• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Computational prediction of Mo2@g-C6N6 monolayer as an efficient electrocatalyst for N2 reduction

    2022-11-05 06:47:46JijunWngMengyoShiGuolinYiLuWngShuliLeiKeXuShujunLiJinshuiMu
    Chinese Chemical Letters 2022年10期

    Jijun Wng,Mengyo Shi,Guolin Yi,Lu Wng,Shuli Lei,Ke Xu,Shujun Li,c,Jinshui Mu,*

    a Tianjin Key Laboratory of Structure and Performance for Functional Molecules,College of Chemistry,Tianjin Normal University,Tianjin 300387,China

    b Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices,Hubei University of Arts and Science,Xiangyang 441053,China

    c Institute of Mathematics,Free University of Berlin,Berlin D-14195,Germany

    Keywords:g-C6N6 monolayer Double-atom catalysts Nitrogen reduction reaction Hydrogen evolution reaction Limiting potential Density functional theory

    ABSTRACT Electrocatalytic nitrogen reduction reaction (NRR) is an environmentally friendly method for sustainable ammonia synthesis under ambient conditions.Searching for efficient NRR electrocatalysts with high activity and selectivity is currently urgent but remains great challenge.Herein,we systematically investigate the NRR catalytic activities of single and double transition metal atoms (TM=Fe,Co,Ni and Mo) anchored on g-C6N6 monolayers by performing first-principles calculation.Based on the stability,activity,and selectivity analysis,Mo2@g-C6N6 monolayer is screened out as the most promising candidate for NRR.Further exploration of the reaction mechanism demonstrates that the Mo dimer anchored on g-C6N6 can sufficiently activate and efficiently reduce the inert nitrogen molecule to ammonia through a preferred distal pathway with a particularly low limiting potential of-0.06 V.In addition,we find that Mo2@g-C6N6 has excellent NRR selectivity over the competing hydrogen evolution reaction,with the Faradaic efficiency being 100%.Our work not only predicts a kind of ideal NRR electrocatalyst but also encouraging more experimental and theoretical efforts to develop novel double-atom catalysts (DACs) for NRR.

    N2fixation for NH3synthesis is of great significance since NH3is one of the main feedstocks for chemical and agricultural industries and also a promising carbon-free energy carrier with high energy density for the future economy [1-5].Compared with the conventional energy-and resource-intensive Haber-Bosch process,electrocatalytic N2reduction reaction (NRR),which hydrogenates N2as well as protons and electrons at ambient conditions,is regarded as a more cost-effective,sustainable,and environmentally benign method for NH3synthesis [6-8].However,as a nonpolar homonuclear diatomic molecule,N2is fairly inert due to the extremely thermodynamically stable covalent triple bond(941 kJ/mol) and thus is difficult to break in the NRR process,resulting in low N2-to-NH3conversion efficiency [9-12].Consequently,the rational design of efficient NRR electrocatalysts for NH3synthesis is highly desirable but remains great challenge.

    Today,single-atom catalysts (SACs) comprising isolated atoms dispersed on substrates are of particular interest in the field of electrocatalysis due to their exceptional catalytic performances and maximized atomic utilization [13-15].In particular,many SACs of transition-metal (TM) atoms anchored with two-dimensional(2D) materials,including graphene [16,17],h-BN [18,19],borophene[20,21],phosphorene [22-24],graphyne [25,26],porous carbonnitride nanosheets [27-30],nitrogen-doped carbon [31,32]and so on [33-35],have been theoretically predicted as striking NRR electrocatalysts with ultralow limiting potential.However,as multiple reaction intermediates are typically involved in the NRR process,experimental studies reveal that the single active site is still rather hard to break the scaling relations and enhance both the yield rate of NH3and the Faradaic efficiency (FE) simultaneously.To address this issue,much effort has been devoted to designing doubleatom catalysts (DACs),which possess more flexible active sites to tune the adsorption behavior of NRR intermediates [36-40].For instance,Liet al.[41]synthesized atomically dispersed Fe-Mo dimers anchored on N-doped graphene (FeMo@NG) and observed that it exhibited better NRR catalytic activity than its SAC counterparts(Fe@NG and Mo@NG) due to the combination of geometric,ligand and synergistic effects.Hanet al.[42]reported that the asfabricated Pd-Cu diatom catalyst had higher FE and NH3yield rate than the individual single-atom (Pd or Cu) catalyst.In addition,theoretical screening and designing based on first-principles calculations found that Mo-,Fe-,Co-,Mn-and Ru-based DACs can be served as excellent catalysts for electrochemical N2reduction[43-55].

    Fig.1.(a) The atomic structure of pristine g-C6N6 monolayer.The rhombus denotes the unit cell,and the brown and light-blue spheres stand for C and N atoms,respectively.(b) The optimized most stable configuration and (c) calculated binding energies of TM@g-C6N6 and TM2@g-C6N6.

    Recently,a novel porous graphitic carbon nitride (g-C6N6) is successfully synthesizedviathe solvothermal reaction of C3N3Cl3with Na [56].Interestingly,g-C6N6possesses a high specific surface area,excellent thermal and kinetic stability,and outstanding electric conductivity,making it a remarkable substrate to anchor TM atoms for electrocatalytic reactions [57-59].Inspired by these exciting progressive achievements,in the present work,a series of single and double TM atoms (TM=Fe,Co,Ni and Mo) anchored on g-C6N6are designed and explored as NRR electrocatalysts.Among them,Mo2@g-C6N6is screened out as the most promising candidate for electrochemical NRR due to its high stability,activity,and selectivity.Our work indicates that DACs have great chance to replace SACs as the emerging star of atomic catalysts.

