• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Computational prediction of Mo2@g-C6N6 monolayer as an efficient electrocatalyst for N2 reduction

    2022-11-05 06:47:46JijunWngMengyoShiGuolinYiLuWngShuliLeiKeXuShujunLiJinshuiMu
    Chinese Chemical Letters 2022年10期

    Jijun Wng,Mengyo Shi,Guolin Yi,Lu Wng,Shuli Lei,Ke Xu,Shujun Li,c,Jinshui Mu,*

    a Tianjin Key Laboratory of Structure and Performance for Functional Molecules,College of Chemistry,Tianjin Normal University,Tianjin 300387,China

    b Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices,Hubei University of Arts and Science,Xiangyang 441053,China

    c Institute of Mathematics,Free University of Berlin,Berlin D-14195,Germany

    Keywords:g-C6N6 monolayer Double-atom catalysts Nitrogen reduction reaction Hydrogen evolution reaction Limiting potential Density functional theory

    ABSTRACT Electrocatalytic nitrogen reduction reaction (NRR) is an environmentally friendly method for sustainable ammonia synthesis under ambient conditions.Searching for efficient NRR electrocatalysts with high activity and selectivity is currently urgent but remains great challenge.Herein,we systematically investigate the NRR catalytic activities of single and double transition metal atoms (TM=Fe,Co,Ni and Mo) anchored on g-C6N6 monolayers by performing first-principles calculation.Based on the stability,activity,and selectivity analysis,Mo2@g-C6N6 monolayer is screened out as the most promising candidate for NRR.Further exploration of the reaction mechanism demonstrates that the Mo dimer anchored on g-C6N6 can sufficiently activate and efficiently reduce the inert nitrogen molecule to ammonia through a preferred distal pathway with a particularly low limiting potential of-0.06 V.In addition,we find that Mo2@g-C6N6 has excellent NRR selectivity over the competing hydrogen evolution reaction,with the Faradaic efficiency being 100%.Our work not only predicts a kind of ideal NRR electrocatalyst but also encouraging more experimental and theoretical efforts to develop novel double-atom catalysts (DACs) for NRR.

    N2fixation for NH3synthesis is of great significance since NH3is one of the main feedstocks for chemical and agricultural industries and also a promising carbon-free energy carrier with high energy density for the future economy [1-5].Compared with the conventional energy-and resource-intensive Haber-Bosch process,electrocatalytic N2reduction reaction (NRR),which hydrogenates N2as well as protons and electrons at ambient conditions,is regarded as a more cost-effective,sustainable,and environmentally benign method for NH3synthesis [6-8].However,as a nonpolar homonuclear diatomic molecule,N2is fairly inert due to the extremely thermodynamically stable covalent triple bond(941 kJ/mol) and thus is difficult to break in the NRR process,resulting in low N2-to-NH3conversion efficiency [9-12].Consequently,the rational design of efficient NRR electrocatalysts for NH3synthesis is highly desirable but remains great challenge.

    Today,single-atom catalysts (SACs) comprising isolated atoms dispersed on substrates are of particular interest in the field of electrocatalysis due to their exceptional catalytic performances and maximized atomic utilization [13-15].In particular,many SACs of transition-metal (TM) atoms anchored with two-dimensional(2D) materials,including graphene [16,17],h-BN [18,19],borophene[20,21],phosphorene [22-24],graphyne [25,26],porous carbonnitride nanosheets [27-30],nitrogen-doped carbon [31,32]and so on [33-35],have been theoretically predicted as striking NRR electrocatalysts with ultralow limiting potential.However,as multiple reaction intermediates are typically involved in the NRR process,experimental studies reveal that the single active site is still rather hard to break the scaling relations and enhance both the yield rate of NH3and the Faradaic efficiency (FE) simultaneously.To address this issue,much effort has been devoted to designing doubleatom catalysts (DACs),which possess more flexible active sites to tune the adsorption behavior of NRR intermediates [36-40].For instance,Liet al.[41]synthesized atomically dispersed Fe-Mo dimers anchored on N-doped graphene (FeMo@NG) and observed that it exhibited better NRR catalytic activity than its SAC counterparts(Fe@NG and Mo@NG) due to the combination of geometric,ligand and synergistic effects.Hanet al.[42]reported that the asfabricated Pd-Cu diatom catalyst had higher FE and NH3yield rate than the individual single-atom (Pd or Cu) catalyst.In addition,theoretical screening and designing based on first-principles calculations found that Mo-,Fe-,Co-,Mn-and Ru-based DACs can be served as excellent catalysts for electrochemical N2reduction[43-55].

    Fig.1.(a) The atomic structure of pristine g-C6N6 monolayer.The rhombus denotes the unit cell,and the brown and light-blue spheres stand for C and N atoms,respectively.(b) The optimized most stable configuration and (c) calculated binding energies of TM@g-C6N6 and TM2@g-C6N6.

    Recently,a novel porous graphitic carbon nitride (g-C6N6) is successfully synthesizedviathe solvothermal reaction of C3N3Cl3with Na [56].Interestingly,g-C6N6possesses a high specific surface area,excellent thermal and kinetic stability,and outstanding electric conductivity,making it a remarkable substrate to anchor TM atoms for electrocatalytic reactions [57-59].Inspired by these exciting progressive achievements,in the present work,a series of single and double TM atoms (TM=Fe,Co,Ni and Mo) anchored on g-C6N6are designed and explored as NRR electrocatalysts.Among them,Mo2@g-C6N6is screened out as the most promising candidate for electrochemical NRR due to its high stability,activity,and selectivity.Our work indicates that DACs have great chance to replace SACs as the emerging star of atomic catalysts.

