• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reversible aqueous zinc-ion battery based on ferric vanadate cathode

    2022-11-05 06:47:48WangYangWuYangYongfengHuangChengjunXuLiuingDongXinwenPeng
    Chinese Chemical Letters 2022年10期

    Wang Yang,Wu Yang,Yongfeng Huang,Chengjun Xu,Liuing Dong,Xinwen Peng

    a State Key Laboratory of Pulp and Paper Engineering,South China University of Technology,Guangzhou 510640,China

    b Tsinghua Shenzhen International Graduate School,Tsinghua University,Shenzhen 518055,China

    c College of Chemistry and Materials Science,Jinan University,Guangzhou 511443,China

    Keywords:Aqueous zinc-ion battery Ferric vanadate cathode Reversible phase transformation Zinc ion storage mechanism Biomass-based flexible quasi-solid-state battery

    ABSTRACT Rechargeable aqueous zinc-ion batteries have attracted extensive interest because of low cost and high safety.However,the relationship between structure change of cathode and the zinc ion storage mechanism is still complex and challenging.Herein,open-structured ferric vanadate (Fe2V4O13) has been developed as cathode material for aqueous zinc-ion batteries.Intriguingly,two zinc ion storage mechanism can be observed simultaneously for the Fe2V4O13 electrode,i.e.,classical intercalation/deintercalation storage mechanism in the tunnel structure of Fe2V4O13,and reversible phase transformation from ferric vanadate to zinc vanadate,which is verified by combined studies using various in-situ and ex-situ techniques.As a result,the Fe2V4O13 cathode delivers a high discharge capacity of 380 mAh/g at 0.2 A/g,and stable cyclic performance up to 1000 cycles at 10 A/g in the operating window of 0.2-1.6 V with 2 mol/L Zn(CF3SO3)2 aqueous solution.Moreover,the assembled Fe2V4O13//Zn flexible quasi-solid-state battery also exhibits a relatively high mechanical strength and good cycling stability.The findings reveal a new perspective of zinc ion storage mechanism for Fe2V4O13,which may also be applicable to other vanadate cathodes,providing a new direction for the investigation and design of zinc-ion batteries.

    Currently,Lithium-ion batteries (LIBs) have been successfully used in the field of electronics market such as mobile phones and computers owing to the high energy density.But the safety issues caused by flammable properties of the organic electrolyte,as well as the huge cost of lithium resources are still the most critical concerns to be solved [1-4].Aqueous rechargeable divalent-ion batteries (e.g.,Zn2+,Mg2+and Ca2+) have been intensively investigated because of their low cost,high safety,and environmental friendliness [5-8].In addition,aqueous electrolytes can deliver much higher ionic conductivity (ca.1 S/cm) than organic electrolytes (ca.1-10 mS/cm),which endows the aqueous battery with superior rate capability and power density [9-11].Among various aqueous rechargeable batteries,rechargeable aqueous zinc-ion batteries (ZIBs) are receiving significant attention owing to certain benefits from zinc anode: high theoretical capacity (820 mAh/g),low redox potential (-0.76 Vvs.standard hydrogen electrode),superior stability in water,and nontoxicity [12-15].Based on the comprehensive advantages of zinc anode,much attention has been paid to the new cathode materials with fast and durable Zn2+storage,and fundamental insights of zinc ion storage mechanism in cathode materials.

    To date,various kinds of cathode materials have been demonstrated enabing reversibly store zinc ions for rechargeable aqueous ZIBs,such as manganese oxides [16-24],Prussian blue analogsbased materials [25-27],vanadium-based materials [28-44]and other types of materials [45-47].MnO2was the first cathode material proposed for aqueous ZIBs,in which Zn2+can achieve reversible intercalation/deintercalation for certain cycles [6].Then different MnO2polymorphs such as (α-,δ-,γ-) were investigated and deliver different mechanisms such as Zn2+and H+cointercalation or conversion rather than the typical intercalation of zinc ions [18-20].However,these cathode materials usually suffer from poor cycling stability due to partially irreversible phase transition and manganese dissolution during charge/discharge processes [17].Although the Prussian blue analogs-based cathodes exhibit stable zinc ion storage,they generally possess very limited reversible capacities of less than 100 mAh/g [25-27].Compared with the above two kind of cathodes,vanadium-based compounds have been widely studied recently because of their higher reversible capacity,better rate capability,and more stable cycle life [28].Various vanadium-based compounds,such as layered or tunnel vanadium oxides and vanadates,were designed as Zn2+host materials[48-57].Particularly,pure V2O5possess a high theoretical capacity of 589 mAh/g based on V5+/V3+redox couple.However,the cycle stability issue is another concern that occurs in acidic solution [42].The common strategy to improve its electrochemical performance is inserting metal ions (Zn2+,Ca2+,Mg2+,Ag+,Mn2+,etc.) or water molecules as “pillars” between [V-O]polyhedron layers [58-61].However,some key issues and energy storage mechanism are complicated and debatable.Besides,various metal vanadate such as lithium,potassium,sodium vanadate has also been employed for ZIBs,and these alkali vanadates evidently exhibit a high capacity and acceptable cyclability [32-34,38,50-52].Furthermore,a 3D printed composite (Fe5V15O39(OH)9·9H2O/rHGO) was explored as cathode for aqueous ZIBs,which achieved excellent rate performance and stable cycling stability even at a high mass loading [53].The strength of an ionic bond is associated with the valence and the electronegativity of the metal,stronger ionic bonds can further expand the size of the cavity between [V-O]polyhedron layers [56-58,62-65].Compared with monovalent alkali metal cations (e.g.,Li+,Na+,K+),the multivalent metal ions bonded with oxygen atoms can generate different ionic bonds and size of layers.Therefore,new metal vanadate with better crystal structure still needs to be explored for reversible zinc ion storage.

