• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Low temperature conversion of methane to syngas using lattice oxygen over NiO-MgO

    2022-11-05 06:47:58JunuWangZeaiHuangYingWangJundaoWuZhiqiangRaoFangWangYingZhou
    Chinese Chemical Letters 2022年10期

    Junu Wang,Zeai Huang,*,Ying Wang,Jundao Wu,Zhiqiang Rao,Fang Wang,Ying Zhou,*

    a State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,Southwest Petroleum University,Chengdu 610500,China

    b Institute of Carbon neutrality &School of New Energy and Materials,Southwest Petroleum University,Chengdu 610500,China

    Keywords:Methane Lattice oxygen Syngas Hydrogen NiO

    ABSTRACT The conversion of methane to syngas (H2 and CO) is an important route to produce high value-added products.Oxidize methane into syngas in the absence of gaseous oxidants is an economical route.In this work,NiO-MgO composite is successfully synthesized via an impregnation method.At 764 K,methane is directly converted to syngas on the NiO-MgO without gaseous oxidants.A synergistic effect of NiO and MgO was observed,in which NiO induced lattice oxygen of MgO mobility to oxidize methane and suppressed the formation of intermediates for side reaction.As a result,NiO-MgO exhibited enhancement of catalytic activity with the H2 production rate of 1241.0 μmol g-1 min-1,which was 3.4 times higher than that of pure MgO.This work provides a direct guidance to understand of methane oxidation via lattice oxygen under low temperature (<773 K).

    Methane as the main component of natural gas is abundantly available throughout the world [1,2].As the cleanest fossil fuel,methane conversion and utilization as an alternative of petrochemical industry has aroused intense interests [3].The conversion of methane to syngas (H2and CO) is an important route for the production of high value-added productsviathe Fischer-Tropsch synthesis [4].Nevertheless,traditional dry/steam reforming methane to obtain syngas is an endothermic progress with high energy input and various side reactions [5,6].In contrast,methane partial oxidation is an exothermic reaction [7],but such process requires pure oxygen,leading to the drawbacks of explosion risk,additional cost and excessive oxidation.Alternatively,methane conversion to syngas using lattice oxygen of metal oxide catalysts (oxygen carrier) could avoid direct contact with oxygen gas.The used catalysts can be re-oxidized with different oxidants such as CO2,H2O and O2through chemical looping process [8].Therefore,methane conversionviaoxygen carrier is an attractive route for cost-effective commodity chemical and energy-effective production [9,10].

    In general,methane requires high energy to activate due to the high energy barrier for C-H bond breaking [11-13].Therefore,high temperature (>1173 K) is often necessary to trigger the methane conversion.Recent studies rarely achieved methane oxidation under temperature less than 1173 K [14-16].Besides it is difficult to prevent the successive cleavage of C-H bonds under high temperature conditions,leading to the carbon deposition and catalyst deactivation [17].It is highly desired but of great challenge to develop catalysts with high efficiency at low temperature (<773 K) [18].

    At these points,it is critical to design catalysts which could both raise methane conversion and reduce the reaction temperature.Non-noble nickel based catalysts have been proved to activate methane and enhance the lattice oxygen mobility from metal oxide substrates at low temperatures [19,20].The Ni-oxide interface is believed to facilitate methane activation with a partially positive Ni oxidation state to assist the cleavage of the C-H bond [21,22].In addition,C-H bond activation barriers relate closely to the extent of Ni-to-CH3interactions [23,24].However,metallic Ni usually showed strong cleavage of C-H bonds,leading to complete decomposition of methane and deactivated catalysts.This fact poses the great challenges of inhibiting the reduction of nickel oxide to maintain stable oxidation of methane.

    MgO was used as the support due to the high oxygen storage capacities to donate its oxygen [25-28].It has been reported that MgO as a support significantly promotes reaction rate as well as the oxygen utilization,such as red mud with MgO improved the cyclic stability methane [12],MgO/Fe2O3increased lattice oxygen utilized [29]and Ce-Fe-Zr-O/MgO formed a porous interface layer to promote the methane conversion [11].However,these binary-MgO catalysts were normally inactive at 773 K or lower.Inspired by the chemical looping reforming of methane which can oxidize CH4to syngas,we designed NiO modified MgO oxygen carrier catalyst.The resultant NiO-MgO is highly active to convert CH4at temperature of 764 K.It was found that NiO-MgO was an effi-cient catalyst for methane oxidation to CO,and the lost oxygen of NiO was supplied by lattice oxygen of MgO.Particularly,the 1241.0 μmol g-1min-1H2yield can be achieved in a synergetic combination of NiO and MgO.The key intermediate species for side reaction was significantly decreased on NiO-MgO as compared to that of pristine MgO during methane conversion.This work provides a route for methane specific catalytic transformationsvialattice oxygen under low temperature.

