• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Insight into the photoexcitation effect on the catalytic activation of H2 and C-H bonds on TiO2(110) surface

    2022-11-05 06:48:02MinZhouHaiFengWang
    Chinese Chemical Letters 2022年10期

    Min Zhou,Hai-Feng Wang

    Key Laboratory for Advanced Materials,Centre for Computational Chemistry and Research Institute of Industrial Catalysis,East China University of Science and Technology,Shanghai 200237,China

    Keywords:Density functional theory calculation Photocatalysis H2 activation C-H bond activation TiO2

    ABSTRACT Semiconductor photocatalysis holds great promise for breaking the inert chemical bonds under mild condition;however,the photoexcitation-induced modulation mechanism has not been well understood at the atomic level.Herein,by performing the DFT+U calculations,we quantitatively compare H2 activation on rutile TiO2(110) under thermo- versus photo-catalytic condition.It is found that H2 dissociation prefers to occur via the heterolytic cleavage mode in thermocatalysis,but changes to the homolytic cleavage mode and gets evidently promoted in the presence of photoexcited hole (h+).The origin can be ascribed to the generation of highly oxidative lattice O-radical (Obr·-) with a localized unoccupied O-2p state.More importantly,we identify that this photo-induced promotion effect can be practicable to another kind of important chemical bond,i.e.,C-H bond in light hydrocarbons including alkane,alkene and aromatics;an exception is the C(sp1)-H in alkyne (HC≡CH),which encounters inhibition effect from photoexcitation.By quantitative analysis,the origins behind these results are attributed to the interplay between two factors: C-H bond energy (Ebond) and the acidity.Owing to the relatively high Ebond and acidity,it favors the C(sp1)-H bond to proceed with the heterolytic cleavage mode in both thermo-and photo-catalysis,and the photoexcited Obr·- is adverse to receiving the transferred proton.By contrast,for the other hydrocarbons with moderate/low Ebond,the Obr·- would enable to change their activation mode to a more favored homolytic one and evidently decrease the C-H activation barrier.This work may provide a general picture for understanding the photocatalytic R-H (R=H,C) bond activation over the semiconductor catalyst.

    The activation of H-H and C-H bonds (classified as R-H,R=H,C) is of vital importance in the hydrogenation and dehydrogenation processes for the catalytic conversion and functionalization of saturated or unsaturated hydrocarbon compounds.Ways to efficiently break these chemical bonds under mild condition are always at the heart of chemical industry [1-3],which constitutes one of the foundations for the controllable formation of value-added commodity [4-6].Generally,the catalytic cleavage and functionalization of R-H bond have been extensively explored on kinds of catalysts,such as the noble metals (Pt [7-9],Rh [10-12],Au [13,14]andet al.[15-18]),transition metal oxides (TMOs) and zeolites[19-21].For example,the TMO-catalysts modified by single-atom metal doping or metal loading [22-26]were specifically manufactured to tailor the catalytic activity toward R-H bond activation.Despite these great progresses,these reactions are often performed at high temperatures (573-873 K) [27-29],which could lead to severe coke deposition and low product selectivity.Therefore,it is of paramount importance to develop more efficient catalysts or technologies for R-H bond activation under mild condition [30-33].

    In this regard,the photocatalytic technology is believed to be capable of altering the reaction kinetics under mild condition owing to the presence of the excited carrier (h+/e-),and increasing experimental studies have demonstrated the feasibility for facilitating the R-H bond activation [34-36].Taking the photocatalytic CH4activation as an example,it was proposed that CH4can be selectively converted to CH3OH or HCHO under UV irradiation at room temperature over semiconductor catalysts,like TiO2[37],ZnO [38]andet al.[39-41].However,the atomic-level insight into the photocatalytic effect is not unambiguously disclosed,to the best of our knowledge.Theoretically,owing to the difficulty in simulating photo-excited radicals properly on the semiconductor,the photocatalytic surface reaction has been relatively less studied with the detailed kinetic information provided [42-44].It seems that most researches mainly focus on thermodynamic properties to evaluate the photocatalytic activity by considering the band structure of semiconductor and the potential of target reaction[45-48].Kinetically,a comprehensive understanding of the nature of photocatalytic effect on R-H bond activation at the atomic-scale level is very limited.Specifically,one may ask,how does the photoexcitation affect the H2and C-H activation,and what is the quantitative difference between thermo-and photo-catalytic mechanisms? Moreover,there are different types of C-H bonds,e.g.,C(sp3)-H,C(sp2)-H and C(sp1)-H,and what are the general rule or difference of the photocatalytic effects on them?

    Herein,we computationally explored the activation of H2molecule and diverse C-H bonds in thermo-and photo-catalysis on rutile TiO2(110),one of the most studied semiconductors in photocatalysis.The theoretical results explicitly revealed the reaction mechanisms of H2activation;moreover,the activation of C-H bonds in diverse light-hydrocarbons,including acetylene (HC≡CH),benzene (C6H5-H),ethylene (CH2=CH-H),methane (CH3-H),ethane (CH3CH2-H),propyne (CH≡CCH2-H),toluene (C6H5CH2-H)and propylene (CH2=CHCH2-H),were calculated and compared.The C-H bond energy (Ebond) and deprotonation energy (Edep,corresponding to the acidity) were identified to be two main factors leading to the distinct behaviors of R-H bonds activation in thermo-and photo-excited conditions.

    All spin-polarized DFT calculations were performedviaVienna ad initio Software Package (VASP) code [49,50],using the Perdew-Burke-Ernzerhof (PBE) functional within the generalized gradient approximation (GGA) [51,52].The project-augmented wave (PAW)[53]method was used to represent the core-valence electron interaction,and the valence electronic states were expanded in plane wave basis sets with a cutoff energy of 450 eV.To ensure proper description of the valence electrons on Ti atom,a valence electron configurations 3p64s23d2(small core) was applied.

