• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Efficient ozone decomposition over bifunctional Co3Mn-layered double hydroxide with strong electronic interaction

    2022-11-05 06:47:56BinLiuMinxianZhangJinglingYangMingshanZhu
    Chinese Chemical Letters 2022年10期

    Bin Liu,Minxian Zhang,Jingling Yang,Mingshan Zhu

    Guangdong Key Laboratory of Environmental Pollution and Health,School of Environment,Jinan University,Guangzhou 511443,China

    Keywords:Co3Mn-layered double hydroxide Ozone removal Hydroxyl groups Bifunctional catalysis Heterogeneous catalysis

    ABSTRACT Ground-level ozone is one of the primary pollutants detrimental to human health and ecosystems.Catalytic ozone decomposition still suffers from low efficiency and unsatisfactory stability.In this work,we report a manganese-based layered double hydroxide catalyst (Co3Mn-LDH),which exhibited a superior ozone decomposition performance with the efficiency of 100% and stability over 7 h under a GHSV of 2,000,000 mL g-1h-1 and relative humidity of 15%.Even when the relative humidity increased to 50%,the ozone decomposition also reached 86%,which significantly exceeds as-synthesized MnO2 and commercial MnO2 in performance.The catalytic mechanism was studied by H2-TPR,FT-IR and XPS.The excellent performance of Co3Mn-LDH can be attributed to its abundant surface hydroxyl groups that ensured the preferentially surface enrichment of ozone,as well as the cyclic dynamic replenishment of electrons between multivalent Co2+/Co3+,Mn2+/Mn3+/Mn4+ and oxygen species that endowed the stable ozone decomposition.This work offers new insights into the design of efficient catalysts for ozone pollution control.

    A Co3Mn-Layered double hydroxide nanosheet was constructed to realize efficient and stable ozone decomposition through the surface enrichment of ozone by its surface hydroxyl groups and continuous ozone decompositionviathe dynamic electron replenishment between internal Co/Mn and lattice oxygen.

    Ground-level ozone (O3) is a hazardous air pollutant that contributes to the formation of photochemical smog [1].Due to the strong oxidizing ability of ozone,long-term exposure to atmospheric ozone can cause upper respiratory tract disease and central nervous system damage,even emphysema and pulmonary edema[2,3].High concentrations of near-ground ozone could damage vegetation [4,5].Moreover,the secondary organic aerosols produced by the reaction between ozone and indoor organic compound are more harmful to human health [6].Therefore,developing a costeffective and environment-friendly technique for reducing ozone pollution is of considerable significance and is in urgent demand.

    The reported ozone removal strategies include thermal decomposition,chemical adsorption,liquid absorption and catalytic decomposition [7-9].Among all these techniques,catalytic decomposition,as a novel,low-cost,and green technique that converts ozone to nontoxic oxygen under ambient condition,has been recognized as one of the most promising methods [10-13].The key to the unsatisfactory performance of ozone catalytic decomposition technology lies in the following three points: (a) The low utilization of catalytic active sites on the catalyst due to the insufficient contact between O3and catalyst;(b) the catalyst deactivation resulting from the catalyst’s valence state that changes significantly after the reaction;(c) the competitive adsorption of water on reactive sites [14,15].Therefore,it is urgent to develop cost-effective catalysts with outstanding activities and stability.

    Layered double hydroxide (LDH) as a class of clay materials,is consisted of interlayer anions and brucite-like host layers.Its metal species can be adjusted to stacks of positively charged transition metals.The highly tunable composition,facile exchangeability of intercalated anions,and uniform distribution of metal cations in the brucite-like layers endowed LDHs gain great attention in catalysis [16-21],but their exploration in air purification is rarely reported.The unique physicochemical properties of LDH,i.e.,abundant hydroxyl groups,variable valency,and largely exposed active sites,make it suitable for the capture of atmospheric pollutants and trigger catalytic redox reactions.

    In this work,we synthesized a cobalt-manganese layered double hydroxide (Co3Mn-LDH) as an effective ozone decomposition catalyst,of which performance is well beyond that of assynthesized MnO2and commercial MnO2.The performance of catalytic ozone removal by Co3Mn-LDH under different relative humidity and the long-term catalytic stability were investigated.The relationships between the properties and catalytic activity for ozone elimination through Co3Mn-LDH were revealedviaH2-TPR,FT-TR,and XPS.A mechanism for the catalytic ozone removal reaction over Co3Mn-LDH was proposed: (a) ozone molecules were adsorbed by abundant surface hydroxyl groups on Co3Mn-LDH;(b)the variable valencies of Co and Mn species in Co3Mn-LDH offered abundant and well-dispersed catalytic sites for maintaining the dynamic replenishment of electrons for continuous reactions,and thus further improving the catalytic activity.

    Fig.1.(a) XRD patterns of as-prepared samples,(b) SEM image,(c) TEM image,and(d) HRTEM image of Co3Mn-LDH.

