• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enabling ultrafast lithium-ion conductivity of Li2ZrCl6 by indium doping

    2022-11-05 06:47:50ShuiChenChungYuShoqingChenLinfengPengCongLioChohoWeiZhongkiWuShijieChengJiXie
    Chinese Chemical Letters 2022年10期

    Shui Chen,Chung Yu,Shoqing Chen,Linfeng Peng,Cong Lio,Choho Wei,Zhongki Wu,Shijie Cheng,Ji Xie

    a State Key Laboratory of Advanced Electromagnetic Engineering and Technology,School of Electrical and Electronic Engineering,Huazhong University of Science and Technology,Wuhan 430074,China

    b School of Materials Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China

    c Department of Materials Science and Engineering,Southern University of Science and Technology,Shenzhen 518055,China

    Keywords:Solid electrolyte Li2ZrCl6 Li-ion conductivity In-doping Solid-state battery

    ABSTRACT Solid-state batteries with high energy density and safety are promising next-generation battery systems.However,lithium oxide and lithium sulfide electrolytes suffer low ionic conductivity and poor electrochemical stability,respectively.Lithium halide solid electrolyte shows high conductivity and good compatibility with the pristine high-voltage cathode but limited applications due to the high price of rare metal.Zr-based lithium halides with low cost and high stability possess great potential.Herein,a small amount of In3+ is introduced in Li2ZrCl6 to synthesize Li2.25Zr0.75In0.25Cl6 electrolytes with a high room temperature Li-ion conductivity of 1.08 mS/cm.Solid-state batteries using Li2.25Zr0.75In0.25Cl6/Li5.5PS4.5Cl1.5 bilayer solid electrolytes combined with Li-In anode and pristine LiNi0.7Mn0.2Co0.1O2 cathode deliver high initial discharge capacities under different cut-off voltages.This work provides an effective strategy for enhancing the conductivity of Li2ZrCl6 electrolytes,promoting their applications in solid-state batteries.

    Solid-state lithium batteries using Li-ion solid electrolyte have excellent potential for next-generation energy storage devices due to their better safety and higher energy density compared to the current lithium-ion batteries with organic liquid electrolytes [1-4].Exploring lithium-ion conductors with ultrafast ionic conductivity and wide voltage windows plays a crucial role in the development of solid-state lithium batteries [5,6].Inorganic lithium solid electrolytes include sulfides [7,8],oxides [9],polymer [10],halides [11,12],have attracted significant attention in the past years.Among those solid electrolytes,lithium oxides and lithium sulfides have been most investigated.The former shows good ionic conductivity and wide chemical/electrochemical stabilities but suffering from poor interfacial contact towards electrode materials while the latter holds ultrafast ionic conductivity and good solidsolid interfacial contact but limits due to its narrow voltage window and poor chemical/electrochemical stabilities [13-15].Unlike oxides and sulfides,lithium halides with high ionic conductivities(10-3S/cm) and good contact with electrode materials,especially high voltage compatibility towards cathode materials,show great potential as candidate solid electrolytes for constructing high energy density solid-state batteries [16-18].

    Although the study of lithium halides started a long time ago,their excellent electrochemical stability towards pristine high voltage cathodes,which is one of the most attractive features,has been reported recently [19].Asanoet al.found that the trigonal Li3YCl6and monoclinic Li3YBr6with ionic conductivities of 0.51 and 1.7 mS/cm showed excellent electrochemical performances when acting as electrolytes for solid-state batteries combined with uncoated LiCoO2cathode [20].Those electrolytes exhibited superior chemical/electrochemical stability up to 4.3 Vvs.Li+/Li0.Afterward,plenty of Li-M-X compounds with room temperature ionic conductivity higher than 10-3S/cm have been reported,such as Li3InCl6[21,22],Li3InBr6[24],LixScCl3+x[23]and Li3ErCl6[25]solid electrolytes.However,many high-cost rare metals (In,Sc and Er) in the structure limit their wide applications in solid-state batteries.Designing lithium halide electrolytes consisting of earth-abundant elements can accelerate its practical application.The monoclinic Li2ZrCl6consists of low-cost Zr makes it a fantastic candidate for lithium halide electrolyte,while it suffers from poor room temperature lithium-ion conductivity (10-6S/cm).Recently,Kwak et al.reported that the ionic conductivity ofhcpLi2ZrCl6could be enhanced from 0.4 mS/cm up to 1 mS/cmviaan aliovalent substitution of Zr4+with Fe3+and the modified lithium halide electrolytes showed excellent electrochemical performance towards pristine single-crystalline LiNi0.88Co0.11Al0.01O2[26].Although a significant increment of Li-ion conductivity has been achieved for Li2ZrCl6,it is a big challenge to modify this electrolyte with even higher conductivity.Moreover,the voltage stability of lithium halide electrolyte has typically been investigated till 4.3 Vvs.Li+/Li0,while the cathode compatibility at an even higher voltage window is unclear.Unraveling the high voltage stability of lithium halides provides an insight viewpoint to fabricate solid-state battery utilizing high voltage cathode enables high energy density.

    Zirconium is abundant in nature,and the corresponding halide electrolytes with Zr4+have much lower raw-material costs than other halide electrolytes with metal in ⅢA and ⅢB [27].Inspired by the previous work,we try to enhance the ionic conductivity of Li2ZrCl6by introducing a small amount of In3+.This work describes the strategy of improving the ionic conductivity of Li2ZrCl6via indium doping.Li2.25Zr0.75In0.25Cl6with a room temperature Liion conductivity of 1.08 mS/cm is successfully synthesized by the mechanical milling route.This result is consistent with the previous computational studies that the aliovalent substitution strategy effectively enhances ionic conductivity [28].Moreover,the phase evolution and ionic conductivity variations during the milling durations have been investigated in detail.The electrochemical performance of the obtained electrolyte is evaluated by constructing solid-state batteries using pristine LiNi0.7Mn0.2Co0.1O2.Furthermore,the electrochemical stability of Li2.25Zr0.75In0.25Cl6is investigated by cycling the assembled battery at a higher cut-off voltage window.The variations of resistance of different parts of solidstate batteries under different conditions are carefully studiedviaelectrochemical impedances,which will be helpful to promote the application of lithium halide electrolytes.

