• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Computational prediction of Mo2@g-C6N6 monolayer as an efficient electrocatalyst for N2 reduction

    2022-11-05 06:47:46JijunWngMengyoShiGuolinYiLuWngShuliLeiKeXuShujunLiJinshuiMu
    Chinese Chemical Letters 2022年10期

    Jijun Wng,Mengyo Shi,Guolin Yi,Lu Wng,Shuli Lei,Ke Xu,Shujun Li,c,Jinshui Mu,*

    a Tianjin Key Laboratory of Structure and Performance for Functional Molecules,College of Chemistry,Tianjin Normal University,Tianjin 300387,China

    b Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices,Hubei University of Arts and Science,Xiangyang 441053,China

    c Institute of Mathematics,Free University of Berlin,Berlin D-14195,Germany

    Keywords:g-C6N6 monolayer Double-atom catalysts Nitrogen reduction reaction Hydrogen evolution reaction Limiting potential Density functional theory

    ABSTRACT Electrocatalytic nitrogen reduction reaction (NRR) is an environmentally friendly method for sustainable ammonia synthesis under ambient conditions.Searching for efficient NRR electrocatalysts with high activity and selectivity is currently urgent but remains great challenge.Herein,we systematically investigate the NRR catalytic activities of single and double transition metal atoms (TM=Fe,Co,Ni and Mo) anchored on g-C6N6 monolayers by performing first-principles calculation.Based on the stability,activity,and selectivity analysis,Mo2@g-C6N6 monolayer is screened out as the most promising candidate for NRR.Further exploration of the reaction mechanism demonstrates that the Mo dimer anchored on g-C6N6 can sufficiently activate and efficiently reduce the inert nitrogen molecule to ammonia through a preferred distal pathway with a particularly low limiting potential of-0.06 V.In addition,we find that Mo2@g-C6N6 has excellent NRR selectivity over the competing hydrogen evolution reaction,with the Faradaic efficiency being 100%.Our work not only predicts a kind of ideal NRR electrocatalyst but also encouraging more experimental and theoretical efforts to develop novel double-atom catalysts (DACs) for NRR.

    N2fixation for NH3synthesis is of great significance since NH3is one of the main feedstocks for chemical and agricultural industries and also a promising carbon-free energy carrier with high energy density for the future economy [1-5].Compared with the conventional energy-and resource-intensive Haber-Bosch process,electrocatalytic N2reduction reaction (NRR),which hydrogenates N2as well as protons and electrons at ambient conditions,is regarded as a more cost-effective,sustainable,and environmentally benign method for NH3synthesis [6-8].However,as a nonpolar homonuclear diatomic molecule,N2is fairly inert due to the extremely thermodynamically stable covalent triple bond(941 kJ/mol) and thus is difficult to break in the NRR process,resulting in low N2-to-NH3conversion efficiency [9-12].Consequently,the rational design of efficient NRR electrocatalysts for NH3synthesis is highly desirable but remains great challenge.

    Today,single-atom catalysts (SACs) comprising isolated atoms dispersed on substrates are of particular interest in the field of electrocatalysis due to their exceptional catalytic performances and maximized atomic utilization [13-15].In particular,many SACs of transition-metal (TM) atoms anchored with two-dimensional(2D) materials,including graphene [16,17],h-BN [18,19],borophene[20,21],phosphorene [22-24],graphyne [25,26],porous carbonnitride nanosheets [27-30],nitrogen-doped carbon [31,32]and so on [33-35],have been theoretically predicted as striking NRR electrocatalysts with ultralow limiting potential.However,as multiple reaction intermediates are typically involved in the NRR process,experimental studies reveal that the single active site is still rather hard to break the scaling relations and enhance both the yield rate of NH3and the Faradaic efficiency (FE) simultaneously.To address this issue,much effort has been devoted to designing doubleatom catalysts (DACs),which possess more flexible active sites to tune the adsorption behavior of NRR intermediates [36-40].For instance,Liet al.[41]synthesized atomically dispersed Fe-Mo dimers anchored on N-doped graphene (FeMo@NG) and observed that it exhibited better NRR catalytic activity than its SAC counterparts(Fe@NG and Mo@NG) due to the combination of geometric,ligand and synergistic effects.Hanet al.[42]reported that the asfabricated Pd-Cu diatom catalyst had higher FE and NH3yield rate than the individual single-atom (Pd or Cu) catalyst.In addition,theoretical screening and designing based on first-principles calculations found that Mo-,Fe-,Co-,Mn-and Ru-based DACs can be served as excellent catalysts for electrochemical N2reduction[43-55].

    Fig.1.(a) The atomic structure of pristine g-C6N6 monolayer.The rhombus denotes the unit cell,and the brown and light-blue spheres stand for C and N atoms,respectively.(b) The optimized most stable configuration and (c) calculated binding energies of TM@g-C6N6 and TM2@g-C6N6.

    Recently,a novel porous graphitic carbon nitride (g-C6N6) is successfully synthesizedviathe solvothermal reaction of C3N3Cl3with Na [56].Interestingly,g-C6N6possesses a high specific surface area,excellent thermal and kinetic stability,and outstanding electric conductivity,making it a remarkable substrate to anchor TM atoms for electrocatalytic reactions [57-59].Inspired by these exciting progressive achievements,in the present work,a series of single and double TM atoms (TM=Fe,Co,Ni and Mo) anchored on g-C6N6are designed and explored as NRR electrocatalysts.Among them,Mo2@g-C6N6is screened out as the most promising candidate for electrochemical NRR due to its high stability,activity,and selectivity.Our work indicates that DACs have great chance to replace SACs as the emerging star of atomic catalysts.