    X-ray diffraction (XRD) patterns of Co3Mn-LDH and MnO2are shown in Fig.1a.The Co3Mn-LDH planes of (002),(003),(050),(142),(241) and (116) were found at 2θ= 18.8°,31.0°,36.5°,44.4°,58.9° and 64.6°,respectively,corresponding to the typical pattern of CoMn-LDH (JCPDS No.12-0647) [22].MnO2was synthesized as a comparison,which displayed well-defined diffraction peaks corresponding to MnO2(JCPDS No.50-0866).The result of X-ray diffraction (XRD) analysis revealed that the as-prepared Co3O4are the pure cubic phase Co3O4(JCPDS No.42-1467) (Fig.S1 in Supporting information).Scanning electron microscopy (SEM)and transmission electron microscopy (TEM) were carried out to observe the morphology of Co3Mn-LDH and the as-prepared MnO2.As shown in Figs.1b and c,the Co3Mn-LDH is composed of nanoparticles with an average size of about 30 nm.Clearly lattice fringes can be observed in Fig.1d.The measured lattice spacing is 0.25 nm,which matches the (050) planes of Co3Mn-LDH.The as-synthesized MnO2is also composed of nanoparticles with an average particle size ofca.20 nm (Fig.S2 in Supporting information).

    The surface properties of Co3Mn-LDH were further investigated by temperature-programmed reduction of hydrogen (H2-TPR),Fourier transform infrared (FT-IR) spectrometer,and X-ray photoelectron spectroscopy (XPS).As shown in Fig.2a,the obvious peak signal of hydroxyl groups can be observed at 3415 cm-1,revealing the abundant surface hydroxyl group.It has been reported that hydroxyl group has a stronger interaction with ozone that may facilitate the surface enrichment of ozone on catalyst [23].The peak at 1634 cm-1is the bending vibration of interlayer water[24].The small peaks at 1383 cm-1and 1063 cm-1correspond to the slight amount of carbonate between the layers [25].The lowfrequency peaks in the 400-800 cm-1were associated with the metal-oxygen (M-O) stretch [26,27].These results collectively confirmed that Co3Mn-LDH had been successfully prepared.

    Fig.2.(a) FT-IR spectrum,(b) H2-TPR profiles.High-resolution XPS spectra of (c)Mn 2p and (d) Co 2p of Co3Mn-LDH.

    The H2-TPR experiments were carried out to investigate the redox ability of the samples [28],and the results are shown in Fig.2b.The Co3Mn-LDH sample showed two main reduction peaks.The peak in Region I (150-370 °C) can be attributed to the reduction of manganese species and the peak in Region II (400-600 °C)can be assigned to the reduction of cobalt species [29,30].Obviously,the peaks of manganese species in Co3Mn-LDH (247 and 315°C) are under significantly lower temperatures compared to that of MnO2(387 and 488 °C),indicating the stronger reduction ability of manganese species in Co3Mn-LDH.The broad reduction profile peak at 400-600 °C can be ascribed to the stepwise reduction of Co3+to Co2+and CoO to metallic cobalt [31,32].According to the position peaks,the Co3Mn-LDH demonstrates a strong redox ability that could be highly beneficial for catalytic ozone decomposition.

    Generally,the electron distribution and chemical states of catalysts are closely related to the catalysis activity.Thus,the element states of Co3Mn-LDH were first analyzed by XPS.The survey spectra (Fig.S3a in Supporting information) demonstrated the presence of C,O,Co,Mn in Co3Mn-LDH.As shown in Fig.2c,the Mn 2p3/2peak of Co3Mn-LDH can be deconvolved into three peaks with the binding energy at 641.6,642.6 and 643.6 eV,corresponding to Mn(II),Mn(III) and Mn(IV) [33,34]with proportions of 34.8%,39.1%,26.1%,respectively.Moreover,the corresponding ratio of (Mn(II) + Mn(III))/Mn(IV) in Co3Mn-LDH is 2.83:1,much higher than that of MnO2(ratio = 2.21:1,Fig.S4 and Table S1 in Supporting information).The abundant Mn(II) and Mn(III) species coexisted in Co3Mn-LDH,which could favor the redox reactions [10].As for the Co 2p spectra (Fig.2d),the binding energies of Co 2p3/2at 780.4 and 782.1 eV and the Co 2p1/2at 795.3 and 797.0 eV indicate the presence of Co2+and Co3+in several.The relative peak intensity of Co2+/Co3+was calculated to be 60.3/39.7.Beyond that,the peaks at both 787.9 and 804.1 eV were denoted to the satellite peaks [35].A great number of low-valence Mn and Co species exist in Co3Mn-LDH,which may play a vital role in the ozone decomposition reaction.As for the O 1s spectra (Fig.S3b in Supporting information),the binding energies at 530.1,531.5 and 532.3 eV can be ascribed to the lattice oxygen (OLatt),the surface adsorbed oxygen (Oads) and the hydroxyl/carbonate oxygen,respectively[36-38].

