• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthesis,structure and properties of three novel transition-metal-containing tantalum-phosphate clusters

    2022-11-05 06:47:56XueLiHuiZhaoYuyanLiYuanyuanYangMingyangZhangSuyiLiuPengtaoMaJingpingWangJingyangNiu
    Chinese Chemical Letters 2022年10期

    Xue Li,Hui Zhao,Yuyan Li,Yuanyuan Yang,Mingyang Zhang,Suyi Liu,Pengtao Ma,Jingping Wang,Jingyang Niu

    Henan Key Laboratory of Polyxometalate Chemistry,College of Chemistry and Chemical Engineering,Henan University,Kaifeng 475004,China

    Keywords:Polyoxotantalates Transition-metal Synthesize Structure Proton-conduction

    ABSTRACT Peroxide ligation of aqueous metal-oxo clusters provides rich speciation and structural diversity.Here,three novel transition-metal derivatives of polyoxometalate anions,[Ni2(H2O)10{P4Ta6(O2)6O24}]6- (1a),[Zn(H2O)4{P4Ta6(O2)6O24}]8-(2a ) and [Cd(H2O)4{P4Ta6(O2)6O24}]8- (3a),have been successfully synthesized by adopting a one-pot reaction strategy.All of these hexatantalates are built from a new-type phosphorus-incorporated hexatantalates.We investigated the solution behaviors,and the peak assignments of the MS spectra indicated some degree of stability of them in water.Furthermore,the protonconducting ability of compound 1a was also explored and it has shown well conductivity at high relative humidities,with conductivity achieved 1.22×10-3 S/cm (85 °C,90%RH).

    Polyoxometalates (POMs) represent an intriguing class of polynuclear metal oxide clusters,which have been attracted widespread attention due to the remarkable properties and varieties of potential applications [1-12].It is worth noting that POMs have a history of over 100 years and can be divided into two types,iso and hetero-POMs according to whether it contains heteroatoms (typicaly P,As,Sb,Bi) the clusters of V,Mo,W are still relatively mature compared to Nb-based POMs (PONbs)and Ta-based POMs (POTas).Nowdays,PONbs have shown great progress over the past few years thanks to the excellently reported work of Nyman,Cronin,Casey,Wang,Niu and Zhenget al.[13-29].However,the development of POTas,although the first POTa[Ta6O19]8-has been reported as early as 1953,is still in its budding period [30].It is attributed to their slower reaction kinetic and higher chemical inertness of Ta.On one hand,the watersoluble precursor [Ta6O19]8-can only exist steadily among a narrowly strong basicity interval,otherwise [Ta6O19]8-tend to form gel-like material or Ta2O5precipitate.On the other hand,the alkaline condition impedes the ability to incorporate most metals into the clusters.Up to now,POTas mainly concentrated on the isoPOTas including hexatantalate ions crystallized as simple alkali salts or tetramethylammonium salts [31-34],several organicinorganic hybrid POTas [35],{Ta7} and {Ta8} cores with organic ligands [36],{Ta10} [37],{Ti2Ta8},{Ti12Ta6} [38]and {Co8Ta24} [39],as well as a series of Ta/W mixed-addendum POTas [40,41].In 2017,[P4Ta6(O2)6O25]12-and [P4Ta6(O2)6O24]10-were first proposed by Niu [42],[Ln1(H2O6{H4(TaO2)6As4O24})]3-(Ln1=Sm,Eu,Tb,Dy,Er,Tm,Yb,Lu),[Se4(TaO2)6(OH)4O17]4-and its Lnderivatives [Ln(H2O)6(TaO2)6Se4(OH)3O18]2-(Ln2=Tb,Dy,Er,Tm,Yb) were reported in 2019 and 2020 in succession [43].These complexes were entirely obtained as pure heter-POTa or their lanthanide derivatives.Based on the literature survey,apparently,a large portion of the resulting POTas are in the form of oligomers(mostly dimers).With that,it is still an enormous challenge to make a structural breakthrough for POTas.