    Fig.1.(a) TEM image of NiO-MgO;(b) HRTEM image of NiO-MgO;(c-g) STEM and EDS mapping of NiO-MgO.

    In this work,impregnation of Ni precursor into MgO led to the formation of NiO-MgO metal-support interaction after calcination.The loading of Ni was 9.7 wt% (Table S1 in Supporting information).X-ray diffraction (XRD) patterns of MgO and NiO modified MgO showed no obvious changes,and careful analysis could be seen slight peak shifts at 2θ= 42.9°,62.3°,78.9° (Fig.S1 in Supporting information),which was due to that both NiO and MgO were agglomerated with overlap of each other.Such similar crystal structure is believed to be beneficial for the formation of strong interfacial interaction [30].No peaks of metallic Ni were observed in XRD.Small particles uniformly distributing on the surface of the MgO nanoparticles were observed as shown in both transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images (Figs.1a-c and Figs.S2a and b in Supporting information).The high resolution TEM (HRTEM) image of NiO-MgO showed that there was an obvious interfacial contact between NiO and MgO (Fig.1b).Besides,the corresponding selected energy-dispersive spectrometry (EDS) mapping (Figs.1d-g) reconfirmed these nanoparticles were evenly distributed on the MgO surface.Moreover,strong interfacial interaction of NiO-MgO was evaluated by H2-temperature programmed reduction (H2-TPR) (Fig.S3 in Supporting information).As for NiO-MgO,the H2-TPR profile presented three obvious reduction peaks approaching at 696 K,802 K and 1045 K,which were corresponding to the reduction of NiO,NiO with weak interaction of MgO,and strong interaction of MgO,respectively [31-33].

    Fig.2.(a) Yield of H2,CO and CO2 over MgO;(b) yield of H2,CO and CO2 over NiOMgO;(c) CH4 conversion;(d) Arrhenius plots of apparent activation barriers for H2 formation over MgO and NiO-MgO (feed: 20% CH4/Ar,20 mL/min).

    The methane conversion activities using oxygen carrier over MgO and NiO-MgO catalysts were shown in Figs.2a and b.The products of H2and CO increased with increasing the reaction temperature.NiO-MgO showed activity at 564 K,which was 100 K lower than that of MgO (664 K).At 764 K,the H2yield of NiO-MgO was 1241.0 μmol g-1min-1,which was a 3.4-fold enhancement of MgO (364.2 μmol g-1min-1).The CH4conversion efficiency over NiO-MgO was 14.1% at 764 K (Fig.2c),which showed well activity and selectivity in methane conversion to syngas using lattice oxygen under low temperature as compared to recent works (Table S2 in Supporting information).The corresponding Arrhenius plots (Ea,Fig.2d) of the NiO-MgO(66.5 kJ/mol) was significantly lower compared with MgO(96.3 kJ/mol),suggesting that the reaction barriers of methane activation should be reduced by NiO-MgO.Simultaneously,in the range of 564-764 K,it was interesting to note that the yield of H2O(MS signal:m/z= 18) was almost equal between MgO and NiOMgO (Figs.S4a and b in Supporting information),implying that the lattice oxygen over NiO-MgO was combined with carbon to form CO instead of forming water.

    For a better understanding of the reduction progress of MgO before and after NiO modification,electron paramagnetic resonance (EPR) results showed that the concentration of oxygen vacancies in NiO-MgO atg= 2.003 was much higher than that of MgO (Fig.S5 in Supporting information).The increased oxygen vacancy density was believed to be responsible for the enhancement of lattice oxygen mobility.Such phenomenon was also confirmed by monitoring H2reaction usingin situdiffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) (Figs.S6a and b in Supporting information).The peak at around 1350 cm-1assigned to the surface lattice oxygen gradually weakened and disappeared significantly on NiO-MgO surface with the increasing of temperature [34].In contrast,there was no obvious peak changed on MgO.The above results indicated that modification of NiO on MgO enhanced the oxygen availability and mobility.