    All the spin-polarized first-principles calculations are performed using the density functional theory (DFT),as implemented in Viennaab initioSimulation Package (VASP) [60].The interactions between electrons and ion-cores are described by the projector augmented wave (PAW) method [61]and the exchange-correlation interactions are treated by the generalized gradient approximation (GGA) in the form proposed by Perdew,Burke,and Ernzerhof(PBE) [62].Additionally,Grimme’s semiempirical DFT-D3 method is employed to address the weak van der Waals interactions between the adsorbates and substrate [63].The cut-off energy is set to 500 eV for the plane-wave basis in all of our calculations.Γ-centered k-point meshes of 2×2×1 and 4×4×1 based on Monkhorst-Pack scheme [64]are employed for the geometric and electronic structures calculations,respectively.A vacuum space of 20.0 ?A along thez-axis is adopted to ensure no appreciable interaction between the image layers under periodic boundary condition.The self-consistent convergence criterion for the total energy and Hellmann-Feynman force are smaller than 10-5eV and 0.02 eV/?A,respectively.More computational details for the NRR are given in the Supporting information.

    The optimized geometrical structure of pristine g-C6N6monolayer is depicted in Fig.1a,which contains six carbon atoms and six nitrogen atoms in the hexagonal unit cell with space group P6/MMM and point group D6H-1.The calculated lattice constants are found to bea=b=7.12 ?A with the C-C and C-N bond distances of 1.51 and 1.34 ?A,respectively,in good agreement with previous reports [65-67].In this study,a 2×2×1 g-C6N6supercell is employed as an ideal substrate for anchoring the selected four types of common TM atoms (TM=Fe,Co,Ni and Mo).To find the most favorable anchoring sites,we examine two possible configurations of the single and double TM atoms on the g-C6N6monolayer (labeled as TM@g-C6N6and TM2@g-C6N6,respectively),in which TM atoms bond with two N atoms or three N atoms of g-C6N6substrate.As shown in Fig.1b,we find that the single TM atom bonds strongly with adjacent two N atoms at the cavity edge after full optimization except for the Mo atom,while all the double TM atoms are located within the six-remember nitrogen hole and bond with three N atoms.The distances of TM-TM bonds are 2.13 ?A for Fe,2.18 ?A for Co,2.34 ?A for Ni,and 1.78 ?A for Mo.The planar structure of the g-C6N6monolayer can be maintained well before and after anchoring these TM atoms.Compared to pristine g-C6N6with a band gap of 1.83 eV (Fig.S1 in Supporting information),these TMn@g-C6N6monolayers exhibit metallic features mainly originated from the hybridized states between TM-d and the adjacent N-p orbitals (Fig.S2 in Supporting information),which will be propitious to the electrocatalytic reactions.

    To estimate the structural stability of TMn@g-C6N6,we calculate the binding energies (Eb),as shown in Fig.1c.Overall,all double TM anchored on g-C6N6show larger binding energies compared to the corresponding single TM anchored cases,suggesting that the formed metal-metal bonding can offer positive effects on stabilization of these TM dimers.Moreover,theEbof TMn@g-C6N6are more negative than their respective cohesive energies of bulk metal,signifying strong interactions between the TM atoms and g-C6N6monolayer,and superior thermodynamic stability.In addition,we further check the temperature-dependent stability of TMn@g-C6N6byab initiomolecular dynamics (AIMD) simulations as depicted in Fig.S3 (Supporting information).We observe that these TMn@g-C6N6systems display narrow energy fluctuations and slight structural changes during the simulated time,verifying the excellent thermal stability at room temperature.Thus,it is believed that the as-designed TMn@g-C6N6could serve as potential electrocatalyst with high stability.

    Following the screening requirements for NRR catalyst [68,69],we turn to examine the Gibbs free energy changes (△G) of the N2adsorption and first hydrogenation process of NRR to produce*N2H on TMn@g-C6N6for identifying the most qualified candidate.The computed △Gfor the two processes are presented in Figs.2a and b,respectively.Our results show that all the TM@g-C6N6systems are incapable of capturing N2molecule through the side-on configuration because of their positive △G*N2,whereas N2molecule can effectively chemisorb on TM@g-C6N6by means of the end-on configuration.However,the first protonation of adsorbed N2(*N2+H++e-→*N2H) require much high energy inputs,such as 1.34 eV for Fe@g-C6N6,1.33 eV for Co@g-C6N6,1.25 eV for Ni@g-C6N6,and 0.51 eV for Mo@g-C6N6,demonstrating that they are inefficient electrocatalysts for N2reduction.In this regard,the TM@g-C6N6systems are eliminated as eligible NRR catalysts.