    Herein,we are reporting three of hetero-POTas,Cs3H3[Ni2(H2O)4{P4Ta6(O2)6O24}]·7H2O (1),Cs3NaH4[Zn(H2O)4{P4Ta6(O2)6O24}]·13H2O (2) and Cs3NaH4[Cd(H2O)4{P4Ta6(O2)6O24}]·8H2O (3)were successfully acquired by adopting a one-post assembly synthetic method.According to Nyman’s group,the Lindqvist-type[Ta6O19]8-can be stabilized as a peroxyanion by H2O2even at a reasonably low pH in aqueous solution [44].Under this background,we regard the cluster [P4Ta6(O2)6O24]10-(P4Ta6) as second building block,and then transition-metal ions were introduced to the reaction system to enrich the structural diversity of POTas.First of all,K8Ta6O19·17H2O (0.201 g,0.1 mmol) was dissolved in 20 mL H2O consisting of 2.0 mL H2O2(30%) with moderate stirring.The pH was adjusted to 1.60 with 3 mol/L H3PO4.And then,NiCl2·6H2O(0.156 g,0.66 mmol) was added slowly.The pH was adjusted to 2.7 with 2 mol/L NaOH and the reaction was heated at 90°C for 1 h.After that,the mixture was cooled to room temperature and followed by the addition of CsCl (0.01 g,0.06 mmol).The solution was stirred for 30 min and filtered.Finally,the green filtrate was kept in an open beaker to slowly evaporate at room temperature.A similar procedure as 2 and 3 that for the preparation of 1 was used,only changed the type of transition-metal.Crystallographic data and structures refinement for compounds 1-3 have been given in Table S1 (Supporting information).As far as we know,this is the first observation about transition-metal containing derivatives in POTa chemisty.

    To study the key factors that influence the reaction,a series of parallel experiments have been implemented.The final results indicate that pH value,reaction temperature,the genre of counter cations and transition-mental ions can significantly affect the separation of target products: (1) Crystals of 1-3 can be formed in the pH range of 2.1-3.0.At a lower or higher pH,only amorphous products formed with low yield;(2) When the reaction temperature was lower than 70°C,no crystal was obtained due to the slow kinetics of the reaction;(3) When get rid of Cs+or replaced it with other counter cations,only powders were obtained.It is in agreement with the previous conclusion that the nature of the counter cations has a significant impact on the crystallization of POMs [45];(4) The kind of transition mental element also gives deep impact on the synthesis procedure.In fact,Co2+,Fe2+and Cu2+were also tried to lead into the system to obtain isomorphic compounds,but we failed,and only various colors of powder were gained.

    Single-crystal X-ray structural analysis reveals that all of the compounds crystallize in the monoclinic system while 1 is inP21/cspace group,2 and 3 are inC2/cspace group.Compound 1 is isolated,and it comprises a cluster of [Ni2(H2O)10{P4Ta6(O2)6O24}]6-(1a) (Fig.1a),three Cs+ions and seven water molecules.Compound 1 is captured on equatorial site,the so-called “belt” phosphate group,and another one is capped on axial site,the so-called“cap” phosphate group (Fig.1d).In 1a,each Ni atom is ligated by oneμ2-O bridging atom and five water molecules forming an octahedral coordination environment (Fig.S1 in Supporting information).Compounds 2 and 3 are isostructural,thus compound 2 is discussed in detail.2 comprises a [Zn(H2O)4{P4Ta6(O2)6O24}]8-subset (2a),three Cs+ions,one Na+ion and thirteen water molecules.Each Zn atom constructs an octahedral coordination environment by linking with four water molecules and twoμ2-bridging oxygen atoms from two adjacent P4Ta6units (Fig.S1).As shown in Fig.1b,the sole {Zn(H2O)4} segment is connected to one belt P atom byμ2-O bridging atom.Furthermore,every {Zn(H2O)4}linker bounds together with two moieties P4Ta6by two Zn-OP bridges,constituting a one-dimensional chain structure,simultaneously,each P4Ta6unit of the 1-D chain is connected to two Na+ions,ultimately bringing out an outspread two-dimensional plane framework (Fig.1c).Compound 3 is fused by the polyanion [Cd(H2O)4P4Ta6(O2)6O24]8-(3a) (Fig.S2 in Supporting information),three Cs+ions,one Na+ion and eight water molecules.Each Ta atom of compounds 1-3 is coordinated by three kinds of oxygen atoms: oneμ3-O bridging atom,fourμ2-O bridging atoms and one terminal peroxo group,thus defines a distorted-pentagonalbipyramidal geometry (Fig.1e).The Ta-O and Ta-Opbond length are in the range of 1.91-2.13 ?A and 1.92-2.03 ?A,respectively.The value of Op-Opbond is in the range of 1.48-1.51 ?A,mostly greater than 1.50 ?A,which is longer comparing to the noncoordinated O22-(1.49 ?A) [46].In addition,the transition-metal-oxygen bond lengths are gradually increased,within the range of 1.95-2.12 ?A,2.07-2.13 ?A and 2.21-2.34 ?A,severally,which agree well with the atoms and ions radius trend of Ni,Zn and Cd centers.