    To understand the lattice oxygen changes of MgO and NiOMgO before and after reaction,X-ray photoelectron spectroscopy(XPS) of O 1s was studied (Fig.3a).The O 1s peak was divided into two peaks in all samples.The peak at binding energy of 529.6 eV was assigned to surface lattice oxygen (Olatt) and the peak at binding energy of 531.5 eV was assigned to surface absorbed oxygen (Oads) [35,36].The Olatt/Oadsafter NiO modification(Olatt/Oads= 1.9) showed an obvious increase as compared to bare MgO (Olatt/Oads= 1.6) (Table S3 in Supporting information),indicating that NiO-MgO could provide more lattice oxygen for methane oxidation.After reaction,the O 1s binding energy of both samples shifted to higher energy,indicating relatively lower electron attraction near the surface of the oxygen atoms as compared with samples before reaction [37].

    Fig.3.XPS spectra of MgO and NiO-MgO: (a) O 1s,(b) Mg 1s,and (c) Ni 2p (i:fresh MgO,ii: used MgO,iii: fresh NiO-MgO,iv: used NiO-MgO).

    Furthermore,the Olatt/Oadsof MgO decreased obviously from 1.6 of sample before reaction to 0.8 of sample after reaction,indicating that the consumption of lattice oxygen from MgO during reaction.Interestingly,the Olatt/Oadsof NiO-MgO showed maintained at 1.9 before and after reaction,this should be due to the supply of oxygen from MgO to NiO during reaction.Firstly,the peak of Mg 1s after reaction could be divided to be MgOxat binding energy of 1304.3 eV and magnesium ion at 1303.2 eV,respectively [38-40].Such phenomenon should be due to the consumption of lattice oxygen from MgO,because Mg 1s of both samples showed no obvious peak at 1304.3 eV (Fig.3b).Secondly,Ni 2p peaks showed no obvious changes before and after reaction (Fig.3c),indicating that NiO maintained a stable state during reaction,further confirmed the lattice oxygen consumed should be from MgO in both MgO and NiO-MgO.Therefore,the activation of methane over NiO-MgO should be followed by the Mars-van Krevelen (MVK) mechanism[41,42].NiO as the active species during methane oxidation underwent NiO-Ni-NiO cycling process and the MgO support as the lattice oxygen supply to make the reaction continually going.

    In situDRIFTS under CH4following with different temperature over MgO and NiO-MgO was performed to investigate the reaction mechanism of methane using surface oxygen carriers.Both MgO and NiO-MgO showed obvious-CH3adsorption at around 1340 cm-1from 298 to 764 K.However,the intermediates showed significant differences between MgO and NiO-MgO.CO was formed at low temperature as low as 364 K over NiO-MgO (Fig.4a),evidenced by the CO bonded with NiO at 2209 cm-1and 2239 cm-1assigned to CO species weakly bond to surface Ni atoms (Ni2+-CO)[43,44].CO adsorbed on NiO were believed to be easily desorbed as compared to that on MgO [45].These Ni2+-CO species changed to be gaseous CO (2182 and 2116 cm-1) when the reaction temperature was higher than 664 K.However,only gaseous CO was found from 414 K over MgO,indicating that NiO-MgO could trigger the low temperature methane oxidation to CO as compared to MgO.

    Fig.4.In situ DRIFTS spectra for MgO and NiO-MgO: (a) 2270-2000 cm-1 of two catalysts,(b) 1700-1000 cm-1 of NiO-MgO catalyst,and (c) 1700-1000 cm-1 of MgO catalysts,as the temperature was raised from 364 K to 764 K,under 20%CH4/Ar.

    It is proposed that formation of Ni2+-CO on NiO-MgO was a key step for low temperature methane oxidation to syngas.Methoxy group (CHxO,around 1000-1150 cm-1) [46],bicarbonate (HCO3-,around 1430 cm-1) [47],and carbonate (CO32-,around 1550 cm-1)[48]species were formed over MgO at temperature higher than 364 K,these peaks showed an obvious increase when the temperature was increased to 764 K (Figs.4b and c).However,these intermediate species were significantly suppressed on surface of NiO-MgO,CHxO species were formed at 464 K,HCO3-species almost disappeared from 464 K.In combination with the formation of Ni2+-CO at lower temperature of 364 K,it is possible that CO was directly formed after CH4was cleavage over NiO-MgO.Besides,these species were also believed to be important intermediates for the formation of CH4[49].Indicated that the reverse reaction for CH4formation could be suppressed on NiO-MgO.