    We adopted ap(3×2) model of rutile TiO2(110) with four TiO2atomic layers to accommodate the organic molecule and minimize the interaction between periodically repeated slabs.The vacuum between slabs was ~10 ?A and a 2×3×1k-point mesh was used during the optimizations.The transition states (TSs) were searched by the constrained optimization scheme and were verified when (i) all forces on the atoms vanish and (ii) the total energy is a maximum along the reaction coordinate but a minimum with respect to the rest of the degrees of freedom [54-56].All the atoms were allowed to relax,until the force on each atom was less than 0.05 eV/?A.The van der Waals forces was taken into account throughout this work to consider the possible weak interaction between intermediates and TiO2(110) surface [57,58].To model the photogenerated h+/e-,here we took the method of removing/adding electrons directly from the system with an additional neutralizing background charge applied in VASP due to the large dielectric constant of rutile TiO2[59].Moreover,the photogenerated carriers usually tend to delocalize on TiO2system in GGA calculations due to the self-interaction error.To overcome this issue,DFT+Umethod with an on-site Coulomb interactionUadded to the Ti-3d (U=4.2 eV) and O-2p orbitals (U=6.3 eV) was adopted for structure optimization and energy calculation [60],and the HSE06 hybrid functional was used to verify the electronic structure.Such an approach has been successfully applied to describe the photocatalytic reactions (e.g.,methanol oxidation,oxygen evolution reaction) on TiO2[61,62].

    The adsorption energy of surface species (X) was defined asEad(X)=E(X/sur)-E(sur)-E(X),whereE(sur),E(X) andE(X/sur)are the energy of catalyst surface,X species in the gas phase and X species adsorbed on the catalyst surface,respectively.Notably,at a specific temperature,the large entropy contributions of gaseous molecules were considered to estimate the adsorption free energy(Gad) [63,64].

    Fig.1.(a) Ball-and-Stick model of rutile TiO2(110) surface and H2 adsorption configuration,in which Ha is the H atom approaching to Obr site and the other H atom is named as Hb.(b) Energy profiles of thermo-catalytic H2 dissociation via homolytic and heterolytic modes,respectively,and (c) the optimized structures and spin density distribution of initial state (IS),transition state (TS) and final state (FS).The barrier (Ea) and enthalpy change (ΔH) are labeled (in eV).The distances of some key bonds and Bader charges of important intermediates are labeled in black(in ?A) and blue (in |e|),respectively.Ti,gray;O,red;H,white.

    As Fig.1a shows,the rutile TiO2(110) surface is terminated by two types of unsaturated sites: two-fold coordinated bridge O and five-fold coordinated Ti (denoted as Obrand Ti5c,respectively),which constitute the possible active centers for H-H and C-H bonds activation.Firstly,the adsorption and dissociation of H2molecule under the thermocatalytic condition were briefly examined as a benchmark.It was found that H2can weakly adsorb on Ti5csite with an adsorption energy,Ead(H2),of-0.20 eV,which corresponds to an adsorption free energy,Gad(H2),of 0.20 eV at room temperature.Subsequently,we tested two possible H2dissociation routes,including homolytic and heterolytic cleavage pathways,according to previous studies [30,31,65].In the homolytic mode,H2activation is accompanied by the formation of a H·and a H+(i.e.,H2+Ti5c4++Obr2-→H·+Ti5c3++ObrH-);the activation barrier is as high as 1.73 eV and the enthalpy change reaches 0.70 eV (see energy profiles in Fig.1b).Alternatively,when the reaction proceedsviathe heterolytic cleavage mode,which synergistically occurs at the Obrand Ti5cdual sites (i.e.,H2+Ti5c4++Obr2-→Ti5c4+-H-+ObrH-),the barrier decreases a lot to 0.58 eV.This indicates that the heterolytic mode is energetically more favorable for HH bond scission than the homolytic mode.Moreover,the H atoms dissociated from the heterolytic cleavage would be eventually captured by Obrand Ti5csites yielding a H+and a H-anion,evidenced by their Bader charges of 1.00 |e| and-0.44 |e| (Fig.1c),respectively.Notably,these barriers are slightly higher than those reported by Huet al.(1.39 eV and 0.37 eV in homolytic and heterolytic modes,respectively),owing to the self-interaction error of TiO2system ignored in their study [65].

    Secondly,we calculated the photocatalytic H2dissociation on TiO2(110) surface.Generally,the generated photohole/electron pairs under light illumination thermodynamically tend to be trapped by Obrand Ti5csites and form Obr·-and Ti5c3+,respectively,corresponding to Obr2-+h+→Obr·-and Ti5c4++e-→Ti5c3+[66-68].As Figs.2a and b show,our calculations verify that these two excited active sites (Obr·-and Ti5c3+)have insignificant effect on H2adsorption withEad(H2) of-0.22 eV and-0.21 eV,respectively.With the assistance of Ti5c3+,the barrier of H2dissociation is nearly the same as that in thermocatalysis (0.56 eVvs.0.58 eV) with a very similar TS structure (see TS1 in Fig.2c),implying little contribution of photo-electron on H2activation.Intriguingly,on hole-trapped TiO2(110) surface,the TS of H-H bond cleavage changes from the dihapto configuration in the thermocatalytic condition to the monohapto one (Figs.2c and 1c),and the barrier is reduced to 0.37 eV with an enthalpy change of-0.04 eV (i.e.,H2+Obr·-→HObr-+H·).Notably,in comparison with the pristine homolytic cleavage mode in thermocatalysis,the barrier has largely declined (1.73 eVvs.0.37 eV).With the generation of H·radical,it would further re-adsorb on Obrand form H+with a large energy release (-2.90 eV).More specifically,in this photocatalytic TS,one H in H2molecule is captured by Obr·-and the other H suspends above the TiO2surface with the H···H and Ha···Obrbonds being 0.857 ?A and 1.307 ?A,respectively.In other word,it exhibits a radical-like TS,and the radical nature of H atom is also confirmed by Bader spin charge of 0.97 |e|.Therefore,the H-H bond activation mediated by photo-hole essentially follows the homolytic cleavage mechanism.