    All the spin-polarized first-principles calculations are performed using the density functional theory (DFT),as implemented in Viennaab initioSimulation Package (VASP) [60].The interactions between electrons and ion-cores are described by the projector augmented wave (PAW) method [61]and the exchange-correlation interactions are treated by the generalized gradient approximation (GGA) in the form proposed by Perdew,Burke,and Ernzerhof(PBE) [62].Additionally,Grimme’s semiempirical DFT-D3 method is employed to address the weak van der Waals interactions between the adsorbates and substrate [63].The cut-off energy is set to 500 eV for the plane-wave basis in all of our calculations.Γ-centered k-point meshes of 2×2×1 and 4×4×1 based on Monkhorst-Pack scheme [64]are employed for the geometric and electronic structures calculations,respectively.A vacuum space of 20.0 ?A along thez-axis is adopted to ensure no appreciable interaction between the image layers under periodic boundary condition.The self-consistent convergence criterion for the total energy and Hellmann-Feynman force are smaller than 10-5eV and 0.02 eV/?A,respectively.More computational details for the NRR are given in the Supporting information.

    The optimized geometrical structure of pristine g-C6N6monolayer is depicted in Fig.1a,which contains six carbon atoms and six nitrogen atoms in the hexagonal unit cell with space group P6/MMM and point group D6H-1.The calculated lattice constants are found to bea=b=7.12 ?A with the C-C and C-N bond distances of 1.51 and 1.34 ?A,respectively,in good agreement with previous reports [65-67].In this study,a 2×2×1 g-C6N6supercell is employed as an ideal substrate for anchoring the selected four types of common TM atoms (TM=Fe,Co,Ni and Mo).To find the most favorable anchoring sites,we examine two possible configurations of the single and double TM atoms on the g-C6N6monolayer (labeled as TM@g-C6N6and TM2@g-C6N6,respectively),in which TM atoms bond with two N atoms or three N atoms of g-C6N6substrate.As shown in Fig.1b,we find that the single TM atom bonds strongly with adjacent two N atoms at the cavity edge after full optimization except for the Mo atom,while all the double TM atoms are located within the six-remember nitrogen hole and bond with three N atoms.The distances of TM-TM bonds are 2.13 ?A for Fe,2.18 ?A for Co,2.34 ?A for Ni,and 1.78 ?A for Mo.The planar structure of the g-C6N6monolayer can be maintained well before and after anchoring these TM atoms.Compared to pristine g-C6N6with a band gap of 1.83 eV (Fig.S1 in Supporting information),these TMn@g-C6N6monolayers exhibit metallic features mainly originated from the hybridized states between TM-d and the adjacent N-p orbitals (Fig.S2 in Supporting information),which will be propitious to the electrocatalytic reactions.

    To estimate the structural stability of TMn@g-C6N6,we calculate the binding energies (Eb),as shown in Fig.1c.Overall,all double TM anchored on g-C6N6show larger binding energies compared to the corresponding single TM anchored cases,suggesting that the formed metal-metal bonding can offer positive effects on stabilization of these TM dimers.Moreover,theEbof TMn@g-C6N6are more negative than their respective cohesive energies of bulk metal,signifying strong interactions between the TM atoms and g-C6N6monolayer,and superior thermodynamic stability.In addition,we further check the temperature-dependent stability of TMn@g-C6N6byab initiomolecular dynamics (AIMD) simulations as depicted in Fig.S3 (Supporting information).We observe that these TMn@g-C6N6systems display narrow energy fluctuations and slight structural changes during the simulated time,verifying the excellent thermal stability at room temperature.Thus,it is believed that the as-designed TMn@g-C6N6could serve as potential electrocatalyst with high stability.

    Following the screening requirements for NRR catalyst [68,69],we turn to examine the Gibbs free energy changes (△G) of the N2adsorption and first hydrogenation process of NRR to produce*N2H on TMn@g-C6N6for identifying the most qualified candidate.The computed △Gfor the two processes are presented in Figs.2a and b,respectively.Our results show that all the TM@g-C6N6systems are incapable of capturing N2molecule through the side-on configuration because of their positive △G*N2,whereas N2molecule can effectively chemisorb on TM@g-C6N6by means of the end-on configuration.However,the first protonation of adsorbed N2(*N2+H++e-→*N2H) require much high energy inputs,such as 1.34 eV for Fe@g-C6N6,1.33 eV for Co@g-C6N6,1.25 eV for Ni@g-C6N6,and 0.51 eV for Mo@g-C6N6,demonstrating that they are inefficient electrocatalysts for N2reduction.In this regard,the TM@g-C6N6systems are eliminated as eligible NRR catalysts.

    With respect to TM@g-C6N6,we find that except for Ni2@g-C6N6,N2molecule can be well captured by TM2@g-C6N6regardless of end-on or side-on configuration,as indicated by the calculated△G*N2ranging from-0.46 eV to-0.81 eV.Further,the △Gvalues of*N2H formation on the Fe2@g-C6N6and Co2@g-C6N6are predicted to be at least 0.48 and 0.72 eV,respectively,marking them as inefficient electrocatalysts for N2reduction.Notably,the first hydrogenation process of NRR to produce*N2H on Mo2@g-C6N6demands only 0.11 eV energy input for the side-on configuration,while it even becomes a spontaneous reaction for the end-on configuration.Based on these screening results,only the Mo2@g-C6N6is of interest in virtue of satisfying all the requirements,and thus will be examined in the following discussion.