    All the spin-polarized first-principles calculations are performed using the density functional theory (DFT),as implemented in Viennaab initioSimulation Package (VASP) [60].The interactions between electrons and ion-cores are described by the projector augmented wave (PAW) method [61]and the exchange-correlation interactions are treated by the generalized gradient approximation (GGA) in the form proposed by Perdew,Burke,and Ernzerhof(PBE) [62].Additionally,Grimme’s semiempirical DFT-D3 method is employed to address the weak van der Waals interactions between the adsorbates and substrate [63].The cut-off energy is set to 500 eV for the plane-wave basis in all of our calculations.Γ-centered k-point meshes of 2×2×1 and 4×4×1 based on Monkhorst-Pack scheme [64]are employed for the geometric and electronic structures calculations,respectively.A vacuum space of 20.0 ?A along thez-axis is adopted to ensure no appreciable interaction between the image layers under periodic boundary condition.The self-consistent convergence criterion for the total energy and Hellmann-Feynman force are smaller than 10-5eV and 0.02 eV/?A,respectively.More computational details for the NRR are given in the Supporting information.

    The optimized geometrical structure of pristine g-C6N6monolayer is depicted in Fig.1a,which contains six carbon atoms and six nitrogen atoms in the hexagonal unit cell with space group P6/MMM and point group D6H-1.The calculated lattice constants are found to bea=b=7.12 ?A with the C-C and C-N bond distances of 1.51 and 1.34 ?A,respectively,in good agreement with previous reports [65-67].In this study,a 2×2×1 g-C6N6supercell is employed as an ideal substrate for anchoring the selected four types of common TM atoms (TM=Fe,Co,Ni and Mo).To find the most favorable anchoring sites,we examine two possible configurations of the single and double TM atoms on the g-C6N6monolayer (labeled as TM@g-C6N6and TM2@g-C6N6,respectively),in which TM atoms bond with two N atoms or three N atoms of g-C6N6substrate.As shown in Fig.1b,we find that the single TM atom bonds strongly with adjacent two N atoms at the cavity edge after full optimization except for the Mo atom,while all the double TM atoms are located within the six-remember nitrogen hole and bond with three N atoms.The distances of TM-TM bonds are 2.13 ?A for Fe,2.18 ?A for Co,2.34 ?A for Ni,and 1.78 ?A for Mo.The planar structure of the g-C6N6monolayer can be maintained well before and after anchoring these TM atoms.Compared to pristine g-C6N6with a band gap of 1.83 eV (Fig.S1 in Supporting information),these TMn@g-C6N6monolayers exhibit metallic features mainly originated from the hybridized states between TM-d and the adjacent N-p orbitals (Fig.S2 in Supporting information),which will be propitious to the electrocatalytic reactions.

    To estimate the structural stability of TMn@g-C6N6,we calculate the binding energies (Eb),as shown in Fig.1c.Overall,all double TM anchored on g-C6N6show larger binding energies compared to the corresponding single TM anchored cases,suggesting that the formed metal-metal bonding can offer positive effects on stabilization of these TM dimers.Moreover,theEbof TMn@g-C6N6are more negative than their respective cohesive energies of bulk metal,signifying strong interactions between the TM atoms and g-C6N6monolayer,and superior thermodynamic stability.In addition,we further check the temperature-dependent stability of TMn@g-C6N6byab initiomolecular dynamics (AIMD) simulations as depicted in Fig.S3 (Supporting information).We observe that these TMn@g-C6N6systems display narrow energy fluctuations and slight structural changes during the simulated time,verifying the excellent thermal stability at room temperature.Thus,it is believed that the as-designed TMn@g-C6N6could serve as potential electrocatalyst with high stability.

    Following the screening requirements for NRR catalyst [68,69],we turn to examine the Gibbs free energy changes (△G) of the N2adsorption and first hydrogenation process of NRR to produce*N2H on TMn@g-C6N6for identifying the most qualified candidate.The computed △Gfor the two processes are presented in Figs.2a and b,respectively.Our results show that all the TM@g-C6N6systems are incapable of capturing N2molecule through the side-on configuration because of their positive △G*N2,whereas N2molecule can effectively chemisorb on TM@g-C6N6by means of the end-on configuration.However,the first protonation of adsorbed N2(*N2+H++e-→*N2H) require much high energy inputs,such as 1.34 eV for Fe@g-C6N6,1.33 eV for Co@g-C6N6,1.25 eV for Ni@g-C6N6,and 0.51 eV for Mo@g-C6N6,demonstrating that they are inefficient electrocatalysts for N2reduction.In this regard,the TM@g-C6N6systems are eliminated as eligible NRR catalysts.