    In this work,Fe2V4O13(FeVO) with tunnel structure was synthesizedviaa facile solution chemical reaction method and employed as a new cathode material for aqueous ZIBs.Its large tunnel structure containing VO4tetrahedron and FeO6octahedron makes it possible and beneficial for reversible zinc ion intercalation and diffusion.Herein,we investigate the morphological,structural,and valence changes of Fe2V4O13cathode upon charge/discharge process.Moreover,ex-situX-ray diffraction (XRD),ex-situscanning electron microscopy (SEM) andin-situRaman spectroscopy reveal the storage mechanism of zinc ions.Quite interestingly,two zinc ion storage mechanism can be observed simultaneously,i.e.,classical intercalation/deintercalation storage mechanism in the lattice structure of Fe2V4O13,and reversible phase transformation from ferric vanadate to zinc vanadate.As a result,the Fe2V4O13cathode delivers a capacity of 380 mAh/g at 0.2 A/g as well as good rate performance and long-term cycling stability.Furthermore,the assembled Fe2V4O13//Zn flexiblequasi-solid-state battery also exhibits a relatively high mechanical strength and good cycling stability.

    The structure of obtained FeVO sample was confirmed by XRD characterizations.As shown in Fig.1a,the diffraction peaks are well indexed to monoclinic Fe2V4O13phase (space group: P21/c,JCPDS card No.04-011-4796),and the crystal structure of Fe2V4O13(Fig.1a inset and Fig.S1 in Supporting information) exhibits a framework witha=8.313 ?A,b=9.406 ?A,c=14.577 ?A (α=γ=90°).This tunnel structure is formed by VO4tetrahedron and FeO6octahedron.Figs.1b and c depict SEM images of FeVO at different magnifications,showing a nanosheet morphology with an average length of 500 nm.The interconnected nanosheet without stacking structure not only ensures the good electrical conductivity but also enhances electrolyte ions infiltration and integral mechanical stability.To obtain the in-depth morphology and crystalline features of FeVO nanosheet,low-and high-resolution transmission electron microscopy (HRTEM) micrographs as well as selected-area electron diffraction pattern (SAED) were also carried out.TEM images(Fig.1d and Fig.S2a in Supporting information) affirm the interconnected nanosheet structure with only about 10 nm in thickness,which can significantly shorten the ion diffusion distance in solid phase.HRTEM image (Fig.1e) clearly represents lattice fringes with a measured inter-planar distance of 0.28 nm corresponding to the (024) plane of monoclinic Fe2V4O13.However,particularly necessary to point out that the high-resolution image in Fig.1e and SAED pattern in Fig.S2b (Supporting information) of a single nanosheet reveals clearly distinguishable lattice fringe regions separated from certain portion of amorphous domains.This observation demonstrates that these nanosheets are composed of crystalline and amorphous domains,which can be attributed to the relatively low reaction temperature.In addition,the homogeneous distributions of Fe,V and O were further evidenced by elemental mapping images in Figs.1f-i.

    The electrochemical performance of FeVO as cathode for ZIBs was investigated in assembled coin cells using 2 mol/L Zn(CF3SO3)2aqueous solution as electrolyte [66].Cyclic voltammetry (CV)curves of FeVO at 0.5 mV/s was shown in Fig.2a.We can see that after the first cycle,the shapes of the redox couples show no obvious changes in the subsequent cycles,indicating a highly reversible Zn insertion/extraction process [57].The galvanostatic charge-discharge (GCD) curves of FeVO at different current densities from 0.2 A/g to 10 A/g are demonstrated in Fig.2b.Clearly,it exhibits platform-like discharge-charge curves and even maintains well at high current density,demonstrating its excellent rate capability.As shown in Fig.2c,the FeVO cathode could exhibit reversible capacities of 380 mAh/g at 0.2 A/g and maintain 200 mAh/g at high current density of 10 A/g,when the current changes to 0.2 A/g,the capacity can recover and display a relatively stable cycling capability in the following dozens of cycles.In addition,galvanostatic intermittent titration technique (GITT) was also applied to study the electrochemical reaction kinetics of the cathode.As displayed in Fig.2d,the Zn2+diffusion coefficient (D) is estimated to be 10-8-10-10cm2/s (calculation method is given in Supporting information).Obviously,the fast Zn2+mobility in the cathode is conducive to achieving superior rate capability and high power output [61].Furthermore,FeVO cathode exhibits good cycling performance,exhibiting a reversible capacity retention of 83%after 1000 cycles at 10 A/g (Fig.2e).It should be noted that,at the beginning of the cycle,the capacity shows a tendency of decrease and then gradually increase,which possibly due to an activation process of the cathode.The electrochemical impedance spectroscopy (EIS) result (Fig.S3 in Supporting information) also indicates that the electrode delivers a decreased charge transfer impedance during charge/discharge process.The low impedance of FeVO electrode mainly results from the thin sheet morphology,which is beneficial to improve the wettability of the material in the electrolyte.As shown in Fig.S4 (Supporting information),compared to commercial V2O5electrode,the FeVO electrode exhibits much lower static contact angles in 2 mol/L Zn(CF3SO3)2aqueous electrolyte.CV curves at different scan rates from 0.1 to 1 mV/s were performed to further understand the electrochemistry of the FeVO cathode,as depicted in Fig.2f.As previous reported,the peak current can be related with scan rates by Eq.1:

