• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A hybrid nano-assembly with synergistically promoting photothermal and catalytic radical activity for antibacterial therapy

    2022-11-05 06:47:44YunxiWngChungxinZhngHuiZhngLihengFengLibingLiu
    Chinese Chemical Letters 2022年10期

    Yunxi Wng,Chungxin Zhng,Hui Zhng,Liheng Feng,*,Libing Liu

    a School of Chemistry and Chemical Engineering,Shanxi University,Taiyuan 030006,China

    b Department of Nutrition and Health,China Agricultural University,Beijing 100193,China

    c Beijing National Laboratory for Molecular Sciences,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    Keywords:Conjugated oligomer Nano-assembly Fenton reaction Photothermal therapy Bacterial infections

    ABSTRACT It is of great significance to develop effective antibacterial agents and methods to combat drug resistant bacterial infections due to its increasing threaten to human health and the ineffectiveness of antibiotics.Herein,a multifunctional hybrid nano-assembly (M1-Fe NPs) based on conjugated oligomer and ferrous ion was engineered with favorable bactericidal activity for synergetic antibacterial therapy.The chelation of ferrous ion not only enhances the photothermal conversion efficiency of M1 but also endows the nano-assembly with catalytic capability of transferring H2O2 into stronger oxidant hydroxyl radicals(·OH).Meanwhile,the generated heat can further promote the Fenton reaction activity.By generating cytotoxic heat and oxidative ·OH,M1-Fe NPs can effectively kill Staphylococcus aureus in vitro and in vivo with the aid of low dosage of H2O2.The work provides a new multifunctional platform for combinational drug resistant antibacterial therapy and even antitumor therapy.

    Although the generation of various antibiotics,the drug resistant bacterial infections still threaten the health of human being over the world [1-4].It is emergent to develop effective antibacterial agents and antibacterial strategies to resist the evolution of bacteria and eliminate the damage from bacterial infections.By now,different kinds of materials have been developed to antibacterial agents relied on diverse antibacterial mechanisms [5-10].Agbased materials can kill bacteria by inhibiting replication through the binding of Ag ions with ATP synthetic enzymes [11].Cationic polymers,quaternary ammonium salts,and antibacterial peptides can perturb and disrupt the cell membrane of bacteria to induce the death of bacteria [12-15].Conjugated polymer [16-20],metalorganic frameworks [21-23],black phosphorus [24,25],copper sulfide [26,27],Au-[28-30]and carbon-based materials [31,32]can generate reactive oxygen species (ROS) or heat under light irradiation to oxidize or damage phospholipids,proteins and even DNA to kill bacteria,which is involved in photodynamic therapy (PDT)and photothermal therapy (PTT).In addition,hydrogels are also developed as multifunctional anti-infective materials by combining above mentioned antibacterial mechanism with ability of tissue repair [33].However,there are still some disadvantages in current antibacterial agents for practical antibacterial therapy,such as low antibacterial ability and long-term cytotoxicity,and it remains a challenge to develop highly effective antibacterial agents and strategies with low biological toxicity and little possibility to trigger drug resistance.

    PDT and PTT are considered to be effective antibacterial therapies with characteristics of broad-spectrum antibacterial activity,spatial and temporal control and low side effects [34].The ROS and hyperthermia generated by photosensitizers and photothermal agents can kill all type of bacteria,including antibiotic resistant strains,with little chance to induce drug resistance.However,these two therapies have respective shortcomings,such as the limited damage to bacteria due to the oxygen-dependent antibacterial activity and the unnecessary damage to normal cells due to the excessive ROS and temperature [35,36].To address the issues,combined therapy of PDT and PTT is increasingly developed to maximize the advantages of two therapies and make up for the shortages of each other.Hydroxyl radical (·OH) is one kind of ROS and has stronger oxidation ability than other ROS,such as H2O2and1O2[37,38].Moreover,·OH can be generated by decomposition of H2O2with the aid of ferrous ion (Fe2+),which termed as Fenton reaction [39],without dependence of oxygen.It shows remarkable advantage over oxygen-dependent traditional PDT.Hence,Fenton reaction has attracted broad interest of researchers for development of chemodynamic therapy (CDT).Increasing works focus on the selection of nanomaterials and strategy to enhance the efficiency of CDT,offering important findings and rational instructions to the development of antitumor therapy [39,40].As most CDT agents are inorganic materials,organic materials also begin to be applied.Although the combined PTT and CDT for cancer treatment has been intensively investigated,for the antibacterial therapy combined two therapies remains rare,especially that mediated by organic materials.Therefore,it is imperative to develop organic materials with photothermal and catalytic Fenton reaction activity to realize synergistic treatment of bacterial infections.