    With respect to TM@g-C6N6,we find that except for Ni2@g-C6N6,N2molecule can be well captured by TM2@g-C6N6regardless of end-on or side-on configuration,as indicated by the calculated△G*N2ranging from-0.46 eV to-0.81 eV.Further,the △Gvalues of*N2H formation on the Fe2@g-C6N6and Co2@g-C6N6are predicted to be at least 0.48 and 0.72 eV,respectively,marking them as inefficient electrocatalysts for N2reduction.Notably,the first hydrogenation process of NRR to produce*N2H on Mo2@g-C6N6demands only 0.11 eV energy input for the side-on configuration,while it even becomes a spontaneous reaction for the end-on configuration.Based on these screening results,only the Mo2@g-C6N6is of interest in virtue of satisfying all the requirements,and thus will be examined in the following discussion.

    Fig.2.Calculated Gibbs free energies (△G) for (a) N2 adsorption and (b) *N2H formation on TM@g-C6N6 and TM2@g-C6N6.

    Fig.3.(a) End-on and (b) side-on adsorption configurations for N2 on Mo2@g-C6N6 monolayer.(c,d) The corresponding charge density difference,where the isosurface value is set to be 0.005 e/?A3 and the yellow and cyan show the positive and negative charges,respectively.The computed projected density of states of Mo2@g-C6N6 with the N2 adsorption through (e) end-on and (f) side-on configurations.

    Fig.4.(a) Schematic depiction of three possible reaction mechanisms for N2 electroreduction to NH3 on the Mo2@g-C6N6 monolayer.Optimized geometries of all reaction intermediates along the (b) distal,(c) alternating,and (d) enzymatic pathways.

    Figs.3a and b depict the optimized structures of N2adsorbed Mo2@g-C6N6viaend-on and side-on configurations,respectively.Compared with the isolated N2molecule (1.12 ?A),the N-N bond length is significantly stretched by 0.04 ?A for end-on adsorption and by 0.09 ?A for side-on adsorption,signifying the effective activation of the inert triple bond of N2.Bader charge analysis shows that there are about 0.49 and 0.70 electrons transferred from Mo2@g-C6N6to the adsorbed N2in end-on and side-on patterns,respectively,which attributes to the different electronegativities of N (3.04) and Mo (1.86).Moreover,as presented in Figs.3c and d,we can observe the obvious charge accumulation and depletion around the anchored Mo dimer and N2for both adsorption configurations.Interestingly,such a charge distribution ideally accords with the "acceptance-donation" process as proposed by Ling and co-workers [70],that is,the Mo dimer donates electrons into the antibonding orbitals of N2and simultaneously accepts lone-pair electrons from it.From the computed projected density of states given in Figs.3e and f,we find that there are significant electronic coupling between the N-2p orbital of the adsorbed N2molecule and Mo-4d orbital,thus give rise to the anti-bonding states located above the Fermi level and bonding states lied below the Fermi level,further supporting the "acceptance-donation" picture.Moreover,after N2adsorption with side-on configuration,the magnetic moments of the Mo dimer and N2molecule are nearly unchanged and remain 0 μB.However,for N2adsorption with end-on configuration,we observe that their corresponding magnetic moments increase to 0.97 μB and 0.24 μB,respectively.As shown in Fig.S4 (Supporting information),the increased magnetic moments attribute to the asymmetrical distributions of Mo-4d and N-2p orbitals,caused by the couplings of Mo 4dz-N 2py,Mo 4dxz-N 2pzand Mo 4dz2-N 2pz.These above analyses demonstrate the successful activation of N2on Mo2@g-C6N6,which would further facilitate the subsequent reaction of converting N2to NH3molecules.

    As illustrated in Fig.4a,three possible reaction mechanisms,named distal,alternating,and enzymatic,are considered for the transformation from N2to NH3.Both distal and alternating mechanisms start from the adsorbed N2with end-on configuration,while the enzymatic mechanism is initiated with the side-on adsorbed N2.Whereafter,each mechanism involves six consecutive protonation plus reduction steps,accompanied by the production of two NH3molecules.The optimized geometries of all reaction intermediates along these three pathways on Mo2@g-C6N6monolayer are given in Figs.4b-d,and the predicted Gibbs free energy profiles are illustrated in Figs.5a-c.

    As NRR proceeds along the distal or alternating pathway,the first protonation plus reduction step is similar,and found to be exothermic by 0.02 eV with the further elongation of N-N bond(from 1.16 ?A to 1.25 ?A).It is noteworthy that this first hydrogenation is normally non-spontaneous for most studied electrocatalysts since the free energy change is thermodynamically uphill.For the following elementary steps through distal pathway,the*N-NH can be spontaneously hydrogenated to*NH2by reacting with the proton-electron pair four times.Specifically,as shown in Fig.5a,the Gibbs reaction free energies of these four hydrogenation steps are-0.10,-0.22,-0.80 and-0.81 eV,respectively.Finally,the process of*NH2+H++e-→*NH3is slightly uphill by 0.06 eV in the Gibbs free energy profile.Overall,the potentiallimiting step (PDS) of the distal mechanism is the sixth protonation plus reduction step owing to its maximum △Gof 0.06 eV.For the case of the alternating mechanism,as given in Fig.5b,the Gibbs free energy changes along the subsequent protonation plus reduction steps are calculated respectively to be-0.02,0.07,-0.34,0.22,-1.88 and 0.06 eV.Thus,the hydrogenation of*NH-NH2into*NH2-NH2is the PDS with a maximal energy demand of 0.22 eV.Regarding of the enzymatic mechanism,the first protonation plus reduction step is slightly uphill energetically,with a △Gvalue of 0.11 eV as demonstrated in Fig.5c.After that,the subsequent elementary reaction steps are all exothermic,except for the formation of*NH-*NH2(*NH-*NH+H++e-→*NH-*NH2) and second NH3(*NH2+H++e-→*NH3).Among the hydrogenation steps of the enzymatic mechanism,the step converting*N-*NH to*NH-*NH2has the largest free energy change (0.28 eV),which can be identified as the PDS.Of note,the desorption of the second NH3from Mo2@g-C6N6monolayer is not a problematic obstacle.As demonstrated in previous studies [55,66],the*NH3species can be released in the form of NH4+under acidic electrochemical conditions.Moreover,the free energy change for the release of the final product NH3is only 0.82 eV,which can be easily overcame in consideration of the released energy (about 2.60 eV,Fig.5) in the proceeding hydrogenation steps.These ensure the rapid removal of the produced NH3under ambient conditions for recovering the catalysts.