    whereaandbare adjustable parameters.whenbis close to 0.5,the main contribution oficomes from faradic intercalation process and controlled by ion-diffusion;and ifbapproaches 1,a surfacecontrolled capacitive response is dominant.The three peak current values were utilized as theivalues in the equation.Fig.2g shows the linear relationship between logiand logv,and the correspondingbvalues of peaks 1-3 are 0.92,0.5 and 0.65,respectively,suggesting that the charge storage process is synergistically controlled by the capacitive and diffusion behaviors [35].This phenomenon leads to a fast Zn2+diffusion kinetics,enabling the high-rate performance.The contribution ratios between two different processes at various scan rates,which can be calculated by Eq.2:

    wherei(V),k1ν,k2ν0.5andνrepresent the peak current,the capacitive and diffusion-controlled currents and scan rate,respectively.The capacitive contribution raises from 60% to 74% as the scan rate increases (Fig.2h),indicating that the electrochemical behaviors is mainly dominated by the capacitive-controlled effect,which implies that the FeVO cathode possess favorable charge transfer kinetics and high-rate performance.With the increase of scan rate,there is no significant deviation with the shape and peak position of CV curves (Fig.S5 in Supporting information).The first and second cathodic peak potential both shifts less than 0.08 V when scan rate ≤1 mV/s,which further confirms the good rate performance of FeVO cathode [36].

    Fig.1.(a) XRD pattern of FeVO.(b,c) SEM images of FeVO at different magnifications.(d,e) TEM and HRTEM images of FeVO.(f-i) EDS mapping of FeVO.

    Fig.2.Electrochemical performance of FeVO as cathode for aqueous ZIBs.(a) CV curves at 0.5 mV/s.(b) GCD curves at different current densities.(c) Rate performance of FeVO at different current densities from 0.2 A/g to 10 A/g.(d) Discharge/charge GITT profiles and calculated Zn2+ diffusion coefficient (i.e.,D) in discharge-charge processes of the cathode.(e) Cycling performance at current densities of 10 A/g.(f) CV curves of FeVO at different scan rates from 0.2 mV/s to 1 mV/s.(g) Linear relationships between logi and logν of cathodic and anodic peaks.(h) The contribution ratio of capacitive capacity and diffusion-controlled capacity at different scan rates.

    Fig.3.(a) Charge/discharge profiles for the initial cycle at 0.2 A/g and corresponding ex-situ XRD patterns of FeVO cathode during discharge-charge process.(b) Ex-situ SEM images of cathodes at various states: original state;the 1st discharge process;the 1st charge process.(c) In-situ Raman curves of FeVO cathode during discharge-charge process.

    To visualize Zn2+-storage mechanism in the cathode host,exsituXRD analysis andin-situRaman test were conducted to detect the evolution of the crystal structure at different charge/discharge states,as shown in Fig.3.From XRD patterns in Fig.3a,we can see that during the discharge process,the intensity of FeVO peak gradually decrease,accompanied by the formation of a second phase of Zn3V2O7(OH)2·2H2O (JCPDS No.50-0570),which can be recovered upon charging,thus confirms the reversibility of the reaction.This is likely due to the strong electrostatic interaction (bonds) between the inserted Zn2+and the vanadium oxygen layers [41,67,68],which leads to the formation of Zn3V2O7(OH)2·2H2O.SEM images at different charge/discharge states also verify the structural evolution.In pristine state (Fig.3b),Fe2V4O13nanosheets,surrounded by conductive carbon black particles and binder,can be observed.When discharged from open circuit voltage (OCV) to 0.8 V,the cathode is covered by cross linked ultrathin sheets.Further discharged to 0.5 V and 0.2 V,the nanosheets became dense and the thickness also increased.During subsequent charge process,the nanosheets gradually disappeared.It is worth mentioning that this transformation is not complete,only partial transformation of ferric vanadate into zinc vanadate.Zinc ions can also be reversibly intercalated and de-intercalated in the tunnel structure of ferric vanadate,which can be verified by EDS analysis in supporting information (Figs.S6 and S7 in Supporting information).In-situRaman (Fig.3c) further demonstrate the reversible phase transformation during discharge-charge process.Typically,the band at 221,360,523,590,657,1085 and 1195~1234 cm-1corresponds to the O-V-O bridge,V-O stretching mode,and the stretching vibrations of the V-O-V bridges of original FeVO cathode [39].Upon charging,these peaks gradually move to the left and become weaker,accompanied by the appearance of new peaks at 328,577 and 1064 cm-1,which can be assigned to the V-O in zinc vanadate phase.As for the charging process,these new peaks gradually vanish,and the peak of ferric vanadate gradually increases and moves right to the original position.The Raman results further certify the highly reversible zinc ion storage in FeVO cathode.