    With respect to TM@g-C6N6,we find that except for Ni2@g-C6N6,N2molecule can be well captured by TM2@g-C6N6regardless of end-on or side-on configuration,as indicated by the calculated△G*N2ranging from-0.46 eV to-0.81 eV.Further,the △Gvalues of*N2H formation on the Fe2@g-C6N6and Co2@g-C6N6are predicted to be at least 0.48 and 0.72 eV,respectively,marking them as inefficient electrocatalysts for N2reduction.Notably,the first hydrogenation process of NRR to produce*N2H on Mo2@g-C6N6demands only 0.11 eV energy input for the side-on configuration,while it even becomes a spontaneous reaction for the end-on configuration.Based on these screening results,only the Mo2@g-C6N6is of interest in virtue of satisfying all the requirements,and thus will be examined in the following discussion.

    Fig.2.Calculated Gibbs free energies (△G) for (a) N2 adsorption and (b) *N2H formation on TM@g-C6N6 and TM2@g-C6N6.

    Fig.3.(a) End-on and (b) side-on adsorption configurations for N2 on Mo2@g-C6N6 monolayer.(c,d) The corresponding charge density difference,where the isosurface value is set to be 0.005 e/?A3 and the yellow and cyan show the positive and negative charges,respectively.The computed projected density of states of Mo2@g-C6N6 with the N2 adsorption through (e) end-on and (f) side-on configurations.

    Fig.4.(a) Schematic depiction of three possible reaction mechanisms for N2 electroreduction to NH3 on the Mo2@g-C6N6 monolayer.Optimized geometries of all reaction intermediates along the (b) distal,(c) alternating,and (d) enzymatic pathways.

    Figs.3a and b depict the optimized structures of N2adsorbed Mo2@g-C6N6viaend-on and side-on configurations,respectively.Compared with the isolated N2molecule (1.12 ?A),the N-N bond length is significantly stretched by 0.04 ?A for end-on adsorption and by 0.09 ?A for side-on adsorption,signifying the effective activation of the inert triple bond of N2.Bader charge analysis shows that there are about 0.49 and 0.70 electrons transferred from Mo2@g-C6N6to the adsorbed N2in end-on and side-on patterns,respectively,which attributes to the different electronegativities of N (3.04) and Mo (1.86).Moreover,as presented in Figs.3c and d,we can observe the obvious charge accumulation and depletion around the anchored Mo dimer and N2for both adsorption configurations.Interestingly,such a charge distribution ideally accords with the "acceptance-donation" process as proposed by Ling and co-workers [70],that is,the Mo dimer donates electrons into the antibonding orbitals of N2and simultaneously accepts lone-pair electrons from it.From the computed projected density of states given in Figs.3e and f,we find that there are significant electronic coupling between the N-2p orbital of the adsorbed N2molecule and Mo-4d orbital,thus give rise to the anti-bonding states located above the Fermi level and bonding states lied below the Fermi level,further supporting the "acceptance-donation" picture.Moreover,after N2adsorption with side-on configuration,the magnetic moments of the Mo dimer and N2molecule are nearly unchanged and remain 0 μB.However,for N2adsorption with end-on configuration,we observe that their corresponding magnetic moments increase to 0.97 μB and 0.24 μB,respectively.As shown in Fig.S4 (Supporting information),the increased magnetic moments attribute to the asymmetrical distributions of Mo-4d and N-2p orbitals,caused by the couplings of Mo 4dz-N 2py,Mo 4dxz-N 2pzand Mo 4dz2-N 2pz.These above analyses demonstrate the successful activation of N2on Mo2@g-C6N6,which would further facilitate the subsequent reaction of converting N2to NH3molecules.

    As illustrated in Fig.4a,three possible reaction mechanisms,named distal,alternating,and enzymatic,are considered for the transformation from N2to NH3.Both distal and alternating mechanisms start from the adsorbed N2with end-on configuration,while the enzymatic mechanism is initiated with the side-on adsorbed N2.Whereafter,each mechanism involves six consecutive protonation plus reduction steps,accompanied by the production of two NH3molecules.The optimized geometries of all reaction intermediates along these three pathways on Mo2@g-C6N6monolayer are given in Figs.4b-d,and the predicted Gibbs free energy profiles are illustrated in Figs.5a-c.

    As NRR proceeds along the distal or alternating pathway,the first protonation plus reduction step is similar,and found to be exothermic by 0.02 eV with the further elongation of N-N bond(from 1.16 ?A to 1.25 ?A).It is noteworthy that this first hydrogenation is normally non-spontaneous for most studied electrocatalysts since the free energy change is thermodynamically uphill.For the following elementary steps through distal pathway,the*N-NH can be spontaneously hydrogenated to*NH2by reacting with the proton-electron pair four times.Specifically,as shown in Fig.5a,the Gibbs reaction free energies of these four hydrogenation steps are-0.10,-0.22,-0.80 and-0.81 eV,respectively.Finally,the process of*NH2+H++e-→*NH3is slightly uphill by 0.06 eV in the Gibbs free energy profile.Overall,the potentiallimiting step (PDS) of the distal mechanism is the sixth protonation plus reduction step owing to its maximum △Gof 0.06 eV.For the case of the alternating mechanism,as given in Fig.5b,the Gibbs free energy changes along the subsequent protonation plus reduction steps are calculated respectively to be-0.02,0.07,-0.34,0.22,-1.88 and 0.06 eV.Thus,the hydrogenation of*NH-NH2into*NH2-NH2is the PDS with a maximal energy demand of 0.22 eV.Regarding of the enzymatic mechanism,the first protonation plus reduction step is slightly uphill energetically,with a △Gvalue of 0.11 eV as demonstrated in Fig.5c.After that,the subsequent elementary reaction steps are all exothermic,except for the formation of*NH-*NH2(*NH-*NH+H++e-→*NH-*NH2) and second NH3(*NH2+H++e-→*NH3).Among the hydrogenation steps of the enzymatic mechanism,the step converting*N-*NH to*NH-*NH2has the largest free energy change (0.28 eV),which can be identified as the PDS.Of note,the desorption of the second NH3from Mo2@g-C6N6monolayer is not a problematic obstacle.As demonstrated in previous studies [55,66],the*NH3species can be released in the form of NH4+under acidic electrochemical conditions.Moreover,the free energy change for the release of the final product NH3is only 0.82 eV,which can be easily overcame in consideration of the released energy (about 2.60 eV,Fig.5) in the proceeding hydrogenation steps.These ensure the rapid removal of the produced NH3under ambient conditions for recovering the catalysts.