    The band valence sum (BVS) [47,48]calculations are carried out on all Ta,P,Ni,Zn,Cd and O centers,and the results indicate that all the Ta,P,Ni,Zn and Cd centers are in +5,+5,+2,+2 and +2 oxidation states,respectively (Table S3 in Supporting information).In addition,the BVS calculations give values of 1.22 and 1.23 for O9,O15 in 1a,which are relatively lower than those of other oxygen atoms in the structure (1.75-2.18) and further confirm that they appear to be monoprotonated (Table S2 in Supporting information).Meanwhile,the values of terminal oxygen atoms on transition-metal atoms are within the range of 0.63-0.66,indicating that they are from water molecules.The BVS calculation details of 2a and 3a are also carried out in Tables S2 and S3 (Supporting information).

    We have already known that the crystal sample of the anion [P4Ta6(O2)6O24]10-is colorless (white after weathering),and when the Ni,Zn and Cd atoms were incorporated into the anion[P4Ta6(O2)6O24]10-,the color of compounds 1-3 were green,colorless and colorless (Fig.S13 in Supporting information).It might be owing to the different valence electrons—3d84s2,3d104s2and 4d105s2for Ni,Zn and Cd atoms.Meanwhile,we also compared compounds 1-3 with [P4Ta6]cluster in solid-UV-vis absorption(Fig.2).The results indicated compounds 1-3 and [P4Ta6]cluster have similar absorption peaks in around 250 nm,which can be attributed to the charge-transfer transitions of oxygen-to-tantalum bonds.Besides,the absorption peaks in around 408 nm and 700 nm of compound 3 can be assigned to be d-d transfers of incorporated 3d Ni2+ion [49].

    To investigate the solution behavior of compounds 1-3,negative-mode electrospray ionization mass spectrometry (ESI-MS)analysis were examined in aqueous solution (Fig.S14 in Supporting information).For compound 1,the ESI-MS shows two envelopes that correspond to the intact cluster at charge value of 3-and 2-atm/z616.11 {H5[NiP4Ta6(O2)6O24]} and 962.67{H6[Ni2(H2O)P4Ta6(O2)6O24]} (Table 1),and that simulated and experimental negative-mode mass spectra of isotopic envelopes for 1 in Fig.3;for compound 2,the peaks at the charge values of 3-and 2-ofm/z618.79 {H5[ZnP4Ta6(O2)6O24]} and 927.69{H6[ZnP4Ta6(O2)6O24]} (Table S4) can be attributed to the stable cluster;for compound 3,the peaks at the value ofm/z634.43 {H5[CdP4Ta6(O2)6O24]} and 951.62 {H6[CdP4Ta6(O2)6O24]},at a charge of 3-and 2-,ascribing to the complete configuration(Table S5 in Supporting information).Some other signals around can also be found,and they are contributed to the fragment P4Ta6species.Theoretical calculations could provide additional confirmation (Figs.S17 and S18 in Supporting information).The peak assignments of the MS spectra indicate some degree of stability of 1-3 in water.

    Fig.2.The solid-UV-vis curve of (a) [P4Ta6]cluster,(b) 1,(c) 2 and (d) 3.

    Table 1 Assignment of the key species identified of ESI-MS tests for 1.

    Fig.3.Simulated (red) and experimental (black) negative-mode mass spectra of isotopic envelopes for 1.

    Fig.4.(a) Nyquist plots 1 under different RHs at 25 °C.(b) Nyquist plots 1 at 90%RH under different temperatures.(c) Arrhenius plot at 75% RH within the temperature range of 25 °C to 85 °C.(d) PXRD patterns of 1: experiment,simulated and post proton conduction.

    The presence of protonated H+and the incorporation of water molecules within the framework prompted us to study the proton-conducting ability.Here the proton conductivity of compound 1 was investigated.First,the proton conductivity was tested on the humidity (RH) from 55% to 90% at room temperature.As shown in Fig.4a,the conductivityσ(which was calculated by the equationσ=L/RS,whereLis the sample thickness,Sis the cross-sectional area,andRrepresents the resistance) was increased from 7.26×10-7S/cm to 3.69×10-5S/cm [50,51].Then,the temperature-dependent conductivity was carried out in the range of 25 °C to 85 °C,and the conductivity ranging from 3.69×10-5S/cm to 1.22×10-3S/cm (Fig.4b).These phenomena instruct that the increase of conductivity was coordinated by RH and temperature.