    Theex-situX-ray photoelectron spectroscopy (XPS) spectra at the initial state,discharged state and charged state were carried out to gain insight into the behavior of Zn2+storage in FeVO cathode.In the pristine state,no signal of Zn can be detected.The Zn 2p signals located at 1022.3 eV (2p3/2) and 1045.4 eV (2p1/2) were observed in the fully discharged state,accurately declaring the insertion of Zn2+ions into FeVO.The Zn 2p can be deconverted to two kinds of Zn,the main peak at 1022 eV corresponds to the intercalated Zn2+,and another weak signal at 1020.5 eV could be attributed to the absorbed Zn2+on the electrode surface.The weak signal of the Zn 2p at the charged state may be responsible for the remaining surface absorption (Figs.4a and S8 in Supporting information) [54].Besides,we can find that the valence of vanadium was reduced to V4+during the insertion of zinc ions and it can be reversibly re-oxidized to V5+at the charged state (Fig.4b).In the Fe 2p region (Fig.4c),the Fe signal maintained well and the valence did not change.Theex-situTEM analysis (Figs.4d and e)shows that new phase is observed at the fully discharged state,corresponding to the (111) planes of Zn3(OH)2V2O7·2H2O.In addition,the lattice spacing of ~0.28 nm at the fully discharged state matches the crystal lattice plane (024) of monoclinic FeVO phase.Due to its large tunnel structure,the lattice spacing did not change after zinc ion intercalation.Impressively,the crystal structure immediately recovered to its initial state (0.28 nm for (024) plane of FeVO) upon charged to 1.6 V.Based on the above investigation,the crystal structural changes during the electrochemical intercalation process are graphically summarized in Fig.4f,which illustrate the intercalation of Zn2+ions in the FeVO host accompanied by the formation of new phase (Zn3V2O7(OH)2·2H2O).Above discussions demonstrate that with the Zn2+intercalation in the discharge process,partial original FeVO transform to Zn3V2O7(OH)2·2H2O and simultaneously the rest FeVO serve as the host for Zn2+storage.In following charge processes,the Zn2+reversibly deintercalated from FeVO and the new phase Zn3V2O7(OH)2·2H2O reversibly transform to original FeVO.The electrode reactions can be illustrated as follows:

    Fig.4.(a-c) Ex-situ high-resolution XPS spectra of Zn 2p,V 2p and Fe 2p at pristine,the fully discharge,and charge state.(d) HRTEM images of the electrodes at the fully discharge and (e) charged state;(f) scheme showing the intercalation of Zn2+ insertion/extraction process in FeVO during cycling.

    The cathode exhibits good reversibility and stability,as shown in Fig.S9 (Supporting information).The original sheet morphology was maintained even after 1000 cycles.

    As a proof of concept,cellulose-based flexible Zn/FeVO batteries were assembled by sandwichingquasi-solid-state ployacrylamide (PAM)/cellulose nanofibrils (CNF)/Zn(CF3SO3)2electrolyte between the FeVO positive electrode and Zn foil,and then sealed by Al-plastic films (Fig.5a).Although the performance of thequasi-solid-state Zn/FeVO batteries cannot touch that of batteries based on aqueous electrolyte due to the degraded ionic conductivity ofquasi-solid-state electrolyte,they still display the excellent capacities of 340 mAh/g at 0.2 A/g,based on the mass of FeVO in positive electrode (Fig.5b).In addition,the corresponding charge/discharge curves are similar to those in aqueous Zn(CF3SO3)2electrolyte,indicating that thequasi-solid-state electrolyte nearly has no influence on the reaction mechanism of Zn/FeVO systems.In order to demonstrate the viability of ourquasi-solid-state Zn/FeVO batteries as flexible energy storage devices,we tested the cycling performance of a representative battery at different bending states.As shown in Fig.5c,during such a bending process,the battery is always able to charge/discharge well with only a slight capacity fading,displaying the high stability of thequasi-solid-state Zn/FeVO batteries as flexible energy storage devices.To demonstrate the flexibility of the resultantquasi-solid-state Zn/FeVO batteriesviaa simple visual cue,we integratedquasi-solid-state Zn/FeVO batteries in series.They can light up light-emitting diodes with a shape of “SCUT” even under bending state (Fig.5d),illustrating the practical application potential of our cellulose-based flexiblequasi-solid-state Zn/FeVO batteries.

    Fig.5.Configuration and performance of cellulose-based flexible quasi-solid-state Zn/FeVO batteries.(a) Schematic diagram of a cellulose-based flexible quasi-solidstate Zn/FeVO battery.(b) GCD curves under different bending states (0.2 A/g) of the cellulose-based flexible quasi-solid-state Zn/FeVO battery.(c) Cycling performance under different bending states (1 A/g) of the cellulose-based flexible quasisolid-state Zn/FeVO battery.The insets show the optical images of the quasi-solidstate Zn/FeVO battery at corresponding bending states.(d) LED array powered by Zn/FeVO batteries under bending state.

    In summary,Fe2V4O13was synthesized using simple solution chemical reaction method.When employed as cathode for aqueous zinc-ion batteries,it delivers a capacity of 380 mAh/g at 0.2 A/g as well as good rate performance long-term cycling stability (83%capacity retention after 1000 cycles at 10 A/g).Extensivein-situandex-situcharacterization of the cathode material at different charge/discharge states revealed that the structure of the Fe2V4O13cathode is highly reversible.The phase transformation combined with intercalation mechanism demonstrated here is quite different from the previously reported metal vanadate,which provides more information and gives a new insight into the reactions of aqueous ZIBs.Moreover,the assembled Fe2V4O13//Zn flexiblequasi-solidstate battery also exhibits a relatively high mechanical strength and good cycling stability.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was financially supported by the China Postdoctoral Science Foundation (Nos.2020M682710,2020M682711,2019M652882 and 2019T120725),Guangdong Basic and Applied Basic Research Foundation (No.2020A1515110705),National Program for Support of Top-notch Young Professionals (No.x2qsA4210090),National Natural Science Foundation of China,(No.31971614),and State Key Laboratory of Pulp and Paper Engineering(No.2020C03).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.12.049.