    In this work,to effectively eradicate bacteria and lower the damage to normal tissue,we proposed a new antibacterial strategy of photothermal and chemodynamic synergistic promotion.Accordingly,we developed a hybrid nano-assembly with photothermal and catalytic Fenton reaction activity for synergetic antibacterial therapy (Scheme 1).The nano-assembly,termed as M1-Fe NPs,is comprised of ferrous ion-chelated conjugated oligomer M1 and amphiphilic polymer PLGA-PEG.M1 is designed to chelate with Fe2+offering catalytic activity of Fenton reaction and also act as photothermal agent.Furthermore,the chelation with Fe2+can in turn enhance the photothermal effect of M1.Hence,in the presence of H2O2and light irradiation (660 nm),M1-Fe NPs can catalyze decomposition of H2O2to generate stronger oxidizer·OH to damage bacteria.Meanwhile,the heat generated by M1 can further kill bacteria and promote the generation of·OH by accelerating Fenton reaction.TakingStaphylococcus aureus(S.aureus)as a typical representative,the synergistic damage of heat and·OH can effectively kill it by destroying membrane,proteins,enzyme and DNA.Besides,under light irradiation,M1-Fe NPs successfully treatS.aureus-infected wound of mice at the aid of low dosage of H2O2.Therefore,this work provides a hybrid nanoassembly based on conjugated oligmer to achieve highly effective and synergistic antibacterial PTT and CDT,and it also offers a novel multi-functional antibacterial platform for effective anti-infective therapy.

    Scheme 1.Schematic illustration of designed multifunctional hybrid nano-assembly M1-Fe NPs for highly effective and synergetic antibacterial therapy.

    Conjugated oligomer M1 is a kind of photothemal agent and can be prepared to nanoparticle M1-NPs,which has been reported by our previous literature [41].Its synthetic route is shown as Fig.S1 (Supporting information).However,it is necessary to develop new method to improve the photothmal property for better antibacterial application.Since the molecular structure of M1 contains heteroatoms such as sulfur and nitrogen,it is promise to have good chelation between M1 and Fe2+.The chelation probably changes the molecular configuration and light absorption ability of M1.And Fe2+is considered to have catalytic Fenton reaction activity that is heat-related and benefits antibacterial application.Therefore,Fe2+is designed to chelate with M1 to change the photothermal property and endow M1 with catalytic activity of Fenton reaction at the same time for obtaining enhanced antibacterial capability.

    M1 was cheated with Fe2+and then mixed with PLGA-PEG to prepare nanoparticles noted as M1-Fe NPs by nanoprecipitation method.The optical properties of chelated compound (M1-Fe) and nanoparticles were next investigated.As shown in Fig.S2 (Supporting information),the maximum absorption peak of oligomer M1 had an obvious blue-shift from 642 nm to 610 nm after chelated with Fe2+.Even processed to nanoparticles,the obvious blue-shift from 670 nm to 655 nm in the absorption spectra was still found(Fig.1a).It indicates that the chelation between M1 and Fe2+exist and is stable.Besides,the formation of nanoparticles made absorption spectrum broader (extending to 900 nm),especially better absorption at 660 nm,which provided excellent conditions for photothermal therapy.At an excitation wavelength of 650 nm,almost no fluorescence peak was observed in the fluorescent spectrum (ranging from 700 nm to 900 nm) of M1-Fe NPs (Fig.S3 in Supporting information),which further facilitated the conversion from light to heat.The average hydrodynamic diameter of M1-Fe NPs was measured to be ~60 nm by using dynamic light scattering(DLS) and was shown in Fig.1b.To further understand the morphology of M1-Fe NPs,scanning electron microscopy (SEM) was employed.As shown in Fig.S4 (Supporting information),M1-Fe NPs showed a uniformly spherical shape.

    Next,to verify the catalytic activity of M1-Fe NPs for catalyzing decomposition of H2O2,aminophenylfluorescein (APF) was used to detected the production of·OH by measuring the fluorescence of oxidized APF [42].Considering the acidic microenvironment at the site of infection,the detection was performed at a pH of 6.5.As shown in Fig.1c,compared with M1 NPs,M1-Fe NPs can catalyze H2O2to generate more·OH with stronger fluorescent intensity.After light irradiation,the amount of generated·OH was a little more,which might because M1-Fe NPs generate heat to accelerate the heat-related catalytic reaction.With the pH at 7.4,the generated·OH was obviously lower than that of 6.5 (Fig.1d).It indicates the introduction of Fe2+endows the nanoparticles with catalytic property and the catalytic activity is potential to be better in bacterial microenvironment under light irradiation.

    The ability of converting light to heat is important for photothermal antibacterial application,therefore,we investigated the photothermal property of M1-Fe NPs,and a 660 nm laser was used to irradiate nanoparticle solution.At a power density of 1.0 W/cm2,the temperature of M1-Fe NPs dispersion with different concentrations increased to varying degrees and the increase was positively correlated with nanoparticles concentrations and irradiation time(Fig.2a).After an irradiation of 8 min,the temperature of M1-Fe NPs was up to to 55 °C at a low concentration of 10.0 μg/mL,which indicated M1-Fe NPs had good photothermal capability.The corresponding thermal images that visualized the temperature changes of solutions are displayed as Fig.2b.In addition,the increase of temperature was also positively correlated with power density of light.As shown in Fig.S5 (Supporting information),the temperature of M1-Fe NPs (10.0 μg/mL) increased to 60 °C at an irradiated power density of 1.25 W/cm2.To further verify the boost effect of Fe2+on the photothermal property of M1 NPs,we compared the temperature changes of two nanoparticles under the same condition.As shown in Fig.2c,the temperature of M1-Fe NPs was higher than that of M1 NPs about 4 °C.It proved that the chelation indeed enhanced the photothermal conversion capability of M1 NPs.After five heating-cooling cycles,the temperature profiles of M1-Fe NPs were little changed,indicating the good photothermal stability (Fig.2d).All above mentioned results illustrate that fabricated M1-Fe NPs are potential to be applied in the photothermal antibacterial application.

