選用裝載容量50 kg塑料透明包裝袋。包裝袋尺寸均為1 050 mm×595 mm。采用數(shù)碼影像設(shè)備采集與記錄包裝工序的時(shí)間。
1.拉桿 2.電機(jī)與減速器 3.轉(zhuǎn)臂 4.推桿 5.后咀夾板 6.包裝袋 7.凸輪 8.撐袋桿9.前咀夾板 10.前夾袋板 11.撐袋氣缸 12.夾袋氣缸 13.夾袋機(jī)構(gòu)
在其他試驗(yàn)條件不變的前提下,按氣缸驅(qū)動(dòng)和電機(jī)驅(qū)動(dòng)2種驅(qū)動(dòng)方式設(shè)計(jì)了2組試驗(yàn),每組試驗(yàn)原糧包裝各處理10袋,共計(jì)20個(gè)試樣;測(cè)定每袋原糧包裝的工序時(shí)間,并計(jì)算各工序時(shí)間均值。試驗(yàn)前,由人工將包裝袋試樣套在撐夾袋機(jī)構(gòu)的執(zhí)行末端。
一個(gè)原糧包裝作業(yè)循環(huán)包括:取袋套袋—夾袋與撐袋—充填—移送—縫口等工序;在完成原糧充填后向縫口工序移送0.5 s后開始進(jìn)入下一循環(huán)(即人工套袋)。試驗(yàn)指標(biāo)為包裝生產(chǎn)率(袋/min)。
式中t為人工取袋套袋時(shí)間(因物料充填時(shí)即可人工取下一袋,故其值一般小于理論值),s;t為夾袋機(jī)構(gòu)往復(fù)運(yùn)動(dòng)時(shí)間(不含夾袋工序的停留時(shí)間),s;t為撐袋機(jī)構(gòu)往復(fù)運(yùn)動(dòng)時(shí)間(不含撐袋工序的停留時(shí)間),s;t為原糧充填時(shí)間,s;t為隨動(dòng)夾持時(shí)間,s;t為下一次人工套袋開始時(shí)間,t=0.5 s。
撐夾袋機(jī)構(gòu)的夾袋與撐袋的驗(yàn)證試驗(yàn)結(jié)果表明,在夾袋機(jī)構(gòu)將袋口張開并夾緊同時(shí),凸輪撐袋機(jī)構(gòu)能夠同步實(shí)現(xiàn)將包裝袋沿袋口寬度方向撐開并撐緊的工藝要求。
2種驅(qū)動(dòng)方式撐夾袋機(jī)構(gòu)的作業(yè)循環(huán)時(shí)間對(duì)比結(jié)果如表2所示。
表2 不同驅(qū)動(dòng)方式的撐夾袋機(jī)構(gòu)作業(yè)循環(huán)時(shí)間
由表2可知,在較理想作業(yè)條件下,由氣缸驅(qū)動(dòng)的夾袋機(jī)構(gòu)與撐袋機(jī)構(gòu)夾袋階段時(shí)間和撐袋階段時(shí)間共為1.40 s,夾袋復(fù)位時(shí)間和撐袋復(fù)位時(shí)間共為1.12 s;原糧包裝效率為7.85袋/min。電機(jī)驅(qū)動(dòng)的撐夾袋機(jī)構(gòu)開啟和工作時(shí)間僅為0.41 s,回程復(fù)位時(shí)間0.41 s;因撐袋與夾袋同步運(yùn)動(dòng),較氣缸驅(qū)動(dòng)的撐夾袋機(jī)構(gòu)作業(yè)時(shí)工作時(shí)間減少1.70 s,原糧包裝效率達(dá)到10袋/min。
本文設(shè)計(jì)的由一臺(tái)電動(dòng)機(jī)同時(shí)驅(qū)動(dòng)的撐袋機(jī)構(gòu)與夾袋機(jī)構(gòu)從根本上避免了低溫結(jié)露、粉塵等對(duì)氣動(dòng)系統(tǒng)的影響,實(shí)現(xiàn)同步撐袋、夾袋和復(fù)位運(yùn)動(dòng),保證了包裝作業(yè)的連續(xù)性,從而提高了原糧包裝機(jī)的生產(chǎn)率。
1)針對(duì)中國(guó)北方地區(qū)原糧定量半自動(dòng)包裝機(jī)設(shè)計(jì)了一種凸輪撐袋機(jī)構(gòu),用一臺(tái)電機(jī)驅(qū)動(dòng)夾袋機(jī)構(gòu)與凸輪撐袋機(jī)構(gòu)實(shí)現(xiàn)了自動(dòng)夾袋、撐袋及回程復(fù)位的同步運(yùn)動(dòng);確定了凸輪撐袋機(jī)構(gòu)的撐袋運(yùn)動(dòng)規(guī)律、空間凸輪工作廓線方程及空間凸輪機(jī)構(gòu)的壓力角求解方法。
2)凸輪撐袋機(jī)構(gòu)運(yùn)動(dòng)學(xué)仿真分析表明,凸輪撐袋機(jī)構(gòu)的撐袋運(yùn)動(dòng)規(guī)律理論計(jì)算與仿真分析結(jié)果基本一致,機(jī)構(gòu)最大壓力角小于許用壓力角,滿足機(jī)構(gòu)工作要求,驗(yàn)證了凸輪撐袋機(jī)構(gòu)設(shè)計(jì)的可行性和正確性。
3)不同驅(qū)動(dòng)方式的撐夾袋機(jī)構(gòu)試驗(yàn)表明,電機(jī)驅(qū)動(dòng)撐夾袋機(jī)構(gòu)的作業(yè)生產(chǎn)率達(dá)到10袋/min,高于氣缸驅(qū)動(dòng)撐夾袋機(jī)構(gòu)的生產(chǎn)率,滿足包裝工藝要求。
[1] 國(guó)家統(tǒng)計(jì)局. 國(guó)家統(tǒng)計(jì)年鑒2021[M]. 北京:中國(guó)統(tǒng)計(jì)出版社,2021.