    Fig.3.The catalytic performance of the samples.(a) The ozone removal rate of Co3Mn-LDH,as-prepared MnO2,as-prepared Co3O4,commercial MnO2 and commercial Co3O4.(b) The ozone removal rate of Co3Mn-LDH with different dosages.(c)The ozone removal rate of Co3Mn-LDH under different relative humidity conditions.(d) Long-term experiment of ozone removal by Co3Mn-LDH.(Ozone initial concentration of 60 ppm,temperature = 25 °C,GHSV of 2000,000 mL g-1h-1,RH = 15%).

    The O3decomposition performance of Co3Mn-LDH was evaluated under the ambient conditions with a relative humidity (RH)of 15%,inlet O3concentration of 60 ppm,and gas hourly space velocity (GHSV) of 2000,000 mL g-1h-1(Fig.S5 in Supporting information).Notably,the ozone decomposition efficiency of Co3Mn-LDH reached 100% in 30 min (Fig.3a).The commercial Co3O4is insufficient to decompose ozone (removal rate of 8%),and the ozone removal efficiency of as-prepared Co3O4(69%) is obviously lower than that of Co3Mn-LDH (100%).Furthermore,the commercial MnO2could not effectively decompose ozone (removal rate of 2%),while for MnO2,the efficiency of ozone removal decreased from 61% to 36% in 30 min.The ozone removal rate of Co3Mn-LDH is almost 3-folds that of the as-prepared MnO2,and far exceeds that of the commercial MnO2.The catalytic performance comparison of Co3Mn-LDH with that of previously reported catalysts in Table S2 (Supporting information),the present Co3Mn-LDH catalyst achieved a 100% removal rate under a high GHSV of 2000,000 mL h-1g-1,while most reported studies are limited to a lower GHSV or conversion of ozone.

    The effect of catalyst dosage on ozone removal efficiency was investigated.As the dosage of catalyst increased from 10 mg to 50 mg,the removal efficiency of ozone within 30 min increased from 81% to 100% (Fig.3b).The excessive supply of catalyst to dosage above 30 mg resulted in poor utilization of reactive sites and high cost.Therefore,30 mg was chosen as the optimum catalyst dosage.

    Water vapor has a passive impact on catalytic performance in ozone decomposition,which could adsorb on the active site and hinder the adsorption of ozone molecules [39].Here,we investigated the ozone conversion performance on Co3Mn-LDH under different relative humidity (RH) conditions (RH = 15%-70%).As RH increased from 15% to 30%,the ozone removal efficiency remained stable at nearly 100% (Fig.3c).As the RH continued to rise to 70%,the ozone removal efficiency gradually decreased from 86% under RH = 50% to 63% under RH = 70% (Fig.S6 in Supporting information),which might be caused by the competitive adsorption of H2O molecule on catalyst that led to an inhibition of the ozone uptake [11,40].The results revealed that the Co3Mn-LDH catalyst is resistible to moisture condition (RH = 15%-50%).

    Stability can be a critical assessment index in practical application.Here,the long-term photocatalytic stability test for Co3Mn-LDH was carried out.As shown in Fig.3d,the ozone removal effi-ciency of Co3Mn-LDH remained stable at 100% after running for 7 h.We have checked the morphology and structure of the Co3Mn-LDH catalyst after reaction by TEM microscopy and XRD.The morphology of the used catalyst is almost unchanged compared with the fresh sample (Fig.S8 in Supporting information).The XRD pattern (Fig.S9 in Supporting information) shows that there were no significant differences between the fresh and the used Co3Mn-LDH catalyst,indicating the outstanding structure stability of Co3Mn-LDH [41].We have conducted the FT-IR to investigate the change of the surface property of the Co3Mn-LDH before and after the reaction.As shown in Fig.S10 (Supporting information),we found that the peak (3415 cm-1) became slightly weaker after the reaction,which may be attributed to a small amount of surface hydroxyl groups (-OH) group consumed by the reaction.However,the peak corresponds to peroxide species (1380 cm-1) increased after reaction [39],which indicates the introduced O3can be decomposed to peroxide species over Co3Mn-LDH that involved in the catalytic process.Moreover,the XPS spectra of Co3Mn-LDH after reaction(Fig.S7 and Table S1 in Supporting information) reveal the negligible variation of the valence state.The electrostatic redox couple between Mn/Co may play a key role in ensuring the sustainability of catalytic ozone removal,which is discussed in detail below.