    Fig.2.(a,b) H2 adsorption on TiO2(110) in the presence of Ti5c3+ and Obr·-,respectively.(c) Energy profiles of H2 dissociation in thermocatalysis via heterolytic mode (black line) or under light irradiation,including hole-and electron-assisted circumstances (red and blue lines,respectively).

    To shed light on the promotion effect of photo-hole on H2dissociation,we quantitatively inspected the related electronic structure information.Firstly,the periodic natural bond orbital (NBO)[69]of two-site assisted TS complex in thermocatalysis was analyzed to uncover the bonding/antibonding nature of Ha-Obrand Hb-Ti5c(see Fig.3a),in which Ha/Hbdenotes the H atom in H2close to the Obr/Ti5csite,respectively (Fig.1a).Quantitatively,the charge of Hais calculated to be 0.65 |e| in the H2activation TS,indicating that the electron in Hais partially shared by the forming Ha-Obrbond;however,it owns a charge of 1.06 |e| for the Hbatom in Hb-Ti5cbond,implying the negligible electron transfer (versusthat (0.93 |e|) of Hbatom in pristine H2molecule).Moreover,the occupancy of Ha-Obrbonding/antibonding is 0.91/0.20 |e|,but nearly zero for Hb-Ti5cbond.Therefore,we can speculate that the activation of H2molecule depends mainly on the Obrsite,whereas the Ti5csite contributes to a small extent,which could well explain the greater promotion effect of photo-hole than photo-electron.Similar result can be drawn in the C-H bond activation of CH4molecule on rutile TiO2(110) surface [70].

    Furthermore,the projected densities of states (PDOSs) of TiO2(110) in the absence or presence of Obr·-were calculated (see Figs.3b and c).It can be seen that the presence of localized photohole does not lead to significant change in the whole band gap,but induces a new unoccupied state within the forbidden band.In principle,this hole-state is conductive to accepting electron and exhibits strong oxidizability,evidenced by the higher energy level of Obr·-(~1.5 eV above the fermi level).In this sense,the superior performance of Obr·-than Obr2-on H-H bond rupture can be rationalized as follows.Obr·-holds less electron (-0.69 |e|) than Obr2-(-1.08 |e|),and this reactive Obr·-site,as a stronger oxidative center,can more easily accept electron from the dissociated hydrogen atom after H2homolytic cleavage in photocatalysis,thereby largely decreasing the activation barrier.

    Fig.3.(a) The periodic natural bond orbital (NBOs) of TS for H2 dissociation in thermocatalysis via the heterolytic mode.(b,c) The projected densities of states (PDOSs) of pristine TiO2(110) and hole-trapping TiO2(110),respectively,using HSE06.The vertical dotted lines in the PDOSs denote the fermi levels.

    With the understanding of photoexcitation effect on modulating H2dissociation,we are now at the position to explore the C-H bond activation in a series of different organic molecules on TiO2(110),aiming to uncover the general rule of the photohole effect,which includes (i) sp1-C group: HC≡C-H;(ii) sp2-C group: C6H5-H and CH2=CH-H;(iii) sp3-C group: CH3-H,CH3CH2-H,CH≡CCH2-H,C6H5CH2-H and CH2=CHCH2-H.At first,the thermally-driven C-H bond activation processes were studied.By comparing the barriers in homolytic and heterolytic cleavage modes (Table 1),we can see that heterolytic route is not always the most favorable one for all C-H bonds,which differs from H-H bond activation.In detail,the HC≡C-H,C6H5-H,CH2=CH-H,CH3-H and CH3CH2-H bonds prefer to be activatedviathe heterolytic cleavage mode,whereas the homolytic mode for the others (i.e.,CH≡CCH2-H,C6H5CH2-H and CH2=CHCH2-H) (Fig.4a and Table 1).Additionally,except for HC≡C-H (0.13 eV),almost all the reaction barriers of the most favored pathway are above 0.90 eV,which indicatesthe difficulty of C-H bond activation at room temperature.In the presence of Obr·-,we identified that the homolytic mode becomes more favored for C-H bonds in all but HC≡C-H (Table 1).Particularly,the activation barriers for the CH≡CCH2-H,C6H5CH2-H and CH2=CHCH2-H bonds are extremely small (<0.10 eV) as compared to those in the thermocatalytic condition;for the usually-known inert C-H bonds in benzene,ethylene and methane,the barriers can also be reduced to below 0.52 eV.Overall,these results imply that for all these C-H bond in light hydrocarbons,the photo-hole can prompt their activation evidently,except for HC≡CH molecule.

    Table 1 Reaction barriers (Ea) of various R-H bonds cleavage on TiO2(110) in thermo-and photo-catalysis (heterolysis/homolysis,abbreviated as hetero-/homo-,respectively).Ebond is the R-H bond energy defined with the reaction energy of homolytic process(R-H →R·+ H·) and Edep is the deprotonation energy from the heterolytic process(R-H →R-+ H+),taken from the NIST WebBook [71].Note that the TSs of photocatalysis in heterolytic mode are hardly accessible in geometry,and thus their barriers are not shown here.The unit is eV.

