• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis,structure and properties of three novel transition-metal-containing tantalum-phosphate clusters

    2022-11-05 06:47:56XueLiHuiZhaoYuyanLiYuanyuanYangMingyangZhangSuyiLiuPengtaoMaJingpingWangJingyangNiu
    Chinese Chemical Letters 2022年10期

    Xue Li,Hui Zhao,Yuyan Li,Yuanyuan Yang,Mingyang Zhang,Suyi Liu,Pengtao Ma,Jingping Wang,Jingyang Niu

    Henan Key Laboratory of Polyxometalate Chemistry,College of Chemistry and Chemical Engineering,Henan University,Kaifeng 475004,China

    Keywords:Polyoxotantalates Transition-metal Synthesize Structure Proton-conduction

    ABSTRACT Peroxide ligation of aqueous metal-oxo clusters provides rich speciation and structural diversity.Here,three novel transition-metal derivatives of polyoxometalate anions,[Ni2(H2O)10{P4Ta6(O2)6O24}]6- (1a),[Zn(H2O)4{P4Ta6(O2)6O24}]8-(2a ) and [Cd(H2O)4{P4Ta6(O2)6O24}]8- (3a),have been successfully synthesized by adopting a one-pot reaction strategy.All of these hexatantalates are built from a new-type phosphorus-incorporated hexatantalates.We investigated the solution behaviors,and the peak assignments of the MS spectra indicated some degree of stability of them in water.Furthermore,the protonconducting ability of compound 1a was also explored and it has shown well conductivity at high relative humidities,with conductivity achieved 1.22×10-3 S/cm (85 °C,90%RH).

    Polyoxometalates (POMs) represent an intriguing class of polynuclear metal oxide clusters,which have been attracted widespread attention due to the remarkable properties and varieties of potential applications [1-12].It is worth noting that POMs have a history of over 100 years and can be divided into two types,iso and hetero-POMs according to whether it contains heteroatoms (typicaly P,As,Sb,Bi) the clusters of V,Mo,W are still relatively mature compared to Nb-based POMs (PONbs)and Ta-based POMs (POTas).Nowdays,PONbs have shown great progress over the past few years thanks to the excellently reported work of Nyman,Cronin,Casey,Wang,Niu and Zhenget al.[13-29].However,the development of POTas,although the first POTa[Ta6O19]8-has been reported as early as 1953,is still in its budding period [30].It is attributed to their slower reaction kinetic and higher chemical inertness of Ta.On one hand,the watersoluble precursor [Ta6O19]8-can only exist steadily among a narrowly strong basicity interval,otherwise [Ta6O19]8-tend to form gel-like material or Ta2O5precipitate.On the other hand,the alkaline condition impedes the ability to incorporate most metals into the clusters.Up to now,POTas mainly concentrated on the isoPOTas including hexatantalate ions crystallized as simple alkali salts or tetramethylammonium salts [31-34],several organicinorganic hybrid POTas [35],{Ta7} and {Ta8} cores with organic ligands [36],{Ta10} [37],{Ti2Ta8},{Ti12Ta6} [38]and {Co8Ta24} [39],as well as a series of Ta/W mixed-addendum POTas [40,41].In 2017,[P4Ta6(O2)6O25]12-and [P4Ta6(O2)6O24]10-were first proposed by Niu [42],[Ln1(H2O6{H4(TaO2)6As4O24})]3-(Ln1=Sm,Eu,Tb,Dy,Er,Tm,Yb,Lu),[Se4(TaO2)6(OH)4O17]4-and its Lnderivatives [Ln(H2O)6(TaO2)6Se4(OH)3O18]2-(Ln2=Tb,Dy,Er,Tm,Yb) were reported in 2019 and 2020 in succession [43].These complexes were entirely obtained as pure heter-POTa or their lanthanide derivatives.Based on the literature survey,apparently,a large portion of the resulting POTas are in the form of oligomers(mostly dimers).With that,it is still an enormous challenge to make a structural breakthrough for POTas.