    According to the changes of the chemical surface state of the used Co3Mn-LDH (Fig.S7 and Table S1) and the mechanism of catalytic ozone removal we reported in previous works [10,11,33],the ozone decomposition mechanism of Co3Mn-LDH is proposed: During reactions,the relative molar ratio of (Mn(II) + Mn(III))/Mn(IV)decreased from 2.83 to 2.76,with Co(II)/Co(III) ratio slightly declining from 1.55 to 1.52,suggesting both Mn(II)/Mn(III) and Co(II)were the primary suppliers of electrons to activate ozone (Fig.S7 and Table S1).Nevertheless,the (Mn(II) + Mn(III))/Mn(IV) ratio of the contrast sample MnO2sharply decreased from 2.22 to 1.24 after reaction.

    Therefore,the relatively stable molar ratio of (Mn(II) +Mn(III))/Mn(IV) in Co3Mn-LDH during the reaction stage suggested that a spontaneous electron transfer from the low valence Co(II)to Mn species in Co3Mn-LDH induced the relative stable valence sate of (Mn(II) + Mn(III))/Mn(IV).The ratio of OLatt/(Oads+ Osurf)reduced from 2.79 to 2.50 after reaction,which can be explained by the oxidation of OLattto Oadswith the reduction of the oxidized Mn(IV)/Co(III) to Mn(II) + Mn(III)/Co(II) to complete the redox reaction and maintain the electrostatic balance.

    Consequently,the mechanisms for the catalytic process over Co3Mn-LDH were proposed in Fig.4.As a dipole molecule,ozone has both nucleophilic site and electrophilic site[23,42].Ozone molecules may combine with the H (electrophilic)and O (nucleophilic) atoms of the surface hydroxyl group on Co3Mn-LDH during their interaction [33,43].First,the ozone molecules were fixed on the-OH group of Co3Mn-LDH.Then,the transformation of Mn(II)/Mn(III) to Mn(IV) and Co(II) to Co(III) supplied the electrons for sustainable catalytic ozonation(Eqs.1-4),and the consumed electrons were replenishedviathe charge-transfer of Co(II) →Co(III) (Eq.5) and OLatt→O2,maintaining the electrostatic balance in Co3Mn-LDH (Eq.6).

    Fig.4.The plausible mechanism of ozone decomposition over Co3Mn-LDH.

    In this study,we have demonstrated a novel Co3Mn-LDH material for efficient ozone decomposition.Under a GHSV of 2000,000 mL g-1h-1,the Co3Mn-LDH catalyst displayed a stable ozone decomposition efficiency of 100% and excellent stability over 7 h,which is almost 3-folds enhanced catalytic activity of MnO2.Even if the relative humidity increased to 50%,the ozone decomposition also reached 86%.Based on the results of the abovementioned analysis,the excellent ozone catalytic performance of Co3Mn-LDH are supposed to be mainly ascribed to the following cooperative effects: (a) The abundant hydroxyl groups on the surface facilitated the surface enrichment of ozone molecules,thereby promoting the effective decomposition of ozone on Co3Mn-LDH;(b) The multivalence states of Co/Mn of Co3Mn-LDH offered abundant and well-dispersed catalytic sites for maintaining the dynamic replenishment of electrons for continuous reactions,thus further improving the catalytic activity.The findings offer us a new perspective for the development of low-cost,easy-to-process,and highly efficient clay material as an ozone decomposition catalyst for practical application.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The study was financially supported by the National Natural Science Foundation of China (No.21320064) and the Science and Technology Program of Guangzhou (No.202102020325).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.01.025.