    Fig.5.Gibbs free energy profiles of N2 reduction on Mo2@g-C6N6 monolayer via the (a) distal,(b) alternating and (c) enzymatic mechanisms at zero and applied potentials.(d) Charge variation of three moieties for the NRR along the preferred distal pathway.

    In electrocatalysis,the limiting potential (UL),defined as the lowest applied electrode potential to overcome the maximum positive △Gon the considered pathway,is the most commonly used descriptor for chemical reactivity,which can be calculated by UL=-△Gmax/e [71,72].A less negativeULindicates a faster electrochemical process at a given potential.As discussed above,the limiting potential with respect to the standard hydrogen electrode are calculated to be-0.06 V for distal,-0.22 V for alternating,and-0.28 V for enzymatic.Consequently,we predict that the NRR on Mo2@g-C6N6will prefer to proceedviathe distal mechanism in virtue of its lowest negative value.Remarkably,such a limiting potential is substantially less negative than the equilibrium potential of overall NRR (-0.16 V) as well as other recently reported DACs for NH3synthesis,implying that the applied potential even as low as the equilibrium potential can adequately drive the NRR.Therefore,Mo2@g-C6N6could be expected as a promising candidate electrocatalyst for N2reduction to NH3.

    It should be pointed out that conventional DFT method often fails to describe the systems with strongly correlated d-electrons.In order to further evaluate the reliability of the above results,we employ the DFT+U method to re-examine Gibbs free energy profile of N2reduction on Mo2@g-C6N6monolayer through the preferred distal pathway.As shown in Fig.S5 (Supporting information),we can see that the Hubbard U value has little influence on the free energy diagram,and both of the limiting potential and PDS with the Hubbard U correction are in line with the PBE results,suggesting that the PBE calculated results are acceptable in this work.

    To gain insight into the superior catalytic activity of Mo2@g-C6N6,we further employ Bader charge analysis to investigate the charge variation of various intermediates along the favorable distal pathway.Herein,we divide each intermediate into three groups,including the g-C6N6,anchored Mo dimer,and adsorbed NxHyspecies.As depicted in Fig.5d,the N2molecule after chemisorption on the Mo dimer accumulates about 0.49 electrons,which is considered to be propitious for the hydrogeneration of*N2into*N2H.In the following NRR steps,it is observed that there are obvious charge fluctuations in both of the g-C6N6and NxHygroups,while the charge value of Mo dimer remains almost unchanged.That is to say,the charge variation of the NxHyspecies mainly associates with that of the g-C6N6.The Mo dimer serves as not only the active site but also electron transmitter between the g-C6N6and NxHyspecies during the entire NRR process.

    As one of the prerequisites of an excellent NRR electrocatalyst with high FE,it is crucial to suppress the hydrogen evolution reaction (HER),which is the major competing reaction during the NRR.Therefore,we compute the adsorption free energies of*H (△G*H)at the Mo dimer site of Mo2@g-C6N6monolayer.The △G*His found to be 0.46 eV,which is more positive than the △G*N2(-0.71 eV),suggesting that the active site would be primarily covered by*N2.Moreover,the free energy barrier for HER (0.46 eV) is considerable larger than the PDS barrier for NRR (0.06 eV).In this respect,the FE of Mo2@g-C6N6is estimated to be approximately 100% at room temperature according to the Boltzmann distribution,indicating the high selectivity for NRR.

    In conclusion,by performing comprehensive DFT computations,we explore the potential of single and double transition metal atoms (TM=Fe,Co,Ni and Mo) anchored g-C6N6monolayers for electrochemical N2reduction to NH3.Among these systems,Mo2@g-C6N6monolayer is identified as the most promising catalyst candidate toward NRR with the help of prescreening criteria.Our results demonstrate that N2molecule is effectively captured and activated by the Mo dimer anchored on g-C6N6through the"acceptance-donation" process.The subsequent N2reduction reaction on Mo2@g-C6N6monolayer proceed dominantlyviathe distal mechanism with an extremely low limiting potential of-0.06 V.Importantly,the competitive HER can be well inhibited on the Mo2@ g-C6N6monolayer due to a much larger △G*H,ensuring substantial selectivity (~100%) toward NH3synthesis.Hence,the Mo2@g-C6N6monolayer proposed in this work has great potential applications for NRR,highlighting the importance of DACs for NRR.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the Science &Technology Development Fund of Tianjin Education Commission for Higher Education (No.2020KJ008),by the Natural Science Foundation of Tianjin(No.18JCQNJC76000),and by the College Students’Innovation and Entrepreneurship Training Program of Tianjin (No.202110065112),Science and Technology Research Project of Hubei Provincial Department of Education (No.D20212603),Hubei University of Arts and Science (Nos.2020kypytd002,XK2021024) and China Scholarship Council.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2021.12.040.