    Herein,we are reporting three of hetero-POTas,Cs3H3[Ni2(H2O)4{P4Ta6(O2)6O24}]·7H2O (1),Cs3NaH4[Zn(H2O)4{P4Ta6(O2)6O24}]·13H2O (2) and Cs3NaH4[Cd(H2O)4{P4Ta6(O2)6O24}]·8H2O (3)were successfully acquired by adopting a one-post assembly synthetic method.According to Nyman’s group,the Lindqvist-type[Ta6O19]8-can be stabilized as a peroxyanion by H2O2even at a reasonably low pH in aqueous solution [44].Under this background,we regard the cluster [P4Ta6(O2)6O24]10-(P4Ta6) as second building block,and then transition-metal ions were introduced to the reaction system to enrich the structural diversity of POTas.First of all,K8Ta6O19·17H2O (0.201 g,0.1 mmol) was dissolved in 20 mL H2O consisting of 2.0 mL H2O2(30%) with moderate stirring.The pH was adjusted to 1.60 with 3 mol/L H3PO4.And then,NiCl2·6H2O(0.156 g,0.66 mmol) was added slowly.The pH was adjusted to 2.7 with 2 mol/L NaOH and the reaction was heated at 90°C for 1 h.After that,the mixture was cooled to room temperature and followed by the addition of CsCl (0.01 g,0.06 mmol).The solution was stirred for 30 min and filtered.Finally,the green filtrate was kept in an open beaker to slowly evaporate at room temperature.A similar procedure as 2 and 3 that for the preparation of 1 was used,only changed the type of transition-metal.Crystallographic data and structures refinement for compounds 1-3 have been given in Table S1 (Supporting information).As far as we know,this is the first observation about transition-metal containing derivatives in POTa chemisty.

    To study the key factors that influence the reaction,a series of parallel experiments have been implemented.The final results indicate that pH value,reaction temperature,the genre of counter cations and transition-mental ions can significantly affect the separation of target products: (1) Crystals of 1-3 can be formed in the pH range of 2.1-3.0.At a lower or higher pH,only amorphous products formed with low yield;(2) When the reaction temperature was lower than 70°C,no crystal was obtained due to the slow kinetics of the reaction;(3) When get rid of Cs+or replaced it with other counter cations,only powders were obtained.It is in agreement with the previous conclusion that the nature of the counter cations has a significant impact on the crystallization of POMs [45];(4) The kind of transition mental element also gives deep impact on the synthesis procedure.In fact,Co2+,Fe2+and Cu2+were also tried to lead into the system to obtain isomorphic compounds,but we failed,and only various colors of powder were gained.

    Single-crystal X-ray structural analysis reveals that all of the compounds crystallize in the monoclinic system while 1 is inP21/cspace group,2 and 3 are inC2/cspace group.Compound 1 is isolated,and it comprises a cluster of [Ni2(H2O)10{P4Ta6(O2)6O24}]6-(1a) (Fig.1a),three Cs+ions and seven water molecules.Compound 1 is captured on equatorial site,the so-called “belt” phosphate group,and another one is capped on axial site,the so-called“cap” phosphate group (Fig.1d).In 1a,each Ni atom is ligated by oneμ2-O bridging atom and five water molecules forming an octahedral coordination environment (Fig.S1 in Supporting information).Compounds 2 and 3 are isostructural,thus compound 2 is discussed in detail.2 comprises a [Zn(H2O)4{P4Ta6(O2)6O24}]8-subset (2a),three Cs+ions,one Na+ion and thirteen water molecules.Each Zn atom constructs an octahedral coordination environment by linking with four water molecules and twoμ2-bridging oxygen atoms from two adjacent P4Ta6units (Fig.S1).As shown in Fig.1b,the sole {Zn(H2O)4} segment is connected to one belt P atom byμ2-O bridging atom.Furthermore,every {Zn(H2O)4}linker bounds together with two moieties P4Ta6by two Zn-OP bridges,constituting a one-dimensional chain structure,simultaneously,each P4Ta6unit of the 1-D chain is connected to two Na+ions,ultimately bringing out an outspread two-dimensional plane framework (Fig.1c).Compound 3 is fused by the polyanion [Cd(H2O)4P4Ta6(O2)6O24]8-(3a) (Fig.S2 in Supporting information),three Cs+ions,one Na+ion and eight water molecules.Each Ta atom of compounds 1-3 is coordinated by three kinds of oxygen atoms: oneμ3-O bridging atom,fourμ2-O bridging atoms and one terminal peroxo group,thus defines a distorted-pentagonalbipyramidal geometry (Fig.1e).The Ta-O and Ta-Opbond length are in the range of 1.91-2.13 ?A and 1.92-2.03 ?A,respectively.The value of Op-Opbond is in the range of 1.48-1.51 ?A,mostly greater than 1.50 ?A,which is longer comparing to the noncoordinated O22-(1.49 ?A) [46].In addition,the transition-metal-oxygen bond lengths are gradually increased,within the range of 1.95-2.12 ?A,2.07-2.13 ?A and 2.21-2.34 ?A,severally,which agree well with the atoms and ions radius trend of Ni,Zn and Cd centers.