    国产精品久久久久久亚洲av鲁大| 亚洲综合色惰| 国产一区二区在线av高清观看| 天天躁日日操中文字幕| 男人狂女人下面高潮的视频| 99久久精品一区二区三区| 麻豆成人av在线观看| 国产三级在线视频| 天美传媒精品一区二区| 久久99热6这里只有精品| 国产伦精品一区二区三区四那| 亚洲电影在线观看av| 久久久成人免费电影| av视频在线观看入口| 国产日本99.免费观看| 啦啦啦韩国在线观看视频| 亚洲中文字幕日韩| 波多野结衣高清作品| 午夜免费激情av| 一卡2卡三卡四卡精品乱码亚洲| 欧美日韩国产亚洲二区| 一级a爱片免费观看的视频| 免费大片18禁| 久久精品国产99精品国产亚洲性色| 国产精品不卡视频一区二区| 人人妻人人澡欧美一区二区| 国产午夜精品久久久久久一区二区三区 | 色播亚洲综合网| 国产美女午夜福利| 韩国av一区二区三区四区| 成人av一区二区三区在线看| 久久精品影院6| 国产成人影院久久av| 直男gayav资源| 九九爱精品视频在线观看| 欧美色视频一区免费| 又粗又爽又猛毛片免费看| 欧美日韩黄片免| 免费av观看视频| 欧美国产日韩亚洲一区| 亚洲人与动物交配视频| 欧美日韩黄片免| 一区二区三区激情视频| 少妇的逼好多水| 亚洲欧美清纯卡通| 久久久久久久亚洲中文字幕| 麻豆久久精品国产亚洲av| 日本精品一区二区三区蜜桃| 18禁黄网站禁片午夜丰满| 免费观看精品视频网站| 国产精品一区二区三区四区免费观看 | 好男人在线观看高清免费视频| 我的老师免费观看完整版| 婷婷精品国产亚洲av| 亚洲专区国产一区二区| 亚洲成av人片在线播放无| 国产亚洲精品综合一区在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产三级在线视频| 夜夜爽天天搞| 免费黄网站久久成人精品| 老熟妇乱子伦视频在线观看| 最新中文字幕久久久久| www.www免费av| 天堂影院成人在线观看| 亚洲成人久久性| 少妇的逼好多水| 精品人妻熟女av久视频| 在线观看舔阴道视频| 日韩欧美国产一区二区入口| 国产高清有码在线观看视频| 蜜桃久久精品国产亚洲av| 国产黄片美女视频| 我的女老师完整版在线观看| 在线免费十八禁| 久久久久久久久久久丰满 | 国产亚洲精品综合一区在线观看| 免费观看精品视频网站| 国产又黄又爽又无遮挡在线| 精品国内亚洲2022精品成人| 欧美+日韩+精品| 免费av不卡在线播放| 又粗又爽又猛毛片免费看| 丰满的人妻完整版| 久久国内精品自在自线图片| 狂野欧美白嫩少妇大欣赏| 亚洲一区高清亚洲精品| 欧美xxxx性猛交bbbb| 1024手机看黄色片| 亚洲四区av| 一本久久中文字幕| 日本撒尿小便嘘嘘汇集6| 色尼玛亚洲综合影院| 中文资源天堂在线| 欧美绝顶高潮抽搐喷水| 亚洲综合色惰| 亚洲国产精品sss在线观看| 男女下面进入的视频免费午夜| 国产不卡一卡二| 久久精品夜夜夜夜夜久久蜜豆| 色综合婷婷激情| 国产成人a区在线观看| 午夜精品一区二区三区免费看| 人妻丰满熟妇av一区二区三区| 中文在线观看免费www的网站| 在线播放国产精品三级| 久久精品国产亚洲av天美| 亚洲av电影不卡..在线观看| 麻豆精品久久久久久蜜桃| 欧美高清性xxxxhd video| 免费av观看视频| 人人妻人人澡欧美一区二区| 色精品久久人妻99蜜桃| 免费一级毛片在线播放高清视频| 免费看a级黄色片| 最近中文字幕高清免费大全6 | 亚洲精品一卡2卡三卡4卡5卡| 久久久久久久久久黄片| 久久久国产成人免费| av专区在线播放| 久久欧美精品欧美久久欧美| 亚洲国产日韩欧美精品在线观看| 中文字幕av成人在线电影| 欧美性猛交╳xxx乱大交人| 韩国av在线不卡| 在线观看舔阴道视频| 成人三级黄色视频| 国产亚洲av嫩草精品影院| 波多野结衣巨乳人妻| 欧美日本亚洲视频在线播放| 国产成人影院久久av| 国产探花在线观看一区二区| 五月伊人婷婷丁香| 别揉我奶头~嗯~啊~动态视频| 在线国产一区二区在线| 99热网站在线观看| 在线看三级毛片| 看免费成人av毛片| 床上黄色一级片| 啦啦啦啦在线视频资源| 成年女人看的毛片在线观看| 深爱激情五月婷婷| 国产 一区 欧美 日韩| 亚洲成人久久性| 偷拍熟女少妇极品色| 人妻久久中文字幕网| 欧美区成人在线视频| 亚洲av成人av| 特大巨黑吊av在线直播| 午夜福利在线观看吧| 国产 一区 