    The Li2+xZr1-xInxCl6are synthesized by the mechanical milling method.Raw materials LiCl (99.99% Aladdin),InCl3(99.99% Aladdin),ZrCl4(99.9% Aladdin) are mixed in proportion in 45 mL WC jars with WC balls.The weight ratio of raw materials and balls is fixed at 1:40.The mixture is ball milled (Restch,PM200)with a speed of 550 rpm after different milling durations.The Li5.5PS4.5Cl1.5electrolytes are synthesized according to our previous work [29].

    X-ray diffractometer patterns are collected using Cu radiation from a Smart-Lab-SE Powder instrument over a 2θrange from 10°-80°.ScientificTMTalos F200X with four energy-dispersive Xray spectroscopy (EDX) signal detectors are worked at 200 kV to show the signal high-resolution transmission electron microscope(HRTEM),high angle annular dark-field scanning TEM (HAADFSTEM) and elemental mapping images.

    Solid-state battery fabrications: The cathode mixture is obtained by mixing the NCM712 and Li2.25Zr0.75In0.25Cl6electrolyte with a weight ratio of 7:3.To assemble the solid-state battery,5 mg of the cathode mixture and 80 mg of the Li2.25Zr0.75In0.25Cl6electrolyte are pressed together to form a bilayer pellet.Then,30 mg of Li5.5PS4.5Cl1.5is chosen to add on the surface of the other side to separate the direct contact of halide electrolyte and In-Li anode.After that,the triple-layer pellet is pressed together under 380 MPa for 1 min using cold-pressing.Finally,the In-Li alloy is attached to the Li5.5PS4.5Cl1.5layer side under the pressure of 150 MPa.All those fabrication processes are operated in an argon-filled glovebox (O2,H2O<0.1%).

    Electrochemical characterizations: 100 mg of the obtained electrolytes power are pressed under 380 MPa for 1 min in the model cell using stainless steel disks as the blocking electrodes.Alternating current impedance is measured in the frequency range between 0.1 Hz and 1 MHz with an applied voltage of 0.02 V at different temperatures for the solid electrolyte pellets and the cycled solid-state batteries.The assembled solid-state batteries are charged/discharged at 0.2 C with different voltage windows (3.0~4.3 V and 3.0~4.5 V) under different temperatures (room temperature and 60°C) using a charge-discharge measurement device from Neware (CT4008).In-situEIS are operated with Bio-Logic SP-300 in the frequency range between 0.1 Hz and 6 MHz with an applied voltage of 0.02 V.

    The typical mechanical milling synthetic route was chosen to prepare the pristine Li2ZrCl6and indium-doped materials.XRD patterns are measured to show the phase transitions with increasing In3+proportions.As shown in Fig.1a,the XRD patterns of these pristine materials are indexed to the trigonal Li3YCl6structure with a space group ofp3m1.With increasing x ratio of Li2+xZr1-xInxCl6,the intensities of diffraction peaks located at ~30°and ~34° become stronger,and the intensities of XRD peaks at~16°,~30°,and ~41° are obviously reduced,which can be interpreted as a phase transition effect by the aliovalent substitution of In3+in the structure.When x values are higher than 0.4,the obtained samples exhibit a complete phase transition to the monoclinic Li3InCl6structure with a space group ofC2/m.In Fig.1b,the modified solid electrolyte with the composition ofx=0.25 exhibits the lowest resistance of 59.5Ωamong solid electrolytes with different dopant amounts.In Fig.1c,the room temperature Li-ion conductivities are 0.63 mS/cm forx=0.10,0.72 mS/cm forx=0.20,1.08 mS/cm forx=0.25,0.81 mS/cm forx=0.30,0.5 mS/cm forx=0.40,0.43 mS/cm forx=0.50,respectively.Li2.25Zr0.75In0.25Cl6delivers the highest ionic conductivity among those different compositions.Ionic conductivities of those electrolytes at different temperatures are also tested,as shown in Fig.1d.The corresponding activation energies can be deduced from the Arrhenius plots in Fig.1d.The optimal Li2.25Zr0.75In0.25Cl6shows the smallest activation energies of 0.29 eV among those different compositions (Fig.1e),which agrees well with the ionic conductivity variations.

    Fig.2a shows the XRD diffractions of the mixture obtained by milling the starting materials (LiCl,InCl3and ZrCl4) with the rotation speed of 550 rpm from 2 h to 16 h.For the mixture obtained after 110 rpm milling for 1 h,strong diffraction peaks are indexed to the standard reflection peaks of those starting materials,suggesting that this process slightly influences the phase transition during the synthesis.Then,the milling speed was increased to 550 rpm,and the mill jar was opened every 2 h to make sure that the mixture was homogenous during the high rotation process.The major diffraction peaks of the mixtures in Fig.2a are indexed to the hcp trigonal Li3YCl6structure with a space group ofp3m1after 2 h of milling.With longer milling durations,no obvious additional reflection can be observed in the XRD patterns,suggesting that pure trigonal Li2.25Zr0.75In0.25Cl6was successfully preparedviaa directly mechanical milling process.The milling duration plays a crucial role in the Li-ion conductivity of the obtained electrolytes.Therefore,the variation of conductivities as a function of milling durations are carefully investigated during the synthetic process for Li2Zr0.75In0.25Cl6electrolyte.After the low-speed mixing process (110 rpm/1 h),the homogenous mixed raw materials show a very low conductivity out of the impedance limit.