    The band valence sum (BVS) [47,48]calculations are carried out on all Ta,P,Ni,Zn,Cd and O centers,and the results indicate that all the Ta,P,Ni,Zn and Cd centers are in +5,+5,+2,+2 and +2 oxidation states,respectively (Table S3 in Supporting information).In addition,the BVS calculations give values of 1.22 and 1.23 for O9,O15 in 1a,which are relatively lower than those of other oxygen atoms in the structure (1.75-2.18) and further confirm that they appear to be monoprotonated (Table S2 in Supporting information).Meanwhile,the values of terminal oxygen atoms on transition-metal atoms are within the range of 0.63-0.66,indicating that they are from water molecules.The BVS calculation details of 2a and 3a are also carried out in Tables S2 and S3 (Supporting information).

    We have already known that the crystal sample of the anion [P4Ta6(O2)6O24]10-is colorless (white after weathering),and when the Ni,Zn and Cd atoms were incorporated into the anion[P4Ta6(O2)6O24]10-,the color of compounds 1-3 were green,colorless and colorless (Fig.S13 in Supporting information).It might be owing to the different valence electrons—3d84s2,3d104s2and 4d105s2for Ni,Zn and Cd atoms.Meanwhile,we also compared compounds 1-3 with [P4Ta6]cluster in solid-UV-vis absorption(Fig.2).The results indicated compounds 1-3 and [P4Ta6]cluster have similar absorption peaks in around 250 nm,which can be attributed to the charge-transfer transitions of oxygen-to-tantalum bonds.Besides,the absorption peaks in around 408 nm and 700 nm of compound 3 can be assigned to be d-d transfers of incorporated 3d Ni2+ion [49].

    To investigate the solution behavior of compounds 1-3,negative-mode electrospray ionization mass spectrometry (ESI-MS)analysis were examined in aqueous solution (Fig.S14 in Supporting information).For compound 1,the ESI-MS shows two envelopes that correspond to the intact cluster at charge value of 3-and 2-atm/z616.11 {H5[NiP4Ta6(O2)6O24]} and 962.67{H6[Ni2(H2O)P4Ta6(O2)6O24]} (Table 1),and that simulated and experimental negative-mode mass spectra of isotopic envelopes for 1 in Fig.3;for compound 2,the peaks at the charge values of 3-and 2-ofm/z618.79 {H5[ZnP4Ta6(O2)6O24]} and 927.69{H6[ZnP4Ta6(O2)6O24]} (Table S4) can be attributed to the stable cluster;for compound 3,the peaks at the value ofm/z634.43 {H5[CdP4Ta6(O2)6O24]} and 951.62 {H6[CdP4Ta6(O2)6O24]},at a charge of 3-and 2-,ascribing to the complete configuration(Table S5 in Supporting information).Some other signals around can also be found,and they are contributed to the fragment P4Ta6species.Theoretical calculations could provide additional confirmation (Figs.S17 and S18 in Supporting information).The peak assignments of the MS spectra indicate some degree of stability of 1-3 in water.

    Fig.2.The solid-UV-vis curve of (a) [P4Ta6]cluster,(b) 1,(c) 2 and (d) 3.

    Table 1 Assignment of the key species identified of ESI-MS tests for 1.

    Fig.3.Simulated (red) and experimental (black) negative-mode mass spectra of isotopic envelopes for 1.

    Fig.4.(a) Nyquist plots 1 under different RHs at 25 °C.(b) Nyquist plots 1 at 90%RH under different temperatures.(c) Arrhenius plot at 75% RH within the temperature range of 25 °C to 85 °C.(d) PXRD patterns of 1: experiment,simulated and post proton conduction.

    The presence of protonated H+and the incorporation of water molecules within the framework prompted us to study the proton-conducting ability.Here the proton conductivity of compound 1 was investigated.First,the proton conductivity was tested on the humidity (RH) from 55% to 90% at room temperature.As shown in Fig.4a,the conductivityσ(which was calculated by the equationσ=L/RS,whereLis the sample thickness,Sis the cross-sectional area,andRrepresents the resistance) was increased from 7.26×10-7S/cm to 3.69×10-5S/cm [50,51].Then,the temperature-dependent conductivity was carried out in the range of 25 °C to 85 °C,and the conductivity ranging from 3.69×10-5S/cm to 1.22×10-3S/cm (Fig.4b).These phenomena instruct that the increase of conductivity was coordinated by RH and temperature.