    Fig.2.(a) Temperature changes and (b) infrared thermal images of M1-Fe NPs with different concentrations under light irradiation (660 nm,1.0 W/cm2).(c) Temperature profiles of M1 NPs and M1-Fe NPs under the same experimental condition (660 nm,1.0 W/cm2),respectively.(d) Temperature curve of M1-Fe NPs for 5 cycles of on/off light irradiation (660 nm laser,1 W/cm2).

    After verifying the photothermal and catalytic property of M1-Fe NPs,we next examined its antibacterial activity against planktonic bacteria.S.aureusis chosen as the model bacteria for it is a common pathogen and has better heat resistance [43].H2O2is employed as a source of·OH.Considering that the microenvironment of bacterial infected site was acidic,we performed the antibacterial experiment at a pH of 6.5 to simulate the infected environment,and set pH of 7.4 as contrast condition.As shown in Fig.3a,bacterial viability was decreased with the increase of M1-Fe NPs concentration,proving efficient and synergistic dual treatment mode.The corresponding bacterial plates are displayed as Fig.3b and Fig.S6 (Supporting information).In contrast,even treated with the highest concentration of M1-Fe NPs,about 70% of bacteria were still alive at pH of 7.4 and 6.5 without light irradiation.It indicates that·OH generated by decomposition of H2O2is not enough to eradicate bacteria.As the light introduced,the bacterial activity decreased obviously,no matter pH was 7.4 or 6.5.It verifies that heat plays an important role in killing bacteria.The decrease of bacterial activity was more remarkable at pH of 6.5,stating that the Fenton reaction was favored by the heat and acidic condition.These results illustrate that M1-Fe NPs are potential to effectively kill bacteria at infected site by generating heat and catalyzing H2O2.

    Fig.3.(a) Antibacterial activity of M1-Fe NPs with the aid of H2O2 under different concentration and pH conditions.(b) Corresponding bacterial plate images at killing concentration (10.0 μg/mL).(c) Antibacterial activity of different components at pH of 6.5 in dark or under irradiation and corresponding (d) bacterial plate images.(e)Fluorescence staining and (f) SEM images of S.aureus without and with treatment of M1-Fe NPs+H2O2 in dark or under irradiation.The scale bars are 20 μm in (e)and 1 μm in (f).Data are presented as mean ± SD (n=3).The light is a 660 nm laser (1.0 W/cm2).The concentration of M1-Fe NPs is 10.0 μg/mL.The concentration of H2O2 is 1 mmol/L.

    To figure out the synergistic antibacterial effect of heat and·OH,S.aureuswas treated with H2O2,Fe2+,H2O2+Fe2+,M1 NPs,M1-Fe NPs,and M1-Fe NPs+H2O2,respectively.The concentration of M1-Fe NPs is 10.0 μg/mL.As shown in Fig.3c,under light irradiation,the·OH generated from catalytic decomposition of 1 mmol/L H2O2by individual Fe2+could only kill 30% of bacteria.The heat generated from M1-Fe NPs under the same light irradiation damaged 50% of bacteria.Without light irradiation,the·OH generated from catalytic decomposition of H2O2by M1-Fe NPs might inhibit 34%of bacteria.In contrast,95% of bacteria could be killed by M1-Fe NPs and H2O2under the same light irradiation.The corresponding bacterial plates are displayed in Fig.3d and Fig.S7 (Supporting information).The result proves that the heat and·OH synergistically kill bacteria to obtain the best antibacterial effect in M1-Fe NPs-mediated antibacterial therapy.

    Further,the antibacterial mechanism of M1-Fe NPs with aid of H2O2was investigated.After different treatments,S.aureuswas stained by SYTO9 and PI to observe the state of bacteria through confocal laser scanning microscopy (CLSM).As shown in Fig.3e,bacteria treated with M1-Fe NPs and H2O2without light irradiation was mostly stained by SYTO9 showing green fluorescence.It indicates that most bacteria have intact membrane and kept alive.While,the bacteria was almost all stained by PI showing red fluorescence when light was performed.It demonstrates that the membranes of bacteria are ruptured and bacteria are dead.To further observe the morphology of bacteria after different treatments,SEM was employed to capture the images of bacteria.As depicted in Fig.S8 (Supporting information),the surface of bacteria treated with Fe2+and H2O2had a little collapsed,which might result from the oxidative damage of·OH that generated by Fe2+-catalyzed decomposition of H2O2.For bacteria treated with M1 NPs and M1-Fe NPs without light irradiation had little morphology change compared to that of blank group.However,upon light irradiation,the surface of some bacteria was fused,which might result from the heat produced by nanoparticles.Only the bacteria treated with M1-Fe NPs and H2O2under light irradiation appeared obvious wrinkled and fused morphology (Fig.3f).It indicates that the heat and·OH generated by M1-Fe NPs and H2O2synergistically break the membrane structure and other components of bacteria to kill them.