    During the subsequent high rotation milling durations,the ionic conductivity of the mixture exhibits a rapid increment in the first six hours from 0.33 mS/cm to 0.91 mS/cm,while it shows slight changes in the next 10 h.The milled mixture delivers Li-ion conductivities of 1.02,1.05,and 1.08mS/cm after 8,12 and 16 h of milling durations (Fig.2b),respectively.As shown in Fig.2c,the resistance for the milled Li2ZrCl6and Li2.25Zr0.75In0.25Cl6electrolytes are 224 and 51.7Ω,corresponding to Li-ion conductivities of 0.32 mS/cm and 1.08 mS/cm at ambient temperatures (Fig.2d),respectively.After introducing a minor amount of indium in the structure of Li2ZrCl6,the Li-ion conductivity is nearly four folders higher than that of the pristine material,indicating that indium doping is an effective solution to enhance the conductivity of Li2ZrCl6.

    Fig.1.(a) XRD patterns of the Li2+xZr1-xInxCl6.(b) Room temperature complex resistance plot for Li2ZrCl6 electrolytes with various amount of In3+ doping and (c) corresponding ionic conductivity.(d) Arrhenius plots of the different In3+ introducing samples and (e) corresponding activation energies.

    Fig.2.(a) XRD patterns of the mixture of raw materials LiCl,InCl3,and ZrCl4 milled with 500 rpm for various durations.(b) The corresponding variations of Li-ion conductivity for the milled mixture as a function of milling time.(c) Room temperature complex impedance plots of Li2ZrCl6 and Li2.25Zr0.75In0.25Cl6 solid electrolytes obtained by mechanical milled at 500 rpm for 16 h.(d) Li-ion conductivities of the milled Li2ZrCl6 and Li2.25Zr0.75In0.25Cl6 solid electrolytes.Stainless steel was chosen as the blocking electrode.

    Due to the poor crystallinity of solid electrolytes obtainedviathe mechanical milling route,the subsequent heat treatment process significantly affects the ionic conductivity [30].To investigate the annealing effect on the phase transitions and ionic conductivity of Li2.25Zr0.75In0.25Cl6electrolyte,the milled material was annealed at different chosen temperatures.As shown in Fig.3a,the reflections of Li2.25Zr0.75In0.25Cl6after sintered at 210 and 310°C are indexed to Li3InCl6phase with the space group of C2/m.The sharper diffraction peaks for the annealed Li2.25Zr0.75In0.25Cl6suggests an improved crystallinity.Fig.3b depicts the complex impedance plots for the annealed Li2.25Zr0.75In0.25Cl6electrolytes.The resistances are 105 and 92.5Ωfor Li2.25Zr0.75In0.25Cl6sintered at 210 and 310°C,respectively,both of which are higher than that of the milled sample (51.7Ω).The corresponding room temperature Li-ion conductivities are 0.75 and 0.69 mS/cm,respectively,much lower than that of the milled Li2.25Zr0.75In0.25Cl6(1.08 mS/cm).Moreover,as shown in Fig.3c,Li2.25Zr0.75In0.25Cl6annealed at 310°C delivers slightly lower ionic conductivities than that of the one annealed at 210°C under different measuring temperatures.Both annealed samples exhibit much smaller conductivities than the milled Li2.25Zr0.75In0.25Cl6.It appears that although the heat treatment process increases the crystallinity,it also reduces the Li-ion conductivity due to the phase translation of crystal structure [24].

    Transmission electron microscope (TEM) observations and EDX are carried out to clarify the microstructure of the Li2.25Zr0.75In0.25Cl6electrolyte before and after heat treatment.As displayed in Fig.3d,the high-resolution TEM image of the Li2.25Zr0.75In0.25Cl6electrolyte prepared by ball-milling shows a disorder structural,and the EDX mapping demonstrates the uniform dispersion of Zr,In,Cl elements in the electrolyte.Fig.3e shows the high-resolution TEM image of the Li2.25Zr0.75In0.25Cl6electrolyte after heat treatment at 210°C,which indicates a coexistence state of lowly crystalline phase and amorphous phase.The crystalline phase shows lattice fringes of ~0.60 nm,corresponding to 14.75° of the (001) plane in the XRD patterns.The STEM images and EDX mappings indicate the uniform dispersion of Zr,In,Cl elements in the prepared solid electrolytes.These results suggest that heat treatment can significantly improve the crystallinity of Li2.25Zr0.75In0.25Cl6electrolytes without destroying the element distribution.

    To investigate the compatibility of the milled Li2.25Zr0.75In0.25Cl6towards Li-In anode,LiNi0.7Mn0.2Co0.1O2/Li2.25Zr0.75In0.25Cl6/Li-In solid-state batteries were fabricated and the corresponding impedance spectra as a function of storage durations were performed.Fig.S1a (Supporting information) shows unchanged resistance due to the solid electrolyte and large variations of interface resistance,which is associated with the instability of Li2.25Zr0.75In0.25Cl6electrolyte towards pristine LiNi0.7Mn0.2Co0.1O2cathode and Li-In anode.To unravel the compatibility of Li2.25Zr0.75In0.25Cl6towards electrode materials,Li5.5PS4.5Cl1.5was introduced as a buffer layer to separate the direct contact between the electrolyte and Li-In anode.LiNi0.7Mn0.2Co0.1O2/Li2.25Zr0.75In0.25Cl6/Li5.5PS4.5Cl1.5/In-Li solid-state battery was fabricated and the resistance variations as a function of storage durations were carefully investigated.As previously reported,lithium argyrodite solid electrolytes show excellent chemical electrochemical stability with In-Li anode [31].Fig.S1b (Supporting information) shows minor resistance changes during the whole test process,indicating good stability between Li2.25Zr0.75In0.25Cl6electrolyte and bare LiNi0.7Mn0.2Co0.1O2active material.Therefore,Li2.25Zr0.75In0.25Cl6electrolyte shows incompatibility with Li-In anode.