    Fig.5.Gibbs free energy profiles of N2 reduction on Mo2@g-C6N6 monolayer via the (a) distal,(b) alternating and (c) enzymatic mechanisms at zero and applied potentials.(d) Charge variation of three moieties for the NRR along the preferred distal pathway.

    In electrocatalysis,the limiting potential (UL),defined as the lowest applied electrode potential to overcome the maximum positive △Gon the considered pathway,is the most commonly used descriptor for chemical reactivity,which can be calculated by UL=-△Gmax/e [71,72].A less negativeULindicates a faster electrochemical process at a given potential.As discussed above,the limiting potential with respect to the standard hydrogen electrode are calculated to be-0.06 V for distal,-0.22 V for alternating,and-0.28 V for enzymatic.Consequently,we predict that the NRR on Mo2@g-C6N6will prefer to proceedviathe distal mechanism in virtue of its lowest negative value.Remarkably,such a limiting potential is substantially less negative than the equilibrium potential of overall NRR (-0.16 V) as well as other recently reported DACs for NH3synthesis,implying that the applied potential even as low as the equilibrium potential can adequately drive the NRR.Therefore,Mo2@g-C6N6could be expected as a promising candidate electrocatalyst for N2reduction to NH3.

    It should be pointed out that conventional DFT method often fails to describe the systems with strongly correlated d-electrons.In order to further evaluate the reliability of the above results,we employ the DFT+U method to re-examine Gibbs free energy profile of N2reduction on Mo2@g-C6N6monolayer through the preferred distal pathway.As shown in Fig.S5 (Supporting information),we can see that the Hubbard U value has little influence on the free energy diagram,and both of the limiting potential and PDS with the Hubbard U correction are in line with the PBE results,suggesting that the PBE calculated results are acceptable in this work.

    To gain insight into the superior catalytic activity of Mo2@g-C6N6,we further employ Bader charge analysis to investigate the charge variation of various intermediates along the favorable distal pathway.Herein,we divide each intermediate into three groups,including the g-C6N6,anchored Mo dimer,and adsorbed NxHyspecies.As depicted in Fig.5d,the N2molecule after chemisorption on the Mo dimer accumulates about 0.49 electrons,which is considered to be propitious for the hydrogeneration of*N2into*N2H.In the following NRR steps,it is observed that there are obvious charge fluctuations in both of the g-C6N6and NxHygroups,while the charge value of Mo dimer remains almost unchanged.That is to say,the charge variation of the NxHyspecies mainly associates with that of the g-C6N6.The Mo dimer serves as not only the active site but also electron transmitter between the g-C6N6and NxHyspecies during the entire NRR process.

    As one of the prerequisites of an excellent NRR electrocatalyst with high FE,it is crucial to suppress the hydrogen evolution reaction (HER),which is the major competing reaction during the NRR.Therefore,we compute the adsorption free energies of*H (△G*H)at the Mo dimer site of Mo2@g-C6N6monolayer.The △G*His found to be 0.46 eV,which is more positive than the △G*N2(-0.71 eV),suggesting that the active site would be primarily covered by*N2.Moreover,the free energy barrier for HER (0.46 eV) is considerable larger than the PDS barrier for NRR (0.06 eV).In this respect,the FE of Mo2@g-C6N6is estimated to be approximately 100% at room temperature according to the Boltzmann distribution,indicating the high selectivity for NRR.

    In conclusion,by performing comprehensive DFT computations,we explore the potential of single and double transition metal atoms (TM=Fe,Co,Ni and Mo) anchored g-C6N6monolayers for electrochemical N2reduction to NH3.Among these systems,Mo2@g-C6N6monolayer is identified as the most promising catalyst candidate toward NRR with the help of prescreening criteria.Our results demonstrate that N2molecule is effectively captured and activated by the Mo dimer anchored on g-C6N6through the"acceptance-donation" process.The subsequent N2reduction reaction on Mo2@g-C6N6monolayer proceed dominantlyviathe distal mechanism with an extremely low limiting potential of-0.06 V.Importantly,the competitive HER can be well inhibited on the Mo2@ g-C6N6monolayer due to a much larger △G*H,ensuring substantial selectivity (~100%) toward NH3synthesis.Hence,the Mo2@g-C6N6monolayer proposed in this work has great potential applications for NRR,highlighting the importance of DACs for NRR.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the Science &Technology Development Fund of Tianjin Education Commission for Higher Education (No.2020KJ008),by the Natural Science Foundation of Tianjin(No.18JCQNJC76000),and by the College Students’Innovation and Entrepreneurship Training Program of Tianjin (No.202110065112),Science and Technology Research Project of Hubei Provincial Department of Education (No.D20212603),Hubei University of Arts and Science (Nos.2020kypytd002,XK2021024) and China Scholarship Council.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.12.040.