    Fig.4.(a) Cell viability of EA.hy926 and 293T after treatment of M1-Fe NPs with different concentrations.(b) Infrared thermal images of infected wound of mice after different treatments (660 nm,1.0 W/cm2).(c) Photographs of S.aureus-infected wounds of mice after 10-day treatment by various therapies.

    After understanding the antibacterial effects of M1-Fe NPs and H2O2,we next investigated their anti-infective ability.Firstly,the cytotoxicity of M1-Fe NPs was determined by standard MTT method.As shown in Fig.4a,M1-Fe NPs had little effect on the growth of two human cells EA.hy926 and 293T even at a concentration of 20.0 μg/mL,implying the low cytotoxicity and application possibility of M1-Fe NPs for anti-infective treatment.ThenS.aureus-infected mice modes were established to perform the antiinfective experiment.All animal procedures were performed according to the relevant laws and guidelines approved by the Animal Care and Use Committee of Shanxi University.Besides the treatment of M1-Fe NPs+H2O2,other treatments including saline,H2O2+Fe2+,M1 NPs,and M1-Fe NPs were performed as control treatments.The concentration of H2O2was 1.0 mmol/L,a low concentration for antibacterial application [38,44].Each treatment involved two groups: dark and light.The light group employed a 660 nm laser and the power density was 1.0 W/cm2plus an irradiation time of 8 min.As displayed in Fig.4b,after laser irradiation,the temperature of wound treated with M1-Fe NPs+H2O2increased to 55 °C,which was obviously higher than that of saline treated (43°C).Such locally high temperature of 55 °C can kill most bacteria and trigger little damage to normal tissue.Hence,the wound area of mice in M1-Fe NPs+H2O2plus light group decreases about 60%on the fourth day,which decreased the most in all groups (Fig.S9 in Supporting information).And after a 10-day treatment,the wound treated with M1-Fe NPs+H2O2under light irradiation had the best healing effect compared to other treatments (Fig.4c).It confirms that the synergistic PTT/CDT based on M1-Fe NPs and H2O2can effectively treatS.aureus-infected wound and get the best therapeutic effect than any other single therapy.All of the results demonstrated that M1-Fe NPs-mediated synergistic antibacterial therapy had a great potential for highly effective and safe treatment of bacterial infection.

    In summary,we have fabricated a multifunctional hybrid nanoassembly (M1-Fe NPs) based on conjugated oligomer M1 and Fe2+for synergetic PTT/CDT antibacterial therapy.The introduction of Fe2+not only increased the photothermal conversion property (increased 4 °C at 10.0 μg/mL),but also endowed the nanoparticles with catalytic capability of transferring H2O2into stronger oxidant·,OH.Moreover,the generated heat could further accelerate the catalytic decomposition of H2O2to kill more bacteria.Hence,upon light irradiation,the M1-Fe NPs could efficiently killS.aureuswith the aid of low dosage H2O2,which antibacterial effect was better than any other monotherapy.Finally,they also treated theS.aureus-infected wound of mice.This study offers a novel drug resistant antibacterial platform for effective,safe and synergistic anti-infective therapy.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    We are grateful to the National Natural Science Foundation of China (Nos.21977065,22177065 and 21807067),SanJin Scholars Support Plan under Special Funding (No.2017-06),Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Nos.201802106,2019L0022),Supported by the Fund for Shanxi “1331” Project (1331),and the Program for Introducing Overseas High-level Talents of Shanxi (Hundred Talents Plan).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.03.076.