    Fig.2.Calculated Gibbs free energies (△G) for (a) N2 adsorption and (b) *N2H formation on TM@g-C6N6 and TM2@g-C6N6.

    Fig.3.(a) End-on and (b) side-on adsorption configurations for N2 on Mo2@g-C6N6 monolayer.(c,d) The corresponding charge density difference,where the isosurface value is set to be 0.005 e/?A3 and the yellow and cyan show the positive and negative charges,respectively.The computed projected density of states of Mo2@g-C6N6 with the N2 adsorption through (e) end-on and (f) side-on configurations.

    Fig.4.(a) Schematic depiction of three possible reaction mechanisms for N2 electroreduction to NH3 on the Mo2@g-C6N6 monolayer.Optimized geometries of all reaction intermediates along the (b) distal,(c) alternating,and (d) enzymatic pathways.

    Figs.3a and b depict the optimized structures of N2adsorbed Mo2@g-C6N6viaend-on and side-on configurations,respectively.Compared with the isolated N2molecule (1.12 ?A),the N-N bond length is significantly stretched by 0.04 ?A for end-on adsorption and by 0.09 ?A for side-on adsorption,signifying the effective activation of the inert triple bond of N2.Bader charge analysis shows that there are about 0.49 and 0.70 electrons transferred from Mo2@g-C6N6to the adsorbed N2in end-on and side-on patterns,respectively,which attributes to the different electronegativities of N (3.04) and Mo (1.86).Moreover,as presented in Figs.3c and d,we can observe the obvious charge accumulation and depletion around the anchored Mo dimer and N2for both adsorption configurations.Interestingly,such a charge distribution ideally accords with the "acceptance-donation" process as proposed by Ling and co-workers [70],that is,the Mo dimer donates electrons into the antibonding orbitals of N2and simultaneously accepts lone-pair electrons from it.From the computed projected density of states given in Figs.3e and f,we find that there are significant electronic coupling between the N-2p orbital of the adsorbed N2molecule and Mo-4d orbital,thus give rise to the anti-bonding states located above the Fermi level and bonding states lied below the Fermi level,further supporting the "acceptance-donation" picture.Moreover,after N2adsorption with side-on configuration,the magnetic moments of the Mo dimer and N2molecule are nearly unchanged and remain 0 μB.However,for N2adsorption with end-on configuration,we observe that their corresponding magnetic moments increase to 0.97 μB and 0.24 μB,respectively.As shown in Fig.S4 (Supporting information),the increased magnetic moments attribute to the asymmetrical distributions of Mo-4d and N-2p orbitals,caused by the couplings of Mo 4dz-N 2py,Mo 4dxz-N 2pzand Mo 4dz2-N 2pz.These above analyses demonstrate the successful activation of N2on Mo2@g-C6N6,which would further facilitate the subsequent reaction of converting N2to NH3molecules.

    As illustrated in Fig.4a,three possible reaction mechanisms,named distal,alternating,and enzymatic,are considered for the transformation from N2to NH3.Both distal and alternating mechanisms start from the adsorbed N2with end-on configuration,while the enzymatic mechanism is initiated with the side-on adsorbed N2.Whereafter,each mechanism involves six consecutive protonation plus reduction steps,accompanied by the production of two NH3molecules.The optimized geometries of all reaction intermediates along these three pathways on Mo2@g-C6N6monolayer are given in Figs.4b-d,and the predicted Gibbs free energy profiles are illustrated in Figs.5a-c.

    As NRR proceeds along the distal or alternating pathway,the first protonation plus reduction step is similar,and found to be exothermic by 0.02 eV with the further elongation of N-N bond(from 1.16 ?A to 1.25 ?A).It is noteworthy that this first hydrogenation is normally non-spontaneous for most studied electrocatalysts since the free energy change is thermodynamically uphill.For the following elementary steps through distal pathway,the*N-NH can be spontaneously hydrogenated to*NH2by reacting with the proton-electron pair four times.Specifically,as shown in Fig.5a,the Gibbs reaction free energies of these four hydrogenation steps are-0.10,-0.22,-0.80 and-0.81 eV,respectively.Finally,the process of*NH2+H++e-→*NH3is slightly uphill by 0.06 eV in the Gibbs free energy profile.Overall,the potentiallimiting step (PDS) of the distal mechanism is the sixth protonation plus reduction step owing to its maximum △Gof 0.06 eV.For the case of the alternating mechanism,as given in Fig.5b,the Gibbs free energy changes along the subsequent protonation plus reduction steps are calculated respectively to be-0.02,0.07,-0.34,0.22,-1.88 and 0.06 eV.Thus,the hydrogenation of*NH-NH2into*NH2-NH2is the PDS with a maximal energy demand of 0.22 eV.Regarding of the enzymatic mechanism,the first protonation plus reduction step is slightly uphill energetically,with a △Gvalue of 0.11 eV as demonstrated in Fig.5c.After that,the subsequent elementary reaction steps are all exothermic,except for the formation of*NH-*NH2(*NH-*NH+H++e-→*NH-*NH2) and second NH3(*NH2+H++e-→*NH3).Among the hydrogenation steps of the enzymatic mechanism,the step converting*N-*NH to*NH-*NH2has the largest free energy change (0.28 eV),which can be identified as the PDS.Of note,the desorption of the second NH3from Mo2@g-C6N6monolayer is not a problematic obstacle.As demonstrated in previous studies [55,66],the*NH3species can be released in the form of NH4+under acidic electrochemical conditions.Moreover,the free energy change for the release of the final product NH3is only 0.82 eV,which can be easily overcame in consideration of the released energy (about 2.60 eV,Fig.5) in the proceeding hydrogenation steps.These ensure the rapid removal of the produced NH3under ambient conditions for recovering the catalysts.