    According to the Arrhenius equation (σ T=σ0exp(Ea/kbT),the activation energies (Ea) are derived to be 0.39 eV.In general,the mechanism of proton conductivity should be assigned to the Grotthuss mechanism (Ea=0.1-0.4 eV) (Fig.4c).In order to confirm the integrity of the structure of 1 proton conduction experiments,powder X-ray diffraction experiment was carried out (Fig.4d).It turns out that the PXRD curve post the proton conductivity tests aligns with that from the original form.The thermal stability of compound 1 was characterized by PXRD at different temperatures(Fig.S19 in Supporting information).

    In summary,three new compounds have been successfully obtained and fully investigated in the solid state by single-crystal Xray diffraction,IR spectra,TGA,PXRD and the solution behavior as well as proton conductivity.To date,it is the first study about transition-metal incorporated peroxo-polyoxotantalate,which not only enriches the diversity of POTas but also provides further insight into the reactivity between alkalineside POTas and transition metals under strong acidic conditions in the presence of H2O2.Moreover,the appropriate reaction conditions make important sense to the formation of aggregations.In addition,the excellent proton conductivity shows that POTas has enormous potential in the application of materials.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was funded by the National Natural Science Foundation of China (Nos.22171071,22071044,21771054 and 21571050).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.12.078.