    av网站免费在线观看视频| 久久精品成人免费网站| 成人手机av| 在线天堂中文资源库| xxxhd国产人妻xxx| 黄色毛片三级朝国网站| 一边摸一边抽搐一进一小说| 国产av精品麻豆| 91国产中文字幕| 99久久综合精品五月天人人| 国产99久久九九免费精品| 久久精品亚洲熟妇少妇任你| 黄色 视频免费看| 亚洲精品一区av在线观看| 好男人电影高清在线观看| 亚洲成人免费av在线播放| 久久久久亚洲av毛片大全| 午夜免费观看网址| 欧美日韩亚洲综合一区二区三区_| 国产欧美日韩一区二区精品| 久久久国产成人精品二区 | 亚洲精品中文字幕在线视频| 久久狼人影院| 亚洲人成77777在线视频| 亚洲色图 男人天堂 中文字幕| 久久久国产一区二区| 国产熟女xx| 日本免费一区二区三区高清不卡 | 青草久久国产| svipshipincom国产片| 老司机深夜福利视频在线观看| 国产av在哪里看| 国产一区二区激情短视频| 久久精品亚洲av国产电影网| √禁漫天堂资源中文www| 久久精品亚洲熟妇少妇任你| 人人妻,人人澡人人爽秒播| 精品一区二区三卡| 国产麻豆69| a级毛片黄视频| 看免费av毛片| 中文亚洲av片在线观看爽| 搡老岳熟女国产| 黑丝袜美女国产一区| 亚洲精品国产精品久久久不卡| 国产高清激情床上av| 精品久久久久久,| 欧美日本亚洲视频在线播放| 悠悠久久av| 亚洲av成人一区二区三| 久久人妻av系列| 黄色a级毛片大全视频| 麻豆一二三区av精品| 亚洲精品中文字幕在线视频| 免费在线观看完整版高清| 麻豆av在线久日| 国产激情久久老熟女| 热99国产精品久久久久久7| 国产av在哪里看| 精品国产美女av久久久久小说| 在线观看一区二区三区激情| 好男人电影高清在线观看| 中文亚洲av片在线观看爽| 久久香蕉精品热| 一进一出抽搐gif免费好疼 | 真人做人爱边吃奶动态| 免费在线观看影片大全网站| 国产精品二区激情视频| 久久性视频一级片| 久久热在线av| 亚洲欧美激情在线| 国产精品免费一区二区三区在线| 一边摸一边抽搐一进一小说| 搡老乐熟女国产| 一边摸一边做爽爽视频免费| 国产欧美日韩一区二区三| 色精品久久人妻99蜜桃| 热99re8久久精品国产| 久久人人精品亚洲av| 国产99白浆流出| 999久久久国产精品视频| 村上凉子中文字幕在线| 天堂俺去俺来也www色官网| 亚洲色图综合在线观看| 看黄色毛片网站| 黑人巨大精品欧美一区二区mp4| 国产av一区二区精品久久| 久久久久久久精品吃奶| 美女扒开内裤让男人捅视频| 曰老女人黄片| 一区二区日韩欧美中文字幕| 久久天躁狠狠躁夜夜2o2o| 成人18禁在线播放| 久热爱精品视频在线9| 国产欧美日韩一区二区三| 18禁裸乳无遮挡免费网站照片 | 黄色视频,在线免费观看| 亚洲欧美激情综合另类| 欧美乱码精品一区二区三区| 国产男靠女视频免费网站| 极品教师在线免费播放| 欧美黄色淫秽网站| 国产免费男女视频| 精品一区二区三卡| av超薄肉色丝袜交足视频| 黑人猛操日本美女一级片| 变态另类成人亚洲欧美熟女 | 亚洲国产精品一区二区三区在线| 亚洲成av片中文字幕在线观看| 一级片'在线观看视频| 99久久精品国产亚洲精品| 中文欧美无线码| 中国美女看黄片| 在线观看日韩欧美| 免费在线观看黄色视频的| 精品日产1卡2卡| 黑人猛操日本美女一级片| 久久热在线av| 国产亚洲精品综合一区在线观看 | 黄色 视频免费看| 老司机靠b影院| 成人国语在线视频| 青草久久国产| 免费久久久久久久精品成人欧美视频| 人妻丰满熟妇av一区二区三区| 中文字幕高清在线视频| 又黄又爽又免费观看的视频| 韩国精品一区二区三区| 亚洲av美国av| 69av精品久久久久久| 日本撒尿小便嘘嘘汇集6| 久久久久久久久免费视频了| 日韩精品中文字幕看吧| www.