    According to the Arrhenius equation (σ T=σ0exp(Ea/kbT),the activation energies (Ea) are derived to be 0.39 eV.In general,the mechanism of proton conductivity should be assigned to the Grotthuss mechanism (Ea=0.1-0.4 eV) (Fig.4c).In order to confirm the integrity of the structure of 1 proton conduction experiments,powder X-ray diffraction experiment was carried out (Fig.4d).It turns out that the PXRD curve post the proton conductivity tests aligns with that from the original form.The thermal stability of compound 1 was characterized by PXRD at different temperatures(Fig.S19 in Supporting information).

    In summary,three new compounds have been successfully obtained and fully investigated in the solid state by single-crystal Xray diffraction,IR spectra,TGA,PXRD and the solution behavior as well as proton conductivity.To date,it is the first study about transition-metal incorporated peroxo-polyoxotantalate,which not only enriches the diversity of POTas but also provides further insight into the reactivity between alkalineside POTas and transition metals under strong acidic conditions in the presence of H2O2.Moreover,the appropriate reaction conditions make important sense to the formation of aggregations.In addition,the excellent proton conductivity shows that POTas has enormous potential in the application of materials.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was funded by the National Natural Science Foundation of China (Nos.22171071,22071044,21771054 and 21571050).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.12.078.