    Fig.5.Gibbs free energy profiles of N2 reduction on Mo2@g-C6N6 monolayer via the (a) distal,(b) alternating and (c) enzymatic mechanisms at zero and applied potentials.(d) Charge variation of three moieties for the NRR along the preferred distal pathway.

    In electrocatalysis,the limiting potential (UL),defined as the lowest applied electrode potential to overcome the maximum positive △Gon the considered pathway,is the most commonly used descriptor for chemical reactivity,which can be calculated by UL=-△Gmax/e [71,72].A less negativeULindicates a faster electrochemical process at a given potential.As discussed above,the limiting potential with respect to the standard hydrogen electrode are calculated to be-0.06 V for distal,-0.22 V for alternating,and-0.28 V for enzymatic.Consequently,we predict that the NRR on Mo2@g-C6N6will prefer to proceedviathe distal mechanism in virtue of its lowest negative value.Remarkably,such a limiting potential is substantially less negative than the equilibrium potential of overall NRR (-0.16 V) as well as other recently reported DACs for NH3synthesis,implying that the applied potential even as low as the equilibrium potential can adequately drive the NRR.Therefore,Mo2@g-C6N6could be expected as a promising candidate electrocatalyst for N2reduction to NH3.

    It should be pointed out that conventional DFT method often fails to describe the systems with strongly correlated d-electrons.In order to further evaluate the reliability of the above results,we employ the DFT+U method to re-examine Gibbs free energy profile of N2reduction on Mo2@g-C6N6monolayer through the preferred distal pathway.As shown in Fig.S5 (Supporting information),we can see that the Hubbard U value has little influence on the free energy diagram,and both of the limiting potential and PDS with the Hubbard U correction are in line with the PBE results,suggesting that the PBE calculated results are acceptable in this work.

    To gain insight into the superior catalytic activity of Mo2@g-C6N6,we further employ Bader charge analysis to investigate the charge variation of various intermediates along the favorable distal pathway.Herein,we divide each intermediate into three groups,including the g-C6N6,anchored Mo dimer,and adsorbed NxHyspecies.As depicted in Fig.5d,the N2molecule after chemisorption on the Mo dimer accumulates about 0.49 electrons,which is considered to be propitious for the hydrogeneration of*N2into*N2H.In the following NRR steps,it is observed that there are obvious charge fluctuations in both of the g-C6N6and NxHygroups,while the charge value of Mo dimer remains almost unchanged.That is to say,the charge variation of the NxHyspecies mainly associates with that of the g-C6N6.The Mo dimer serves as not only the active site but also electron transmitter between the g-C6N6and NxHyspecies during the entire NRR process.

    As one of the prerequisites of an excellent NRR electrocatalyst with high FE,it is crucial to suppress the hydrogen evolution reaction (HER),which is the major competing reaction during the NRR.Therefore,we compute the adsorption free energies of*H (△G*H)at the Mo dimer site of Mo2@g-C6N6monolayer.The △G*His found to be 0.46 eV,which is more positive than the △G*N2(-0.71 eV),suggesting that the active site would be primarily covered by*N2.Moreover,the free energy barrier for HER (0.46 eV) is considerable larger than the PDS barrier for NRR (0.06 eV).In this respect,the FE of Mo2@g-C6N6is estimated to be approximately 100% at room temperature according to the Boltzmann distribution,indicating the high selectivity for NRR.

    In conclusion,by performing comprehensive DFT computations,we explore the potential of single and double transition metal atoms (TM=Fe,Co,Ni and Mo) anchored g-C6N6monolayers for electrochemical N2reduction to NH3.Among these systems,Mo2@g-C6N6monolayer is identified as the most promising catalyst candidate toward NRR with the help of prescreening criteria.Our results demonstrate that N2molecule is effectively captured and activated by the Mo dimer anchored on g-C6N6through the"acceptance-donation" process.The subsequent N2reduction reaction on Mo2@g-C6N6monolayer proceed dominantlyviathe distal mechanism with an extremely low limiting potential of-0.06 V.Importantly,the competitive HER can be well inhibited on the Mo2@ g-C6N6monolayer due to a much larger △G*H,ensuring substantial selectivity (~100%) toward NH3synthesis.Hence,the Mo2@g-C6N6monolayer proposed in this work has great potential applications for NRR,highlighting the importance of DACs for NRR.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the Science &Technology Development Fund of Tianjin Education Commission for Higher Education (No.2020KJ008),by the Natural Science Foundation of Tianjin(No.18JCQNJC76000),and by the College Students’Innovation and Entrepreneurship Training Program of Tianjin (No.202110065112),Science and Technology Research Project of Hubei Provincial Department of Education (No.D20212603),Hubei University of Arts and Science (Nos.2020kypytd002,XK2021024) and China Scholarship Council.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.12.040.