    To investigate the electrochemical performances of the designed Li2.25Zr0.75In0.25Cl6,LiNi0.7Mn0.2Co0.1O2/Li2.25Zr0.75In0.25Cl6/Li5.5PS4.5Cl1.5/In-Li solid-state battery was constructed.As shown in Fig.4a,the assembled battery delivers an initial discharge capacity of 150.0 mAh/g with a coulombic efficiency of 79.5% under 0.2 C between the voltage window of 3.0-4.3 Vvs.Li+/Li0at room temperature.The discharge capacity quickly degrades below 82.8 mAh/g within 10 cycles.This poor cyclability is due to the rapid increase of Li2.25Zr0.75In0.25Cl6/Li5.5PS4.5Cl1.5electrolyte interface resistance in the middle frequency range during the first 10 cycles,as shown in Fig.4b.The ionic conductivity of solid electrolytes is significantly influenced by the temperature,a higher temperature yields faster lithium-ion mobility.When the operating temperature increase to 60°C,the solidstate battery shows a slightly larger initial discharge capacity of 155.0 mAh/g and higher coulombic efficiency of 82.5% and retains 88.0 mAh/g after 10 cycles (Fig.4a).EIS results confirm that smaller solid electrolyte associated interface resistances are achieved due to the increased operating temperatures (Fig.4b).Furthermore,the fabricated solid-state battery was also charged/discharged at a higher voltage window,between 3.0 and 4.5 V.It delivers a higher initial discharge capacity than that at a narrower voltage window,as shown in Fig.4c.A new charge plateau is observed at 4.3 Vvs.Li+/Li0,which may be associated with the side reaction between the active material and Li2.25Zr0.75In0.25Cl6.EIS results show a much larger cathode/solid electrolyte resistance in the same cycles due to the intense side reaction at a higher voltage window.Li2.25Zr0.75In0.25Cl6-based solid-state batteries show higher initial coulombic efficiencies at elevated temperature than at room temperature in different voltage windows,which may be attributed to the faster ionic mobility of the solid electrolyte.The faster lithium-ion migration rate in the cathode mixture due to the higher operating temperature can improve the reversibility,yielding enhanced coulombic efficiencies.Finally,to unravel the fast degradation of discharge capacities for the LiNi0.7Mn0.2Co0.1O2/Li2.25Zr0.75In0.25Cl6/Li5.5PS4.5Cl1.5/Li-In solidstate batteries,in-situEIS was applied to evaluate resistance evolutions of the assembled battery during the first two cycles operating at the same conditions.As shown in Fig.S2 (Supporting information),the resistance in the high frequencies assigned to the contribution of Li2.25Zr0.75In0.25Cl6electrolyte shows minor variations during the charge/discharge process of the first two cycles.In contrast,the semicircle sections in the middle and low frequencies reflect the total interface resistances,including cathode/Li2.25Zr0.75In0.25Cl6,Li2.25Zr0.75In0.25Cl6/Li5.5PS4.5Cl1.5,and Li-In/Li5.5PS4.5Cl1.5interfaces,show intense variations during the initial charge process.The interfacial resistance appears when the battery is charged from 3.0 V to 3.3 V and significantly increases during the subsequent initial charge process till 3.7 V.During the first discharge process,the battery displays reduced interface resistance from 3.7 V to 3.0 V.Moreover,this battery exhibits much higher interfacial resistances during the 2ndcharging process compared with the 1stcharge process,suggesting a continuous interface degradation.As shown in Figs.S3a-d (Supporting information).A solid-state battery using LiNbO3-coated LiNi0.7Mn0.2Co0.1O2cathode and bilayer solid electrolyte layers was also constructed and showed similar fast degradation of capacity and large increase of interface resistance during cycling,indicating that the instability comes from the Li2.25Zr0.75In0.25Cl6/Li5.5PS4.5Cl1.5layer during cycling [32].As shown in Fig.S4 (Supporting information),the halide electrolyte layer and Li2.25Zr0.75In0.25Cl6/Li5.5PS4.5Cl1.5interface are easy to craze,which show an intense mechanical incompatibility.

    Fig.3.(a) XRD patterns of the mixture milled at 16 h and the samples after annealing at different temperatures.(b) Complex impedance plots for Li2.25Zr0.75In0.25Cl6 annealed at 210 and 310°C.(c) Arrhenius plots of the milled and annealed samples.TEM and EDX mapping images of (d) the milled and (e) annealed Li2.25Zr0.75In0.25Cl6.

    Fig.4.Electrochemical performances evaluation of the LiNi0.7Mn0.2Co0.1O2/Li2.25Zr0.75In0.25Cl6/Li5.5PS4.5Cl1.5/Li-In solid-state batteries cycled at 0.2 C under different conditions.(a) The 1st and 10th charge/discharge curves and (b) EIS before and after cycling for the battery cycled between 3.0 V and 4.3 V at room temperature and 60°C.(c) The 1st and 10th charge/discharge curves and (d) EIS before and after cycling for a wider voltage window of 3.0 ~4.5 V vs.Li+/Li0 under the same operating temperatures.