    91av网一区二区| 男人的好看免费观看在线视频| 午夜福利在线观看免费完整高清在 | 深夜精品福利| 亚洲一级一片aⅴ在线观看| 精品午夜福利在线看| 亚洲av.av天堂| 色吧在线观看| 亚洲av免费在线观看| 亚洲av.av天堂| 变态另类丝袜制服| 国产男人的电影天堂91| 国产亚洲91精品色在线| 91久久精品国产一区二区三区| 精品久久久久久久久av| 亚洲七黄色美女视频| 亚洲精品影视一区二区三区av| 乱系列少妇在线播放| 亚洲自拍偷在线| ponron亚洲| 国产三级在线视频| 久久国产乱子免费精品| 亚洲精品色激情综合| 美女国产视频在线观看| 久久久久九九精品影院| 99热这里只有精品一区| 亚洲人成网站在线播放欧美日韩| 黑人高潮一二区| 好男人视频免费观看在线| 嘟嘟电影网在线观看| 国产精品人妻久久久久久| 我的老师免费观看完整版| 久久久久久伊人网av| 色播亚洲综合网| 亚洲精品456在线播放app| kizo精华| 久久国产乱子免费精品| 国产精品久久视频播放| 亚洲国产精品久久男人天堂| 国产亚洲精品久久久久久毛片| 久久亚洲精品不卡| 最后的刺客免费高清国语| 国产久久久一区二区三区| 色综合色国产| 国产精品国产三级国产av玫瑰| 成人无遮挡网站| 色尼玛亚洲综合影院| 婷婷精品国产亚洲av| 日韩欧美精品v在线| 菩萨蛮人人尽说江南好唐韦庄 | 在线观看av片永久免费下载| 一级毛片电影观看 | 久久久国产成人精品二区| 国产精品不卡视频一区二区| av免费观看日本| 一级毛片久久久久久久久女| 99久国产av精品| 日本熟妇午夜| 26uuu在线亚洲综合色| 岛国在线免费视频观看| 亚洲国产精品国产精品| 99视频精品全部免费 在线| 久久99热这里只有精品18| 夜夜爽天天搞| 国产在视频线在精品| 婷婷亚洲欧美| 日韩欧美三级三区| 在线免费十八禁| 可以在线观看毛片的网站| 免费av不卡在线播放| 婷婷色综合大香蕉| 亚洲欧美日韩卡通动漫| 岛国在线免费视频观看| 亚洲精品乱码久久久v下载方式| 免费无遮挡裸体视频| 亚洲欧美精品专区久久| 少妇猛男粗大的猛烈进出视频 | 两个人的视频大全免费| 爱豆传媒免费全集在线观看| 一进一出抽搐动态| 成人综合一区亚洲| 国产又黄又爽又无遮挡在线| 国产精品久久久久久久电影| av免费在线看不卡| 亚洲欧美清纯卡通| av在线老鸭窝| 欧美精品一区二区大全| 免费不卡的大黄色大毛片视频在线观看 | 特级一级黄色大片| 永久网站在线| 国产成人精品婷婷| 成人无遮挡网站| 国产精品久久电影中文字幕| 午夜久久久久精精品| 国产又黄又爽又无遮挡在线| 久久久成人免费电影| 国产爱豆传媒在线观看| 久久这里只有精品中国| 亚洲av成人av| 夜夜爽天天搞| 三级毛片av免费| 黄色欧美视频在线观看| 欧美人与善性xxx| 欧美日韩一区二区视频在线观看视频在线 | av天堂中文字幕网| 亚洲人成网站在线播放欧美日韩| 亚洲欧美日韩无卡精品| 深夜精品福利| 国产精华一区二区三区| 一级毛片我不卡| videossex国产| 国产精品一二三区在线看| 嘟嘟电影网在线观看| 少妇人妻精品综合一区二区 | 狠狠狠狠99中文字幕| 一边摸一边抽搐一进一小说| 久久久久性生活片| 亚洲欧美中文字幕日韩二区| 日本一二三区视频观看| 日本黄色片子视频| 亚洲av成人精品一区久久| 日韩,欧美,国产一区二区三区 | 在线观看66精品国产| 一进一出抽搐gif免费好疼| avwww免费| 国产精品爽爽va在线观看网站| 亚洲人成网站在线播放欧美日韩| 变态另类成人亚洲欧美熟女| 亚洲欧美精品自产自拍| 久久久久久九九精品二区国产| 精品人妻视频免费看| 国产私拍福利视频在线观看| 日本爱情动作片www.