    男人添女人高潮全过程视频| 丝袜人妻中文字幕| 在线观看免费日韩欧美大片| 自拍欧美九色日韩亚洲蝌蚪91| 最新在线观看一区二区三区 | 亚洲成人手机| 婷婷色av中文字幕| 欧美黄色片欧美黄色片| 18在线观看网站| 91麻豆av在线| 欧美性长视频在线观看| 亚洲国产精品国产精品| 午夜福利免费观看在线| 观看av在线不卡| 国产人伦9x9x在线观看| 老司机亚洲免费影院| 新久久久久国产一级毛片| 19禁男女啪啪无遮挡网站| 老鸭窝网址在线观看| 成人国语在线视频| 亚洲自偷自拍图片 自拍| 欧美+亚洲+日韩+国产| kizo精华| 在线观看免费日韩欧美大片| 欧美日韩视频高清一区二区三区二| 一区二区三区乱码不卡18| 蜜桃国产av成人99| 亚洲国产精品999| 天天躁夜夜躁狠狠久久av| 首页视频小说图片口味搜索 | 人人妻人人澡人人爽人人夜夜| 久久中文字幕一级| 日韩一卡2卡3卡4卡2021年| 亚洲精品av麻豆狂野| 婷婷成人精品国产| 亚洲第一青青草原| 一级片免费观看大全| 国产一区亚洲一区在线观看| 欧美性长视频在线观看| 午夜免费观看性视频| 天堂中文最新版在线下载| 少妇人妻久久综合中文| 一本综合久久免费| av天堂在线播放| 看十八女毛片水多多多| 99精品久久久久人妻精品| 欧美久久黑人一区二区| 性色av一级| a级片在线免费高清观看视频| 叶爱在线成人免费视频播放| 各种免费的搞黄视频| 精品国产国语对白av| 亚洲图色成人| 午夜福利在线免费观看网站| bbb黄色大片| 亚洲色图综合在线观看| 黑人巨大精品欧美一区二区蜜桃| 国产欧美亚洲国产| 最黄视频免费看| 日本av手机在线免费观看| 久久精品久久久久久久性| 欧美老熟妇乱子伦牲交| 亚洲精品久久久久久婷婷小说| 啦啦啦在线观看免费高清www| 91精品伊人久久大香线蕉| 老汉色∧v一级毛片| 黄片小视频在线播放| 亚洲av国产av综合av卡| 高潮久久久久久久久久久不卡| 老司机影院成人| 国产亚洲av片在线观看秒播厂| 男女床上黄色一级片免费看| 后天国语完整版免费观看| 国产日韩一区二区三区精品不卡| 一级a爱视频在线免费观看| 一区福利在线观看| 免费人妻精品一区二区三区视频| 一级,二级,三级黄色视频| 中文字幕人妻熟女乱码| 在线观看免费午夜福利视频| 19禁男女啪啪无遮挡网站| 国产免费福利视频在线观看| 交换朋友夫妻互换小说| 国产精品一国产av| 首页视频小说图片口味搜索 | 人人妻,人人澡人人爽秒播 | 精品国产乱码久久久久久男人| 久久人妻熟女aⅴ| 亚洲人成电影观看| 久久久精品国产亚洲av高清涩受| 日本wwww免费看| 亚洲精品国产色婷婷电影| 国产成人系列免费观看| 国产精品.久久久| 精品国产一区二区久久| 亚洲自偷自拍图片 自拍| 天天影视国产精品| 又大又爽又粗| 久久综合国产亚洲精品| 好男人电影高清在线观看| 岛国毛片在线播放| 亚洲av成人精品一二三区| 国产成人免费无遮挡视频| 91字幕亚洲| 日韩熟女老妇一区二区性免费视频| 欧美日韩视频精品一区| 少妇猛男粗大的猛烈进出视频| 精品少妇一区二区三区视频日本电影| 日韩 欧美 亚洲 中文字幕| 亚洲av欧美aⅴ国产| 国产精品免费大片| 丰满饥渴人妻一区二区三| 精品少妇黑人巨大在线播放| 免费观看a级毛片全部| 高潮久久久久久久久久久不卡| 久久久久国产精品人妻一区二区| 精品一区二区三卡| 亚洲av欧美aⅴ国产| 国产人伦9x9x在线观看| 亚洲专区中文字幕在线| 天天添夜夜摸| 亚洲精品乱久久久久久| 丰满饥渴人妻一区二区三| 老汉色av国产亚洲站长工具| 精品国产乱码久久久久久小说| 黑人欧美特级aaaaaa片| 丝瓜视频免费看黄片| 人体艺术视频欧美日本| 国产精品三级大全| 欧美日韩亚洲高清精品| 国产伦人伦偷精品视频| 欧美大码av| 老司机靠b影院| 国产精品.