    av中文乱码字幕在线| 亚洲自拍偷在线| 欧美一级毛片孕妇| 久久久国产精品麻豆| 精品电影一区二区在线| 在线播放国产精品三级| 国产伦人伦偷精品视频| 人人妻,人人澡人人爽秒播| 91在线观看av| 中文字幕色久视频| 国产伦人伦偷精品视频| 男女下面进入的视频免费午夜 | 精品不卡国产一区二区三区| 欧美成人免费av一区二区三区| 90打野战视频偷拍视频| 999久久久国产精品视频| 久久久久久久久免费视频了| 亚洲少妇的诱惑av| 波多野结衣一区麻豆| 91麻豆精品激情在线观看国产| 欧美 亚洲 国产 日韩一| 69精品国产乱码久久久| 老汉色av国产亚洲站长工具| 12—13女人毛片做爰片一| 99精品在免费线老司机午夜| 国产成人av教育| 国产欧美日韩精品亚洲av| 在线观看www视频免费| 正在播放国产对白刺激| 中国美女看黄片| 久久久久久久午夜电影| 亚洲 欧美 日韩 在线 免费| 校园春色视频在线观看| 极品教师在线免费播放| 好男人电影高清在线观看| 我的亚洲天堂| 色播亚洲综合网| 搡老岳熟女国产| 日韩国内少妇激情av| 日韩欧美国产在线观看| 国产成人影院久久av| 亚洲男人天堂网一区| 午夜福利高清视频| 国产熟女xx| 一级毛片高清免费大全| av片东京热男人的天堂| 嫩草影院精品99| 一区二区三区高清视频在线| 国产亚洲精品综合一区在线观看 | 午夜免费鲁丝| 午夜精品久久久久久毛片777| 欧美日韩中文字幕国产精品一区二区三区 | 国产成人欧美在线观看| 一本久久中文字幕| 国产成人精品在线电影| 色综合亚洲欧美另类图片| 精品人妻1区二区| 欧美一区二区精品小视频在线| 在线观看66精品国产| 精品卡一卡二卡四卡免费| 久久午夜综合久久蜜桃| 黄片大片在线免费观看| 久久精品人人爽人人爽视色| 午夜a级毛片| av天堂在线播放| 国产精品99久久99久久久不卡| 欧美乱色亚洲激情| 亚洲 欧美一区二区三区| 女人被狂操c到高潮| 99精品久久久久人妻精品| 视频在线观看一区二区三区| 免费看美女性在线毛片视频| 国产av一区二区精品久久| 日韩免费av在线播放| 亚洲专区国产一区二区| 久久久久国产精品人妻aⅴ院| 国产精品一区二区免费欧美| 欧美中文日本在线观看视频| 黄片大片在线免费观看| 午夜亚洲福利在线播放| 变态另类丝袜制服| 午夜福利一区二区在线看| 午夜影院日韩av| 女人被躁到高潮嗷嗷叫费观| 精品少妇一区二区三区视频日本电影| 丝袜美足系列| 久久热在线av| 人妻久久中文字幕网| 国产亚洲欧美98| 午夜免费激情av| 99国产精品一区二区蜜桃av| 亚洲精品美女久久av网站| 国产av一区二区精品久久| 91字幕亚洲| 久久久久久免费高清国产稀缺| 9热在线视频观看99| 女人高潮潮喷娇喘18禁视频| 日韩欧美三级三区| 丰满的人妻完整版| 国产一区在线观看成人免费| 午夜免费成人在线视频| 一边摸一边做爽爽视频免费| 国产人伦9x9x在线观看| 欧美丝袜亚洲另类 | ponron亚洲| 亚洲va日本ⅴa欧美va伊人久久| 黑丝袜美女国产一区| 亚洲国产看品久久| 妹子高潮喷水视频| 麻豆成人av在线观看| 亚洲午夜精品一区,二区,三区| 国产亚洲精品av在线| 久久青草综合色| 91大片在线观看| 亚洲欧美精品综合久久99| 欧美人与性动交α欧美精品济南到| 精品免费久久久久久久清纯| 亚洲av日韩精品久久久久久密| 亚洲国产毛片av蜜桃av| 自线自在国产av| 国产亚洲av高清不卡| 亚洲国产日韩欧美精品在线观看 | 曰老女人黄片| 欧美不卡视频在线免费观看 | 亚洲一区中文字幕在线| 一级毛片女人18水好多| 午夜免费鲁丝| 最新美女视频免费是黄的| 久久久国产成人精品二区| 人妻丰满熟妇av一区二区三区| 多毛熟女@视频| 午夜福利成人在线免费观看| 三级毛片av免费| 91av网站免费观看| 精品乱码久久久久久99久播| 乱人伦中国视频| 又紧又爽又黄一区二区| 久久久久久久久中文| 国产精品 欧美亚洲| 狂野欧美激情性xxxx| 三级毛片av免费| 国产色视频综合| 高清黄色对白视频在线免费看| 成人免费观看视频高清| 国产一区二区在线av高清观看| 精品国产美女av久久久久小说| 中文字幕人成人乱码亚洲影| 黑人巨大精品欧美一区二区蜜桃| 欧美一区二区精品小视频在线| 每晚都被弄得嗷嗷叫到高潮| 成人特级黄色片久久久久久久| 中文亚洲av片在线观看爽| 中文字幕精品免费在线观看视频| 狂野欧美激情性xxxx| 亚洲第一欧美日韩一区二区三区| 国产色视频综合| 亚洲,欧美精品.