在线观看| 精品人妻熟女av久视频| 午夜久久久久精精品| 18+在线观看网站| 亚洲av二区三区四区| 中文欧美无线码| 久久精品夜夜夜夜夜久久蜜豆| 久久精品综合一区二区三区| 我要搜黄色片| 免费在线观看成人毛片| 精品久久久久久成人av| 午夜免费激情av| 亚洲人与动物交配视频| 精品日产1卡2卡| 特大巨黑吊av在线直播| 久久久精品大字幕| 在线国产一区二区在线| 老熟妇乱子伦视频在线观看| 熟女电影av网| 精品一区二区三区人妻视频| 亚洲成人中文字幕在线播放| 精品午夜福利在线看| 在线观看一区二区三区| 国产高清激情床上av| 深夜精品福利| 国产视频首页在线观看| av在线播放精品| 人妻少妇偷人精品九色| 亚洲天堂国产精品一区在线| 久久久久久久久中文| 大香蕉久久网| 三级国产精品欧美在线观看| 欧美精品一区二区大全| 日韩三级伦理在线观看| a级毛片a级免费在线| 免费人成视频x8x8入口观看| 成人av在线播放网站| 成人鲁丝片一二三区免费| 黄色欧美视频在线观看| 一区二区三区高清视频在线| 狂野欧美激情性xxxx在线观看| 亚洲欧洲日产国产| 欧美xxxx性猛交bbbb| 国产色爽女视频免费观看| 搞女人的毛片| 在线观看一区二区三区| 一边摸一边抽搐一进一小说| 波多野结衣巨乳人妻| 男女下面进入的视频免费午夜| 欧美成人a在线观看| 亚洲av不卡在线观看| 熟女电影av网| 亚洲av中文av极速乱| 欧美性感艳星| 亚洲图色成人| 亚洲成人精品中文字幕电影| 久久午夜福利片| 欧美潮喷喷水| 国产av在哪里看| 欧美性猛交╳xxx乱大交人| 内地一区二区视频在线| 国产一级毛片七仙女欲春2| 一级二级三级毛片免费看| 中出人妻视频一区二区| 免费av不卡在线播放| 91久久精品国产一区二区三区| 啦啦啦啦在线视频资源| 久久热精品热| 听说在线观看完整版免费高清| 成年免费大片在线观看| 国内精品美女久久久久久| 国产一区二区在线av高清观看| 国产v大片淫在线免费观看| 免费无遮挡裸体视频| 日韩制服骚丝袜av| 国产精品一二三区在线看| 国产毛片a区久久久久| 国产精品一区二区三区四区久久| 午夜激情福利司机影院| 女同久久另类99精品国产91| 长腿黑丝高跟| 婷婷色av中文字幕| 国产乱人视频| 欧美成人a在线观看| 波多野结衣巨乳人妻| 免费看a级黄色片| 一级毛片我不卡| 可以在线观看毛片的网站| 国产亚洲5aaaaa淫片| 国模一区二区三区四区视频| 午夜免费男女啪啪视频观看| 日产精品乱码卡一卡2卡三| 我要搜黄色片| 男女那种视频在线观看| 男女做爰动态图高潮gif福利片| 亚洲av免费高清在线观看| 熟妇人妻久久中文字幕3abv| 黑人高潮一二区| 熟女人妻精品中文字幕| 美女脱内裤让男人舔精品视频 | 久久久久网色| 搞女人的毛片| 久久精品国产清高在天天线| 特大巨黑吊av在线直播| 国产免费一级a男人的天堂| av在线天堂中文字幕| 亚洲av电影不卡..在线观看| 小说图片视频综合网站| 久久久久久久午夜电影| 成人美女网站在线观看视频| 国产一区二区三区av在线 | 不卡一级毛片| 一级毛片电影观看 | 午夜亚洲福利在线播放| 国产午夜精品一二区理论片| 男女做爰动态图高潮gif福利片| 亚洲欧美日韩高清专用| 欧美日韩综合久久久久久| 一边亲一边摸免费视频| 欧美成人免费av一区二区三区| 大型黄色视频在线免费观看| 99久久无色码亚洲精品果冻| 看黄色毛片网站| 精品不卡国产一区二区三区| 观看美女的网站| 日韩欧美国产在线观看| 欧美日韩在线观看h| 美女cb高潮喷水在线观看| 亚洲精华国产精华液的使用体验 | 国产91av在线免费观看| 亚洲成人精品中文字幕电影| 国产亚洲精品久久久com| 免费一级毛片在线播放高清视频| 亚洲av免费在线观看| 麻豆精品久久久久久蜜桃| 中文亚洲av片在线观看爽| 亚洲美女视频黄频| 一个人免费在线观看电影| 成人二区视频| 国产精品1区2区在线观看.| 99在线人妻在线中文字幕| 久久精品国产亚洲网站| 在线a可以看的网站| 国产精品女同一区二区软件| 精品久久久噜噜| av天堂在线播放| 日本一二三区视频观看| 日韩国内少妇激情av| 久久中文看片网| 成年av动漫网址| 亚洲一区二区三区色噜噜| 国产精品女同一区二区软件| 在线国产一区二区在线| 亚州av有码| 亚洲最大成人手机在线| 国产精品国产高清国产av| 精品久久国产蜜桃| 日本在线视频免费播放| 只有这里有精品99| 最近2019中文字幕mv第一页| 国产高清不卡午夜福利| 欧美在线一区亚洲| 大又大粗又爽又黄少妇毛片口| 久久99热这里只有精品18| 能在线免费观看的黄片| 搞女人的毛片| 午夜亚洲福利在线播放| 免费人成在线观看视频色| 我的女老师完整版在线观看| 日本黄色片子视频| 日本与韩国留学比较| 18禁在线无遮挡免费观看视频| 亚洲欧美日韩东京热| 五月玫瑰六月丁香| 精品人妻一区二区三区麻豆| av国产免费在线观看| 