    国产精品亚洲美女久久久| av欧美777| 国内精品久久久久久久电影| 亚洲av成人av| 999精品在线视频| 很黄的视频免费| 亚洲精品国产精品久久久不卡| 久久国产精品影院| www.熟女人妻精品国产| 女生性感内裤真人,穿戴方法视频| 丁香欧美五月| 久久久久免费精品人妻一区二区 | 91成人精品电影| 不卡av一区二区三区| 精品熟女少妇八av免费久了| 麻豆一二三区av精品| 午夜精品久久久久久毛片777| 亚洲精品粉嫩美女一区| 免费在线观看影片大全网站| 高清在线国产一区| 18禁美女被吸乳视频| 亚洲精品在线美女| 黄色丝袜av网址大全| 啪啪无遮挡十八禁网站| 搡老岳熟女国产| 国产成人精品久久二区二区免费| 国产精品亚洲av一区麻豆| 日本免费a在线| 欧美黑人精品巨大| 在线观看66精品国产| 脱女人内裤的视频| 久久久久久大精品| 亚洲真实伦在线观看| 亚洲 欧美 日韩 在线 免费| 在线观看66精品国产| 成人手机av| 日韩欧美 国产精品| xxx96com| 欧美日韩福利视频一区二区| 天天添夜夜摸| 18禁国产床啪视频网站| 国产精品亚洲美女久久久| 久久人妻av系列| 午夜老司机福利片| 1024视频免费在线观看| 日韩精品免费视频一区二区三区| 欧美一区二区精品小视频在线| 十分钟在线观看高清视频www| 51午夜福利影视在线观看| 亚洲第一av免费看| 真人做人爱边吃奶动态| 久久草成人影院| 久久精品国产亚洲av高清一级| 婷婷六月久久综合丁香| 成人国产综合亚洲| 好男人在线观看高清免费视频 | 亚洲va日本ⅴa欧美va伊人久久| 桃色一区二区三区在线观看| 亚洲av电影在线进入| 老司机深夜福利视频在线观看| 久久精品国产99精品国产亚洲性色| 免费观看人在逋| 999精品在线视频| 国产精品国产高清国产av| 久久久水蜜桃国产精品网| 人人妻人人看人人澡| 国产av又大| 亚洲 国产 在线| 精品免费久久久久久久清纯| 国产一区在线观看成人免费| av免费在线观看网站| 亚洲第一电影网av| 午夜福利视频1000在线观看| 国产av在哪里看| 亚洲自偷自拍图片 自拍| 免费在线观看成人毛片| 制服丝袜大香蕉在线| 一区二区日韩欧美中文字幕| 精品一区二区三区av网在线观看| 免费在线观看黄色视频的| 香蕉丝袜av| 97人妻精品一区二区三区麻豆 | 99国产精品一区二区三区| 欧美中文日本在线观看视频| 男女之事视频高清在线观看| 久久久国产欧美日韩av| 99国产精品一区二区三区| 久久 成人 亚洲| 一级作爱视频免费观看| 在线视频色国产色| 亚洲精品av麻豆狂野| 18美女黄网站色大片免费观看| 日韩欧美三级三区| 无遮挡黄片免费观看| 国产伦在线观看视频一区| 成人国语在线视频| 国产精品 国内视频| 1024香蕉在线观看| 日韩欧美 国产精品| 国产免费男女视频| 国产aⅴ精品一区二区三区波| 99在线视频只有这里精品首页| 亚洲精品色激情综合| 好男人电影高清在线观看| 国产熟女xx| 欧美中文日本在线观看视频| 18美女黄网站色大片免费观看| 免费在线观看视频国产中文字幕亚洲| 国内久久婷婷六月综合欲色啪| 亚洲人成伊人成综合网2020| 桃红色精品国产亚洲av| 午夜激情av网站| 久久久久久久久免费视频了| 日本撒尿小便嘘嘘汇集6| 欧美zozozo另类| 变态另类丝袜制服| 宅男免费午夜| 啦啦啦韩国在线观看视频| √禁漫天堂资源中文www| 可以免费在线观看a视频的电影网站| 亚洲av第一区精品v没综合| 91成年电影在线观看| 国产私拍福利视频在线观看| 国产人伦9x9x在线观看| 久久这里只有精品19| 国产亚洲欧美98| 日日夜夜操网爽| 欧美日韩瑟瑟在线播放| 日韩欧美 国产精品| 在线观看一区二区三区| 一二三四社区在线视频社区8| 亚洲欧美一区二区三区黑人| 精品久久久久久久末码| 非洲黑人性xxxx精品又粗又长| 欧洲精品卡2卡3卡4卡5卡区| 两个人看的免费小视频| 色综合婷婷激情| 成人特级黄色片久久久久久久| 国产野战对白在线观看| 日本成人三级电影网站| 成人特级黄色片久久久久久久| 黑人欧美特级aaaaaa片| 亚洲无线在线观看| 曰老女人黄片| 亚洲国产日韩欧美精品在线观看 | 一个人免费在线观看的高清视频| 久热这里只有精品99| 亚洲欧美日韩无卡精品| 少妇熟女aⅴ在线视频| www国产在线视频色| 一本久久中文字幕| 少妇裸体淫交视频免费看高清 | 精品国产国语对白av| 