    Based on the above analysis,the mechanism of methane conversion to syngas over NiO-MgO was shown at low temperature.In summary,an efficient catalytic conversion of CH4with a H2production rate of 1241.0 μmol g-1min-1was undertaken over NiOMgO at 764 K.Moreover,strong interfacial interaction effect,favorable oxygen availability and mobility,as well as less intermediates through the directly formation of Ni2+-CO route on NiO-MgO promote the conversion of CH4,which ultimately boost the effi-cient production of H2and CO.This discovery may provide a direct route to promote the low temperature methane conversion without gaseous oxidants.

    Declaration of competing interest

    The authors declare that they have no conflict of interest.

    Acknowledgment

    This research was financially supported by the Sichuan Provincial International Cooperation Project,China (Nos.2019YFH0164 and 2021YFH0055).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.12.060.

    午夜福利影视在线免费观看| 免费看光身美女| 人妻夜夜爽99麻豆av| 菩萨蛮人人尽说江南好唐韦庄| 日本av手机在线免费观看| 女性被躁到高潮视频| 内地一区二区视频在线| 少妇高潮的动态图| 日本wwww免费看| 青青草视频在线视频观看| 欧美精品亚洲一区二区| 80岁老熟妇乱子伦牲交| 午夜福利网站1000一区二区三区| 亚洲av福利一区| 性色avwww在线观看| 涩涩av久久男人的天堂| 国产高清不卡午夜福利| 99久久中文字幕三级久久日本| 91精品伊人久久大香线蕉| 欧美 日韩 精品 国产| 在线播放无遮挡| 日韩一本色道免费dvd| 精品午夜福利在线看| 能在线免费看毛片的网站| 中文字幕免费在线视频6| 精品少妇黑人巨大在线播放| 亚洲色图 男人天堂 中文字幕 | 精品久久国产蜜桃| 狂野欧美白嫩少妇大欣赏| 日韩电影二区| 亚洲av国产av综合av卡| 男女国产视频网站| 久久久精品区二区三区| 国产在线视频一区二区| 婷婷色综合大香蕉| 国产免费一区二区三区四区乱码| 午夜福利视频在线观看免费| 边亲边吃奶的免费视频| 国产片内射在线| a 毛片基地| 欧美97在线视频| 日本-黄色视频高清免费观看| 国产成人91sexporn| 久久韩国三级中文字幕| 在线观看人妻少妇| 人成视频在线观看免费观看| 多毛熟女@视频| 精品人妻熟女av久视频| a级片在线免费高清观看视频| 亚洲精品视频女| 男女边吃奶边做爰视频| 人妻系列 视频| kizo精华| 日本午夜av视频| 色视频在线一区二区三区| 欧美3d第一页| 性高湖久久久久久久久免费观看| 亚洲精品自拍成人| 搡老乐熟女国产| 欧美xxxx性猛交bbbb| 男女无遮挡免费网站观看| 