    日韩,欧美,国产一区二区三区| 黄色怎么调成土黄色| 欧美变态另类bdsm刘玥| 久久精品国产自在天天线| 丝瓜视频免费看黄片| 亚洲精品久久午夜乱码| 日本与韩国留学比较| 久久久久久久久久久丰满| 国产黄色视频一区二区在线观看| 国产男女内射视频| 日韩制服骚丝袜av| 少妇人妻久久综合中文| av天堂中文字幕网| 人妻系列 视频| 久久ye,这里只有精品| 一区在线观看完整版| 亚洲国产日韩一区二区| 国产精品国产av在线观看| 嘟嘟电影网在线观看| 美女福利国产在线| 久久精品久久久久久噜噜老黄| 黄色日韩在线| 亚洲精品一二三| 国产乱人偷精品视频| 我要看黄色一级片免费的| 中国三级夫妇交换| 日韩av不卡免费在线播放| 精品一品国产午夜福利视频| 国产一区有黄有色的免费视频| 18禁动态无遮挡网站| 青青草视频在线视频观看| 哪个播放器可以免费观看大片| 国产亚洲欧美精品永久| a级一级毛片免费在线观看| 国产精品一二三区在线看| 国产精品嫩草影院av在线观看| 99久久精品热视频| 国内少妇人妻偷人精品xxx网站| 午夜视频国产福利| 99热这里只有是精品50| 日日啪夜夜爽| 97精品久久久久久久久久精品| 国产老妇伦熟女老妇高清| 亚洲国产最新在线播放| 精品一区二区免费观看| 午夜av观看不卡| 中文天堂在线官网| 成人毛片a级毛片在线播放| 亚洲中文av在线| 国产黄片美女视频| 人人妻人人看人人澡| av在线老鸭窝| 99久久人妻综合| 午夜精品国产一区二区电影| 建设人人有责人人尽责人人享有的| 免费观看性生交大片5| 国产一区二区在线观看日韩| 日韩人妻高清精品专区| 欧美xxⅹ黑人| 国产欧美日韩精品一区二区| 国产精品蜜桃在线观看| 黄色毛片三级朝国网站 | 午夜老司机福利剧场| 国产av国产精品国产| 亚洲av电影在线观看一区二区三区| 国产午夜精品久久久久久一区二区三区| 两个人的视频大全免费| 欧美精品一区二区大全| 国产女主播在线喷水免费视频网站| 一个人看视频在线观看www免费| 国产伦理片在线播放av一区| kizo精华| 国产伦精品一区二区三区四那| 国产无遮挡羞羞视频在线观看| 亚洲va在线va天堂va国产| 成人漫画全彩无遮挡| 亚洲精品色激情综合| 亚洲av福利一区| 在线观看美女被高潮喷水网站| 99九九在线精品视频 | .国产精品久久| 国产免费福利视频在线观看| av在线观看视频网站免费| 日韩不卡一区二区三区视频在线| 免费不卡的大黄色大毛片视频在线观看| 中文精品一卡2卡3卡4更新| 国产精品成人在线| 亚洲欧美一区二区三区黑人 | 国产深夜福利视频在线观看| 乱系列少妇在线播放| 亚洲一级一片aⅴ在线观看| 一级二级三级毛片免费看| 国产无遮挡羞羞视频在线观看| 欧美+日韩+精品| 亚洲天堂av无毛| 亚洲色图综合在线观看| 国产亚洲av片在线观看秒播厂| 国产精品久久久久久久电影| 久久影院123| 国产日韩欧美视频二区| 中文字幕人妻熟人妻熟丝袜美| 久久久久久人妻| 性色av一级| 久久国内精品自在自线图片| 9色porny在线观看| 2018国产大陆天天弄谢| 国产极品天堂在线| 最新的欧美精品一区二区| 亚洲欧美精品专区久久| 久久久久久久久大av| 99九九线精品视频在线观看视频| 国产精品久久久久久av不卡| 亚洲av免费高清在线观看| 国产日韩欧美视频二区| av在线老鸭窝| 久久精品国产亚洲av涩爱| 日本黄大片高清| 精品久久久久久久久亚洲| 黄色毛片三级朝国网站 | 国产精品免费大片| 嘟嘟电影网在线观看| 欧美最新免费一区二区三区| 一级毛片 在线播放| 亚洲四区av| 午夜免费观看性视频| 自拍偷自拍亚洲精品老妇| 久久青草综合色| 欧美 日韩 精品 国产| 久久久久久久久久人人人人人人| 亚洲欧洲精品一区二区精品久久久 | 69精品国产乱码久久久| 人妻人人澡人人爽人人| 中国美白少妇内射xxxbb| 欧美bdsm另类| 欧美 亚洲 国产 日韩一| 美女中出高潮动态图| freevideosex欧美| 精品久久久精品久久久| 国产伦理片在线播放av一区| 草草在线视频免费看| 在现免费观看毛片| 久久亚洲国产成人精品v| 国产一区二区在线观看日韩| 亚洲欧美清纯卡通| 国产毛片在线视频| 女人精品久久久久毛片| 丝袜脚勾引网站| 国产毛片在线视频| 国产精品人妻久久久影院| 国产黄色视频一区二区在线观看| 岛国毛片在线播放| 国产欧美另类精品又又久久亚洲欧美| 久久精品国产亚洲网站| 日本免费在线观看一区| 