    av网站免费在线观看视频| 欧美精品人与动牲交sv欧美| 韩国av在线不卡| 香蕉国产在线看| 亚洲人成网站在线观看播放| 春色校园在线视频观看| 永久免费av网站大全| 丝袜在线中文字幕| 国产成人免费无遮挡视频| 久久99蜜桃精品久久| 国产老妇伦熟女老妇高清| xxx大片免费视频| 看十八女毛片水多多多| 999精品在线视频| 国产亚洲欧美精品永久| 少妇猛男粗大的猛烈进出视频| 免费黄频网站在线观看国产| 热99国产精品久久久久久7| 激情五月婷婷亚洲| 汤姆久久久久久久影院中文字幕| 午夜视频国产福利| 中文字幕亚洲精品专区| 久久ye,这里只有精品| 人人妻人人澡人人爽人人夜夜| 亚洲欧美清纯卡通| 人人妻人人澡人人看| 成年美女黄网站色视频大全免费| 日韩一区二区视频免费看| 下体分泌物呈黄色| www.熟女人妻精品国产 | 80岁老熟妇乱子伦牲交| 看十八女毛片水多多多| 男女边吃奶边做爰视频| 久久人妻熟女aⅴ| 亚洲第一av免费看| 99热全是精品| 美女福利国产在线| 亚洲国产精品专区欧美| 天天操日日干夜夜撸| 国产免费又黄又爽又色| 亚洲av免费高清在线观看| 久久99蜜桃精品久久| av有码第一页| 天天躁夜夜躁狠狠躁躁| 亚洲 欧美一区二区三区| 欧美另类一区| 黄片无遮挡物在线观看| 日韩,欧美,国产一区二区三区| 久久韩国三级中文字幕| 男女啪啪激烈高潮av片| 午夜免费男女啪啪视频观看| 又黄又粗又硬又大视频| 亚洲综合色惰| 午夜福利网站1000一区二区三区| 国产一区有黄有色的免费视频| 在线观看国产h片| 精品酒店卫生间| 成年av动漫网址| 国产亚洲欧美精品永久| 永久网站在线| 久热久热在线精品观看| 好男人视频免费观看在线| 国产成人av激情在线播放| 五月伊人婷婷丁香| 国产伦理片在线播放av一区| 性色av一级| 日本猛色少妇xxxxx猛交久久| 免费高清在线观看视频在线观看| 亚洲精品日韩在线中文字幕| 亚洲一码二码三码区别大吗| 成人免费观看视频高清| 中文字幕免费在线视频6| 日日摸夜夜添夜夜爱| 2018国产大陆天天弄谢| 亚洲第一区二区三区不卡| 91成人精品电影| 99久久精品国产国产毛片| 国产国语露脸激情在线看| 黄色一级大片看看| 欧美人与性动交α欧美软件 | 日韩一本色道免费dvd| 亚洲国产毛片av蜜桃av| 黄色配什么色好看| 青春草国产在线视频| 久久久久视频综合| 亚洲精品,欧美精品| 亚洲欧美精品自产自拍| 不卡视频在线观看欧美| 国产免费又黄又爽又色| 高清毛片免费看| 女性被躁到高潮视频| 国产精品国产三级国产av玫瑰| 国产黄色免费在线视频| 日本-黄色视频高清免费观看| 亚洲精品久久成人aⅴ小说| 国产欧美日韩一区二区三区在线| 男男h啪啪无遮挡| 午夜免费鲁丝| 一区在线观看完整版| 国产精品一国产av| 国产男女超爽视频在线观看| 久久人人97超碰香蕉20202| 侵犯人妻中文字幕一二三四区| 一本久久精品| 色哟哟·www| 久久99一区二区三区| 美女中出高潮动态图| 三级国产精品片| 2021少妇久久久久久久久久久| 久久久国产一区二区| 国产国语露脸激情在线看| 亚洲av中文av极速乱| 国产精品久久久av美女十八| 日韩 亚洲 欧美在线| 精品一区在线观看国产| 亚洲成国产人片在线观看| 亚洲天堂av无毛| 精品熟女少妇av免费看| 丁香六月天网| 亚洲精品国产av蜜桃| 国产精品久久久久成人av| 十分钟在线观看高清视频www| 久久久国产精品麻豆| 亚洲少妇的诱惑av| 最近手机中文字幕大全| 精品久久蜜臀av无| 久久人人爽人人爽人人片va| 满18在线观看网站| 亚洲经典国产精华液单| 看十八女毛片水多多多| 国产免费又黄又爽又色| 久久人人97超碰香蕉20202| 中文乱码字字幕精品一区二区三区| 日本wwww免费看| 日韩av不卡免费在线播放| 久久国产精品大桥未久av| 亚洲,欧美精品.