久久久| 免费不卡黄色视频| 777久久人妻少妇嫩草av网站| 天天影视国产精品| 久久九九热精品免费| 久久国产亚洲av麻豆专区| 久久精品国产a三级三级三级| 久久久久精品人妻al黑| 国产成人免费观看mmmm| 女性被躁到高潮视频| 好男人电影高清在线观看| 国产免费又黄又爽又色| 女人爽到高潮嗷嗷叫在线视频| 看免费av毛片| 国产一区二区 视频在线| 中文字幕高清在线视频| 一级黄色大片毛片| 少妇精品久久久久久久| www.av在线官网国产| 国产精品久久久久久人妻精品电影 | xxx大片免费视频| 黄色a级毛片大全视频| 9热在线视频观看99| 日韩制服丝袜自拍偷拍| 亚洲成人国产一区在线观看 | 女人爽到高潮嗷嗷叫在线视频| 日韩一区二区三区影片| av欧美777| 亚洲国产精品一区二区三区在线| 国产高清国产精品国产三级| 欧美 日韩 精品 国产| 最近中文字幕2019免费版| 777米奇影视久久| 侵犯人妻中文字幕一二三四区| 美女午夜性视频免费| 亚洲一码二码三码区别大吗| 国产日韩一区二区三区精品不卡| 悠悠久久av| 黑丝袜美女国产一区| 久久久国产一区二区| 午夜两性在线视频| 国产熟女欧美一区二区| 我的亚洲天堂| 乱人伦中国视频| 亚洲黑人精品在线| 99国产精品99久久久久| 久热这里只有精品99| 国产精品一国产av| 老司机在亚洲福利影院| 亚洲男人天堂网一区| 婷婷色综合大香蕉| 黑人欧美特级aaaaaa片| 久久国产亚洲av麻豆专区| 午夜av观看不卡| 操美女的视频在线观看| 久久久国产一区二区| 好男人视频免费观看在线| 性色av一级| avwww免费| 久久人妻熟女aⅴ| 操美女的视频在线观看| 在线观看免费高清a一片| 欧美日韩av久久| 天天影视国产精品| 香蕉丝袜av| 久久这里只有精品19| 亚洲欧美日韩高清在线视频 | 一二三四社区在线视频社区8| 中文字幕人妻丝袜制服| 少妇人妻 视频| 亚洲av片天天在线观看| 国产日韩欧美视频二区| 久久精品熟女亚洲av麻豆精品| 国产深夜福利视频在线观看| 久久人人爽av亚洲精品天堂| av国产精品久久久久影院| 午夜福利影视在线免费观看| 亚洲精品国产区一区二| 亚洲国产精品国产精品| 在线观看免费视频网站a站| 51午夜福利影视在线观看| e午夜精品久久久久久久| 啦啦啦视频在线资源免费观看| 在线亚洲精品国产二区图片欧美| 色播在线永久视频| 一区福利在线观看| 婷婷色综合大香蕉| 秋霞在线观看毛片| 99国产精品一区二区蜜桃av | 在线观看一区二区三区激情| 青草久久国产| 亚洲精品日本国产第一区| 99国产精品免费福利视频| 亚洲伊人久久精品综合| 国产日韩欧美视频二区| 亚洲欧美精品自产自拍| 久久国产亚洲av麻豆专区| 亚洲精品久久成人aⅴ小说| 免费在线观看黄色视频的| 美女国产高潮福利片在线看| 亚洲人成77777在线视频| 欧美国产精品一级二级三级| 国产免费又黄又爽又色| 99精品久久久久人妻精品| 亚洲午夜精品一区,二区,三区| 国产主播在线观看一区二区 | 999精品在线视频| 午夜福利免费观看在线| 久久国产精品人妻蜜桃| 日韩精品免费视频一区二区三区| 波多野结衣一区麻豆| 看免费av毛片| 天堂俺去俺来也www色官网| 两个人免费观看高清视频| 国产欧美日韩精品亚洲av| 久热这里只有精品99| 国产伦人伦偷精品视频| 操美女的视频在线观看| 国产免费视频播放在线视频| 欧美乱码精品一区二区三区| 老司机靠b影院| avwww免费| 性高湖久久久久久久久免费观看| 大香蕉久久网| 成人黄色视频免费在线看| 亚洲精品久久午夜乱码| 蜜桃国产av成人99| 五月开心婷婷网| 老司机午夜十八禁免费视频| 男男h啪啪无遮挡| 亚洲图色成人| 成在线人永久免费视频| 人人妻人人澡人人看| 我的亚洲天堂| 曰老女人黄片| 日本欧美视频一区| 国产成人精品久久久久久| av又黄又爽大尺度在线免费看| 制服人妻中文乱码| 国产亚洲av高清不卡| 免费在线观看完整版高清| 国产熟女午夜一区二区三区| 一级毛片女人18水好多 | 在线观看免费视频网站a站| 国产免费福利视频在线观看| av网站在线播放免费| 在线 av 中文字幕| www.999成人在线观看| 亚洲综合色网址| 亚洲精品第二区| 国产一区二区三区综合在线观看| 国产在线观看jvid| 黄频高清免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 日本av手机在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 女人久久www免费人成看片| 亚洲欧美成人综合另类久久久| 一边亲一边摸免费视频| 777久久人妻少妇嫩草av网站| 晚上一个人看的免费电影| 黄色视频不卡| 日韩一卡2卡3卡4卡2021年| 一本久久精品| 午夜免费观看性视频| 日本色播在线视频| 亚洲成人手机| 赤兔流量卡办理| 国产成人一区二区三区免费视频网站 | 午夜福利影视在线免费观看| 久久精品国产亚洲av涩爱| 