自偷自拍.com| 一进一出好大好爽视频| 久久精品人人爽人人爽视色| 久久久久久久久久久久大奶| 国产熟女午夜一区二区三区| 首页视频小说图片口味搜索| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品av麻豆狂野| 在线观看一区二区三区| 国产高清激情床上av| 黄色视频,在线免费观看| 免费看十八禁软件| x7x7x7水蜜桃| 高清在线国产一区| 9热在线视频观看99| 一区二区日韩欧美中文字幕| 久久午夜亚洲精品久久| 成人精品一区二区免费| 亚洲国产毛片av蜜桃av| 久久精品成人免费网站| 最新美女视频免费是黄的| 日韩免费av在线播放| 日本免费a在线| 多毛熟女@视频| 精品一区二区三区视频在线观看免费 | 国产成+人综合+亚洲专区| 99re在线观看精品视频| 亚洲五月婷婷丁香| 国产成人精品久久二区二区免费| 欧美在线黄色| 又大又爽又粗| 中文字幕av电影在线播放| 亚洲成人免费av在线播放| 麻豆av在线久日| 久久 成人 亚洲| 啦啦啦免费观看视频1| 又大又爽又粗| 丝袜美足系列| 日韩 欧美 亚洲 中文字幕| 又大又爽又粗| 热re99久久国产66热| 国产一区在线观看成人免费| 老鸭窝网址在线观看| 国产精品 欧美亚洲| 美国免费a级毛片| 不卡一级毛片| a级片在线免费高清观看视频| 国产av精品麻豆| 在线观看日韩欧美| 人妻丰满熟妇av一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 色在线成人网| 欧美日本中文国产一区发布| 欧美日韩福利视频一区二区| 怎么达到女性高潮| 亚洲va日本ⅴa欧美va伊人久久| 女同久久另类99精品国产91| 美女大奶头视频| 90打野战视频偷拍视频| 黄片大片在线免费观看| 一级片'在线观看视频| 日日夜夜操网爽| 亚洲五月色婷婷综合| av天堂在线播放| av网站免费在线观看视频| av国产精品久久久久影院| 一级a爱片免费观看的视频| 久久久久九九精品影院| 99久久99久久久精品蜜桃| 日本 av在线| 欧美日韩一级在线毛片| 日韩免费高清中文字幕av| 1024香蕉在线观看| x7x7x7水蜜桃| 女同久久另类99精品国产91| 露出奶头的视频| 欧美中文综合在线视频| 国产成人欧美| 精品免费久久久久久久清纯| 久久国产精品人妻蜜桃| 神马国产精品三级电影在线观看 | 黄片大片在线免费观看| 岛国视频午夜一区免费看| 中文欧美无线码| 久久国产亚洲av麻豆专区| 最好的美女福利视频网| 欧美成人性av电影在线观看| 亚洲第一欧美日韩一区二区三区| 国产免费男女视频| 国产又爽黄色视频| 人成视频在线观看免费观看| 可以免费在线观看a视频的电影网站| netflix在线观看网站| av天堂在线播放| 女性生殖器流出的白浆| 女人精品久久久久毛片| av电影中文网址| 国产精品影院久久| 日韩三级视频一区二区三区| 精品午夜福利视频在线观看一区| 亚洲精品国产区一区二| 久久精品国产亚洲av高清一级| av国产精品久久久久影院| 男女下面进入的视频免费午夜 | 巨乳人妻的诱惑在线观看| 如日韩欧美国产精品一区二区三区| 欧美人与性动交α欧美软件| 国产欧美日韩精品亚洲av| 校园春色视频在线观看| 91字幕亚洲| 麻豆av在线久日| 午夜福利影视在线免费观看| 在线永久观看黄色视频| 嫁个100分男人电影在线观看| 美女扒开内裤让男人捅视频| 国产伦一二天堂av在线观看| ponron亚洲| 国产一区二区三区综合在线观看| 丝袜人妻中文字幕| 校园春色视频在线观看| 欧美国产精品va在线观看不卡| 无遮挡黄片免费观看| 少妇裸体淫交视频免费看高清 | 大型黄色视频在线免费观看| 亚洲一区二区三区欧美精品| av电影中文网址| 国产欧美日韩精品亚洲av| 欧美中文综合在线视频| 女人被躁到高潮嗷嗷叫费观| 免费高清视频大片| 中文字幕人妻熟女乱码| 免费观看精品视频网站| 悠悠久久av| 天堂√8在线中文| 国产熟女午夜一区二区三区| 一级毛片女人18水好多| 天堂俺去俺来也www色官网| 18禁观看日本| 少妇被粗大的猛进出69影院| 在线看a的网站| 成人国语在线视频| 国产亚洲精品一区二区www| 亚洲自拍偷在线| 久久精品成人免费网站| 国产成+人综合+亚洲专区| 日韩三级视频一区二区三区| 级片在线观看| 国产不卡一卡二| 97超级碰碰碰精品色视频在线观看| 老汉色∧v一级毛片| 色精品久久人妻99蜜桃| 亚洲午夜理论影院| 国产精品一区二区三区四区久久 | 美女高潮喷水抽搐中文字幕| 校园春色视频在线观看| 亚洲美女黄片视频| 人人妻人人澡人人看| 成人特级黄色片久久久久久久| 丝袜美腿诱惑在线| 看片在线看免费视频| 88av欧美| 正在播放国产对白刺激| 男女下面进入的视频免费午夜 | 亚洲av第一区精品v没综合| 国产成人精品久久二区二区免费| 十八禁网站免费在线| 日韩欧美在线二视频| 日韩成人在线观看一区二区三区| 午夜老司机福利片| 麻豆久久精品国产亚洲av | 国产深夜福利视频在线观看| 欧美色视频一区免费| 