青春草亚洲视频在线观看| 中文字幕亚洲精品专区| 91午夜精品亚洲一区二区三区| 久久人人爽av亚洲精品天堂| 国产一区有黄有色的免费视频| 日韩av在线免费看完整版不卡| 国产黄片视频在线免费观看| 免费黄频网站在线观看国产| 少妇人妻一区二区三区视频| 麻豆成人午夜福利视频| 久久女婷五月综合色啪小说| 国产精品三级大全| 伊人久久国产一区二区| 黄片无遮挡物在线观看| 热99国产精品久久久久久7| 91精品一卡2卡3卡4卡| 视频区图区小说| 老司机亚洲免费影院| 国产伦理片在线播放av一区| 欧美精品国产亚洲| 午夜精品国产一区二区电影| 男女边摸边吃奶| 日日摸夜夜添夜夜爱| 国产日韩欧美亚洲二区| 久久99蜜桃精品久久| 能在线免费看毛片的网站| 80岁老熟妇乱子伦牲交| 七月丁香在线播放| 妹子高潮喷水视频| 久久久久久久久久久久大奶| 久久6这里有精品| 99热这里只有是精品50| 自拍偷自拍亚洲精品老妇| 王馨瑶露胸无遮挡在线观看| 伦精品一区二区三区| 色吧在线观看| 国产一级毛片在线| 成人毛片60女人毛片免费| 亚洲情色 制服丝袜| 亚洲av在线观看美女高潮| 国产永久视频网站| 午夜91福利影院| 国产在线男女| 国产一区亚洲一区在线观看| 欧美成人精品欧美一级黄| 日本免费在线观看一区| 视频中文字幕在线观看| 午夜免费观看性视频| 国产极品粉嫩免费观看在线 | 男人狂女人下面高潮的视频| 纵有疾风起免费观看全集完整版| 99九九在线精品视频 | 99久久综合免费| 秋霞伦理黄片| 久久久久久伊人网av| 三级国产精品片| 色网站视频免费| 久久午夜综合久久蜜桃| 国产淫语在线视频| 一区二区av电影网| 国产一级毛片在线| 最新的欧美精品一区二区| 午夜91福利影院| 日韩成人伦理影院| 一级a做视频免费观看| 蜜桃久久精品国产亚洲av| 国内少妇人妻偷人精品xxx网站| 久久 成人 亚洲| a级一级毛片免费在线观看| 亚洲欧洲国产日韩| 欧美3d第一页| 亚洲精品日韩在线中文字幕| 色婷婷久久久亚洲欧美| 久久女婷五月综合色啪小说| 欧美性感艳星| 国产免费又黄又爽又色| 少妇人妻久久综合中文| 中文字幕亚洲精品专区| 日本与韩国留学比较| 免费观看的影片在线观看| 高清视频免费观看一区二区| 激情五月婷婷亚洲| 久久狼人影院| 久久久久视频综合| 欧美成人精品欧美一级黄| 男的添女的下面高潮视频| 六月丁香七月| 国产成人精品福利久久| 观看美女的网站| 大又大粗又爽又黄少妇毛片口| 免费播放大片免费观看视频在线观看| 国产精品久久久久久精品古装| 大话2 男鬼变身卡| 男男h啪啪无遮挡| 亚洲欧美成人精品一区二区| 亚洲内射少妇av| 免费看日本二区| 精品少妇黑人巨大在线播放| 国产精品欧美亚洲77777| 秋霞在线观看毛片| 免费大片黄手机在线观看| 九色成人免费人妻av| 高清毛片免费看| 国产黄色免费在线视频| 2018国产大陆天天弄谢| 精品卡一卡二卡四卡免费| 亚洲欧美日韩另类电影网站| 国产白丝娇喘喷水9色精品| 国产视频首页在线观看| 黄色欧美视频在线观看| 日韩大片免费观看网站| av黄色大香蕉| 日本wwww免费看| 国产精品一二三区在线看| 在线看a的网站| 毛片一级片免费看久久久久| 黄色配什么色好看| 日本爱情动作片www.在线观看| av专区在线播放| 一级毛片 在线播放| 如何舔出高潮| 亚洲天堂av无毛| 午夜激情福利司机影院| 大话2 男鬼变身卡| 99久久精品国产国产毛片| 女人久久www免费人成看片| 中国国产av一级| 大又大粗又爽又黄少妇毛片口| 国产一区二区在线观看av| 亚洲精品中文字幕在线视频 | 亚洲精品国产av成人精品| 九草在线视频观看| 久久精品久久精品一区二区三区| 国产伦在线观看视频一区| 中文字幕av电影在线播放| 欧美变态另类bdsm刘玥| 黑人猛操日本美女一级片| 国产高清三级在线| 亚洲av成人精品一二三区| 婷婷色av中文字幕| av播播在线观看一区| 成年人午夜在线观看视频| 成人亚洲欧美一区二区av| 国产av国产精品国产| 日日摸夜夜添夜夜添av毛片| 夫妻午夜视频| 在线观看免费视频网站a站| 成人国产av品久久久| 国产色爽女视频免费观看| 亚洲欧洲国产日韩| 九九爱精品视频在线观看| 国产午夜精品久久久久久一区二区三区| 国产 精品1| 制服丝袜香蕉在线| 一本一本综合久久| 寂寞人妻少妇视频99o| 丰满少妇做爰视频| 欧美区成人在线视频| 国产成人a∨麻豆精品| 不卡视频在线观看欧美| 日本av手机在线免费观看| 