欧美 日韩| 久久热精品热| 97热精品久久久久久| 人妻丰满熟妇av一区二区三区| 日本五十路高清| 精品免费久久久久久久清纯| 少妇人妻精品综合一区二区 | 久久这里只有精品中国| av在线蜜桃| 亚洲精品日韩av片在线观看| 有码 亚洲区| 免费观看的影片在线观看| 亚洲精品乱码久久久v下载方式| 亚洲中文日韩欧美视频| 91久久精品电影网| 日韩欧美一区二区三区在线观看| 麻豆国产97在线/欧美| 天美传媒精品一区二区| 女人十人毛片免费观看3o分钟| xxxwww97欧美| 午夜日韩欧美国产| 91午夜精品亚洲一区二区三区 | 真实男女啪啪啪动态图| 久久香蕉精品热| 国产精品,欧美在线| 性插视频无遮挡在线免费观看| 蜜桃亚洲精品一区二区三区| 麻豆一二三区av精品| 亚洲精品亚洲一区二区| 变态另类丝袜制服| 性色avwww在线观看| 最新在线观看一区二区三区| 人妻丰满熟妇av一区二区三区| 中文亚洲av片在线观看爽| 国产主播在线观看一区二区| 一区二区三区四区激情视频 | 日韩欧美在线乱码| 亚洲精品一卡2卡三卡4卡5卡| 日韩精品青青久久久久久| 国产男人的电影天堂91| 在线观看美女被高潮喷水网站| 亚洲熟妇中文字幕五十中出| 最近中文字幕高清免费大全6 | 精品无人区乱码1区二区| 级片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲第一区二区三区不卡| 精品午夜福利在线看| 麻豆成人午夜福利视频| 国产av一区在线观看免费| 99精品在免费线老司机午夜| 欧美+日韩+精品| 国产爱豆传媒在线观看| 日韩欧美 国产精品| 91av网一区二区| 淫秽高清视频在线观看| 免费搜索国产男女视频| 久久久国产成人免费| 国产美女午夜福利| 亚洲精品久久国产高清桃花| 亚洲av免费高清在线观看| 狂野欧美白嫩少妇大欣赏| 中出人妻视频一区二区| 久久久精品大字幕| 中文字幕av在线有码专区| 国产乱人视频| 18禁在线播放成人免费| 麻豆精品久久久久久蜜桃| 精品一区二区三区av网在线观看| 国产午夜福利久久久久久| 久久久久久伊人网av| 天美传媒精品一区二区| 成年人黄色毛片网站| 在线播放国产精品三级| 日韩国内少妇激情av| 18+在线观看网站| 亚洲精品成人久久久久久| 亚洲av一区综合| 午夜精品久久久久久毛片777| 午夜影院日韩av| 亚洲一级一片aⅴ在线观看| 亚洲最大成人av| 亚洲黑人精品在线| 国产欧美日韩一区二区精品| 国产伦精品一区二区三区四那| 欧美人与善性xxx| 午夜福利18| 日本爱情动作片www.在线观看 | 国产伦在线观看视频一区| 久久精品国产亚洲av香蕉五月| 91久久精品国产一区二区成人| 国产麻豆成人av免费视频| 国产久久久一区二区三区| 中文字幕av在线有码专区| 免费观看在线日韩| h日本视频在线播放| 九色国产91popny在线| 国产亚洲精品av在线| 久久久午夜欧美精品| 床上黄色一级片| 乱系列少妇在线播放| 日本熟妇午夜| 我要看日韩黄色一级片| 欧美最黄视频在线播放免费| 日日撸夜夜添| 日韩欧美在线二视频| 国产男靠女视频免费网站| 午夜福利视频1000在线观看| 波野结衣二区三区在线| 色播亚洲综合网| 亚洲国产日韩欧美精品在线观看| 久久久久久久午夜电影| 真实男女啪啪啪动态图| 色综合亚洲欧美另类图片| 性欧美人与动物交配| 真实男女啪啪啪动态图| 国产 一区精品| 简卡轻食公司| 麻豆久久精品国产亚洲av| 中亚洲国语对白在线视频| 欧美人与善性xxx| 国国产精品蜜臀av免费| 日韩大尺度精品在线看网址| 亚洲精品色激情综合| 色av中文字幕| 国产真实伦视频高清在线观看 | 女同久久另类99精品国产91| 亚洲国产欧美人成| 又爽又黄无遮挡网站| 色吧在线观看| 欧美一区二区国产精品久久精品| 成人无遮挡网站| 欧洲精品卡2卡3卡4卡5卡区| 伦理电影大哥的女人| 国产91精品成人一区二区三区| 久9热在线精品视频| 成年版毛片免费区| 亚洲欧美日韩卡通动漫| 欧美精品啪啪一区二区三区| 日本a在线网址| 国产精品人妻久久久久久| 亚洲av成人av| 欧美极品一区二区三区四区| 黄色配什么色好看| 2021天堂中文幕一二区在线观| 亚洲最大成人av| 国内精品宾馆在线| 啦啦啦观看免费观看视频高清| 欧美日韩黄片免| 琪琪午夜伦伦电影理论片6080| 天堂影院成人在线观看| 免费av毛片视频| 