国产99久久九九免费精品| 精品国产乱子伦一区二区三区| 校园春色视频在线观看| 亚洲欧美激情综合另类| 免费在线观看黄色视频的| 禁无遮挡网站| 免费看十八禁软件| 亚洲av熟女| a级毛片a级免费在线| 丰满的人妻完整版| 国产精品国产高清国产av| 久久精品国产综合久久久| 午夜老司机福利片| 精品熟女少妇八av免费久了| 国产精华一区二区三区| 午夜福利在线观看吧| 亚洲七黄色美女视频| av在线天堂中文字幕| 国产黄a三级三级三级人| 91成人精品电影| 一级a爱视频在线免费观看| 欧美+亚洲+日韩+国产| 老司机午夜十八禁免费视频| 这个男人来自地球电影免费观看| 欧美成人性av电影在线观看| 嫩草影院精品99| 国产高清激情床上av| 亚洲欧美日韩无卡精品| www.自偷自拍.com| 两性午夜刺激爽爽歪歪视频在线观看 | 长腿黑丝高跟| 一区二区日韩欧美中文字幕| 国产不卡一卡二| 成人av一区二区三区在线看| 免费无遮挡裸体视频| 一二三四在线观看免费中文在| 日韩精品中文字幕看吧| 成人精品一区二区免费| 国产激情欧美一区二区| 高潮久久久久久久久久久不卡| 日本三级黄在线观看| 波多野结衣av一区二区av| 成人特级黄色片久久久久久久| 国产精品99久久99久久久不卡| 又黄又粗又硬又大视频| 成人一区二区视频在线观看| 国产99久久九九免费精品| 黑人欧美特级aaaaaa片| 欧美久久黑人一区二区| 久久伊人香网站| 成年免费大片在线观看| 国产亚洲av嫩草精品影院| 精品欧美国产一区二区三| 一个人观看的视频www高清免费观看 | 满18在线观看网站| 国产一区二区在线av高清观看| 午夜亚洲福利在线播放| 1024视频免费在线观看| 久久久国产成人精品二区| 国产1区2区3区精品| 亚洲 欧美 日韩 在线 免费| 亚洲精品久久成人aⅴ小说| 国产精品av久久久久免费| 制服诱惑二区| 亚洲男人的天堂狠狠| 免费一级毛片在线播放高清视频| 久久香蕉精品热| 亚洲国产精品999在线| 午夜免费观看网址| 狠狠狠狠99中文字幕| 国产亚洲欧美98| 无限看片的www在线观看| 精品不卡国产一区二区三区| 国产野战对白在线观看| 19禁男女啪啪无遮挡网站| 国产欧美日韩一区二区精品| 国产高清videossex| 欧美国产精品va在线观看不卡| 午夜福利在线在线| 国产精品一区二区三区四区久久 | aaaaa片日本免费| xxx96com| 亚洲欧美精品综合一区二区三区| 亚洲av成人不卡在线观看播放网| 免费在线观看完整版高清| 色播亚洲综合网| 久久精品国产99精品国产亚洲性色| 色综合婷婷激情| 久久久久久九九精品二区国产 | 亚洲熟妇熟女久久| 给我免费播放毛片高清在线观看| √禁漫天堂资源中文www| 无限看片的www在线观看| 一进一出抽搐gif免费好疼| 变态另类丝袜制服| 一级片免费观看大全| 美女扒开内裤让男人捅视频| 99久久99久久久精品蜜桃| 午夜视频精品福利| 老汉色av国产亚洲站长工具| 一本久久中文字幕| 九色国产91popny在线| 一级a爱视频在线免费观看| 搡老岳熟女国产| 男女之事视频高清在线观看| 美女 人体艺术 gogo| 久久青草综合色| 日本黄色视频三级网站网址| 欧美黑人欧美精品刺激| 久久中文字幕一级| 久久中文字幕人妻熟女| 亚洲精品久久成人aⅴ小说| 国产99白浆流出| 国产高清videossex| 两性夫妻黄色片| 日韩免费av在线播放| 精品日产1卡2卡| 亚洲在线自拍视频| 国产视频一区二区在线看| 国产黄a三级三级三级人| 三级毛片av免费| 一级毛片高清免费大全| 一区二区三区高清视频在线| 无遮挡黄片免费观看| 欧美激情高清一区二区三区| 99热6这里只有精品| 亚洲 欧美一区二区三区| 国产午夜福利久久久久久| 国内揄拍国产精品人妻在线 | 亚洲第一电影网av| 欧美不卡视频在线免费观看 | 999精品在线视频| 亚洲国产欧洲综合997久久, | 久久精品人妻少妇| 男女下面进入的视频免费午夜 | 男人的好看免费观看在线视频 | 在线观看午夜福利视频| 日韩欧美国产在线观看| 色播在线永久视频| 亚洲全国av大片| 亚洲国产精品sss在线观看| 亚洲av第一区精品v没综合| 特大巨黑吊av在线直播 | 久久狼人影院| 99国产综合亚洲精品| 国内精品久久久久久久电影| 热re99久久国产66热| 午夜免费成人在线视频| 听说在线观看完整版免费高清| 性欧美人与动物交配| 久久精品亚洲精品国产色婷小说| 国产三级在线视频| 国产伦人伦偷精品视频| 人妻久久中文字幕网| 国产精品1区2区在线观看.