麻豆乱淫一区二区| av在线蜜桃| 91在线精品国自产拍蜜月| 91精品一卡2卡3卡4卡| 久久久久久伊人网av| 国产91av在线免费观看| 久久99蜜桃精品久久| 嫩草影院新地址| 免费人成在线观看视频色| 日韩精品有码人妻一区| 九九爱精品视频在线观看| 22中文网久久字幕| 国产精品久久久久久av不卡| 欧美高清成人免费视频www| 亚洲av男天堂| 欧美高清性xxxxhd video| 国产亚洲5aaaaa淫片| 99久久精品国产国产毛片| 亚州av有码| 亚洲国产精品sss在线观看| 成年女人永久免费观看视频| 日韩亚洲欧美综合| 美女cb高潮喷水在线观看| 久久99热6这里只有精品| 中文字幕久久专区| 寂寞人妻少妇视频99o| 美女国产视频在线观看| 性插视频无遮挡在线免费观看| 国产在线精品亚洲第一网站| 国产成人精品久久久久久| 亚洲熟妇中文字幕五十中出| 一本一本综合久久| 久久久久免费精品人妻一区二区| 村上凉子中文字幕在线| 我要搜黄色片| 级片在线观看| 寂寞人妻少妇视频99o| 亚洲欧洲日产国产| 国产精品美女特级片免费视频播放器| 久久精品国产亚洲av涩爱 | 超碰av人人做人人爽久久| 午夜激情欧美在线| 欧美不卡视频在线免费观看| 国产一区二区在线观看日韩| 韩国av在线不卡| 波多野结衣高清无吗| 最近手机中文字幕大全| 你懂的网址亚洲精品在线观看 | 国内精品宾馆在线| 熟女电影av网| 男女视频在线观看网站免费| 日韩,欧美,国产一区二区三区 | 一级毛片我不卡| h日本视频在线播放| 狂野欧美激情性xxxx在线观看| 中文字幕av在线有码专区| 我的女老师完整版在线观看| 乱码一卡2卡4卡精品| 黄片wwwwww| 国产精品蜜桃在线观看 | 青春草亚洲视频在线观看| 久久精品久久久久久久性| 看十八女毛片水多多多| 99久久精品热视频| 丝袜美腿在线中文| 免费黄网站久久成人精品| 久久精品91蜜桃| 欧美一区二区亚洲| 嘟嘟电影网在线观看| 国语自产精品视频在线第100页| 欧美精品国产亚洲| 韩国av在线不卡| 人妻制服诱惑在线中文字幕| 又粗又硬又长又爽又黄的视频 | 青春草国产在线视频 | 黄片wwwwww| 欧美激情在线99| 久久久久久久亚洲中文字幕| 国产av在哪里看| 欧美zozozo另类| 亚洲三级黄色毛片| 一区福利在线观看| 国产精品一区www在线观看| 成人毛片a级毛片在线播放| 一边摸一边抽搐一进一小说| 婷婷亚洲欧美| 久久久久九九精品影院| 寂寞人妻少妇视频99o| 一本久久精品| 不卡一级毛片| 99久国产av精品国产电影| 日本-黄色视频高清免费观看| 免费人成视频x8x8入口观看| 插逼视频在线观看| 一级毛片我不卡| 99视频精品全部免费 在线| 天堂av国产一区二区熟女人妻| 在线免费观看的www视频| 老女人水多毛片| 美女国产视频在线观看| 日韩大尺度精品在线看网址| 亚洲av免费在线观看| 精品久久久久久久久久久久久| 欧美日本亚洲视频在线播放| 嘟嘟电影网在线观看| 少妇丰满av| 国产v大片淫在线免费观看| avwww免费| 晚上一个人看的免费电影| 在线观看一区二区三区| 国产91av在线免费观看| 爱豆传媒免费全集在线观看| 男女那种视频在线观看| 精品久久国产蜜桃| 成人一区二区视频在线观看| a级毛片a级免费在线| 美女被艹到高潮喷水动态| 91麻豆精品激情在线观看国产| 成人美女网站在线观看视频| 国产精品,欧美在线| 亚洲图色成人| 日韩精品有码人妻一区| 欧美3d第一页| 国产精品无大码| 亚洲欧美精品综合久久99| 少妇人妻一区二区三区视频| 亚洲国产精品久久男人天堂| 精品国产三级普通话版| 观看免费一级毛片| 黑人高潮一二区| 亚洲av中文字字幕乱码综合| 国产精品日韩av在线免费观看| 亚洲性久久影院| 黄色视频,在线免费观看| 欧美人与善性xxx| 免费大片18禁| 亚洲成人av在线免费| 久久韩国三级中文字幕| 小说图片视频综合网站| 久久久久九九精品影院| 午夜福利高清视频| 热99re8久久精品国产| 日本与韩国留学比较| 亚洲成a人片在线一区二区| av免费观看日本| 一级av片app| 久久久成人免费电影| 国产精品永久免费网站| 波多野结衣高清作品| 黄色欧美视频在线观看| 中国国产av一级| 欧美变态另类bdsm刘玥| 少妇裸体淫交视频免费看高清| 