午夜福利网站1000一区二区三区| 成人18禁高潮啪啪吃奶动态图 | 天堂中文最新版在线下载| 十分钟在线观看高清视频www| av国产久精品久网站免费入址| 精品亚洲乱码少妇综合久久| 大陆偷拍与自拍| 我的女老师完整版在线观看| 日韩 亚洲 欧美在线| av专区在线播放| 久久久久久久久久久久大奶| 视频中文字幕在线观看| 晚上一个人看的免费电影| 精品酒店卫生间| 日本wwww免费看| 亚洲,一卡二卡三卡| 晚上一个人看的免费电影| 少妇高潮的动态图| 日韩中文字幕视频在线看片| 国产精品一区www在线观看| 日韩一区二区视频免费看| 国产永久视频网站| 日本爱情动作片www.在线观看| 亚洲精品中文字幕在线视频| 一个人看视频在线观看www免费| 哪个播放器可以免费观看大片| 久久99热这里只频精品6学生| 欧美成人精品欧美一级黄| 成年人免费黄色播放视频| 美女主播在线视频| 欧美 亚洲 国产 日韩一| 黄色欧美视频在线观看| 黄片无遮挡物在线观看| 精品久久久精品久久久| 免费少妇av软件| 久久久久久久久久久久大奶| 日日爽夜夜爽网站| 亚洲美女搞黄在线观看| 国产女主播在线喷水免费视频网站| 精品久久久久久久久av| 另类精品久久| 99国产综合亚洲精品| 黑人高潮一二区| 国产精品嫩草影院av在线观看| 日韩精品免费视频一区二区三区 | 制服诱惑二区| 久久午夜福利片| 新久久久久国产一级毛片| 肉色欧美久久久久久久蜜桃| 欧美国产精品一级二级三级| 嘟嘟电影网在线观看| www.av在线官网国产| 国产国语露脸激情在线看| 好男人视频免费观看在线| 国产亚洲精品第一综合不卡 | 欧美精品国产亚洲| 亚洲国产欧美日韩在线播放| 中文字幕人妻丝袜制服| 伦理电影免费视频| 久久久久久久国产电影| 精品国产露脸久久av麻豆| 亚洲av福利一区| 一级黄片播放器| 久久精品国产亚洲av涩爱| 国产极品粉嫩免费观看在线 | 亚洲国产日韩一区二区| 日韩三级伦理在线观看| 妹子高潮喷水视频| 夫妻性生交免费视频一级片| 欧美少妇被猛烈插入视频| 国产乱来视频区| 久久久久国产网址| 又粗又硬又长又爽又黄的视频| 97精品久久久久久久久久精品| 人妻一区二区av| av福利片在线| 国产 精品1| 中国美白少妇内射xxxbb| 美女主播在线视频| 国产 精品1| 亚洲,欧美,日韩| 最新中文字幕久久久久| 亚洲人与动物交配视频| 女人久久www免费人成看片| 18禁裸乳无遮挡动漫免费视频| 丝袜脚勾引网站| 欧美+日韩+精品| 视频区图区小说| 高清欧美精品videossex| 久久精品熟女亚洲av麻豆精品| 久久久午夜欧美精品| 亚洲,一卡二卡三卡| 午夜福利视频在线观看免费| 国产精品一国产av| 成人无遮挡网站| 一级毛片aaaaaa免费看小| av在线观看视频网站免费| 热re99久久国产66热| 天天影视国产精品| 亚洲天堂av无毛| 精品国产国语对白av| 久久狼人影院| 草草在线视频免费看| 国产精品熟女久久久久浪| 18+在线观看网站| 美女主播在线视频| 国产精品熟女久久久久浪| 成人午夜精彩视频在线观看| 美女大奶头黄色视频| 国产av码专区亚洲av| 一级毛片aaaaaa免费看小| 91精品三级在线观看| 黄片无遮挡物在线观看| 9色porny在线观看| 在线免费观看不下载黄p国产| 一区二区日韩欧美中文字幕 | 晚上一个人看的免费电影| 亚洲国产精品999| 一级,二级,三级黄色视频| 国产精品人妻久久久影院| 国产成人a∨麻豆精品| 婷婷成人精品国产| 国产精品国产av在线观看| 中文天堂在线官网| 午夜激情久久久久久久| 曰老女人黄片| 成人综合一区亚洲| 女人久久www免费人成看片| 男的添女的下面高潮视频| 国产一区二区在线观看日韩| 亚洲一级一片aⅴ在线观看| 精品午夜福利在线看| 国产精品人妻久久久影院| 99九九线精品视频在线观看视频| 99热全是精品| 国产白丝娇喘喷水9色精品| 成人国语在线视频| 国产视频内射| 