| 成人国产一区最新在线观看| 免费看美女性在线毛片视频| 国产v大片淫在线免费观看| 成人国产综合亚洲| 亚洲国产毛片av蜜桃av| 亚洲欧美一区二区三区黑人| 色综合欧美亚洲国产小说| 亚洲av五月六月丁香网| 久久国产乱子伦精品免费另类| 日本免费a在线| 国产精品久久电影中文字幕| 欧美性长视频在线观看| 久久久国产欧美日韩av| 淫秽高清视频在线观看| 亚洲成人久久爱视频| 在线观看舔阴道视频| 嫩草影视91久久| 老汉色av国产亚洲站长工具| 日本一区二区免费在线视频| 欧美日本视频| 波多野结衣高清无吗| 中文字幕另类日韩欧美亚洲嫩草| 少妇的丰满在线观看| 国产精品98久久久久久宅男小说| 一a级毛片在线观看| 国产精华一区二区三区| 啦啦啦观看免费观看视频高清| 精品国产亚洲在线| 天堂动漫精品| 国产成人av教育| 欧美乱色亚洲激情| 在线观看一区二区三区| 夜夜爽天天搞| 中文在线观看免费www的网站 | 91九色精品人成在线观看| 国产在线观看jvid| 淫秽高清视频在线观看| 国产成人av教育| 一本综合久久免费| av中文乱码字幕在线| 天天添夜夜摸| 成熟少妇高潮喷水视频| 国产亚洲av高清不卡| 国产精品一区二区三区四区久久 | 50天的宝宝边吃奶边哭怎么回事| 999久久久国产精品视频| 香蕉丝袜av| 国产成人啪精品午夜网站| 久久精品人妻少妇| 两个人视频免费观看高清| 欧美久久黑人一区二区| 亚洲av成人不卡在线观看播放网| 亚洲av熟女| 可以在线观看毛片的网站| 亚洲国产毛片av蜜桃av| 十八禁人妻一区二区| 看黄色毛片网站| 两个人免费观看高清视频| 中文字幕人妻熟女乱码| 一本综合久久免费| 在线免费观看的www视频| av片东京热男人的天堂| 成年版毛片免费区| 亚洲第一青青草原| 在线观看日韩欧美| 亚洲专区字幕在线| 色综合亚洲欧美另类图片| aaaaa片日本免费| 曰老女人黄片| 琪琪午夜伦伦电影理论片6080| 国产激情久久老熟女| 亚洲国产欧美日韩在线播放| 欧美日韩乱码在线| 级片在线观看| 精品电影一区二区在线| а√天堂www在线а√下载| 久久热在线av| 久久久久亚洲av毛片大全| 啪啪无遮挡十八禁网站| 国产99久久九九免费精品| 日韩欧美国产一区二区入口| 亚洲五月天丁香| 国产精品野战在线观看| 在线观看一区二区三区| 亚洲五月婷婷丁香| 国产亚洲精品综合一区在线观看 | 一a级毛片在线观看| 后天国语完整版免费观看| 看片在线看免费视频| 黄色女人牲交| x7x7x7水蜜桃| av免费在线观看网站| 日本精品一区二区三区蜜桃| 十分钟在线观看高清视频www| 欧美日韩精品网址| 国产午夜精品久久久久久| 久久精品国产99精品国产亚洲性色| 动漫黄色视频在线观看| 免费看美女性在线毛片视频| 欧美久久黑人一区二区| 亚洲自拍偷在线| 午夜精品在线福利| 91九色精品人成在线观看| 两个人免费观看高清视频| 美女 人体艺术 gogo| 国产精品99久久99久久久不卡| 琪琪午夜伦伦电影理论片6080| 亚洲av电影不卡..在线观看| 999久久久精品免费观看国产| 18禁美女被吸乳视频| xxx96com| 成人三级黄色视频| 两性夫妻黄色片| 亚洲午夜精品一区,二区,三区| 88av欧美| www国产在线视频色| 精品国产超薄肉色丝袜足j| 国产成人精品无人区| 看免费av毛片| 久久精品夜夜夜夜夜久久蜜豆 | or卡值多少钱| 熟女少妇亚洲综合色aaa.| av天堂在线播放| 国产精品久久视频播放| 91九色精品人成在线观看| 国产精品免费一区二区三区在线| 特大巨黑吊av在线直播 | 热99re8久久精品国产| 波多野结衣高清无吗| 亚洲国产精品成人综合色| 大型av网站在线播放| 最近最新中文字幕大全电影3 | 色综合亚洲欧美另类图片| 国产精品自产拍在线观看55亚洲| 国产在线精品亚洲第一网站| 亚洲欧美日韩无卡精品| 亚洲精华国产精华精| 搡老熟女国产l中国老女人| 亚洲精品美女久久久久99蜜臀| 女人被狂操c到高潮| 国产一级毛片七仙女欲春2 | 亚洲最大成人中文| 国产精品香港三级国产av潘金莲| 麻豆av在线久日| 国产熟女xx| 国产一区二区在线av高清观看| 成人18禁在线播放| 男女午夜视频在线观看| 这个男人来自地球电影免费观看| 老司机深夜福利视频在线观看| 亚洲av日韩精品久久久久久密| 91老司机精品| 