一边亲一边摸免费视频| 欧美精品高潮呻吟av久久| 亚洲国产av新网站| 亚洲国产成人一精品久久久| 日本色播在线视频| 亚洲国产欧美日韩在线播放| 亚洲精品日韩在线中文字幕| 女性被躁到高潮视频| 老司机影院毛片| 亚洲色图综合在线观看| 捣出白浆h1v1| 精品少妇久久久久久888优播| 波多野结衣av一区二区av| 婷婷色综合大香蕉| 欧美亚洲日本最大视频资源| 超色免费av| 精品福利观看| 亚洲av日韩在线播放| 精品国产国语对白av| 欧美日本中文国产一区发布| 久久人人爽av亚洲精品天堂| 亚洲国产精品999| 免费av中文字幕在线| 日韩电影二区| 自拍欧美九色日韩亚洲蝌蚪91| 悠悠久久av| 嫁个100分男人电影在线观看 | 亚洲激情五月婷婷啪啪| 男人爽女人下面视频在线观看| 自线自在国产av| 亚洲欧美精品自产自拍| 熟女少妇亚洲综合色aaa.| 一级黄色大片毛片| 亚洲精品一二三| 国产欧美日韩综合在线一区二区| 精品少妇久久久久久888优播| 另类精品久久| 人人妻人人爽人人添夜夜欢视频| 欧美日韩成人在线一区二区| 日日爽夜夜爽网站| tube8黄色片| 久久精品成人免费网站| 一区二区三区四区激情视频| 午夜免费成人在线视频| 亚洲一码二码三码区别大吗| 精品少妇久久久久久888优播| 丁香六月天网| 久久这里只有精品19| 午夜视频精品福利| 亚洲一卡2卡3卡4卡5卡精品中文| 久久国产精品影院| 亚洲精品自拍成人| 精品福利观看| 亚洲欧洲国产日韩| 建设人人有责人人尽责人人享有的| 国产三级黄色录像| xxxhd国产人妻xxx| 岛国毛片在线播放| 国产成人免费无遮挡视频| 捣出白浆h1v1| 日日爽夜夜爽网站| 免费高清在线观看日韩| 99久久99久久久精品蜜桃| 看十八女毛片水多多多| 精品久久久精品久久久| 免费观看人在逋| 精品久久久精品久久久| 叶爱在线成人免费视频播放| 欧美人与性动交α欧美软件| 纵有疾风起免费观看全集完整版| 午夜福利影视在线免费观看| 久久中文字幕一级| 久久久久网色| 伊人亚洲综合成人网| 水蜜桃什么品种好| 天天躁夜夜躁狠狠久久av| 下体分泌物呈黄色| 日韩大码丰满熟妇| 国产日韩欧美视频二区| 成人手机av| 婷婷成人精品国产| 亚洲av成人精品一二三区| 亚洲av成人不卡在线观看播放网 | 黄片播放在线免费| 大香蕉久久网| 亚洲欧美一区二区三区久久| 亚洲七黄色美女视频| 一边摸一边抽搐一进一出视频| 少妇裸体淫交视频免费看高清 | 99久久综合免费| 国产精品九九99| 91精品国产国语对白视频| 九草在线视频观看| 啦啦啦视频在线资源免费观看| 热99久久久久精品小说推荐| 9色porny在线观看| 久久鲁丝午夜福利片| 国产av国产精品国产| 亚洲精品美女久久av网站| 久久99热这里只频精品6学生| 亚洲,欧美精品.| 中国国产av一级| 欧美激情 高清一区二区三区| 国产男女内射视频| avwww免费| 国产精品 欧美亚洲| 国产精品久久久人人做人人爽| 777米奇影视久久| 男人添女人高潮全过程视频| 国产精品欧美亚洲77777| av天堂在线播放| 亚洲五月婷婷丁香| 亚洲国产欧美日韩在线播放| 亚洲熟女精品中文字幕| 秋霞在线观看毛片| 亚洲精品自拍成人| 亚洲av综合色区一区| 久9热在线精品视频| 91字幕亚洲| 少妇人妻久久综合中文| 免费少妇av软件| 国产精品 欧美亚洲| 国产不卡av网站在线观看| 亚洲欧美日韩高清在线视频 | 国产免费又黄又爽又色| √禁漫天堂资源中文www| 国产午夜精品一二区理论片| 看免费av毛片| 女性生殖器流出的白浆| 99国产精品一区二区三区| 纵有疾风起免费观看全集完整版| 美女国产高潮福利片在线看| 丝袜人妻中文字幕| 每晚都被弄得嗷嗷叫到高潮| 国产成人91sexporn| 国产亚洲精品第一综合不卡| 啦啦啦在线观看免费高清www| tube8黄色片| √禁漫天堂资源中文www| 国产一卡二卡三卡精品| 国产成人av激情在线播放| 九草在线视频观看| 精品久久久精品久久久| 国产精品久久久久久人妻精品电影 | 成人国产av品久久久| 国产97色在线日韩免费| 波多野结衣av一区二区av| 一本色道久久久久久精品综合| 涩涩av久久男人的天堂| 又粗又硬又长又爽又黄的视频| 欧美97在线视频| 一级毛片电影观看| 嫁个100分男人电影在线观看 | 欧美人与性动交α欧美精品济南到| 国产亚洲av高清不卡| 