    In summary,we have demonstrated that the ionic conductivity of low-cost Li2ZrCl6solid electrolytes can be effectively enhanced via introducing indium into the structure.Li2.25Zr0.75In0.25Cl6electrolyte was successfully synthesized through a direct mechanical milling route.It delivers a room temperature ionic conductivity of 1.08 mS/cm,four times higher than the pristine Li2ZrCl6,and a subsequent annealing process degrades the ionic conductivity of Li2ZrCl6.Solid-state batteries using the prepared Li2.25Zr0.75In0.25Cl6electrolyte and Li5.5PS4.5Cl1.5buffer layer combined with pristine LiNi0.7Mn0.2Co0.1O2cathode and Li-In alloy showed a high initial discharge capacity of 150.0 mAh/g at 0.2 C under room temperature when the upper cut-off voltage was 4.3 V.Discharge capacity and coulombic efficiency of solid-state battery during the initial cycle increase as a function of the increasing upper cut-off voltage and operating temperature.This battery suffers rapid capacity degradation due to the increased interface resistance of the Li2.25Zr0.75In0.25Cl6/Li5.5PS4.5Cl1.5layer during cycling.This work provides an effective route to enhance the ionic conductivity of halide solid electrolyte for solid-state batteries.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.52177214,51821005),the Department of Science and Technology of Guangdong Province (No.2017ZT07Z479)and the Pico Center at SUSTech CRF that receives support from Presidential fund and Development and Reform Commission of Shenzhen Municipality.We gratefully acknowledg the Analytical and Testing Center of HUST for allowing us to use its facilities and the technical support from SUSTech CRF.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.12.048.