    Fig.4.(a) Comparisons for the most favored activation barrier (Ea) of C-H bonds in the thermal and photo-hole assisted conditions,as well as the corresponding TSs for group-I,-II and-III C-H bonds (b-d),respectively,in which the distances of Ha···Obr bonds are labeled in black (in ?A).(e) Correlations between Ea and Ebond in the thermal and photo-hole assisted conditions,respectively.

    In addition,it is remarkable that the activation of these C-H bonds exhibits different behaviors,and is modulated by Obr·-to different degrees in comparison to the thermocatalysis (Fig.4a).According to the results revealed above,these C-H bonds may be,therefore,classified as three groups: (group-I) the ones (CH3-H,CH3CH2-H,CH2=CH-H and C6H5-H,Fig.4b) that follow the heterolysis mode in thermocatalysis and change to the homolysis mode in photocatalysis,to which the photo-effect is beneficial(seeΔEIin Fig.4e);(group-II) the ones (CH≡CCH2-H,C6H5CH2-H and CH2=CHCH2-H,Fig.4c) that follow the homolysis mode in thermocatalysis and keep it in photocatalysis,where the photoeffect is more efficient than group-I (seeΔEIIin Fig.4e);(group-III) HC≡C-H (Fig.4d),which prefers the heterolysis mode in both thermo-and photo-catalysis,and the presence of Obr·-will inhibit the HC≡C-H bond activation (seeΔEIIIin Fig.4e).One may naturally ask,what are the origins for these three different behaviors?Specifically,why do the group-II C-H bonds tend to follow the homolytic cleavage mode,differing from the others? For HC≡C-H,why does it always follow the heterolysis mode,and why is the presence of Obr·-adverse to its C-H bond scission?

    Toward these questions,firstly,we quantitatively tested the dependence of theEavaluesviahomolytic/heterolytic routes in the thermocatalytic condition on the corresponding C-H bond energies (Ebond).Two overall linear relations can be obtained withR2of 0.87/0.96 (Fig.4e),respectively.More intriguingly,asEbondincreases,Eain the homolytic route increases,but decreases in the heterolytic one,and the crossing point of the two curves is atEbond=4.2 eV.These correlations clearly suggest that the choice of homolysisversusheterolysis in the thermocatalytic condition strongly depends on the C-H bond energy: the heterolysis is favored in the strong bond-energy region,while the homolysis is preferred in weak bond-energy region.For the group-II C-H bonds,they own the relatively weakerEbondamong all the studied ones (Table 1),due to the stability of dehydrogenated moleculefragment (i.e.,CH≡C-CH2·,C6H5-CH2·and CH2=CH-CH2·) with extendedπ-electron conjugation,which rationalizes the preference of homolytic cleavage in thermocatalysis.

    With the participation of Obr·-in the C-H bond activation,a similar linear correlation exists between theEafollowing the homolysis mode in the photocatalytic condition andEbondas well(R2= 0.95,Fig.4e).One can see from Fig.4e that this line is overall downward shift in parallel as compared to that of the homolysis mode in the thermocatalytic condition,which again illustrates the promotion effect originating from the high oxidizability of Obr·-.Accordingly,we can explain the different promotion effect of Obr·-on the C-H bonds of group-Iversusgroup-II,which givesΔEII>ΔEI.For group-II C-H bonds,the homolytic mode is favored in both thermo-and photo-catalytic conditions,and the promotion extent (ΔEII) of Obr·-is the largest as seen from Fig.4e.Differently,for group-I C-H bonds,the heterolysis mode is more favored in the thermocatalytic condition,and it will change to the homolysis mode in photocatalysis;thus,the photo-promotion effect (ΔEI)is relatively weakened relative toΔEII.Moreover,it is worth noting thatΔEIbecomes smaller and smaller as theEbondincreases.

    Secondly,as illustrated in Fig.4e,with the increase ofEbond,we can see that the thermodynamically driven heterolytic mode becomes more and more feasible.When above ~5.3 eV,it will be even more favored than the photo-driven process,essentially ascribed to that the localized hole at Obr·-cannot provide enough energy to compensate the C-H bond energy.Specifically for HC≡CH activation,the largeEbondof HC≡C-H is unfavorable for the occurring of homolytic mode.Moreover,as we know,HC≡CH together with the group-II molecules (CH≡CCH3,C6H5-CH3and CH2=CHCH3) displays weak acidity [72,73],consistent with their relatively small deprotonation energies (Edep) in Table 1.These two factors imply that the HC≡C-H is more susceptible to releasing hydrogen in the form of proton (i.e.,HC≡C-H →HC≡C-+H+).In this circumstance,the hydrogen in HC≡C-H would more easily combine with the Obr2-siteviaheterolysis rather than homolysis,which accordingly corresponds to a lower barrier of 0.13 eV(2.10 eV in homolysis).When the Obr·-is present,owing to the additional Coulomb repulsion between positively charged H+and Obr·-(versusthat in H+···Obr2-),the activation process is kinetically less favored than that in the pristine Obr2-(0.78 eVvs.0.13 eV in photo-and thermo-catalysis,respectively).Thus,the HC≡C-H bond prefers to be activated through the heterolytic mode and photo-hole would suppress this activation process,as a result of its strong bond energy and acidity.Notably,the similar result was also observed in the heterolytic O-H bond cleavage in the photocatalytic CH3OH oxidation revealed in our previous study (Table 1)[61].

    In summary,we have quantitatively studied the activation mechanism of H2and a series of C-H bonds on TiO2(110) in the thermo-and photo-catalytic conditions,aiming to reveal the general photoexcitation effect on modulating the chemical bonds breakage.The main results can be summarized as follows:

    (i) The thermal-driven H2activation on TiO2(110) tends to obey the heterolytic cleavage mode,and the Obr·-radical formed from the photo-hole localization would change the mode to be homolytic one and evidently facilitate the activation process.