[2] 張肖慶. 襪子自動(dòng)化裝袋技術(shù)的研究[D]. 無(wú)錫:江南大學(xué),2014.
Zhang Xiaoqing. Research on the Automatic Bagging Technology of Socks[D]. Wuxi: Jiangnan University,2014. (in Chinese with English abstract)
[3] 張明康. 一種果樹蘋果自動(dòng)套袋機(jī)的設(shè)計(jì)[J]. 科技風(fēng),2016(14):113-114.
Zhang Mingkang. Design of a kind of automatic bagging machine for fruit trees and apples[J]. Technology Wind, 2016(14): 113-114. (in Chinese with English abstract)
[4] 徐雪萌,陳留記,王志山,等. 給袋式掛面包裝機(jī)撐袋機(jī)構(gòu)設(shè)計(jì)與分析[J]. 包裝工程,2019,40(15):181-188.
Xu Xuemeng, Chen Liuji, Wang Zhishan, et al. Design and analysis of bag-opening mechanism of automatic bag-delivering machine for dried noodles[J]. Packaging Engineering, 2019, 40(15): 181-188. (in Chinese with English abstract)
[5] 陳留記. 給袋式掛面包裝機(jī)關(guān)鍵技術(shù)研究[D]. 鄭州:河南工業(yè)大學(xué),2019.
Chen Liuji. Research on Key Technology of Automatic Bag Filing and Sealing Machine for Dried Noodles[D]. Zhengzhou: Henan University of Technology, 2019. (in Chinese with English abstract)
[6] 馬娟娟. 全自動(dòng)包裝機(jī)器人系統(tǒng)的研制[D]. 南京:南京航空航天大學(xué),2011.
Ma Juanjuan. The Research of Automatic Packing Robot System[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2011. (in Chinese with English abstract)
[7] 孫明遷,唐火紅,駱敏舟,等. 上袋機(jī)械手設(shè)計(jì)與動(dòng)態(tài)性能分析[J]. 合肥工業(yè)大學(xué)學(xué)報(bào)(自然科版),2015,38(8):1013-1017.
Sun Mingqian, Tang Huohong, Luo Minzhou, et al. Design and dynamic performance analysis of bagging mechanical hand[J]. Journal of Hefei university of technology (Natural Science Edition), 2015,38(8):1013-1017. (in Chinese with English abstract)
[8] 王軍,周東健. 圓錐形筒子紗自動(dòng)包裝生產(chǎn)線的設(shè)計(jì)[J]. 紡織器材,2016(3):49-52.
Wang Jun, Zhou Dongjian. The design of automatic packing production line for cone cheese[J].Textile Accessories, 2016(3): 49-52. (in Chinese with English abstract)
[9] 辜松,張青,李愷,等. 盆花包裝機(jī)開袋機(jī)構(gòu)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(24):38-46.
Gu Song, Zhang Qing, Li Kai, et al. Design and experiment on opening bag mechanism of sleeving machine for potted flowers[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(24): 38-46. (in Chinese with English abstract)
[10] 李東星,周增產(chǎn),卜云龍,等. 盆花自動(dòng)包裝機(jī)的研制與試驗(yàn)[J]. 農(nóng)業(yè)工程技術(shù)(溫室園藝),2014(9):32-34,36,38.