亚洲成色77777| 国国产精品蜜臀av免费| 狠狠精品人妻久久久久久综合| 人妻夜夜爽99麻豆av| xxxhd国产人妻xxx| 午夜影院在线不卡| 国产黄频视频在线观看| 国模一区二区三区四区视频| av视频免费观看在线观看| 日韩精品有码人妻一区| 国产老妇伦熟女老妇高清| 亚洲在久久综合| 爱豆传媒免费全集在线观看| 超碰97精品在线观看| 在线天堂最新版资源| 久久影院123| 在线观看人妻少妇| 亚洲美女黄色视频免费看| 精品久久久精品久久久| 亚洲国产精品999| 亚洲精品乱久久久久久| 日本黄色片子视频| 高清午夜精品一区二区三区| 黑人猛操日本美女一级片| 亚洲图色成人| 一级,二级,三级黄色视频| 亚洲婷婷狠狠爱综合网| 日韩在线高清观看一区二区三区| 草草在线视频免费看| 一边摸一边做爽爽视频免费| 欧美日韩综合久久久久久| av天堂久久9| 久久久国产欧美日韩av| 久久99蜜桃精品久久| 2021少妇久久久久久久久久久| 精品人妻熟女毛片av久久网站| xxx大片免费视频| 欧美亚洲日本最大视频资源| 人妻夜夜爽99麻豆av| 国产免费视频播放在线视频| 80岁老熟妇乱子伦牲交| 国产成人91sexporn| 日本黄色片子视频| 国产成人精品久久久久久| 高清不卡的av网站| 日韩一区二区视频免费看| 精品久久久久久电影网| 麻豆乱淫一区二区| 欧美xxⅹ黑人| 卡戴珊不雅视频在线播放| 国产成人午夜福利电影在线观看| 美女国产视频在线观看| 麻豆乱淫一区二区| 中文字幕人妻丝袜制服| 一区二区三区四区激情视频| 亚洲精品久久成人aⅴ小说 | 国产日韩欧美视频二区| 高清午夜精品一区二区三区| 久久久久久久精品精品| 久久这里有精品视频免费| 少妇人妻 视频| a级毛色黄片| 日本黄大片高清| 中文字幕av电影在线播放| 久久这里有精品视频免费| 色婷婷av一区二区三区视频| 国产精品一二三区在线看| 欧美三级亚洲精品| 中文字幕av电影在线播放| 国产不卡av网站在线观看| 日韩大片免费观看网站| 丝袜在线中文字幕| 天天躁夜夜躁狠狠久久av| 亚洲婷婷狠狠爱综合网| 高清视频免费观看一区二区| 日韩av免费高清视频| 97在线人人人人妻| 中文欧美无线码| 亚洲欧美中文字幕日韩二区| 人人妻人人澡人人爽人人夜夜| 99九九线精品视频在线观看视频| 日韩电影二区| 一级毛片 在线播放| 飞空精品影院首页| freevideosex欧美| 免费观看的影片在线观看| 免费大片黄手机在线观看| 丰满乱子伦码专区| 又黄又爽又刺激的免费视频.| 欧美bdsm另类| a级毛色黄片| 欧美精品一区二区大全| 精品久久久精品久久久| 国产欧美亚洲国产| 中文字幕最新亚洲高清| 国产日韩欧美在线精品| 搡女人真爽免费视频火全软件| 人妻系列 视频| 天天操日日干夜夜撸| 能在线免费看毛片的网站| www.av在线官网国产| 国产日韩一区二区三区精品不卡 | 日本vs欧美在线观看视频| 91精品国产九色| 久久免费观看电影| 中文字幕精品免费在线观看视频 | 搡女人真爽免费视频火全软件| 国产无遮挡羞羞视频在线观看| 天天躁夜夜躁狠狠久久av| 99久国产av精品国产电影| 波野结衣二区三区在线| 日韩成人av中文字幕在线观看| 午夜视频国产福利| 精品午夜福利在线看| 亚洲少妇的诱惑av| 精品久久久久久久久亚洲| 麻豆乱淫一区二区| 久久热精品热| 日韩亚洲欧美综合| 九九在线视频观看精品| 午夜福利视频精品| 伊人久久精品亚洲午夜| 亚洲av电影在线观看一区二区三区| 精品一品国产午夜福利视频| 国产精品人妻久久久影院| 亚洲少妇的诱惑av| 日韩不卡一区二区三区视频在线| 妹子高潮喷水视频| 国产精品国产三级专区第一集| 成年人午夜在线观看视频| 欧美日韩综合久久久久久| 少妇猛男粗大的猛烈进出视频| 免费看光身美女| 黑人欧美特级aaaaaa片| 97超碰精品成人国产| 免费久久久久久久精品成人欧美视频 | 大香蕉97超碰在线| 国产av精品麻豆| 