变态另类成人亚洲欧美熟女 | 久久伊人香网站| 日本欧美视频一区| 精品久久久久久电影网| 99久久久亚洲精品蜜臀av| 18禁裸乳无遮挡免费网站照片 | 成人影院久久| 久久亚洲精品不卡| 欧美一级毛片孕妇| 久久人人精品亚洲av| 热99re8久久精品国产| 亚洲国产欧美日韩在线播放| 一区二区三区精品91| 国产精品一区二区精品视频观看| 高清黄色对白视频在线免费看| 午夜福利影视在线免费观看| 国产一区二区三区在线臀色熟女 | 最近最新中文字幕大全免费视频| 一本综合久久免费| 91成年电影在线观看| 国产激情欧美一区二区| 中文字幕人妻丝袜一区二区| 91大片在线观看| 国产蜜桃级精品一区二区三区| 校园春色视频在线观看| 国产精品久久久av美女十八| 桃红色精品国产亚洲av| 在线观看舔阴道视频| 亚洲国产精品999在线| 亚洲五月天丁香| 在线观看免费高清a一片| 国产又爽黄色视频| 成人黄色视频免费在线看| 欧美精品啪啪一区二区三区| 亚洲男人天堂网一区| 国产色视频综合| 久久精品国产综合久久久| 国产不卡一卡二| 亚洲人成电影观看| 热re99久久国产66热| 国产蜜桃级精品一区二区三区| 国产成人一区二区三区免费视频网站| 国产精品综合久久久久久久免费 | 欧美黄色淫秽网站| 日本五十路高清| 视频区图区小说| 成人特级黄色片久久久久久久| 久久久久久大精品| 亚洲久久久国产精品| av有码第一页| 久久这里只有精品19| 欧美日韩瑟瑟在线播放| 精品人妻在线不人妻| 老鸭窝网址在线观看| 久久久精品国产亚洲av高清涩受| 免费在线观看视频国产中文字幕亚洲| 亚洲第一av免费看| 18禁裸乳无遮挡免费网站照片 | 黑人巨大精品欧美一区二区mp4| 一区二区日韩欧美中文字幕| av福利片在线| 黑人猛操日本美女一级片| ponron亚洲| 18美女黄网站色大片免费观看| 免费观看精品视频网站| 一区二区日韩欧美中文字幕| av超薄肉色丝袜交足视频| 俄罗斯特黄特色一大片| 国产精品 欧美亚洲| 国产99白浆流出| 黄色 视频免费看| 久久国产乱子伦精品免费另类| 国产亚洲欧美在线一区二区| 国产欧美日韩综合在线一区二区| 美女福利国产在线| www.自偷自拍.com| 男人操女人黄网站| 老司机靠b影院| 69精品国产乱码久久久| 99久久久亚洲精品蜜臀av| av福利片在线| 精品一区二区三区视频在线观看免费 | av有码第一页| 9191精品国产免费久久| 99精国产麻豆久久婷婷| 美国免费a级毛片| 午夜亚洲福利在线播放| 欧美国产精品va在线观看不卡| 亚洲一码二码三码区别大吗| 国产乱人伦免费视频| 1024视频免费在线观看| 激情视频va一区二区三区| 国产精品成人在线| 999久久久精品免费观看国产| 中文欧美无线码| 国产精品99久久99久久久不卡| 宅男免费午夜| 久久久久九九精品影院| 美国免费a级毛片| 少妇被粗大的猛进出69影院| 国产麻豆69| a级毛片在线看网站| 欧美中文日本在线观看视频| 国产伦一二天堂av在线观看| 91麻豆精品激情在线观看国产 | 国产精品国产高清国产av| 午夜免费观看网址| 最新在线观看一区二区三区| 高清欧美精品videossex| 琪琪午夜伦伦电影理论片6080| 国产精品影院久久| 国产精品自产拍在线观看55亚洲| 亚洲精品国产一区二区精华液| 91字幕亚洲| 狠狠狠狠99中文字幕| 最近最新中文字幕大全电影3 | 久久久久久久精品吃奶| 99久久综合精品五月天人人| 日韩欧美国产一区二区入口| 亚洲黑人精品在线| 国产亚洲精品一区二区www| 成人免费观看视频高清| 色婷婷av一区二区三区视频| 侵犯人妻中文字幕一二三四区| 国产一区二区三区综合在线观看| 老司机福利观看| 精品电影一区二区在线| 18禁美女被吸乳视频| 精品久久久久久电影网| 欧美日韩av久久| 国产一区二区在线av高清观看| 成年女人毛片免费观看观看9| 国产伦人伦偷精品视频| 久久午夜亚洲精品久久| 国产精品99久久99久久久不卡| 男女之事视频高清在线观看| 在线观看舔阴道视频| 国产三级黄色录像| 亚洲欧美日韩高清在线视频| 亚洲国产毛片av蜜桃av| 免费在线观看亚洲国产| 欧美日韩亚洲高清精品| 日韩高清综合在线| 国产精品99久久99久久久不卡| 91av网站免费观看| 99精品在免费线老司机午夜| 国产一卡二卡三卡精品| 国产成人啪精品午夜网站| 无遮挡黄片免费观看| 两人在一起打扑克的视频| 国产精品影院久久| 国产欧美日韩一区二区精品| 