| 久久久久久久久久成人| 老女人水多毛片| 欧美人与性动交α欧美软件 | 欧美国产精品va在线观看不卡| 国产亚洲午夜精品一区二区久久| 国产永久视频网站| 欧美老熟妇乱子伦牲交| 香蕉精品网在线| 咕卡用的链子| 好男人视频免费观看在线| 亚洲精品久久午夜乱码| 一级片'在线观看视频| 日韩制服骚丝袜av| 波野结衣二区三区在线| 久久精品国产亚洲av天美| 国产在视频线精品| 中文字幕人妻熟女乱码| 女人久久www免费人成看片| 熟妇人妻不卡中文字幕| 纯流量卡能插随身wifi吗| 在线亚洲精品国产二区图片欧美| 99久国产av精品国产电影| 人人澡人人妻人| 国产精品免费大片| 亚洲av.av天堂| 熟女人妻精品中文字幕| 亚洲av男天堂| 国产免费一级a男人的天堂| 国产免费现黄频在线看| 欧美精品人与动牲交sv欧美| 一区在线观看完整版| 亚洲欧洲国产日韩| 日本与韩国留学比较| av免费观看日本| 免费高清在线观看视频在线观看| 亚洲中文av在线| a级片在线免费高清观看视频| 日日啪夜夜爽| 久久精品国产a三级三级三级| 亚洲精品456在线播放app| 少妇熟女欧美另类| 毛片一级片免费看久久久久| 亚洲国产精品专区欧美| av网站免费在线观看视频| a级毛片在线看网站| 国产熟女欧美一区二区| 久久毛片免费看一区二区三区| 夜夜爽夜夜爽视频| 日本欧美视频一区| 精品人妻一区二区三区麻豆| 欧美xxxx性猛交bbbb| 黑人欧美特级aaaaaa片| 少妇人妻 视频| 亚洲精品乱码久久久久久按摩| 黄片无遮挡物在线观看| 多毛熟女@视频| 亚洲欧美清纯卡通| 中文乱码字字幕精品一区二区三区| 亚洲情色 制服丝袜| 国产片内射在线| 两个人看的免费小视频| 国产精品三级大全| 最近最新中文字幕免费大全7| 色婷婷av一区二区三区视频| 一本色道久久久久久精品综合| 国产精品无大码| 人体艺术视频欧美日本| 90打野战视频偷拍视频| 亚洲久久久国产精品| 亚洲国产日韩一区二区| 欧美日本中文国产一区发布| www.av在线官网国产| 久久精品熟女亚洲av麻豆精品| 亚洲精品国产av蜜桃| 黄色 视频免费看| 女人被躁到高潮嗷嗷叫费观| 在线亚洲精品国产二区图片欧美| 热99国产精品久久久久久7| 欧美日韩视频高清一区二区三区二| 男女高潮啪啪啪动态图| 黄片播放在线免费| 在线观看国产h片| 免费观看无遮挡的男女| 欧美精品亚洲一区二区| 青春草国产在线视频| 麻豆精品久久久久久蜜桃| 妹子高潮喷水视频| 夜夜爽夜夜爽视频| 午夜福利,免费看| 国产在线视频一区二区| 久久国产精品男人的天堂亚洲 | 在线精品无人区一区二区三| 国产淫语在线视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲激情五月婷婷啪啪| 欧美日韩综合久久久久久| 不卡视频在线观看欧美| 日韩一本色道免费dvd| 如日韩欧美国产精品一区二区三区| 色婷婷av一区二区三区视频| 夫妻午夜视频| 一二三四中文在线观看免费高清| 亚洲国产色片| 伊人久久国产一区二区| 午夜免费男女啪啪视频观看| 国产高清不卡午夜福利| 男女边摸边吃奶| 日日撸夜夜添| 免费观看性生交大片5| 国产老妇伦熟女老妇高清| 成年av动漫网址| 国产精品不卡视频一区二区| 日本免费在线观看一区| 1024视频免费在线观看| 26uuu在线亚洲综合色| 国产亚洲午夜精品一区二区久久| 免费观看性生交大片5| 韩国高清视频一区二区三区| 少妇被粗大的猛进出69影院 | 国产精品国产三级专区第一集| 哪个播放器可以免费观看大片| 七月丁香在线播放| 啦啦啦视频在线资源免费观看| 免费av不卡在线播放| 老司机影院毛片| 日韩一本色道免费dvd| 亚洲熟女精品中文字幕| 国产欧美另类精品又又久久亚洲欧美| 色哟哟·www| 嫩草影院入口| 免费日韩欧美在线观看| 欧美成人午夜免费资源| av视频免费观看在线观看| 中文字幕人妻丝袜制服| 99热国产这里只有精品6| 黑人猛操日本美女一级片| 成年人午夜在线观看视频| 国产欧美日韩一区二区三区在线| av黄色大香蕉| 热99久久久久精品小说推荐| 九九在线视频观看精品| 亚洲熟女精品中文字幕| 日日撸夜夜添| 中文精品一卡2卡3卡4更新| 久久 成人 亚洲| 精品一区二区三区视频在线| 另类精品久久| 久久狼人影院| 国产熟女欧美一区二区| 精品国产一区二区三区久久久樱花| 永久免费av网站大全| 菩萨蛮人人尽说江南好唐韦庄| 久久人人爽人人爽人人片va| 777米奇影视久久| 免费观看无遮挡的男女| 九色亚洲精品在线播放| 丝袜在线中文字幕| 成年av动漫网址| 涩涩av久久男人的天堂| 成年动漫av网址| 国产男女超爽视频在线观看| 美女主播在线视频| 亚洲一级一片aⅴ在线观看| 2018国产大陆天天弄谢| 9191精品国产免费久久| 韩国av在线不卡| 黑人巨大精品欧美一区二区蜜桃 | 男女午夜视频在线观看 | a级毛片在线看网站| 精品福利永久在线观看| 亚洲色图 男人天堂 中文字幕 | 嫩草影院入口| 亚洲图色成人| 色5月婷婷丁香| 男女免费视频国产| 国产亚洲欧美精品永久| 丝袜美足系列| 如何舔出高潮| 秋霞伦理黄片| 99国产综合亚洲精品| 亚洲美女黄色视频免费看| 国产亚洲午夜精品一区二区久久| 国语对白做爰xxxⅹ性视频网站| 国产日韩欧美视频二区| 亚洲国产精品国产精品| 日韩成人伦理影院| 精品国产一区二区三区久久久樱花| 这个男人来自地球电影免费观看 | 中文字幕av电影在线播放| 毛片一级片免费看久久久久| 妹子高潮喷水视频| 久热这里只有精品99| 色网站视频免费| 精品国产乱码久久久久久小说| 极品人妻少妇av视频| 国产免费视频播放在线视频| 日韩免费高清中文字幕av| 婷婷色av中文字幕| 韩国精品一区二区三区 | 只有这里有精品99| 爱豆传媒免费全集在线观看| 性色avwww在线观看| 午夜精品国产一区二区电影| 人妻 亚洲 视频| 亚洲,欧美,日韩| 免费观看在线日韩| 日本黄大片高清| 免费在线观看黄色视频的| 精品少妇久久久久久888优播| 咕卡用的链子| 韩国精品一区二区三区 | 亚洲精品久久久久久婷婷小说| 七月丁香在线播放| 国语对白做爰xxxⅹ性视频网站| 香蕉精品网在线| 久久精品aⅴ一区二区三区四区 | 中文字幕最新亚洲高清| 国产一区二区在线观看日韩| 精品一区二区三区四区五区乱码 | 久久久久久人人人人人| a 毛片基地| 天天影视国产精品| 精品人妻熟女毛片av久久网站| 色网站视频免费| 国产精品秋霞免费鲁丝片| 9191精品国产免费久久| 久久人人爽av亚洲精品天堂| 黄色视频在线播放观看不卡| 90打野战视频偷拍视频| 国产成人精品婷婷| 中文字幕制服av| 日韩人妻精品一区2区三区| 成人无遮挡网站| 久久久久久久久久成人| 国产成人免费观看mmmm| 成人二区视频| 永久网站在线| 青青草视频在线视频观看| 久久久久久久亚洲中文字幕| 久久99精品国语久久久| 久久国内精品自在自线图片| 18+在线观看网站| 草草在线视频免费看| 大片免费播放器 马上看| 国产xxxxx性猛交| 亚洲精品aⅴ在线观看| 在线观看三级黄色| 9热在线视频观看99| 国产老妇伦熟女老妇高清| 三上悠亚av全集在线观看| 国产一区二区三区综合在线观看 | 国产 一区精品| 青春草亚洲视频在线观看| 精品一区二区三区视频在线| 巨乳人妻的诱惑在线观看| 亚洲精品aⅴ在线观看| 多毛熟女@视频| 成人二区视频| 尾随美女入室| 亚洲精品日韩在线中文字幕| 黑人欧美特级aaaaaa片| 国产成人欧美| 亚洲精品美女久久久久99蜜臀 | 亚洲精华国产精华液的使用体验| 亚洲激情五月婷婷啪啪| 高清av免费在线| 黄色视频在线播放观看不卡| 宅男免费午夜| 男人操女人黄网站| 亚洲国产最新在线播放| av黄色大香蕉| av.在线天堂| 一区二区av电影网| 性色avwww在线观看| 久久精品aⅴ一区二区三区四区 | 性色av一级| 在线精品无人区一区二区三| av免费观看日本| 美国免费a级毛片| 久久久国产欧美日韩av| 母亲3免费完整高清在线观看 | 18禁国产床啪视频网站| 男女免费视频国产| 亚洲精品乱久久久久久| a 毛片基地| 人妻一区二区av| 国产精品一国产av| 嫩草影院入口| 久久久国产欧美日韩av| 成人手机av| 国产1区2区3区精品| 一级爰片在线观看| 人成视频在线观看免费观看| 中文字幕最新亚洲高清| 亚洲精品中文字幕在线视频| 人体艺术视频欧美日本| 午夜久久久在线观看| 如何舔出高潮| 99re6热这里在线精品视频| 交换朋友夫妻互换小说| 成人黄色视频免费在线看| 97在线视频观看| 看免费av毛片| 在线观看www视频免费| 精品一区二区三卡| 色94色欧美一区二区| 中文字幕人妻熟女乱码| 高清视频免费观看一区二区| 亚洲av欧美aⅴ国产| 一边亲一边摸免费视频| 男人舔女人的私密视频| 日韩一本色道免费dvd| 中国国产av一级| 成人二区视频| 成人免费观看视频高清| 一级a做视频免费观看| 内地一区二区视频在线| 全区人妻精品视频| 9色porny在线观看| 国产又爽黄色视频| 欧美bdsm另类| 欧美 亚洲 国产 日韩一| 色5月婷婷丁香| 国产精品国产三级国产av玫瑰| 亚洲精品日本国产第一区| 国产一区二区激情短视频 | 少妇被粗大的猛进出69影院 | 亚洲综合色惰| 