    国产黄频视频在线观看| 亚洲av二区三区四区| 成人一区二区视频在线观看| 日韩成人伦理影院| 日本欧美视频一区| 亚洲国产精品国产精品| 晚上一个人看的免费电影| 一级av片app| 哪个播放器可以免费观看大片| 五月天丁香电影| av又黄又爽大尺度在线免费看| 亚洲自偷自拍三级| 免费av中文字幕在线| 亚洲精品久久午夜乱码| 亚洲成人手机| 在线观看免费高清a一片| 久久久国产一区二区| 中文字幕亚洲精品专区| 免费高清在线观看视频在线观看| 亚洲四区av| 视频区图区小说| 国产精品秋霞免费鲁丝片| 国内揄拍国产精品人妻在线| 一区二区av电影网| 99久久中文字幕三级久久日本| 日本免费在线观看一区| 男女免费视频国产| 99re6热这里在线精品视频| 国产在线视频一区二区| 国产男女超爽视频在线观看| 成人毛片60女人毛片免费| 这个男人来自地球电影免费观看 | 97超碰精品成人国产| 国产有黄有色有爽视频| 亚洲综合色惰| 能在线免费看毛片的网站| 久久久久久久国产电影| 国产白丝娇喘喷水9色精品| 少妇人妻一区二区三区视频| 国产精品爽爽va在线观看网站| 在线 av 中文字幕| 成人一区二区视频在线观看| 在线观看av片永久免费下载| 国产亚洲欧美精品永久| 久久久久国产精品人妻一区二区| 97超碰精品成人国产| 午夜福利在线在线| 丰满迷人的少妇在线观看| 精品人妻熟女av久视频| 免费看不卡的av| 欧美精品人与动牲交sv欧美| 欧美另类一区| 韩国av在线不卡| 秋霞伦理黄片| 日日啪夜夜撸| 久久99热这里只频精品6学生| 欧美精品亚洲一区二区| av视频免费观看在线观看| 国产高潮美女av| 各种免费的搞黄视频| 我要看黄色一级片免费的| 精品人妻一区二区三区麻豆| 日本免费在线观看一区| 国产精品人妻久久久影院| 欧美日韩国产mv在线观看视频 | av又黄又爽大尺度在线免费看| 久久国内精品自在自线图片| 日本欧美视频一区| 欧美亚洲 丝袜 人妻 在线| 亚洲国产欧美人成| 秋霞在线观看毛片| 日韩成人伦理影院| 哪个播放器可以免费观看大片| 亚洲欧美日韩卡通动漫| 亚洲图色成人| 午夜福利在线观看免费完整高清在| 亚洲精品色激情综合| 男人和女人高潮做爰伦理| 免费少妇av软件| 成人毛片60女人毛片免费| 国产精品三级大全| 免费看日本二区| 久久久久国产网址| 七月丁香在线播放| 亚洲欧美中文字幕日韩二区| 91狼人影院| 3wmmmm亚洲av在线观看| 99久久综合免费| 尤物成人国产欧美一区二区三区| 国产爱豆传媒在线观看| 日韩成人av中文字幕在线观看| 如何舔出高潮| 免费观看在线日韩| 成人漫画全彩无遮挡| 亚洲av综合色区一区| 国产在线视频一区二区| 日韩中文字幕视频在线看片 | av播播在线观看一区| 最近中文字幕高清免费大全6| 如何舔出高潮| 寂寞人妻少妇视频99o| 国产精品三级大全| 香蕉精品网在线| 五月开心婷婷网| 菩萨蛮人人尽说江南好唐韦庄| 春色校园在线视频观看| 一级毛片aaaaaa免费看小| 我的老师免费观看完整版| 啦啦啦在线观看免费高清www| 男人爽女人下面视频在线观看| 亚洲av中文字字幕乱码综合| 亚洲天堂av无毛| 久久97久久精品| 在线观看免费高清a一片| 欧美 日韩 精品 国产| 精品少妇黑人巨大在线播放| 亚洲av男天堂| 久久人人爽人人片av| 欧美激情国产日韩精品一区| 99热网站在线观看| 国产美女午夜福利| 伊人久久精品亚洲午夜| 中文精品一卡2卡3卡4更新| 丝袜脚勾引网站| 少妇的逼水好多| 2022亚洲国产成人精品| 欧美成人一区二区免费高清观看| 青春草视频在线免费观看| 交换朋友夫妻互换小说| 久久久久久久精品精品| 亚洲国产精品国产精品| 亚洲av国产av综合av卡| 啦啦啦中文免费视频观看日本| 高清毛片免费看| 国产有黄有色有爽视频| 欧美日韩视频高清一区二区三区二| 国产欧美日韩一区二区三区在线 | 日韩成人伦理影院| 男女啪啪激烈高潮av片| 亚洲一级一片aⅴ在线观看| 国产精品欧美亚洲77777| 国产男女内射视频| 深爱激情五月婷婷| 亚洲国产精品一区三区| 麻豆成人午夜福利视频| 中文字幕亚洲精品专区| 午夜免费男女啪啪视频观看| 高清午夜精品一区二区三区| 亚洲欧美日韩无卡精品| 一边亲一边摸免费视频| 国产免费视频播放在线视频| 免费黄色在线免费观看| 直男gayav资源| 伦精品一区二区三区| 身体一侧抽搐| 国产伦精品一区二区三区视频9| 夜夜骑夜夜射夜夜干| 欧美变态另类bdsm刘玥| 色婷婷av一区二区三区视频| 日本黄色片子视频| 男女免费视频国产| 久久青草综合色| 观看免费一级毛片| 国产亚洲5aaaaa淫片| 久久国产亚洲av麻豆专区| 亚洲第一av免费看| 黄片wwwwww| 国产精品熟女久久久久浪| 日韩成人伦理影院| 自拍欧美九色日韩亚洲蝌蚪91 | 久久av网站| 亚洲国产av新网站| 国产中年淑女户外野战色| 久久鲁丝午夜福利片| av免费在线看不卡| 免费看日本二区| 夜夜看夜夜爽夜夜摸| 伦理电影免费视频| av在线app专区| 欧美精品人与动牲交sv欧美| 国产免费视频播放在线视频| 国产精品人妻久久久久久| 亚洲美女视频黄频| 一级黄片播放器| 久久女婷五月综合色啪小说| 成人18禁高潮啪啪吃奶动态图 | 大片免费播放器 马上看| 精品一区二区三卡| 黄片wwwwww| 男人爽女人下面视频在线观看| 国产探花极品一区二区| 中国三级夫妇交换| 香蕉精品网在线| 三级国产精品欧美在线观看| 观看美女的网站| 99热这里只有是精品50| 免费观看a级毛片全部| 春色校园在线视频观看| 人妻制服诱惑在线中文字幕| 欧美国产精品一级二级三级 | 最近手机中文字幕大全| 在线观看人妻少妇| 一区二区三区精品91| 久久国产亚洲av麻豆专区| 精品视频人人做人人爽| 