卡戴珊不雅视频在线播放| 亚洲精品美女久久av网站| 美女xxoo啪啪120秒动态图| 亚洲人成网站在线观看播放| 亚洲内射少妇av| 国产精品麻豆人妻色哟哟久久| 亚洲av.av天堂| 亚洲人成网站在线播| 欧美日韩视频精品一区| 国产69精品久久久久777片| 亚洲精品日韩在线中文字幕| 国产精品久久久久久精品电影小说| 亚洲第一区二区三区不卡| 最后的刺客免费高清国语| 亚洲av二区三区四区| 亚洲,一卡二卡三卡| 国产一区二区三区综合在线观看 | 婷婷色av中文字幕| 只有这里有精品99| 水蜜桃什么品种好| 国产女主播在线喷水免费视频网站| 99热这里只有精品一区| 久久精品国产自在天天线| 欧美成人精品欧美一级黄| 国产精品一国产av| 另类精品久久| 日本av免费视频播放| 国产黄色视频一区二区在线观看| 成人毛片60女人毛片免费| 性色avwww在线观看| 亚洲成人av在线免费| 精品国产国语对白av| 亚洲人成77777在线视频| 国产免费视频播放在线视频| 亚洲中文av在线| 久久国产亚洲av麻豆专区| 国产欧美亚洲国产| 国精品久久久久久国模美| 九草在线视频观看| 免费大片18禁| 99国产精品免费福利视频| 99九九线精品视频在线观看视频| 欧美老熟妇乱子伦牲交| 一级二级三级毛片免费看| 日日摸夜夜添夜夜添av毛片| 中文字幕最新亚洲高清| 久久亚洲国产成人精品v| 亚洲欧洲精品一区二区精品久久久 | 在线看a的网站| 国内精品宾馆在线| 我的老师免费观看完整版| 成年人午夜在线观看视频| 中文天堂在线官网| 欧美xxxx性猛交bbbb| 亚洲av中文av极速乱| 国产精品国产三级国产专区5o| 亚洲精品,欧美精品| 国产视频内射| 午夜av观看不卡| 晚上一个人看的免费电影| 日韩伦理黄色片| 亚洲人成网站在线播| 亚洲国产av新网站| 高清在线视频一区二区三区| 99热网站在线观看| 在线观看人妻少妇| 777米奇影视久久| 成年女人在线观看亚洲视频| 丰满乱子伦码专区| 日日摸夜夜添夜夜添av毛片| 视频中文字幕在线观看| 国产在线免费精品| 91精品伊人久久大香线蕉| 99精国产麻豆久久婷婷| 久久国内精品自在自线图片| 我的老师免费观看完整版| 国产 精品1| 18在线观看网站| 国产69精品久久久久777片| 免费观看a级毛片全部| 99热这里只有精品一区| 亚洲av.av天堂| 国产日韩欧美在线精品| 多毛熟女@视频| 熟女av电影| 最近中文字幕高清免费大全6| 女性生殖器流出的白浆| 一区二区三区免费毛片| 一级毛片黄色毛片免费观看视频| 老司机亚洲免费影院| 天天躁夜夜躁狠狠久久av| 国产精品国产三级国产专区5o| 国产精品一国产av| 亚洲美女搞黄在线观看| 成人国语在线视频| 在线观看免费视频网站a站| 国产高清国产精品国产三级| 免费看光身美女| 丝袜美足系列| 你懂的网址亚洲精品在线观看| 亚洲四区av| 久久热精品热| 在线观看www视频免费| 国产一区二区在线观看日韩| av黄色大香蕉| 国产国拍精品亚洲av在线观看| 少妇的逼水好多| 人人澡人人妻人| 久久久久国产网址| 精品久久久精品久久久| 交换朋友夫妻互换小说| 国产视频内射| 久久久久精品久久久久真实原创| 免费黄频网站在线观看国产| 免费久久久久久久精品成人欧美视频 | 中文字幕人妻熟人妻熟丝袜美| 亚洲精品乱久久久久久| 午夜视频国产福利| 久久久久久久精品精品| 国产高清不卡午夜福利| 国产片特级美女逼逼视频| 亚洲精品视频女| 欧美 日韩 精品 国产| 亚洲av.av天堂| 亚洲丝袜综合中文字幕| 久久影院123| 亚洲中文av在线| 国产亚洲精品久久久com| 男女啪啪激烈高潮av片| 欧美丝袜亚洲另类| 国产伦精品一区二区三区视频9| 久久国产精品男人的天堂亚洲 | 三级国产精品片| 国产欧美日韩综合在线一区二区| 国产69精品久久久久777片| av福利片在线| 国产成人精品一,二区| 欧美另类一区| 