    (ii) We identified that the examined C-H bonds can be classified as three groups in terms of the bond energy and acidity: group-I (CH3-H,CH3CH2-H,CH2=CH-H and C6H5-H),group-II (CH≡CCH2-H,C6H5CH2-H and CH2=CHCH2-H) and group-III (HC≡C-H).The bond energy order is group-II<group-I<group-III;meanwhile,group-II/-III C-H bonds own weak acidity.The Obr·-species can facilitate the activation of group-I/II C-H bonds to different degrees,whereas inhibits the one in HC≡C-H.

    (iii) The different C-H activation behaviors in group-I to group-III could be largely attributed to the C-H bond energies and acidities.For the group-I/-II C-H bonds with relatively moderate/low bond energies,they obey the heterolytic/homolytic cleavage mechanism in thermocatalysis,and will uniformly obey the homolysis mechanism driven and simultaneously promoted by the highly oxidative Obr·-,where the promotion effect on group-II C-H bonds is more evident with nearly negligible barriers.

    (iv) Owing to the strong bond energy and weak acidity,we found that the HC≡C-H bond consistently prefers to be activatedviathe heterolytic cleavage mode,and Obr·-would inhibit this activation as a result of additional Coulomb repulsion between the dissociated proton and Obr·-(versusthe pristine Obr2-on TiO2(110)).

    This work provided a general atomic-level description on the photo-versusthermo-catalytic activation of H2and various C-H bonds,which may explicitly deepen our understanding of the photocatalytic effect on modulating the chemical bonds breakage.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This project was supported by National Nature Science Foundation of China (Nos.21873028,91945302),National Ten Thousand Talent Program for Young Top-notch Talents in China,Shanghai Shu-Guang project (No.17SG30),and the Fundamental Research Funds for the Central Universities