[11] 樊文濤. 全自動(dòng)給袋式包裝機(jī)結(jié)構(gòu)分析與系統(tǒng)研究[D]. 天津:河北工業(yè)大學(xué),2016.
Fan Wentao. The Analysis of Mechanism and Research of System in Full-automatic Bag-delivering Packing Machine[D]. Tianjin: Hebei University of Technology, 2016. (in Chinese with English abstract)
[12] 楊傳民,汪浩,劉銘宇,等. 給袋式包裝機(jī)撐袋空間組合機(jī)構(gòu)的運(yùn)動(dòng)分析[J]. 包裝工程,2014,35(5):35-40.
Yang Chuanmin, Wang Hao, Liu Mingyu, et al. Kinematic analysis of spatial combined mechanism for bag opening in automatic bag packing machine[J]. Packaging Engineering, 2014, 35(5): 35-40.(in Chinese with English abstract)
[13] 章永華,何建慧. 谷物包裝自動(dòng)流水線設(shè)計(jì)[J]. 輕工機(jī)械,2016,34(5):80-84.
Zhang Yonghua, He Jianhui. Design of automatic product line for grain packing[J].Light Industry Machinery, 2016, 34(5): 80-84. (in Chinese with English abstract)
[14] 范孝良,劉一操. 基于真空吸盤的飲水桶自動(dòng)套袋設(shè)備結(jié)構(gòu)設(shè)計(jì)[J]. 包裝工程,2014,35(19):77-81.
Fan Xiaoliang, Liu Yicao. Equipment structure design for automatic packing of drinking bucket based on vacuum sucker[J]. Packaging Engineering, 2014, 35(19): 77-81. (in Chinese with English abstract)
[15] 徐麗明,葛曉棠,張鐵中. 水果果袋自動(dòng)撐開機(jī)構(gòu)的研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(4):138-143.
Xu Liming, Ge Xiaotang, Zhang Tiezhong. Automatic unfolding-opening mechanism of fruit bag[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(4): 138-143. (in Chinese with English abstract)
[16] 管彥詔. 筒子紗智能生產(chǎn)物流及編織袋包裝系統(tǒng)的研究與設(shè)計(jì)[D]. 濟(jì)南:山東大學(xué),2017.
Guan Yanzhao. Research and Design of Cheeses Intelligent Production Logistics and Woven Bags Packings System[D]. Jinan: Shandong University, 2017. (in Chinese with English abstract)
[17] Shibagaki Joji. Bag opening device:CN202657304U[P]. 2013-01-09.
[18] Kondo N, Shibano Y, Mohri K, et al. Basic studies on robot to work in vineyard, 1: Manipulator and harvesting hand[J]. Journal of the Japanese Society of Agricultural Machinery, 1994, 56(1): 45-53.
[19] Henderson, Harold E. Bag-hanging and bag-filling machines adapted for synchronous and independent operation and method of using same: 4078358[P].1980-12-23.
[20] Visser Horti System[EB/OL]. 2014-09-21[2022-03-20]. http://www.visser.eu/.
[21] Crea-Tech International BV[EB/OL].2014-09-21[2022-03-20]. http://www.crea-tech.nl.
[22] Gmuer, Bruno. Method for the automatic supply of bags and bag hanging apparatus, 5337541[P].1992-08-06.
[23] Gmuer, Bruno. Apparatus for the automatic filling of bags at the discharge spout of a filling hopper, 4320615[P]. 1982-03-23.
[24] 王勝會(huì). 水果套袋機(jī)器人的開發(fā)設(shè)計(jì)及研究[D]. 秦皇島:燕山大學(xué),2016.
Wang Shenghui. The Development Design and Research of a Fruit Bagging Robot[D]. Qinhuangdao: Yanshan University, 2016. (in Chinese with English abstract)
[25] 姚學(xué)兵. 東北地區(qū)全自動(dòng)糧食包裝機(jī)研究[J]. 包裝工程,2011,32(12):131-133.
Yao Xuebing. Research on automatic food packaging machines in northeast region[J]. Packaging Engineering, 2011, 32(12): 131-133. (in Chinese with English abstract)
[26] 聞邦椿. 機(jī)械設(shè)計(jì)手冊(cè)(第六版)[M]. 北京:機(jī)械工業(yè)出版社,2017:11-130.
[27] 孫恒,陳作模,葛文杰. 機(jī)械原理[M]. 北京:高等教育出版社,2013:173-175.
[28] 紀(jì)永強(qiáng). 微分幾何[M]. 北京:高等教育出版社,2009:11-19.
[29] 胡森林,紀(jì)永強(qiáng),金亞?wèn)|,等. 古典微分幾何[M]. 安徽:中國(guó)科學(xué)技術(shù)大學(xué)出版社,2019:26-27.