亚洲精华国产精华液的使用体验| 噜噜噜噜噜久久久久久91| 精品一品国产午夜福利视频| 亚州av有码| 日日啪夜夜爽| 女人精品久久久久毛片| 中文在线观看免费www的网站| 日韩精品有码人妻一区| 亚洲不卡免费看| 婷婷色综合大香蕉| 国产精品蜜桃在线观看| 看非洲黑人一级黄片| 国产69精品久久久久777片| 男人舔奶头视频| 久久久久精品性色| 国产女主播在线喷水免费视频网站| 一本大道久久a久久精品| 亚洲成人av在线免费| 国产精品久久久久久av不卡| 夫妻性生交免费视频一级片| 精品卡一卡二卡四卡免费| 女性生殖器流出的白浆| 亚洲婷婷狠狠爱综合网| 成人亚洲精品一区在线观看| 六月丁香七月| 国产av精品麻豆| 亚洲婷婷狠狠爱综合网| 九九在线视频观看精品| 99九九在线精品视频 | a 毛片基地| 两个人的视频大全免费| 国产成人aa在线观看| 边亲边吃奶的免费视频| 国产精品一区www在线观看| 国产成人精品无人区| 中文字幕精品免费在线观看视频 | 国产一区二区三区综合在线观看 | a级毛片免费高清观看在线播放| 男人添女人高潮全过程视频| √禁漫天堂资源中文www| 美女中出高潮动态图| 又粗又硬又长又爽又黄的视频| 欧美精品高潮呻吟av久久| 一本—道久久a久久精品蜜桃钙片| 精品亚洲成a人片在线观看| 国产伦精品一区二区三区视频9| 三上悠亚av全集在线观看 | 午夜影院在线不卡| 2018国产大陆天天弄谢| 亚洲人成网站在线观看播放| 欧美性感艳星| 成年人免费黄色播放视频 | 蜜桃在线观看..| 亚洲精品国产色婷婷电影| 成人午夜精彩视频在线观看| 欧美国产精品一级二级三级 | 久久国产亚洲av麻豆专区| 亚洲欧美日韩东京热| 精品少妇久久久久久888优播| 精品少妇黑人巨大在线播放| 啦啦啦视频在线资源免费观看| 精品酒店卫生间| 中文字幕av电影在线播放| 岛国毛片在线播放| 精品国产国语对白av| 99视频精品全部免费 在线| 亚洲欧美清纯卡通| 边亲边吃奶的免费视频| 少妇熟女欧美另类| 久久国产乱子免费精品| 蜜桃久久精品国产亚洲av| 日韩制服骚丝袜av| 97在线人人人人妻| 亚洲自偷自拍三级| 久久婷婷青草| 亚洲国产精品一区三区| 国产伦在线观看视频一区| 人人妻人人添人人爽欧美一区卜| 国产伦在线观看视频一区| 校园人妻丝袜中文字幕| 看十八女毛片水多多多| 一本久久精品| 成人毛片60女人毛片免费| 丝袜脚勾引网站| 亚洲精品乱码久久久久久按摩| 午夜激情福利司机影院| 深夜a级毛片| 18禁动态无遮挡网站| 又大又黄又爽视频免费| 久久久a久久爽久久v久久| av又黄又爽大尺度在线免费看| 日本欧美视频一区| 欧美另类一区| 高清视频免费观看一区二区| 91精品伊人久久大香线蕉| 欧美日韩综合久久久久久| 美女cb高潮喷水在线观看| 日本-黄色视频高清免费观看| 久久久久网色| 汤姆久久久久久久影院中文字幕| 如何舔出高潮| 七月丁香在线播放| 国产欧美日韩精品一区二区| 偷拍熟女少妇极品色| 久久久久国产网址| 午夜福利影视在线免费观看| 国内少妇人妻偷人精品xxx网站| 少妇熟女欧美另类| 精品久久久久久久久亚洲| 亚洲精品乱码久久久v下载方式| 女人精品久久久久毛片| 日韩一区二区视频免费看| a级毛片免费高清观看在线播放| 尾随美女入室| 男男h啪啪无遮挡| 欧美日韩一区二区视频在线观看视频在线| 久久久久精品性色| 91aial.com中文字幕在线观看| 亚洲国产成人一精品久久久| 18禁裸乳无遮挡动漫免费视频| 久久精品熟女亚洲av麻豆精品| 久久ye,这里只有精品| 国产精品99久久久久久久久| 在线观看免费高清a一片| 欧美区成人在线视频| 成年人午夜在线观看视频| 午夜日本视频在线| 中文字幕制服av| 一级毛片 在线播放| 日韩电影二区| 美女xxoo啪啪120秒动态图| 国产精品一区二区三区四区免费观看| 我要看黄色一级片免费的| 伊人亚洲综合成人网| 狠狠精品人妻久久久久久综合| 视频区图区小说| av在线老鸭窝| 亚洲欧洲精品一区二区精品久久久 | 日韩电影二区| 偷拍熟女少妇极品色| 五月开心婷婷网| 国产精品久久久久成人av| a级毛片在线看网站| 国产无遮挡羞羞视频在线观看| 日韩不卡一区二区三区视频在线| 日韩视频在线欧美| 免费大片18禁| 久久久久久久久久人人人人人人| 熟女人妻精品中文字幕| 亚洲精品日韩av片在线观看| 亚洲精品一区蜜桃| 岛国毛片在线播放| 中文字幕精品免费在线观看视频 | 亚洲欧美精品自产自拍| 