    高清av免费在线| 七月丁香在线播放| 伦理电影免费视频| av不卡在线播放| 在线观看www视频免费| 亚洲伊人色综图| 一区二区日韩欧美中文字幕| 最近中文字幕2019免费版| 国产黄色免费在线视频| 国产精品亚洲av一区麻豆 | 国产精品成人在线| 亚洲精品国产一区二区精华液| 一级毛片电影观看| 大陆偷拍与自拍| 成人手机av| 亚洲精品国产一区二区精华液| 中国国产av一级| 免费日韩欧美在线观看| 丝袜喷水一区| 久久久久久久久久人人人人人人| 午夜日本视频在线| 日本av免费视频播放| 成人毛片60女人毛片免费| 久久97久久精品| 日日撸夜夜添| 日韩av在线免费看完整版不卡| 日韩,欧美,国产一区二区三区| 久久国产精品大桥未久av| 亚洲熟女精品中文字幕| 日本爱情动作片www.在线观看| 婷婷色综合www| 久久精品国产亚洲av天美| 深夜精品福利| 男人操女人黄网站| 国产1区2区3区精品| 一级a爱视频在线免费观看| 亚洲欧美色中文字幕在线| 久久国产精品大桥未久av| 欧美人与性动交α欧美精品济南到 | 成人毛片60女人毛片免费| 天天躁夜夜躁狠狠久久av| 成人毛片a级毛片在线播放| 99精国产麻豆久久婷婷| 欧美老熟妇乱子伦牲交| 九九爱精品视频在线观看| 美女视频免费永久观看网站| 飞空精品影院首页| 尾随美女入室| 青草久久国产| 在线观看美女被高潮喷水网站| 精品国产国语对白av| 亚洲av综合色区一区| 秋霞伦理黄片| 汤姆久久久久久久影院中文字幕| 又大又黄又爽视频免费| 91精品国产国语对白视频| 热re99久久精品国产66热6| kizo精华| 观看av在线不卡| 国产成人av激情在线播放| 久久久久久免费高清国产稀缺| 在线观看人妻少妇| 成人亚洲欧美一区二区av| 亚洲av成人精品一二三区| 黑人欧美特级aaaaaa片| 国产1区2区3区精品| 又黄又粗又硬又大视频| 亚洲四区av| 精品久久久精品久久久| 精品久久久精品久久久| 丰满少妇做爰视频| 精品卡一卡二卡四卡免费| 少妇猛男粗大的猛烈进出视频| 两个人看的免费小视频| 老汉色∧v一级毛片| 免费在线观看完整版高清| 永久网站在线| 国产成人91sexporn| 亚洲色图综合在线观看| 亚洲图色成人| 久久久久久久久久人人人人人人| 成人手机av| 久久人人爽av亚洲精品天堂| 九九爱精品视频在线观看| 五月开心婷婷网| 大话2 男鬼变身卡| 这个男人来自地球电影免费观看 | 九九爱精品视频在线观看| 亚洲精华国产精华液的使用体验| 久久99一区二区三区| 色吧在线观看| 最近手机中文字幕大全| 精品一区二区三卡| 2022亚洲国产成人精品| 综合色丁香网| av线在线观看网站| 精品福利永久在线观看| 日韩成人av中文字幕在线观看| 咕卡用的链子| 久久久久久免费高清国产稀缺| 777久久人妻少妇嫩草av网站| 亚洲精品久久午夜乱码| 日韩中文字幕欧美一区二区 | 久热久热在线精品观看| 叶爱在线成人免费视频播放| 日韩伦理黄色片| 国产麻豆69| 边亲边吃奶的免费视频| 日本午夜av视频| www.熟女人妻精品国产| 大片电影免费在线观看免费| av片东京热男人的天堂| 午夜福利视频精品| 自线自在国产av| 亚洲成人av在线免费| 在线观看免费日韩欧美大片| 免费观看无遮挡的男女| 亚洲三区欧美一区| 欧美老熟妇乱子伦牲交| 男女啪啪激烈高潮av片| 中文字幕色久视频| 久久久久国产精品人妻一区二区| 国产欧美日韩一区二区三区在线| 亚洲精品美女久久久久99蜜臀 | 欧美激情 高清一区二区三区| 中文字幕人妻丝袜制服| 久久久久国产一级毛片高清牌| 多毛熟女@视频| 日本猛色少妇xxxxx猛交久久| 91午夜精品亚洲一区二区三区| 亚洲第一青青草原| 亚洲精品美女久久av网站| 亚洲欧美一区二区三区黑人 | 91精品国产国语对白视频| 999精品在线视频| 人人妻人人爽人人添夜夜欢视频| 国产极品天堂在线| 国产日韩一区二区三区精品不卡| 9色porny在线观看| 亚洲色图综合在线观看| 日本爱情动作片www.在线观看| 国产男人的电影天堂91| 一级毛片 在线播放| 国产亚洲午夜精品一区二区久久| 熟女少妇亚洲综合色aaa.| 国产日韩一区二区三区精品不卡| 久久久久久久精品精品| 王馨瑶露胸无遮挡在线观看| 一级毛片我不卡| 人妻人人澡人人爽人人| 久久精品国产综合久久久| 欧美精品亚洲一区二区| 亚洲美女搞黄在线观看| 国产午夜精品一二区理论片| videosex国产| 高清黄色对白视频在线免费看| 亚洲在久久综合| 观看av在线不卡| videossex国产| videos熟女内射| 大话2 男鬼变身卡| 免费观看性生交大片5| 国产乱人偷精品视频| 国产成人精品无人区| 欧美精品国产亚洲| 在线亚洲精品国产二区图片欧美| 99re6热这里在线精品视频| 国产极品粉嫩免费观看在线| 黄色视频在线播放观看不卡| 不卡视频在线观看欧美| 国产男人的电影天堂91| 亚洲四区av| 97人妻天天添夜夜摸| 国产精品国产三级国产专区5o| 亚洲精品第二区| 亚洲男人天堂网一区| 91aial.com中文字幕在线观看| 青春草亚洲视频在线观看| 免费黄色在线免费观看| 久久国产精品大桥未久av| 一级片'在线观看视频| 麻豆精品久久久久久蜜桃| 国产欧美亚洲国产| 免费久久久久久久精品成人欧美视频| 一边摸一边做爽爽视频免费| 久久久久国产网址| 777米奇影视久久| 欧美日韩av久久| 国产伦理片在线播放av一区| 中国三级夫妇交换| 九色亚洲精品在线播放| 国产白丝娇喘喷水9色精品| 桃花免费在线播放| 在线观看www视频免费| 夜夜骑夜夜射夜夜干| 欧美av亚洲av综合av国产av | 黄色一级大片看看| 国产精品一区二区在线观看99| 国产成人一区二区在线| 亚洲av成人精品一二三区| 色婷婷久久久亚洲欧美| 免费在线观看完整版高清| 精品一区二区三区四区五区乱码 | 日本色播在线视频| 一本—道久久a久久精品蜜桃钙片| 可以免费在线观看a视频的电影网站 | 成年动漫av网址| 国产毛片在线视频| 国产精品 国内视频| 国产男人的电影天堂91| 女人被躁到高潮嗷嗷叫费观| 欧美精品人与动牲交sv欧美| av国产精品久久久久影院| 波多野结衣av一区二区av| 久久久久久久久久久久大奶| 国产免费视频播放在线视频| 国产精品国产三级国产专区5o| 久久久久久免费高清国产稀缺| 久久久久国产精品人妻一区二区| 在线观看www视频免费| 女性生殖器流出的白浆| 七月丁香在线播放| 国产免费视频播放在线视频| 韩国av在线不卡| 女人被躁到高潮嗷嗷叫费观| 精品99又大又爽又粗少妇毛片| 亚洲欧美精品综合一区二区三区 | 亚洲在久久综合| 麻豆av在线久日| 久久久久人妻精品一区果冻| www.