亚洲,欧美,日韩| 免费人成视频x8x8入口观看| 免费av不卡在线播放| 久久久国产成人免费| 99久久久亚洲精品蜜臀av| 国产亚洲欧美98| 村上凉子中文字幕在线| 高清在线视频一区二区三区 | 天天躁夜夜躁狠狠久久av| 99热6这里只有精品| 此物有八面人人有两片| 午夜精品国产一区二区电影 | 国产成人一区二区在线| 我的女老师完整版在线观看| 如何舔出高潮| 亚洲中文字幕一区二区三区有码在线看| 听说在线观看完整版免费高清| 亚洲丝袜综合中文字幕| 老司机福利观看| 在线播放无遮挡| 麻豆久久精品国产亚洲av| 国产精品精品国产色婷婷| 亚洲人与动物交配视频| 国内精品一区二区在线观看| 嫩草影院精品99| 午夜精品国产一区二区电影 | 美女脱内裤让男人舔精品视频 | 日本黄色片子视频| 亚洲经典国产精华液单| 男女边吃奶边做爰视频| 国产 一区 欧美 日韩| 亚洲欧美成人综合另类久久久 | 国产精品野战在线观看| 日韩强制内射视频| 成年版毛片免费区| 少妇猛男粗大的猛烈进出视频 | 高清日韩中文字幕在线| 中文在线观看免费www的网站| 色综合站精品国产| 91精品一卡2卡3卡4卡| 嫩草影院入口| 成人特级黄色片久久久久久久| 可以在线观看的亚洲视频| 欧美一区二区精品小视频在线| 欧美丝袜亚洲另类| 成人毛片60女人毛片免费| 久久午夜福利片| 免费无遮挡裸体视频| 色播亚洲综合网| 亚洲欧美成人精品一区二区| 99在线人妻在线中文字幕| 中文字幕熟女人妻在线| 日韩欧美国产在线观看| 五月伊人婷婷丁香| 人妻少妇偷人精品九色| 日韩av不卡免费在线播放| 好男人在线观看高清免费视频| 国产高潮美女av| 日韩欧美精品免费久久| 日韩国内少妇激情av| 床上黄色一级片| 联通29元200g的流量卡| 九色成人免费人妻av| 国内精品久久久久精免费| 91av网一区二区| 乱系列少妇在线播放| 欧美三级亚洲精品| 成人性生交大片免费视频hd| 久久热精品热| 日韩一区二区三区影片| 成年女人看的毛片在线观看| 禁无遮挡网站| 国产一级毛片七仙女欲春2| 69人妻影院| 中文字幕av在线有码专区| 亚洲国产欧美人成| 色尼玛亚洲综合影院| 国产乱人视频| 亚洲人与动物交配视频| 国产极品精品免费视频能看的| 一区二区三区四区激情视频 | 边亲边吃奶的免费视频| 亚洲av熟女| 成人永久免费在线观看视频| 青青草视频在线视频观看| 一本精品99久久精品77| 亚洲真实伦在线观看| 国产淫片久久久久久久久| 国产免费一级a男人的天堂| 最近手机中文字幕大全| 免费观看在线日韩| 日韩高清综合在线| 欧美三级亚洲精品| 欧美成人一区二区免费高清观看| 一级毛片电影观看 | 18禁在线播放成人免费| 99热精品在线国产| 丰满乱子伦码专区| 国产 一区 欧美 日韩| 久久久久久久久大av| 午夜精品一区二区三区免费看| 亚洲一级一片aⅴ在线观看| 精品国内亚洲2022精品成人| 嫩草影院精品99| 成人特级黄色片久久久久久久| 一进一出抽搐动态| 99热网站在线观看| 啦啦啦观看免费观看视频高清| 99国产精品一区二区蜜桃av| 亚洲人成网站在线播放欧美日韩| 成人二区视频| 久久婷婷人人爽人人干人人爱| 在线播放无遮挡| 综合色丁香网| 亚洲一区二区三区色噜噜| 一级毛片我不卡| 91午夜精品亚洲一区二区三区| 级片在线观看| 99在线人妻在线中文字幕| 国产黄片美女视频| 1024手机看黄色片| 看非洲黑人一级黄片| 国产精品久久电影中文字幕| 久久久精品欧美日韩精品| 中文亚洲av片在线观看爽| 桃色一区二区三区在线观看| 亚洲熟妇中文字幕五十中出| 久久久久免费精品人妻一区二区| 久久久色成人| 国产熟女欧美一区二区| 国产真实乱freesex| 国内精品美女久久久久久| 丝袜美腿在线中文| 亚洲欧美日韩东京热| 成人国产麻豆网| 久久久a久久爽久久v久久| 久久婷婷人人爽人人干人人爱| 色视频www国产| 天天躁夜夜躁狠狠久久av| 最近的中文字幕免费完整| 亚洲真实伦在线观看| 99热全是精品| 成人三级黄色视频| 美女高潮的动态| 欧美精品一区二区大全| 青春草国产在线视频 | 又粗又爽又猛毛片免费看| 成人鲁丝片一二三区免费| 日本色播在线视频| 亚洲图色成人| av免费在线看不卡| 久久这里有精品视频免费| 哪里可以看免费的av片| 国内精品久久久久精免费|