成人国产麻豆网| av女优亚洲男人天堂| 不卡视频在线观看欧美| 一级毛片电影观看| 久久久a久久爽久久v久久| 街头女战士在线观看网站| av国产久精品久网站免费入址| 赤兔流量卡办理| 日本wwww免费看| 国产美女午夜福利| 天堂中文最新版在线下载| 午夜免费鲁丝| 亚洲人成网站在线观看播放| 亚洲自偷自拍三级| 高清毛片免费看| 日韩av在线免费看完整版不卡| 国产免费视频播放在线视频| 久久久欧美国产精品| 99热网站在线观看| 国产91av在线免费观看| 国产精品无大码| 日本欧美国产在线视频| 老司机影院毛片| 一级二级三级毛片免费看| 精品亚洲成国产av| 精品久久久久久久久亚洲| 国产淫片久久久久久久久| 九草在线视频观看| 激情 狠狠 欧美| tube8黄色片| 亚洲精品,欧美精品| 久久国内精品自在自线图片| 国产精品一区二区三区四区免费观看| 亚洲av电影在线观看一区二区三区| 亚洲人成网站在线播| 男的添女的下面高潮视频| 天天躁日日操中文字幕| 在线精品无人区一区二区三 | 亚洲国产精品999| 久久久久久久久大av| 97精品久久久久久久久久精品| 人体艺术视频欧美日本| 嫩草影院新地址| 亚洲丝袜综合中文字幕| 十分钟在线观看高清视频www | 大陆偷拍与自拍| 舔av片在线| 老女人水多毛片| 中文欧美无线码| 在线免费十八禁| 一个人看的www免费观看视频| 中国国产av一级| 国产v大片淫在线免费观看| 我的老师免费观看完整版| 日日摸夜夜添夜夜爱| kizo精华| 亚洲欧洲日产国产| 久久国产精品男人的天堂亚洲 | 日韩欧美一区视频在线观看 | 一二三四中文在线观看免费高清| 尾随美女入室| av一本久久久久| 国产精品麻豆人妻色哟哟久久| 成人黄色视频免费在线看| av不卡在线播放| 国产在线免费精品| 午夜免费鲁丝| 国产伦在线观看视频一区| 欧美精品国产亚洲| 精品亚洲成国产av| 美女国产视频在线观看| 日本黄色片子视频| 精品国产露脸久久av麻豆| 有码 亚洲区| 午夜激情福利司机影院| 国产日韩欧美亚洲二区| 最近中文字幕2019免费版| 一级毛片 在线播放| 久久国产亚洲av麻豆专区| 国产在线一区二区三区精| 一级毛片黄色毛片免费观看视频| 各种免费的搞黄视频| 久久久久国产精品人妻一区二区| 91狼人影院| 黄片wwwwww| 欧美精品一区二区大全| 观看av在线不卡| 能在线免费看毛片的网站| 岛国毛片在线播放| 最近中文字幕高清免费大全6| 亚洲丝袜综合中文字幕| 欧美精品国产亚洲| 亚洲三级黄色毛片| 国产亚洲91精品色在线| 国产精品麻豆人妻色哟哟久久| 亚洲怡红院男人天堂| 韩国av在线不卡| 午夜福利高清视频| 精品一区二区三区视频在线| 永久免费av网站大全| 一级毛片我不卡| 成人高潮视频无遮挡免费网站| 成人影院久久| 国产午夜精品一二区理论片| 国产精品三级大全| 人妻 亚洲 视频| 国产国拍精品亚洲av在线观看| 亚洲国产精品国产精品| 99热网站在线观看| 国产亚洲av片在线观看秒播厂| 日韩伦理黄色片| 色视频www国产| 在线观看av片永久免费下载| 久久精品夜色国产| 男的添女的下面高潮视频| av不卡在线播放| 精品国产露脸久久av麻豆| 美女内射精品一级片tv| 女性生殖器流出的白浆| 卡戴珊不雅视频在线播放| 伦精品一区二区三区| 我要看日韩黄色一级片| 在线播放无遮挡| 丰满乱子伦码专区| 国产又色又爽无遮挡免| 99九九线精品视频在线观看视频| 欧美老熟妇乱子伦牲交| 青青草视频在线视频观看| 中文资源天堂在线| 亚洲国产精品一区三区| 99re6热这里在线精品视频| 偷拍熟女少妇极品色| 亚洲人成网站在线观看播放| 我要看日韩黄色一级片| 国产伦在线观看视频一区| 中国国产av一级| 97超碰精品成人国产| 亚洲精品国产成人久久av| av专区在线播放| 国产亚洲91精品色在线| 99久久精品一区二区三区| av又黄又爽大尺度在线免费看| 国产色爽女视频免费观看| 十分钟在线观看高清视频www | 热re99久久精品国产66热6| 91午夜精品亚洲一区二区三区| 久久久久精品性色| 男的添女的下面高潮视频| 国产精品久久久久久精品电影小说 | 纵有疾风起免费观看全集完整版| 老司机影院成人| 国产av码专区亚洲av| 精品久久久久久久末码| 日本免费在线观看一区| 成年人午夜在线观看视频| av在线蜜桃| 99久国产av精品国产电影| 肉色欧美久久久久久久蜜桃| 在现免费观看毛片| 边亲边吃奶的免费视频| 在线免费观看不下载黄p国产| av网站免费在线观看视频| 国产片特级美女逼逼视频| 身体一侧抽搐| 51国产日韩欧美| 国内少妇人妻偷人精品xxx网站| 久久久久网色| 男女啪啪激烈高潮av片| 国产亚洲一区二区精品| 亚洲熟女精品中文字幕| 九九爱精品视频在线观看| 视频区图区小说| 狠狠精品人妻久久久久久综合| 在线观看一区二区三区| 免费看日本二区| 边亲边吃奶的免费视频| 美女福利国产在线 | 午夜福利在线观看免费完整高清在| 国内少妇人妻偷人精品xxx网站| 精品久久久久久久末码| 欧美激情极品国产一区二区三区 | 一本久久精品| 国产精品99久久久久久久久| 久久人人爽人人爽人人片va| 久久精品国产亚洲av天美| 久久99蜜桃精品久久| 久久久久网色| 波野结衣二区三区在线| 夫妻午夜视频| 高清毛片免费看| 三级国产精品欧美在线观看| 天美传媒精品一区二区| 久久国产精品男人的天堂亚洲 | 久久97久久精品| 日韩电影二区| 精品人妻视频免费看| 久久久色成人| 国产白丝娇喘喷水9色精品| 国产视频首页在线观看| 亚洲av在线观看美女高潮| 汤姆久久久久久久影院中文字幕| 精品久久久精品久久久| 亚洲国产精品999| 精品午夜福利在线看| 国产精品蜜桃在线观看| 亚洲一区二区三区欧美精品| 自拍欧美九色日韩亚洲蝌蚪91 | 成人国产麻豆网| 欧美xxxx性猛交bbbb| .