欧美黄色片欧美黄色片| 级片在线观看| www日本黄色视频网| 老司机午夜十八禁免费视频| 久久精品91蜜桃| 黄色女人牲交| 校园春色视频在线观看| 国产成人欧美| 亚洲五月婷婷丁香| 白带黄色成豆腐渣| 午夜亚洲福利在线播放| 一级毛片高清免费大全| 岛国视频午夜一区免费看| 欧美另类亚洲清纯唯美| 老熟妇仑乱视频hdxx| 久久精品成人免费网站| xxx96com| 人人妻人人澡欧美一区二区| 男人操女人黄网站| 亚洲五月色婷婷综合| 成人午夜高清在线视频 | 色综合站精品国产| 日韩大尺度精品在线看网址| 午夜免费观看网址| 欧美中文综合在线视频| 亚洲自拍偷在线| 97超级碰碰碰精品色视频在线观看| 一区二区三区激情视频| 亚洲黑人精品在线| 欧美 亚洲 国产 日韩一| 国产精品一区二区三区四区久久 | 免费无遮挡裸体视频| 色综合站精品国产| 高潮久久久久久久久久久不卡| 在线免费观看的www视频| 久久久久精品国产欧美久久久| 精品久久久久久,| 欧美色欧美亚洲另类二区| 老熟妇仑乱视频hdxx| 香蕉国产在线看| 亚洲三区欧美一区| 亚洲精华国产精华精| 日本熟妇午夜| 免费观看人在逋| netflix在线观看网站| 波多野结衣高清作品| 天堂影院成人在线观看| 黄色女人牲交| 校园春色视频在线观看| 亚洲国产精品999在线| 亚洲成国产人片在线观看| 精品人妻1区二区| 国内精品久久久久久久电影| 欧美又色又爽又黄视频| 一级作爱视频免费观看| 欧美亚洲日本最大视频资源| 十八禁人妻一区二区| 久热爱精品视频在线9| 亚洲七黄色美女视频| 国产免费男女视频| 俄罗斯特黄特色一大片| 黄色毛片三级朝国网站| 亚洲精品美女久久久久99蜜臀| 国产精品一区二区免费欧美| 岛国视频午夜一区免费看| 观看免费一级毛片| 久久精品国产清高在天天线| 级片在线观看| 香蕉av资源在线| 亚洲精品国产一区二区精华液| 97人妻精品一区二区三区麻豆 | 九色国产91popny在线| 午夜免费观看网址| 一本精品99久久精品77| 黄片小视频在线播放| 亚洲精品国产一区二区精华液| 亚洲国产精品999在线| 久久久国产成人精品二区| 亚洲专区中文字幕在线| 中文字幕精品亚洲无线码一区 | 国产一区二区在线av高清观看| 可以在线观看毛片的网站| 成人免费观看视频高清| 国产激情偷乱视频一区二区| 99热只有精品国产| 久久伊人香网站| 亚洲国产精品久久男人天堂| 国产伦人伦偷精品视频| 成人国语在线视频| 丝袜在线中文字幕| 亚洲黑人精品在线| 色综合婷婷激情| 中文字幕人成人乱码亚洲影| 亚洲人成电影免费在线| 一二三四在线观看免费中文在| 黄色视频不卡| 国产片内射在线| 国产成人系列免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美不卡视频在线免费观看 | 午夜福利在线观看吧| 美国免费a级毛片| av有码第一页| 观看免费一级毛片| 一区福利在线观看| 首页视频小说图片口味搜索| 色哟哟哟哟哟哟| 色播亚洲综合网| 亚洲va日本ⅴa欧美va伊人久久| 99热只有精品国产| 欧美日韩亚洲国产一区二区在线观看| 久久久久久人人人人人| 99riav亚洲国产免费| 精品福利观看| 国产亚洲精品久久久久5区| 一本精品99久久精品77| 国产精品久久久av美女十八| 亚洲人成电影免费在线| 精品国产超薄肉色丝袜足j| 老鸭窝网址在线观看| 美国免费a级毛片| 欧美性猛交黑人性爽| 人妻丰满熟妇av一区二区三区| 国产精品香港三级国产av潘金莲| 18禁黄网站禁片午夜丰满| 成人av一区二区三区在线看| 免费看十八禁软件| 色婷婷久久久亚洲欧美| 亚洲狠狠婷婷综合久久图片| 免费观看精品视频网站| 午夜免费观看网址| 精品久久久久久久久久久久久 | 免费高清视频大片| 黄色丝袜av网址大全| 国内揄拍国产精品人妻在线 | 日日爽夜夜爽网站| 亚洲熟妇中文字幕五十中出| 久久人妻av系列| 99热只有精品国产| 精品一区二区三区av网在线观看| 久久精品国产亚洲av香蕉五月| 国产高清videossex| 一区二区日韩欧美中文字幕| 国内精品久久久久久久电影| www.自偷自拍.com| 午夜精品在线福利| 亚洲一区二区三区色噜噜| 手机成人av网站| 亚洲人成77777在线视频| 脱女人内裤的视频| 亚洲人成77777在线视频| netflix在线观看网站| 亚洲av电影在线进入| 国产1区2区3区精品| 成人免费观看视频高清|