自偷自拍.com| 日产精品乱码卡一卡2卡三| 午夜日韩欧美国产| 少妇的逼水好多| 日韩伦理黄色片| 国产精品久久久久久精品电影小说| 午夜福利乱码中文字幕| 少妇被粗大猛烈的视频| 久久精品夜色国产| 国产精品av久久久久免费| 欧美少妇被猛烈插入视频| 女的被弄到高潮叫床怎么办| 一级片免费观看大全| 一区二区三区四区激情视频| 日本欧美视频一区| 欧美日韩精品成人综合77777| 久久精品国产综合久久久| 秋霞伦理黄片| 又大又黄又爽视频免费| 一级a爱视频在线免费观看| 午夜福利在线免费观看网站| 国产亚洲最大av| 97在线人人人人妻| 看非洲黑人一级黄片| 久久久久精品性色| 99精国产麻豆久久婷婷| 久久97久久精品| 亚洲三级黄色毛片| 一级毛片 在线播放| 亚洲精品在线美女| 一级片免费观看大全| 国产精品三级大全| 亚洲欧美中文字幕日韩二区| 国产欧美日韩一区二区三区在线| 久久久久久人妻| 久久av网站| 男人操女人黄网站| 国产男女内射视频| 午夜福利视频精品| 女人被躁到高潮嗷嗷叫费观| 日本免费在线观看一区| 国产av国产精品国产| 亚洲欧美色中文字幕在线| 制服诱惑二区| 欧美成人午夜精品| 日本91视频免费播放| 国产不卡av网站在线观看| 天堂中文最新版在线下载| 国产精品三级大全| 亚洲第一av免费看| 精品国产一区二区久久| 一边摸一边做爽爽视频免费| 电影成人av| av电影中文网址| 成年人免费黄色播放视频| 亚洲五月色婷婷综合| 国产人伦9x9x在线观看 | 国产一级毛片在线| 宅男免费午夜| 人体艺术视频欧美日本| 欧美中文综合在线视频| 国产日韩欧美在线精品| 国产精品秋霞免费鲁丝片| 丰满饥渴人妻一区二区三| 国产熟女欧美一区二区| 午夜日韩欧美国产| 在线天堂中文资源库| 男女边吃奶边做爰视频| tube8黄色片| 26uuu在线亚洲综合色| 国产 精品1| 90打野战视频偷拍视频| 夫妻午夜视频| 天天躁夜夜躁狠狠躁躁| 日本av免费视频播放| 国产 精品1| 在线天堂最新版资源| av国产精品久久久久影院| 久久毛片免费看一区二区三区| 国产精品无大码| www日本在线高清视频| 亚洲成色77777| 精品第一国产精品| 国产精品麻豆人妻色哟哟久久| 亚洲欧美精品自产自拍| 一二三四中文在线观看免费高清| 日韩欧美一区视频在线观看| 成人国产av品久久久| 久久精品久久久久久久性| 天天操日日干夜夜撸| 嫩草影院入口| 岛国毛片在线播放| 观看美女的网站| 久久ye,这里只有精品| 久久久久久久大尺度免费视频| 男女下面插进去视频免费观看| 久久97久久精品| 亚洲精品一二三| 在线观看三级黄色| av在线老鸭窝| 美女国产视频在线观看| 精品99又大又爽又粗少妇毛片| 交换朋友夫妻互换小说| 欧美人与性动交α欧美软件| 久久久久久久久久久免费av| 中文字幕av电影在线播放| 国产成人一区二区在线| 中国国产av一级| 在线观看免费视频网站a站| 爱豆传媒免费全集在线观看| videos熟女内射| 少妇被粗大猛烈的视频| 久久久久久免费高清国产稀缺| 男女免费视频国产| 亚洲精品久久午夜乱码| 亚洲精品美女久久av网站| 久久ye,这里只有精品| 午夜福利视频在线观看免费| 26uuu在线亚洲综合色| 天堂俺去俺来也www色官网| 人成视频在线观看免费观看| 国产精品久久久久成人av| 夫妻性生交免费视频一级片| 精品少妇内射三级| 久久久久国产网址| 国产成人免费无遮挡视频| 欧美激情 高清一区二区三区| 日韩av在线免费看完整版不卡| 国产亚洲午夜精品一区二区久久| 国产精品久久久久久精品电影小说| 少妇的丰满在线观看| 香蕉精品网在线| 国产高清不卡午夜福利| 观看美女的网站| 国产野战对白在线观看| 精品亚洲成国产av| 亚洲天堂av无毛| 国产1区2区3区精品| 老女人水多毛片| 美女国产视频在线观看| 在线观看www视频免费| 色94色欧美一区二区| 男女边吃奶边做爰视频| 亚洲精品第二区| 久久久亚洲精品成人影院| 国产免费视频播放在线视频| 亚洲av电影在线进入| 久久午夜综合久久蜜桃| 久久精品久久久久久久性| 天天操日日干夜夜撸| 亚洲精品av麻豆狂野| 欧美成人精品欧美一级黄| 成人手机av| 一本大道久久a久久精品| 在线观看免费视频网站a站| 搡女人真爽免费视频火全软件| 国产1区2区3区精品| 国产精品麻豆人妻色哟哟久久| 婷婷色麻豆天堂久久| 美国免费a级毛片| 亚洲第一青青草原| 男人操女人黄网站| 亚洲欧美中文字幕日韩二区| 国产免费现黄频在线看| 国产免费视频播放在线视频| 亚洲,欧美,日韩| 精品第一国产精品| 99久久精品国产国产毛片| 深夜精品福利| 七月丁香在线播放| 精品亚洲乱码少妇综合久久| 亚洲色图 男人天堂 中文字幕| 又粗又硬又长又爽又黄的视频| 国产精品久久久久成人av| 久久av网站| av网站在线播放免费| 老熟女久久久| 亚洲精品久久久久久婷婷小说| 欧美精品av麻豆av| 免费观看无遮挡的男女| 久久久久久久久久人人人人人人| 