| 亚洲成人免费电影在线观看| 欧美一级a爱片免费观看看 | 国产成+人综合+亚洲专区| 正在播放国产对白刺激| 97超级碰碰碰精品色视频在线观看| 日本 欧美在线| 国内毛片毛片毛片毛片毛片| 亚洲av美国av| 国产亚洲精品第一综合不卡| 国产一级毛片七仙女欲春2 | 国产国语露脸激情在线看| 这个男人来自地球电影免费观看| 亚洲狠狠婷婷综合久久图片| 久久精品国产亚洲av香蕉五月| 97碰自拍视频| 国产一区二区三区视频了| 国产精品一区二区精品视频观看| 日日摸夜夜添夜夜添小说| 亚洲五月婷婷丁香| 日韩大码丰满熟妇| 视频在线观看一区二区三区| 给我免费播放毛片高清在线观看| 久久香蕉国产精品| 露出奶头的视频| 精品免费久久久久久久清纯| 少妇裸体淫交视频免费看高清 | 久久精品国产亚洲av高清一级| 免费观看人在逋| 欧美日韩亚洲综合一区二区三区_| 日本免费a在线| 亚洲狠狠婷婷综合久久图片| 满18在线观看网站| 国产成人影院久久av| 欧美成人一区二区免费高清观看 | 亚洲国产精品成人综合色| а√天堂www在线а√下载| 两个人视频免费观看高清| 18美女黄网站色大片免费观看| 亚洲人成电影观看| 国产极品粉嫩免费观看在线| 久久精品国产99精品国产亚洲性色 | 欧美黑人欧美精品刺激| 亚洲精品美女久久久久99蜜臀| 欧美日韩中文字幕国产精品一区二区三区 | 欧美在线黄色| 午夜a级毛片| 宅男免费午夜| 亚洲精品国产精品久久久不卡| 天天添夜夜摸| 高清黄色对白视频在线免费看| 欧美在线一区亚洲| 男人的好看免费观看在线视频 | 久热爱精品视频在线9| 亚洲自偷自拍图片 自拍| 亚洲色图av天堂| 在线观看www视频免费| 午夜精品国产一区二区电影| 男人舔女人的私密视频| 亚洲自拍偷在线| 国产不卡一卡二| 亚洲视频免费观看视频| 久久久久久大精品| 中国美女看黄片| 一进一出抽搐动态| 日韩一卡2卡3卡4卡2021年| 真人一进一出gif抽搐免费| 亚洲七黄色美女视频| 国产区一区二久久| 国产精品亚洲美女久久久| 亚洲av成人不卡在线观看播放网| 日本五十路高清| av欧美777| 99在线人妻在线中文字幕| 国产精品精品国产色婷婷| av网站免费在线观看视频| 久久香蕉激情| 亚洲成国产人片在线观看| √禁漫天堂资源中文www| 久久热在线av| 日日爽夜夜爽网站| 看黄色毛片网站| 色老头精品视频在线观看| 老司机靠b影院| 国产av在哪里看| 丁香欧美五月| 国产精品一区二区三区四区久久 | 熟妇人妻久久中文字幕3abv| 一本综合久久免费| 超碰成人久久| 亚洲欧美激情在线| 成人国产一区最新在线观看| 国产在线观看jvid| 一进一出好大好爽视频| 一个人免费在线观看的高清视频| a级毛片在线看网站| 在线观看日韩欧美| 老司机福利观看| 久久久久久久久中文| 亚洲成人免费电影在线观看| www.自偷自拍.com| 国产精品久久久人人做人人爽| 色综合站精品国产| 色精品久久人妻99蜜桃| 女警被强在线播放| 午夜久久久久精精品| 精品卡一卡二卡四卡免费| 国产精品1区2区在线观看.| 此物有八面人人有两片| 一区二区日韩欧美中文字幕| 亚洲精品美女久久av网站| 男女下面插进去视频免费观看| 久99久视频精品免费| 欧美日韩亚洲国产一区二区在线观看| 女人高潮潮喷娇喘18禁视频| 人人妻,人人澡人人爽秒播| 在线永久观看黄色视频| 国产午夜精品久久久久久| 免费人成视频x8x8入口观看| 国内精品久久久久久久电影| 人妻丰满熟妇av一区二区三区| 国产精品98久久久久久宅男小说| 91字幕亚洲| 精品乱码久久久久久99久播| av视频在线观看入口| 美女 人体艺术 gogo| 最新美女视频免费是黄的| 亚洲国产精品合色在线| 此物有八面人人有两片| 久久精品国产亚洲av香蕉五月| 亚洲av日韩精品久久久久久密| 国产色视频综合| 亚洲欧洲精品一区二区精品久久久| 精品久久久久久久人妻蜜臀av | 好男人电影高清在线观看| 欧美黑人精品巨大| 51午夜福利影视在线观看| 男人操女人黄网站| 亚洲男人的天堂狠狠| 夜夜躁狠狠躁天天躁| 欧美日韩瑟瑟在线播放| 91字幕亚洲| 国产精品久久久久久精品电影 | 天堂动漫精品| 日韩av在线大香蕉| 99久久精品国产亚洲精品| 精品一区二区三区av网在线观看| 久久久久国产精品人妻aⅴ院| 91字幕亚洲| 亚洲第一青青草原| av视频在线观看入口| 亚洲天堂国产精品一区在线| 麻豆成人av在线观看| 最好的美女福利视频网| 国产一区二区在线av高清观看| 日韩高清综合在线| 最新在线观看一区二区三区| 热re99久久国产66热| 