国产精品久久| 男女边吃奶边做爰视频| 久久久久精品性色| 久久久久国产网址| 国产精品无大码| 亚洲av电影在线观看一区二区三区| 午夜精品国产一区二区电影| 免费大片黄手机在线观看| 七月丁香在线播放| 婷婷色av中文字幕| 三级国产精品欧美在线观看| 一区二区三区四区激情视频| a级一级毛片免费在线观看| 亚洲怡红院男人天堂| 少妇人妻精品综合一区二区| 黑丝袜美女国产一区| 免费大片18禁| 久久婷婷青草| 日韩制服骚丝袜av| 韩国高清视频一区二区三区| 欧美xxⅹ黑人| 午夜福利视频精品| 网址你懂的国产日韩在线| 18禁裸乳无遮挡免费网站照片| 天堂中文最新版在线下载| 国产成人aa在线观看| av播播在线观看一区| 成年av动漫网址| 日日撸夜夜添| 欧美变态另类bdsm刘玥| 久久97久久精品| 美女脱内裤让男人舔精品视频| 国产老妇伦熟女老妇高清| 91午夜精品亚洲一区二区三区| 国产无遮挡羞羞视频在线观看| 男女下面进入的视频免费午夜| 在线观看人妻少妇| 亚洲国产欧美人成| 伊人久久精品亚洲午夜| 亚洲精品国产av成人精品| 寂寞人妻少妇视频99o| 午夜激情福利司机影院| 久久精品久久久久久噜噜老黄| 老师上课跳d突然被开到最大视频| 九色成人免费人妻av| 日韩在线高清观看一区二区三区| 欧美zozozo另类| 99视频精品全部免费 在线| 亚洲欧美清纯卡通| 久久久亚洲精品成人影院| 国产精品伦人一区二区| 国产成人免费观看mmmm| 久热这里只有精品99| 日本av手机在线免费观看| 波野结衣二区三区在线| 欧美精品亚洲一区二区| 国产一区二区在线观看日韩| 国产精品麻豆人妻色哟哟久久| 亚洲精品国产色婷婷电影| www.av在线官网国产| 我要看黄色一级片免费的| 亚洲av中文av极速乱| 国产精品av视频在线免费观看| av在线老鸭窝| 狂野欧美激情性xxxx在线观看| 国产成人精品福利久久| 国产精品嫩草影院av在线观看| 亚洲精品日韩在线中文字幕| 亚洲不卡免费看| 中文精品一卡2卡3卡4更新| 亚洲无线观看免费| 好男人视频免费观看在线| 边亲边吃奶的免费视频| 如何舔出高潮| 国产精品国产三级国产av玫瑰| 国产又色又爽无遮挡免| 欧美成人a在线观看| 男女免费视频国产| 性色av一级| www.色视频.com| 人妻 亚洲 视频| 久久6这里有精品| 大话2 男鬼变身卡| 久久99热6这里只有精品| 搡女人真爽免费视频火全软件| 日本欧美视频一区| 日本av手机在线免费观看| 熟女电影av网| 韩国av在线不卡| 亚洲国产av新网站| 亚洲人成网站在线观看播放| 天天躁日日操中文字幕| 久久精品人妻少妇| 国产深夜福利视频在线观看| 欧美少妇被猛烈插入视频| 岛国毛片在线播放| 简卡轻食公司| 免费播放大片免费观看视频在线观看| 一级毛片aaaaaa免费看小| 国产黄片视频在线免费观看| 午夜福利在线观看免费完整高清在| 建设人人有责人人尽责人人享有的 | 噜噜噜噜噜久久久久久91| 亚洲中文av在线| 国产片特级美女逼逼视频| 久久国产乱子免费精品| 国产免费又黄又爽又色| 青春草亚洲视频在线观看| 亚洲av二区三区四区| 亚洲欧美一区二区三区国产| 亚洲欧洲国产日韩| 赤兔流量卡办理| 六月丁香七月| 久久久午夜欧美精品| 日日啪夜夜爽| 舔av片在线| 精品国产露脸久久av麻豆| 久久精品国产亚洲网站| 精品一区二区免费观看| 午夜免费男女啪啪视频观看| 亚洲国产最新在线播放| 自拍偷自拍亚洲精品老妇| 观看免费一级毛片| 欧美日韩视频高清一区二区三区二| 欧美三级亚洲精品| 蜜桃亚洲精品一区二区三区| 一边亲一边摸免费视频| 国产白丝娇喘喷水9色精品| 亚洲欧美一区二区三区国产| 精品久久久久久电影网| 久久亚洲国产成人精品v| 午夜福利影视在线免费观看| 深夜a级毛片| 精品一区二区三卡| 亚洲aⅴ乱码一区二区在线播放| 久久久久久九九精品二区国产| 狠狠精品人妻久久久久久综合| 亚洲欧洲日产国产| av福利片在线观看| 99热这里只有是精品在线观看| 18禁裸乳无遮挡动漫免费视频| 高清视频免费观看一区二区| 久久久色成人| 日韩精品有码人妻一区| 国产又色又爽无遮挡免| 97热精品久久久久久| 在线观看免费日韩欧美大片 | 建设人人有责人人尽责人人享有的 | 菩萨蛮人人尽说江南好唐韦庄| 免费少妇av软件| 亚洲内射少妇av| 午夜免费男女啪啪视频观看| 97在线视频观看| 国产探花极品一区二区| 久久精品久久精品一区二区三区| 国产精品麻豆人妻色哟哟久久| 一个人免费看片子| 大片电影免费在线观看免费| 久久久精品免费免费高清| 国产综合精华液| 不卡视频在线观看欧美| 欧美成人一区二区免费高清观看| 交换朋友夫妻互换小说| 国产v大片淫在线免费观看| 99久久中文字幕三级久久日本| av专区在线播放| 深爱激情五月婷婷| 五月开心婷婷网| 美女cb高潮喷水在线观看| 亚洲av中文av极速乱| 嘟嘟电影网在线观看| 国产一区二区在线观看日韩| 精品亚洲乱码少妇综合久久| 亚州av有码| 国产精品人妻久久久久久| 免费大片18禁| 色网站视频免费| 国产 精品1| 欧美精品一区二区免费开放| 直男gayav资源| 99热网站在线观看| 联通29元200g的流量卡| 成人漫画全彩无遮挡| 久久久久久久久久久免费av| 我要看黄色一级片免费的| 免费人妻精品一区二区三区视频| 免费黄网站久久成人精品| 久久人人爽人人爽人人片va| 国产精品99久久久久久久久| 国产精品久久久久成人av| 国产午夜精品久久久久久一区二区三区| 亚洲人成网站在线播| 97超视频在线观看视频| 精品一品国产午夜福利视频| 久久影院123| 久久女婷五月综合色啪小说| 亚洲精品日本国产第一区| 亚洲av欧美aⅴ国产| 韩国av在线不卡| 最新中文字幕久久久久| 国产精品麻豆人妻色哟哟久久|