国产精品无大码| 最近手机中文字幕大全| 丝瓜视频免费看黄片| 亚洲av欧美aⅴ国产| 好男人视频免费观看在线| 1024香蕉在线观看| 亚洲综合色惰| 欧美 亚洲 国产 日韩一| 黄色一级大片看看| 菩萨蛮人人尽说江南好唐韦庄| av不卡在线播放| 精品少妇黑人巨大在线播放| 卡戴珊不雅视频在线播放| 日韩电影二区| 菩萨蛮人人尽说江南好唐韦庄| 欧美国产精品va在线观看不卡| 精品一品国产午夜福利视频| 国产精品无大码| 女人被躁到高潮嗷嗷叫费观| 亚洲第一区二区三区不卡| 成年人午夜在线观看视频| 色94色欧美一区二区| 搡老乐熟女国产| 国产在线视频一区二区| 一边亲一边摸免费视频| 亚洲人成网站在线观看播放| 精品一区二区三区四区五区乱码 | h视频一区二区三区| 亚洲成av片中文字幕在线观看 | 中文字幕人妻丝袜制服| 中文精品一卡2卡3卡4更新| 久久午夜福利片| 黄色配什么色好看| 日韩伦理黄色片| 热re99久久精品国产66热6| 纵有疾风起免费观看全集完整版| 亚洲一区二区三区欧美精品| 午夜福利在线观看免费完整高清在| 99热网站在线观看| 国产精品秋霞免费鲁丝片| 国产乱来视频区| 国产精品久久久久久精品古装| 男的添女的下面高潮视频| av卡一久久| 欧美日韩亚洲高清精品| 久久99精品国语久久久| 亚洲av国产av综合av卡| 不卡av一区二区三区| 免费黄网站久久成人精品| 在线观看免费日韩欧美大片| 国产极品粉嫩免费观看在线| 另类精品久久| 日本av免费视频播放| 黑人猛操日本美女一级片| 国产一区有黄有色的免费视频| 老司机亚洲免费影院| 成人亚洲精品一区在线观看| 国产 一区精品| 亚洲欧美精品综合一区二区三区 | 久久午夜福利片| 久久精品国产亚洲av天美| 国产一区二区激情短视频 | 国产精品秋霞免费鲁丝片| 日韩 亚洲 欧美在线| 免费黄频网站在线观看国产| 美女国产视频在线观看| 国产av国产精品国产| 99国产精品免费福利视频| 欧美日韩亚洲国产一区二区在线观看 | 天天躁夜夜躁狠狠久久av| 午夜免费鲁丝| 午夜福利一区二区在线看| 中文字幕色久视频| 丝瓜视频免费看黄片| 日本色播在线视频| 美国免费a级毛片| 亚洲精品一二三| 一级毛片电影观看| 国产一区二区 视频在线| 免费少妇av软件| 又大又黄又爽视频免费| a 毛片基地| 丝袜美腿诱惑在线| 亚洲av国产av综合av卡| 久久久久国产精品人妻一区二区| 久久国产精品男人的天堂亚洲| 天天影视国产精品| 亚洲成av片中文字幕在线观看 | 欧美+日韩+精品| 中文精品一卡2卡3卡4更新| 欧美日韩视频高清一区二区三区二| 亚洲精品国产av成人精品| 欧美激情极品国产一区二区三区| 欧美xxⅹ黑人| 啦啦啦在线免费观看视频4| 人妻 亚洲 视频| 国产激情久久老熟女| 晚上一个人看的免费电影| 国产精品一区二区在线观看99| 成人影院久久| 晚上一个人看的免费电影| 亚洲av国产av综合av卡| 99热全是精品| 麻豆av在线久日| 亚洲国产精品一区三区| 青春草视频在线免费观看| 国产成人精品无人区| 亚洲四区av| 久久国产精品大桥未久av| 男女啪啪激烈高潮av片| 亚洲综合色惰| 超碰97精品在线观看| 肉色欧美久久久久久久蜜桃| 在线观看www视频免费| 亚洲精品自拍成人| 国产黄色视频一区二区在线观看| 看免费成人av毛片| 人人妻人人澡人人看| 成年av动漫网址| 亚洲国产av影院在线观看| 国产欧美日韩一区二区三区在线| 一区二区三区乱码不卡18| 日韩熟女老妇一区二区性免费视频| 男女高潮啪啪啪动态图| 欧美日韩亚洲高清精品| 国产有黄有色有爽视频| 久久综合国产亚洲精品| 日韩免费高清中文字幕av| 秋霞伦理黄片| 欧美国产精品一级二级三级| 日本欧美视频一区| 又粗又硬又长又爽又黄的视频| 国产精品三级大全| 美女国产视频在线观看| 国产乱人偷精品视频| 岛国毛片在线播放| 卡戴珊不雅视频在线播放| 国产精品免费视频内射| 亚洲一区二区三区欧美精品| 又黄又粗又硬又大视频| 日韩制服丝袜自拍偷拍| 久热这里只有精品99| 又粗又硬又长又爽又黄的视频| 国产熟女午夜一区二区三区| 久久国产亚洲av麻豆专区| 亚洲欧美精品综合一区二区三区 | 一区二区av电影网| 黄色 视频免费看| 亚洲图色成人| 亚洲人成网站在线观看播放| 成人黄色视频免费在线看| 日韩av免费高清视频| 少妇的逼水好多| 中文欧美无线码| 一区二区三区激情视频| 赤兔流量卡办理| √禁漫天堂资源中文www| 日韩欧美一区视频在线观看| 国产免费现黄频在线看| 免费观看性生交大片5| 中文字幕亚洲精品专区| 熟女少妇亚洲综合色aaa.| 久久ye,这里只有精品| 亚洲,欧美,日韩| xxxhd国产人妻xxx| 国产一区有黄有色的免费视频| 涩涩av久久男人的天堂| 国产精品人妻久久久影院| 午夜福利视频在线观看免费| 午夜激情久久久久久久| 性高湖久久久久久久久免费观看| 高清不卡的av网站| 亚洲国产精品999| 热99国产精品久久久久久7| 一级a爱视频在线免费观看| 美女国产视频在线观看| 久久ye,这里只有精品| 日本91视频免费播放| kizo精华| 国产一区二区 视频在线| 狂野欧美激情性bbbbbb| 日韩av在线免费看完整版不卡| 成人漫画全彩无遮挡| 久久精品国产亚洲av涩爱| 一区二区三区四区激情视频| 久久这里有精品视频免费| 亚洲人成电影观看| 热99国产精品久久久久久7| 成年美女黄网站色视频大全免费| 人妻人人澡人人爽人人| 国产一区二区激情短视频 | 大片电影免费在线观看免费| 9191精品国产免费久久| 国产av精品麻豆| 一级毛片电影观看| 午夜福利视频在线观看免费| 国产精品免费大片| 免费在线观看完整版高清| 人人妻人人添人人爽欧美一区卜| 国产成人欧美| 人人妻人人澡人人看| 久久久a久久爽久久v久久| 高清黄色对白视频在线免费看| 亚洲欧美清纯卡通|