女人被躁到高潮嗷嗷叫费观| 宅男免费午夜| 久久久久久久精品吃奶| 欧美日韩福利视频一区二区| 别揉我奶头~嗯~啊~动态视频| 视频在线观看一区二区三区| 国产精品av久久久久免费| 亚洲第一av免费看| 黑人巨大精品欧美一区二区蜜桃| 无限看片的www在线观看| 成人国产综合亚洲| 国产精品亚洲一级av第二区| 女人高潮潮喷娇喘18禁视频| 国产欧美日韩精品亚洲av| 高清毛片免费观看视频网站| √禁漫天堂资源中文www| 美国免费a级毛片| 午夜福利高清视频| 国产91精品成人一区二区三区| 日日干狠狠操夜夜爽| 极品人妻少妇av视频| 丁香六月欧美| 夜夜看夜夜爽夜夜摸| 国产精品久久久久久精品电影 | 久久久久久久午夜电影| 一本久久中文字幕| 日本在线视频免费播放| 中文字幕精品免费在线观看视频| 纯流量卡能插随身wifi吗| 美女高潮喷水抽搐中文字幕| 人成视频在线观看免费观看| 日本vs欧美在线观看视频| 久久 成人 亚洲| 亚洲电影在线观看av| 少妇被粗大的猛进出69影院| 久久久久久久久久久久大奶| 性欧美人与动物交配| 精品久久久久久久久久免费视频| 女性被躁到高潮视频| 99久久久亚洲精品蜜臀av| 黄片小视频在线播放| 欧美成人性av电影在线观看| 精品久久蜜臀av无| 国产成+人综合+亚洲专区| 巨乳人妻的诱惑在线观看| 午夜亚洲福利在线播放| 首页视频小说图片口味搜索| 国产亚洲精品一区二区www| 成人av一区二区三区在线看| 免费在线观看完整版高清| 久久精品成人免费网站| 欧美另类亚洲清纯唯美| 日韩精品中文字幕看吧| 亚洲国产看品久久| 亚洲国产精品成人综合色| 成人三级做爰电影| 欧美国产精品va在线观看不卡| 97人妻精品一区二区三区麻豆 | 免费在线观看视频国产中文字幕亚洲| 人人妻,人人澡人人爽秒播| 精品久久久久久久毛片微露脸| 国产极品粉嫩免费观看在线| 久久国产亚洲av麻豆专区| 大型黄色视频在线免费观看| 亚洲无线在线观看| 女警被强在线播放| 91在线观看av| 日韩精品青青久久久久久| 久久久久久国产a免费观看| 日韩有码中文字幕| 久久国产亚洲av麻豆专区| 成人国产一区最新在线观看| 啦啦啦观看免费观看视频高清 | 免费看美女性在线毛片视频| 女警被强在线播放| 男男h啪啪无遮挡| 久久久久久人人人人人| 亚洲熟妇中文字幕五十中出| 如日韩欧美国产精品一区二区三区| 我的亚洲天堂| ponron亚洲| 欧美日韩亚洲综合一区二区三区_| 欧美中文日本在线观看视频| 老熟妇乱子伦视频在线观看| 国产精品久久久人人做人人爽| 青草久久国产| 日日爽夜夜爽网站| 久久人人精品亚洲av| 国产成人精品久久二区二区91| √禁漫天堂资源中文www| 激情视频va一区二区三区| 国产成年人精品一区二区| 给我免费播放毛片高清在线观看| 免费观看精品视频网站| 亚洲国产欧美日韩在线播放| 国产成人精品在线电影| 精品无人区乱码1区二区| 国产成人精品久久二区二区免费| 国产三级在线视频| 一二三四社区在线视频社区8| 日韩高清综合在线| 多毛熟女@视频| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品av麻豆狂野| 18禁观看日本| 成在线人永久免费视频| 最新在线观看一区二区三区| 无限看片的www在线观看| 在线永久观看黄色视频| av福利片在线| 国产熟女xx| 一a级毛片在线观看| 青草久久国产| 91精品国产国语对白视频| 黑人巨大精品欧美一区二区蜜桃| 18禁裸乳无遮挡免费网站照片 | 狠狠狠狠99中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 天天躁夜夜躁狠狠躁躁| 大陆偷拍与自拍| 熟女少妇亚洲综合色aaa.| 黑人巨大精品欧美一区二区mp4| 亚洲久久久国产精品| 非洲黑人性xxxx精品又粗又长| 免费在线观看视频国产中文字幕亚洲| 精品人妻在线不人妻| 一区在线观看完整版| 咕卡用的链子| 一区福利在线观看| 午夜福利视频1000在线观看 | 国产成年人精品一区二区| 国产欧美日韩综合在线一区二区| 亚洲午夜理论影院| 精品国产一区二区三区四区第35| 中亚洲国语对白在线视频| 午夜免费鲁丝| 久久人人精品亚洲av| 久久久久九九精品影院| 一级毛片高清免费大全| 亚洲国产精品999在线| 免费人成视频x8x8入口观看| 国产99久久九九免费精品| 悠悠久久av| 中文字幕另类日韩欧美亚洲嫩草| 成人18禁在线播放| 国产一级毛片七仙女欲春2 | 国产精品二区激情视频| 人人妻人人澡人人看| 岛国在线观看网站| 久久国产精品男人的天堂亚洲| 一级片免费观看大全| 91老司机精品| 久久久久亚洲av毛片大全| 亚洲国产欧美一区二区综合| 色尼玛亚洲综合影院| 亚洲一区二区三区不卡视频| 午夜福利18| 51午夜福利影视在线观看| 亚洲情色 制服丝袜| 国产视频一区二区在线看| 国产xxxxx性猛交| 十八禁人妻一区二区| 大码成人一级视频| 女性被躁到高潮视频| 国产午夜精品久久久久久| 亚洲男人的天堂狠狠| 男人舔女人的私密视频| 亚洲五月天丁香| 丁香六月欧美| 国产主播在线观看一区二区| 一进一出抽搐动态| 国产精品1区2区在线观看.