一边摸一边做爽爽视频免费| 交换朋友夫妻互换小说| 国产伦一二天堂av在线观看| 女性生殖器流出的白浆| 久久国产精品人妻蜜桃| 国产蜜桃级精品一区二区三区| 亚洲免费av在线视频| 一级黄色大片毛片| 亚洲国产精品合色在线| 黄色女人牲交| 久久精品国产99精品国产亚洲性色 | 国产av精品麻豆| 啦啦啦在线免费观看视频4| 国产三级黄色录像| 日日夜夜操网爽| 亚洲av成人av| 久久人人爽av亚洲精品天堂| 国产高清激情床上av| 欧美黄色淫秽网站| 99国产极品粉嫩在线观看| 亚洲成a人片在线一区二区| 亚洲av成人不卡在线观看播放网| 99久久国产精品久久久| 日韩免费av在线播放| 亚洲五月天丁香| 国产熟女xx| 亚洲性夜色夜夜综合| 在线观看舔阴道视频| 精品久久久久久久毛片微露脸| 色播在线永久视频| 国产午夜精品久久久久久| 脱女人内裤的视频| 日本黄色日本黄色录像| 91大片在线观看| 久久天堂一区二区三区四区| 亚洲男人的天堂狠狠| 国产野战对白在线观看| 精品国产一区二区久久| 丰满饥渴人妻一区二区三| 亚洲七黄色美女视频| 午夜免费鲁丝| 国产成人欧美| 91国产中文字幕| 女同久久另类99精品国产91| 视频在线观看一区二区三区| 97人妻天天添夜夜摸| 亚洲美女黄片视频| 国产精品偷伦视频观看了| 日韩国内少妇激情av| 午夜亚洲福利在线播放| 久久精品国产综合久久久| 美女高潮喷水抽搐中文字幕| 成年女人毛片免费观看观看9| 免费少妇av软件| 大码成人一级视频| 在线视频色国产色| 视频区图区小说| 每晚都被弄得嗷嗷叫到高潮| 99热国产这里只有精品6| 亚洲精品在线观看二区| 女警被强在线播放| 老汉色∧v一级毛片| 午夜老司机福利片| 午夜影院日韩av| 中出人妻视频一区二区| 精品一区二区三卡| 欧美日韩亚洲国产一区二区在线观看| 国产深夜福利视频在线观看| 午夜精品久久久久久毛片777| 亚洲国产精品合色在线| 亚洲欧美一区二区三区黑人| 久久 成人 亚洲| 中文字幕人妻丝袜一区二区| 国产成人av激情在线播放| 亚洲精品一二三| 亚洲欧洲精品一区二区精品久久久| 欧美午夜高清在线| 一级毛片女人18水好多| 亚洲精品中文字幕一二三四区| 色哟哟哟哟哟哟| 99久久综合精品五月天人人| 啦啦啦 在线观看视频| 国产激情欧美一区二区| 午夜福利免费观看在线| 91九色精品人成在线观看| 99精国产麻豆久久婷婷| 欧美人与性动交α欧美软件| 男女之事视频高清在线观看| 在线国产一区二区在线| 国产成人精品在线电影| 一级毛片高清免费大全| av在线天堂中文字幕 | 亚洲精品久久成人aⅴ小说| 免费一级毛片在线播放高清视频 | 多毛熟女@视频| 久久中文看片网| 国产精品电影一区二区三区| 午夜影院日韩av| www.熟女人妻精品国产| 亚洲国产毛片av蜜桃av| 久久草成人影院| 男女下面进入的视频免费午夜 | 亚洲成人免费电影在线观看| 欧美丝袜亚洲另类 | 一区在线观看完整版| 日韩 欧美 亚洲 中文字幕| 丁香六月欧美| 18美女黄网站色大片免费观看| 亚洲少妇的诱惑av| 精品一区二区三区av网在线观看| 黄频高清免费视频| 国产欧美日韩一区二区三区在线| www.精华液| 精品久久久久久久毛片微露脸| 亚洲三区欧美一区| 性欧美人与动物交配| 天堂动漫精品| 欧美日韩精品网址| 国产精品秋霞免费鲁丝片| 日韩欧美一区二区三区在线观看| 午夜91福利影院| a在线观看视频网站| 亚洲国产精品999在线| 脱女人内裤的视频| 最近最新免费中文字幕在线| 国产三级在线视频| 久久青草综合色| 中亚洲国语对白在线视频| 婷婷精品国产亚洲av在线| 中文字幕最新亚洲高清| 男女之事视频高清在线观看| 天天躁夜夜躁狠狠躁躁| 成人18禁在线播放| 中文字幕另类日韩欧美亚洲嫩草| 身体一侧抽搐| 国产精品永久免费网站| av在线天堂中文字幕 | 丝袜人妻中文字幕| 国产在线观看jvid| 啦啦啦在线免费观看视频4| 免费看十八禁软件| 在线观看一区二区三区激情| 亚洲 欧美一区二区三区| 1024视频免费在线观看| 国产成人系列免费观看| 亚洲精品av麻豆狂野| 久久久久国内视频| 国产xxxxx性猛交| 精品卡一卡二卡四卡免费| 欧美成狂野欧美在线观看| 日韩 欧美 亚洲 中文字幕| 国产亚洲精品综合一区在线观看 | 亚洲第一av免费看| 久久久久久久久中文| 国产色视频综合| 日韩欧美一区视频在线观看| 国产亚洲精品综合一区在线观看 | 久久国产精品男人的天堂亚洲|