欧美日韩av久久| 少妇高潮的动态图| 777米奇影视久久| 亚洲国产欧美日韩在线播放| 天堂中文最新版在线下载| 精品少妇久久久久久888优播| 涩涩av久久男人的天堂| 亚洲天堂av无毛| 黄色视频在线播放观看不卡| 十八禁网站网址无遮挡| 精品久久蜜臀av无| 欧美亚洲日本最大视频资源| 高清黄色对白视频在线免费看| 精品第一国产精品| 日本91视频免费播放| 成人黄色视频免费在线看| 中文字幕精品免费在线观看视频 | 视频在线观看一区二区三区| 一级毛片我不卡| 精品国产一区二区三区四区第35| 国产精品成人在线| 99久久综合免费| 久久久精品免费免费高清| 少妇的丰满在线观看| 国产欧美日韩一区二区三区在线| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧洲日产国产| 乱人伦中国视频| freevideosex欧美| 热99国产精品久久久久久7| videosex国产| 亚洲精品国产色婷婷电影| 又黄又爽又刺激的免费视频.| 久久久亚洲精品成人影院| 日日摸夜夜添夜夜爱| 美女中出高潮动态图| 男人操女人黄网站| 亚洲av免费高清在线观看| 亚洲在久久综合| √禁漫天堂资源中文www| 国产深夜福利视频在线观看| 91aial.com中文字幕在线观看| 国产精品久久久久久av不卡| 亚洲精华国产精华液的使用体验| 精品国产一区二区久久| 久久精品夜色国产| 美女脱内裤让男人舔精品视频| 久久ye,这里只有精品| 91成人精品电影| 久久精品久久久久久噜噜老黄| 曰老女人黄片| 日本黄大片高清| 日韩免费高清中文字幕av| 亚洲,欧美,日韩| 中文精品一卡2卡3卡4更新| 黑人巨大精品欧美一区二区蜜桃 | 视频中文字幕在线观看| 美女中出高潮动态图| av片东京热男人的天堂| 蜜桃国产av成人99| 亚洲国产精品一区二区三区在线| 丰满迷人的少妇在线观看| 欧美97在线视频| 精品国产一区二区久久| 丰满饥渴人妻一区二区三| 日产精品乱码卡一卡2卡三| 黄色视频在线播放观看不卡| 亚洲av欧美aⅴ国产| 免费日韩欧美在线观看| 天天躁夜夜躁狠狠久久av| 人妻少妇偷人精品九色| 天天操日日干夜夜撸| 国产精品嫩草影院av在线观看| 国产在线免费精品| av天堂久久9| 午夜福利乱码中文字幕| 精品午夜福利在线看| 黄色 视频免费看| 日本欧美视频一区| 成人国语在线视频| 亚洲欧美色中文字幕在线| 精品一区二区三区四区五区乱码 | 91午夜精品亚洲一区二区三区| 精品久久久精品久久久| 国产精品.久久久| 男男h啪啪无遮挡| 欧美最新免费一区二区三区| 日日摸夜夜添夜夜爱| 成年女人在线观看亚洲视频| 亚洲一级一片aⅴ在线观看| 久久精品国产a三级三级三级| 国产 一区精品| 少妇熟女欧美另类| 亚洲一区二区三区欧美精品| 麻豆乱淫一区二区| 日韩av不卡免费在线播放| 五月天丁香电影| 国产福利在线免费观看视频| 久久久久精品性色| 伊人亚洲综合成人网| 老司机影院成人| 99精国产麻豆久久婷婷| 丝袜美足系列| 国产白丝娇喘喷水9色精品| 亚洲av电影在线观看一区二区三区| 人妻 亚洲 视频| 欧美性感艳星| 亚洲欧美成人精品一区二区| 中国国产av一级| 深夜精品福利| 精品久久国产蜜桃| 两个人免费观看高清视频| 日韩成人av中文字幕在线观看| 大香蕉久久网| 午夜91福利影院| 亚洲一码二码三码区别大吗| 国产精品熟女久久久久浪| 男的添女的下面高潮视频| 97人妻天天添夜夜摸| 亚洲精品日韩在线中文字幕| 在线免费观看不下载黄p国产| 美女大奶头黄色视频| 一边摸一边做爽爽视频免费| 亚洲色图 男人天堂 中文字幕 | 亚洲精品456在线播放app| 99热国产这里只有精品6| 国产高清三级在线| 久久久久视频综合| 欧美变态另类bdsm刘玥| 精品第一国产精品| 亚洲成色77777| 国产 精品1| 国产一区二区三区av在线| 99久久人妻综合| 一级a做视频免费观看| 少妇被粗大的猛进出69影院 | 久热久热在线精品观看| 菩萨蛮人人尽说江南好唐韦庄| 国产日韩欧美在线精品| 精品久久蜜臀av无| 日韩欧美一区视频在线观看| www.熟女人妻精品国产 | 少妇人妻久久综合中文| 巨乳人妻的诱惑在线观看| 国产激情久久老熟女| 少妇被粗大的猛进出69影院 | 热99国产精品久久久久久7| 国产福利在线免费观看视频| 亚洲人与动物交配视频| 视频在线观看一区二区三区|