| 欧美激情极品国产一区二区三区| 亚洲欧美精品综合久久99| 12—13女人毛片做爰片一| 制服丝袜大香蕉在线| 精品一区二区三区av网在线观看| 国产男靠女视频免费网站| 男人的好看免费观看在线视频 | 变态另类丝袜制服| 可以免费在线观看a视频的电影网站| 在线观看www视频免费| 久久人妻熟女aⅴ| 我的亚洲天堂| 男女下面进入的视频免费午夜 | 岛国视频午夜一区免费看| 99久久综合精品五月天人人| 免费在线观看影片大全网站| 国产成人精品久久二区二区91| 亚洲精品av麻豆狂野| 婷婷六月久久综合丁香| 亚洲成a人片在线一区二区| 窝窝影院91人妻| 91麻豆精品激情在线观看国产| 国产精品久久电影中文字幕| 国产不卡一卡二| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲欧美日韩无卡精品| 两人在一起打扑克的视频| 涩涩av久久男人的天堂| 日本vs欧美在线观看视频| 99国产极品粉嫩在线观看| 亚洲欧美激情综合另类| 男人舔女人的私密视频| 日本一区二区免费在线视频| 亚洲精品在线美女| 给我免费播放毛片高清在线观看| 亚洲成人免费电影在线观看| 18禁裸乳无遮挡免费网站照片 | 男男h啪啪无遮挡| 美女高潮到喷水免费观看| 欧美国产精品va在线观看不卡| 给我免费播放毛片高清在线观看| 亚洲美女黄片视频| 两个人看的免费小视频| 日韩欧美免费精品| 妹子高潮喷水视频| 久久精品国产99精品国产亚洲性色 | 亚洲中文av在线| 欧美绝顶高潮抽搐喷水| 这个男人来自地球电影免费观看| 国产精品影院久久| 久久伊人香网站| 变态另类丝袜制服| 亚洲av五月六月丁香网| 国产精华一区二区三区| 亚洲国产精品sss在线观看| 制服人妻中文乱码| 黄色视频,在线免费观看| 国产精品98久久久久久宅男小说| 热99re8久久精品国产| 亚洲第一av免费看| 免费观看精品视频网站| 一夜夜www| 老汉色∧v一级毛片| 久久久久久亚洲精品国产蜜桃av| 亚洲成人国产一区在线观看| 91九色精品人成在线观看| 又大又爽又粗| 国产亚洲精品第一综合不卡| 九色国产91popny在线| 叶爱在线成人免费视频播放| 欧美成人午夜精品| 性欧美人与动物交配| 亚洲成人国产一区在线观看| 成人永久免费在线观看视频| 嫁个100分男人电影在线观看| 色在线成人网| 9色porny在线观看| 日本免费a在线| 动漫黄色视频在线观看| 亚洲欧美精品综合久久99| www.999成人在线观看| 女性被躁到高潮视频| 后天国语完整版免费观看| 99re在线观看精品视频| 91大片在线观看| 久久久久久久午夜电影| 精品福利观看| 非洲黑人性xxxx精品又粗又长| 国产欧美日韩一区二区三| 欧美乱码精品一区二区三区| 欧美成狂野欧美在线观看| 国产精品久久久av美女十八| 日日夜夜操网爽| 久久天躁狠狠躁夜夜2o2o| 久久欧美精品欧美久久欧美| 国产高清videossex| 中文字幕另类日韩欧美亚洲嫩草| 免费在线观看影片大全网站| 午夜久久久在线观看| 午夜福利免费观看在线| 亚洲成人免费电影在线观看| 可以免费在线观看a视频的电影网站| 99在线人妻在线中文字幕| 国产乱人伦免费视频| 极品人妻少妇av视频| 亚洲男人天堂网一区| 亚洲国产精品合色在线| 国产国语露脸激情在线看| 91麻豆精品激情在线观看国产| 国产免费男女视频| 欧美日韩一级在线毛片| 国产欧美日韩一区二区三| 欧美乱色亚洲激情| 99精品久久久久人妻精品| 国产精品久久久人人做人人爽| 国产亚洲精品一区二区www| 麻豆国产av国片精品| 日韩欧美一区视频在线观看| 看黄色毛片网站| 国产精华一区二区三区| 国产真人三级小视频在线观看| 99国产精品99久久久久| 18禁裸乳无遮挡免费网站照片 | 久久精品国产亚洲av香蕉五月| 咕卡用的链子| 国产欧美日韩一区二区精品| 黄色女人牲交| 成人永久免费在线观看视频| 久99久视频精品免费|