韩国av在线不卡| 国产极品粉嫩免费观看在线 | 久久久久久久久久成人| 好男人视频免费观看在线| 午夜福利网站1000一区二区三区| 99热这里只有是精品在线观看| 最新中文字幕久久久久| 黄色欧美视频在线观看| 天堂8中文在线网| 成人免费观看视频高清| 曰老女人黄片| 午夜av观看不卡| 国产日韩欧美亚洲二区| 91久久精品国产一区二区三区| 亚洲欧美日韩东京热| 婷婷色综合www| 亚洲av中文av极速乱| 久久久久久久大尺度免费视频| 一本色道久久久久久精品综合| 午夜视频国产福利| 一二三四中文在线观看免费高清| 亚洲成色77777| 女性被躁到高潮视频| 免费高清在线观看视频在线观看| 九九爱精品视频在线观看| 又粗又硬又长又爽又黄的视频| 人人妻人人爽人人添夜夜欢视频 | 中国美白少妇内射xxxbb| 嫩草影院入口| 国产女主播在线喷水免费视频网站| 免费看av在线观看网站| 97超视频在线观看视频| 国产伦理片在线播放av一区| 精品久久久精品久久久| 最新的欧美精品一区二区| 内地一区二区视频在线| 国产亚洲午夜精品一区二区久久| 看免费成人av毛片| 国产片特级美女逼逼视频| 欧美日韩在线观看h| 日本91视频免费播放| 成人特级av手机在线观看| 性高湖久久久久久久久免费观看| 人妻少妇偷人精品九色| 最新中文字幕久久久久| 国产伦精品一区二区三区四那| 日日爽夜夜爽网站| 亚洲av欧美aⅴ国产| 女的被弄到高潮叫床怎么办| 国产亚洲欧美精品永久| 久久鲁丝午夜福利片| 久久国内精品自在自线图片| 黄片无遮挡物在线观看| 少妇精品久久久久久久| 色视频在线一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 天堂俺去俺来也www色官网| 美女国产视频在线观看| 国产成人午夜福利电影在线观看| 毛片一级片免费看久久久久| 亚洲激情五月婷婷啪啪| 精品亚洲乱码少妇综合久久| 国产精品一区二区在线不卡| 99视频精品全部免费 在线| 麻豆精品久久久久久蜜桃| 九九久久精品国产亚洲av麻豆| 欧美变态另类bdsm刘玥| 亚洲婷婷狠狠爱综合网| 免费高清在线观看视频在线观看| 丁香六月天网| 欧美日韩视频高清一区二区三区二| 国产有黄有色有爽视频| 国产无遮挡羞羞视频在线观看| 亚洲精品色激情综合| 内射极品少妇av片p| 男人和女人高潮做爰伦理| 亚洲美女黄色视频免费看| 亚洲av成人精品一区久久| 9色porny在线观看| 亚洲欧美精品自产自拍| 欧美日韩亚洲高清精品| 色哟哟·www| 色94色欧美一区二区| a 毛片基地| 日韩不卡一区二区三区视频在线| 午夜免费男女啪啪视频观看| 性色avwww在线观看| 亚洲精品,欧美精品| 亚洲国产毛片av蜜桃av| 91在线精品国自产拍蜜月| 中文天堂在线官网| 亚洲图色成人| 美女xxoo啪啪120秒动态图| 午夜福利在线观看免费完整高清在| 男人狂女人下面高潮的视频| 2018国产大陆天天弄谢| 人人妻人人澡人人爽人人夜夜| 久久精品国产亚洲网站| 各种免费的搞黄视频| 精品人妻熟女毛片av久久网站| 国产淫片久久久久久久久| 日韩精品有码人妻一区| 国产精品人妻久久久久久| 一区二区三区乱码不卡18| 久久99蜜桃精品久久| 国产色婷婷99| 毛片一级片免费看久久久久| 蜜臀久久99精品久久宅男| 国产精品麻豆人妻色哟哟久久| 黄色怎么调成土黄色| 中文天堂在线官网| 国产乱人偷精品视频| 一级毛片久久久久久久久女| 成年美女黄网站色视频大全免费 | 波野结衣二区三区在线| 99热全是精品| 日韩中文字幕视频在线看片| www.av在线官网国产| 亚洲人与动物交配视频| 女人精品久久久久毛片| 不卡视频在线观看欧美| 最近2019中文字幕mv第一页| 99久久中文字幕三级久久日本| 99re6热这里在线精品视频| 丝袜脚勾引网站| 色婷婷av一区二区三区视频| 99国产精品免费福利视频| 人妻少妇偷人精品九色| 国产成人免费观看mmmm| 欧美日本中文国产一区发布| 水蜜桃什么品种好| 十分钟在线观看高清视频www | 我要看日韩黄色一级片| 在线看a的网站| 久久精品国产a三级三级三级| 久久人人爽av亚洲精品天堂| 永久免费av网站大全| 久久精品国产亚洲av天美| 成人漫画全彩无遮挡| 日韩欧美 国产精品| 中文字幕人妻熟人妻熟丝袜美| 国产黄片视频在线免费观看| 日韩av在线免费看完整版不卡| 少妇精品久久久久久久| 国产成人a∨麻豆精品| 国产午夜精品久久久久久一区二区三区|