成熟少妇高潮喷水视频| 久久久午夜欧美精品| 99精品久久久久人妻精品| 成人特级黄色片久久久久久久| 91久久精品国产一区二区成人| 亚洲成av人片在线播放无| 国产黄a三级三级三级人| 男女那种视频在线观看| 99国产极品粉嫩在线观看| 日本 欧美在线| 欧美精品国产亚洲| 国产精品av视频在线免费观看| 国产欧美日韩精品亚洲av| 乱系列少妇在线播放| 国产伦在线观看视频一区| 久久这里只有精品中国| 国产欧美日韩一区二区精品| 亚洲av成人精品一区久久| 精品一区二区三区视频在线观看免费| 亚洲熟妇熟女久久| 国产精品久久电影中文字幕| 国产一区二区三区av在线 | 国产男人的电影天堂91| 免费观看的影片在线观看| 色尼玛亚洲综合影院| 老司机深夜福利视频在线观看| 久久亚洲精品不卡| 麻豆成人午夜福利视频| 91狼人影院| 淫秽高清视频在线观看| 在线播放无遮挡| 成人特级av手机在线观看| 啦啦啦观看免费观看视频高清| 99热只有精品国产| 淫妇啪啪啪对白视频| 免费电影在线观看免费观看| 午夜激情欧美在线| 婷婷亚洲欧美| 亚洲一级一片aⅴ在线观看| 麻豆成人午夜福利视频| 欧美日本视频| 亚洲成人精品中文字幕电影| 最后的刺客免费高清国语| 国产亚洲精品av在线| 欧美一区二区国产精品久久精品| 久久久久久久久中文| 久久久久久久午夜电影| 少妇的逼水好多| 成人国产麻豆网| 很黄的视频免费| 日韩,欧美,国产一区二区三区 | 亚洲精品乱码久久久v下载方式| 亚洲精品成人久久久久久| 亚洲欧美激情综合另类| 亚洲国产高清在线一区二区三| 在线观看美女被高潮喷水网站| 国产久久久一区二区三区| 国产熟女欧美一区二区| 日日撸夜夜添| 非洲黑人性xxxx精品又粗又长| av福利片在线观看| 国产精品人妻久久久影院| 美女高潮的动态| 亚洲成人久久性| 日本一二三区视频观看| 免费看光身美女| 床上黄色一级片| 亚洲美女搞黄在线观看 | 国产乱人视频| 午夜福利在线观看吧| 欧美高清成人免费视频www| 99久久精品热视频| 亚洲va在线va天堂va国产| 国产精品永久免费网站| 熟女电影av网| 少妇的逼好多水| 日本黄色片子视频| 国内精品美女久久久久久| 国产精品爽爽va在线观看网站| 亚洲中文日韩欧美视频| 舔av片在线| 国产成人一区二区在线| 欧美激情在线99| 白带黄色成豆腐渣| 俺也久久电影网| 亚洲中文字幕日韩| 亚洲欧美日韩高清专用| 97碰自拍视频| 美女高潮的动态| 精品人妻1区二区| 一本一本综合久久| 日韩精品中文字幕看吧| 亚洲精品粉嫩美女一区| 国产精品永久免费网站| 免费在线观看影片大全网站| 久久亚洲真实| 波多野结衣巨乳人妻| 久久精品久久久久久噜噜老黄 | 美女免费视频网站| 色尼玛亚洲综合影院| 亚洲av.av天堂| 又黄又爽又刺激的免费视频.| 精品午夜福利在线看| 99热精品在线国产| 国产伦精品一区二区三区视频9| 欧美xxxx性猛交bbbb| 亚洲av五月六月丁香网| 九九热线精品视视频播放| 老司机福利观看| 国产精品久久久久久亚洲av鲁大| 午夜福利视频1000在线观看| 一区二区三区高清视频在线| 99热6这里只有精品| av天堂在线播放| 亚洲四区av| 不卡一级毛片| 狂野欧美白嫩少妇大欣赏| 亚洲真实伦在线观看| 欧美中文日本在线观看视频| 九九久久精品国产亚洲av麻豆| 国产大屁股一区二区在线视频| 亚洲熟妇中文字幕五十中出| 午夜视频国产福利| 精品免费久久久久久久清纯| 看十八女毛片水多多多| 国内精品宾馆在线| 日韩一本色道免费dvd| x7x7x7水蜜桃| 美女免费视频网站| 别揉我奶头 嗯啊视频| 精品久久久久久久久亚洲 | 尤物成人国产欧美一区二区三区| 国产爱豆传媒在线观看| 美女 人体艺术 gogo| 亚洲精品亚洲一区二区| 如何舔出高潮| 日日撸夜夜添| 真人做人爱边吃奶动态| 淫秽高清视频在线观看| 国产在视频线在精品| 热99在线观看视频| 在线看三级毛片| 麻豆久久精品国产亚洲av| 免费搜索国产男女视频| 特级一级黄色大片| 九色成人免费人妻av| 高清在线国产一区| 亚洲欧美日韩无卡精品| 精品久久久久久久久久久久久| 国产成年人精品一区二区| 亚洲中文日韩欧美视频| 欧美激情在线99| 全区人妻精品视频| 中文字幕精品亚洲无线码一区| 午夜影院日韩av| 九九爱精品视频在线观看| 欧美黑人欧美精品刺激| 在线播放无遮挡| 哪里可以看免费的av片| 欧洲精品卡2卡3卡4卡5卡区| 