后天国语完整版免费观看| 人人妻,人人澡人人爽秒播 | 中文字幕亚洲精品专区| 中文字幕人妻熟女乱码| 午夜福利视频在线观看免费| av网站在线播放免费| 欧美激情 高清一区二区三区| 久久午夜综合久久蜜桃| av有码第一页| 欧美国产精品va在线观看不卡| 色网站视频免费| 亚洲自偷自拍图片 自拍| 亚洲激情五月婷婷啪啪| 女人被躁到高潮嗷嗷叫费观| 日韩大片免费观看网站| 另类亚洲欧美激情| 日日爽夜夜爽网站| 国产福利在线免费观看视频| 日韩一区二区三区影片| 人人妻人人澡人人看| 国产成人系列免费观看| 精品第一国产精品| 亚洲av电影在线进入| 久久精品亚洲熟妇少妇任你| 国产色视频综合| 伊人久久大香线蕉亚洲五| 后天国语完整版免费观看| 精品国产超薄肉色丝袜足j| 电影成人av| 精品少妇内射三级| 99国产精品免费福利视频| 国产高清国产精品国产三级| 国产xxxxx性猛交| 国产成人啪精品午夜网站| 欧美黑人欧美精品刺激| 一区二区三区乱码不卡18| 欧美精品人与动牲交sv欧美| 亚洲精品国产区一区二| 少妇的丰满在线观看| 午夜免费观看性视频| av在线播放精品| 中文字幕人妻丝袜制服| 欧美成人午夜精品| 色婷婷av一区二区三区视频| 日韩精品免费视频一区二区三区| 男女高潮啪啪啪动态图| 国产免费又黄又爽又色| 桃花免费在线播放| 超碰97精品在线观看| 99国产精品一区二区蜜桃av | 国产精品99久久99久久久不卡| 波野结衣二区三区在线| 啦啦啦在线免费观看视频4| 一二三四社区在线视频社区8| xxx大片免费视频| 天天躁狠狠躁夜夜躁狠狠躁| av片东京热男人的天堂| 亚洲精品一区蜜桃| 操美女的视频在线观看| 十八禁高潮呻吟视频| 精品久久久久久电影网| 日韩制服丝袜自拍偷拍| 精品国产一区二区久久| 韩国精品一区二区三区| 操美女的视频在线观看| 美女午夜性视频免费| 天堂8中文在线网| 国产精品av久久久久免费| 一级黄色大片毛片| 99精品久久久久人妻精品| 搡老岳熟女国产| 丰满迷人的少妇在线观看| 国产男女超爽视频在线观看| 一边摸一边做爽爽视频免费| 黄色片一级片一级黄色片| 亚洲欧洲国产日韩| 成人午夜精彩视频在线观看| 精品少妇内射三级| 这个男人来自地球电影免费观看| 韩国高清视频一区二区三区| 国产精品秋霞免费鲁丝片| 人妻 亚洲 视频| 91精品国产国语对白视频| 天天躁夜夜躁狠狠久久av| 自线自在国产av| 黑人猛操日本美女一级片| 久久女婷五月综合色啪小说| 一级黄色大片毛片| 七月丁香在线播放| 男女床上黄色一级片免费看| 欧美精品啪啪一区二区三区 | 国产成人91sexporn| 亚洲视频免费观看视频| av国产久精品久网站免费入址| 欧美在线一区亚洲| 韩国精品一区二区三区| av天堂久久9| 你懂的网址亚洲精品在线观看| 水蜜桃什么品种好| 亚洲国产av新网站| 尾随美女入室| 国语对白做爰xxxⅹ性视频网站| 成在线人永久免费视频| 麻豆乱淫一区二区| 女人精品久久久久毛片| 99国产精品免费福利视频| 不卡av一区二区三区| 国产成人影院久久av| 女人高潮潮喷娇喘18禁视频| 青春草亚洲视频在线观看| 老司机影院毛片| 欧美成人午夜精品| 狂野欧美激情性xxxx| 亚洲久久久国产精品| 国产在视频线精品| 欧美人与性动交α欧美精品济南到| 伊人久久大香线蕉亚洲五| 男女高潮啪啪啪动态图| 久久人妻福利社区极品人妻图片 | 麻豆av在线久日| 成年av动漫网址| 黑人猛操日本美女一级片| 波野结衣二区三区在线| 日韩一区二区三区影片| 一本—道久久a久久精品蜜桃钙片| 欧美97在线视频| 丁香六月欧美| 男的添女的下面高潮视频| 国产深夜福利视频在线观看| 亚洲国产精品一区三区| 丝袜美腿诱惑在线| 免费看av在线观看网站| 国产激情久久老熟女| 人人妻人人澡人人爽人人夜夜| 老司机在亚洲福利影院| 亚洲国产av新网站| 91麻豆精品激情在线观看国产 | 亚洲成人免费av在线播放| 我的亚洲天堂| 久久久亚洲精品成人影院| 欧美+亚洲+日韩+国产| 9色porny在线观看| 在线看a的网站| 亚洲 国产 在线| 国产精品一区二区免费欧美 | 欧美黄色淫秽网站| 亚洲,欧美精品.| 亚洲国产精品成人久久小说| 人人妻人人澡人人看| 亚洲av美国av| 欧美 亚洲 国产 日韩一| 国产精品一国产av| 少妇被粗大的猛进出69影院| 国语对白做爰xxxⅹ性视频网站| 久久精品成人免费网站| 巨乳人妻的诱惑在线观看|