[30] 陳兵奎,梁棟,高艷娥. 齒輪傳動(dòng)共軛曲線原理[J]. 機(jī)械工程學(xué)報(bào),2014,50(1):130-136.
Chen Bingkui, Liang Dong, GaoYane. Principle of conjugate curves for gear transmission[J]. Journal of Mechanical Engineering, 2014, 50(1): 130-136. (in Chinese with English abstract)
[31] 湯騰躍.無(wú)誤差的擺動(dòng)從動(dòng)件空間凸輪綜合設(shè)計(jì)[D]. 杭州:浙江大學(xué),2014.
Tang Tengyue. An Comprehensive Error Free Design for Oscillating Follower Spatial Cam[D]. Hangzhou: Zhejiang University, 2014. (in Chinese with English abstract)
Design and experiment of the cam driven bag opening mechanism for raw grain packing machine
Dong Xin, Wang Penghong, Liu Liyi※, Zuo Yanjun, Li Zihui, Jia Fuguo
(,,150030,)
Raw grain generally refers to the unprocessed cereal in agricultural production. In general, the raw grain can be packed from autumn after harvested in northern China. A bag opening mechanism has been one of the most important components in raw grain packing machines. Different cylinders can be usually utilized to drive the bag clamping and opening mechanisms. The performance of this mechanism directly dominates the quality of raw grain packaging. However, the slow action or even failure of pneumatic parts can result in the reduced synchronization and efficiency of machines, due to the condensation at low temperature and the environment of heavy dust. In this study, a bag opening mechanism driven by a cam that moved synchronously with the bag clamping mechanism was designed. The synchronous actions of bag opening, clamping, and resetting were also realized using one motor to drive the planar six-bar-linkage. A systematic investigation was then made to clarify the working requirements, structural composition, and working principle of the bag clamping and opening mechanisms. A sinusoidal acceleration motion was selected as the movement rule for the cam driven bag opening mechanism. The geometric coordinate transformation and the vector method were established for the parameter equation of the cam working profile and the pressure angle solution of the spatial cam mechanism. A single factor test was also carried out to evaluate the performance of the cam driven bag opening mechanism using the influencing factors of the pressure angle. An optimal combination was achieved, where the radius of bag opening rod was 6 mm, the angular displacement of bag opening rod was 4.5°, the swing distance of the contacting point was 120 mm, the initial positional angle of the contacting point was -180°, and the positional angle of the contacting point was -170°. A linear fitting was obtained between the angular displacement of bag opening rod and the positional angle of the contacting point. The maximum pressure angle of 23° was less than the allowable pressure angle. Finally, the specific parameters were determined for the movement of cam driven bag opening mechanism, the cam working profile, and the relational expression of the pressure angle. A 3D model was constructed for the cam driven bag opening mechanism. The motion of the cam driven bag opening mechanism was also simulated using ADAMS platform. The theoretical calculation and simulation show that the bag opening movement was basically the same, fully meeting the actual requirements of mechanism. In addition, the physical prototype was manufactured for the bag opening mechanism. A comparative test was performed on the bag clamping and opening mechanisms that driven by cylinders and motor. Consequently, the productivity of 10 bags/min was obtained on the motor-driven type, which was much higher than the cylinder-driven one. The feasibility and accuracy of the cam driven bag opening mechanism were verified to fully meet the requirements of packaging process. This finding can also provide a new idea and theoretical analysis to design the raw grain packing machine in the cold regions.
design; experiments; raw grain packaging; cam mechanism; pressure angle
10.11975/j.issn.1002-6819.2022.15.005
TB486+.3; S233.5
A
1002-6819(2022)-15-0042-11
董欣,王鵬宏,劉立意,等. 原糧包裝機(jī)凸輪撐袋機(jī)構(gòu)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2022,38(15):42-52.doi:10.11975/j.issn.1002-6819.2022.15.005 http://www.tcsae.org
Dong Xin, Wang Penghong, Liu Liyi, et al. Design and experiment of the cam driven bag opening mechanism for raw grain packing machine[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE),2022, 38(15): 42-52. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.15.005 http://www.tcsae.org
2022-03-20
2022-07-25
國(guó)家自然科學(xué)基金資助項(xiàng)目(51575098);公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201002077)
董欣,教授,碩士生導(dǎo)師,研究方向?yàn)闄C(jī)械設(shè)計(jì)及理論。 Email:Dongxin@neau.edu.cn.
劉立意,研究員級(jí)高級(jí)工程師,碩士生導(dǎo)師,研究方向?yàn)檗r(nóng)業(yè)工程測(cè)控技術(shù)。Email:lyliu2468@sina.com.