国产av在哪里看| 麻豆成人午夜福利视频| 亚洲色图av天堂| 18禁在线播放成人免费| 欧美最黄视频在线播放免费| 亚洲一级一片aⅴ在线观看| 久久久精品大字幕| 我要看日韩黄色一级片| 黄色日韩在线| 成人av在线播放网站| 亚洲欧美日韩无卡精品| 国产又黄又爽又无遮挡在线| 国产精品爽爽va在线观看网站| 少妇熟女aⅴ在线视频| 蜜桃亚洲精品一区二区三区| 村上凉子中文字幕在线| 成人鲁丝片一二三区免费| 亚洲成人精品中文字幕电影| 中文字幕人妻熟人妻熟丝袜美| 99在线人妻在线中文字幕| 国产亚洲精品av在线| 一个人观看的视频www高清免费观看| 小说图片视频综合网站| 国产人妻一区二区三区在| 久久欧美精品欧美久久欧美| xxxwww97欧美| 村上凉子中文字幕在线| 人妻久久中文字幕网| 国产精品一及| 精品久久久噜噜| 国产精品,欧美在线| 男女那种视频在线观看| 18禁在线播放成人免费| 国产熟女欧美一区二区| 国产日本99.免费观看| 国产伦精品一区二区三区视频9| 联通29元200g的流量卡| 观看美女的网站| 国产精品亚洲一级av第二区| 国内精品久久久久久久电影| www.色视频.com| 精品久久久久久久人妻蜜臀av| 女人十人毛片免费观看3o分钟| 午夜福利在线观看免费完整高清在 | 久久久成人免费电影| 天堂av国产一区二区熟女人妻| 制服丝袜大香蕉在线| 亚洲人成网站在线播放欧美日韩| 久久久久性生活片| 91麻豆精品激情在线观看国产| 中文字幕高清在线视频| 欧美成人a在线观看| 日本免费一区二区三区高清不卡| 亚洲avbb在线观看| 国产精品久久久久久精品电影| 亚洲天堂国产精品一区在线| 国产精品国产三级国产av玫瑰| 久久精品国产鲁丝片午夜精品 | 成熟少妇高潮喷水视频| 少妇被粗大猛烈的视频| 特大巨黑吊av在线直播| 亚洲自拍偷在线| 成年女人毛片免费观看观看9| 欧美日韩精品成人综合77777| 亚洲在线观看片| 亚洲av一区综合| 亚洲第一区二区三区不卡| 欧美3d第一页| 国产精品一区二区三区四区久久| 特级一级黄色大片| 亚洲av免费高清在线观看| 国产 一区精品| 天堂网av新在线| 69人妻影院| 国产女主播在线喷水免费视频网站 | 搞女人的毛片| 日本爱情动作片www.在线观看 | 男女下面进入的视频免费午夜| 啦啦啦韩国在线观看视频| 久久6这里有精品| 91久久精品电影网| 亚洲美女搞黄在线观看 | 日本撒尿小便嘘嘘汇集6| 香蕉av资源在线| av在线亚洲专区| 毛片女人毛片| 婷婷色综合大香蕉| 国产av麻豆久久久久久久| av视频在线观看入口| 白带黄色成豆腐渣| 亚洲va在线va天堂va国产| 国产老妇女一区| 99久久精品国产国产毛片| 精品一区二区三区视频在线观看免费| 男插女下体视频免费在线播放| 永久网站在线| 一本一本综合久久| 亚洲 国产 在线| 91精品国产九色| 国产黄a三级三级三级人| 白带黄色成豆腐渣| 99热6这里只有精品| 免费电影在线观看免费观看| 欧美+日韩+精品| 最近在线观看免费完整版| 午夜a级毛片| 亚洲中文日韩欧美视频| 国产成人影院久久av| 亚洲国产精品sss在线观看| 精品国内亚洲2022精品成人| 性插视频无遮挡在线免费观看| 99国产极品粉嫩在线观看| 国产久久久一区二区三区| 亚州av有码| 美女被艹到高潮喷水动态| 91久久精品国产一区二区三区| 中文字幕高清在线视频| 亚洲狠狠婷婷综合久久图片| av在线亚洲专区| 午夜亚洲福利在线播放| 国产精品亚洲美女久久久| 精品免费久久久久久久清纯| 免费av不卡在线播放| 乱系列少妇在线播放| 在线观看一区二区三区| 级片在线观看| 成年女人看的毛片在线观看| 天堂√8在线中文| 成人精品一区二区免费| 欧美成人性av电影在线观看| 变态另类成人亚洲欧美熟女| 春色校园在线视频观看| 日本熟妇午夜| 久久天躁狠狠躁夜夜2o2o| 变态另类成人亚洲欧美熟女| 一本一本综合久久| 神马国产精品三级电影在线观看| 91精品国产九色| www.色视频.com| 成人一区二区视频在线观看| 嫩草影院新地址| 亚洲人成网站在线播放欧美日韩| 国产美女午夜福利| 美女免费视频网站| 乱码一卡2卡4卡精品| 九九热线精品视视频播放| 国产黄片美女视频| 18禁黄网站禁片免费观看直播| 如何舔出高潮| 亚洲一级一片aⅴ在线观看| 小蜜桃在线观看免费完整版高清| 久久6这里有精品| 不卡一级毛片|