成年人免费黄色播放视频| av电影中文网址| 男女啪啪激烈高潮av片| 久久久久久久国产电影| 国产成人精品婷婷| 91精品三级在线观看| 亚洲国产最新在线播放| 亚洲激情五月婷婷啪啪| 亚洲人成网站在线播| 五月玫瑰六月丁香| 国产精品不卡视频一区二区| 好男人视频免费观看在线| 人成视频在线观看免费观看| 飞空精品影院首页| xxx大片免费视频| 亚洲无线观看免费| 一级毛片我不卡| 男女边摸边吃奶| 久久久久久久国产电影| 2018国产大陆天天弄谢| 国产一区二区三区综合在线观看 | 国产成人精品一,二区| 久久午夜综合久久蜜桃| 久久久久久久久久人人人人人人| 水蜜桃什么品种好| 免费播放大片免费观看视频在线观看| 精品视频人人做人人爽| av在线播放精品| 亚洲欧美精品自产自拍| 热re99久久精品国产66热6| 国产精品秋霞免费鲁丝片| 大又大粗又爽又黄少妇毛片口| 综合色丁香网| 精品熟女少妇av免费看| 热re99久久精品国产66热6| 久久久久久久久大av| 久久久欧美国产精品| 久久韩国三级中文字幕| 久久热精品热| 欧美成人午夜免费资源| 一级a做视频免费观看| 黄色配什么色好看| 国产精品久久久久久精品电影小说| 日本色播在线视频| 国产色婷婷99| 啦啦啦中文免费视频观看日本| 一级毛片黄色毛片免费观看视频| 韩国高清视频一区二区三区| 亚洲综合色惰| 日韩成人伦理影院| 丰满少妇做爰视频| 婷婷色麻豆天堂久久| 国产在线一区二区三区精| 欧美另类一区| 久久久久久久久久人人人人人人| 一边摸一边做爽爽视频免费| 亚洲av.av天堂| a级片在线免费高清观看视频| 丰满少妇做爰视频| 在线观看免费日韩欧美大片 | 久久久精品94久久精品| 国产精品一区二区在线观看99| a 毛片基地| 免费播放大片免费观看视频在线观看| 99久久精品一区二区三区| 国产av国产精品国产| 亚洲国产精品一区二区三区在线| 婷婷色av中文字幕| 亚洲欧美成人综合另类久久久| 伊人久久国产一区二区| 各种免费的搞黄视频| 亚洲欧美色中文字幕在线| 色婷婷av一区二区三区视频| 欧美成人午夜免费资源| 日韩伦理黄色片| 中文字幕免费在线视频6| 成人国产av品久久久| 美女福利国产在线| 国产在线视频一区二区| 91久久精品国产一区二区成人| 五月开心婷婷网| 亚洲高清免费不卡视频| 最近中文字幕2019免费版| 午夜老司机福利剧场| 欧美精品人与动牲交sv欧美| 午夜激情福利司机影院| 国产精品无大码| 久久久久久久国产电影| 亚洲一级一片aⅴ在线观看| 亚洲精品久久成人aⅴ小说 | 欧美亚洲日本最大视频资源| 国产欧美日韩综合在线一区二区| 涩涩av久久男人的天堂| 在线观看三级黄色| 精品一区二区三卡| 男女高潮啪啪啪动态图| 亚洲欧美成人精品一区二区| 亚洲欧美日韩卡通动漫| 高清午夜精品一区二区三区| 欧美日韩av久久| 最新的欧美精品一区二区| 欧美3d第一页| 草草在线视频免费看| 91成人精品电影| 一级a做视频免费观看| 欧美老熟妇乱子伦牲交| 高清不卡的av网站| 狠狠婷婷综合久久久久久88av| av卡一久久| 午夜福利网站1000一区二区三区| 秋霞在线观看毛片| 黄片无遮挡物在线观看| 久久久精品区二区三区| 亚洲天堂av无毛| 亚洲不卡免费看| 夫妻午夜视频| 国产成人一区二区在线| 日本av手机在线免费观看| 国产精品一区二区在线观看99| av电影中文网址| 久久久亚洲精品成人影院| 亚洲成人一二三区av| 3wmmmm亚洲av在线观看| 久久精品国产a三级三级三级| 成人国产av品久久久| 亚洲四区av| 久久久午夜欧美精品| 欧美成人精品欧美一级黄| 十分钟在线观看高清视频www| 日韩欧美一区视频在线观看| 久久人人爽av亚洲精品天堂| 成人免费观看视频高清| 国产亚洲精品久久久com| 超色免费av| 久久久久久人妻| 亚洲精品乱久久久久久| 80岁老熟妇乱子伦牲交| 美女xxoo啪啪120秒动态图| 亚洲成色77777| 人妻少妇偷人精品九色|