• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A hybrid nano-assembly with synergistically promoting photothermal and catalytic radical activity for antibacterial therapy

    2022-11-05 06:47:44YunxiWngChungxinZhngHuiZhngLihengFengLibingLiu
    Chinese Chemical Letters 2022年10期

    Yunxi Wng,Chungxin Zhng,Hui Zhng,Liheng Feng,*,Libing Liu

    a School of Chemistry and Chemical Engineering,Shanxi University,Taiyuan 030006,China

    b Department of Nutrition and Health,China Agricultural University,Beijing 100193,China

    c Beijing National Laboratory for Molecular Sciences,Institute of Chemistry,Chinese Academy of Sciences,Beijing 100190,China

    Keywords:Conjugated oligomer Nano-assembly Fenton reaction Photothermal therapy Bacterial infections

    ABSTRACT It is of great significance to develop effective antibacterial agents and methods to combat drug resistant bacterial infections due to its increasing threaten to human health and the ineffectiveness of antibiotics.Herein,a multifunctional hybrid nano-assembly (M1-Fe NPs) based on conjugated oligomer and ferrous ion was engineered with favorable bactericidal activity for synergetic antibacterial therapy.The chelation of ferrous ion not only enhances the photothermal conversion efficiency of M1 but also endows the nano-assembly with catalytic capability of transferring H2O2 into stronger oxidant hydroxyl radicals(·OH).Meanwhile,the generated heat can further promote the Fenton reaction activity.By generating cytotoxic heat and oxidative ·OH,M1-Fe NPs can effectively kill Staphylococcus aureus in vitro and in vivo with the aid of low dosage of H2O2.The work provides a new multifunctional platform for combinational drug resistant antibacterial therapy and even antitumor therapy.

    Although the generation of various antibiotics,the drug resistant bacterial infections still threaten the health of human being over the world [1-4].It is emergent to develop effective antibacterial agents and antibacterial strategies to resist the evolution of bacteria and eliminate the damage from bacterial infections.By now,different kinds of materials have been developed to antibacterial agents relied on diverse antibacterial mechanisms [5-10].Agbased materials can kill bacteria by inhibiting replication through the binding of Ag ions with ATP synthetic enzymes [11].Cationic polymers,quaternary ammonium salts,and antibacterial peptides can perturb and disrupt the cell membrane of bacteria to induce the death of bacteria [12-15].Conjugated polymer [16-20],metalorganic frameworks [21-23],black phosphorus [24,25],copper sulfide [26,27],Au-[28-30]and carbon-based materials [31,32]can generate reactive oxygen species (ROS) or heat under light irradiation to oxidize or damage phospholipids,proteins and even DNA to kill bacteria,which is involved in photodynamic therapy (PDT)and photothermal therapy (PTT).In addition,hydrogels are also developed as multifunctional anti-infective materials by combining above mentioned antibacterial mechanism with ability of tissue repair [33].However,there are still some disadvantages in current antibacterial agents for practical antibacterial therapy,such as low antibacterial ability and long-term cytotoxicity,and it remains a challenge to develop highly effective antibacterial agents and strategies with low biological toxicity and little possibility to trigger drug resistance.

    PDT and PTT are considered to be effective antibacterial therapies with characteristics of broad-spectrum antibacterial activity,spatial and temporal control and low side effects [34].The ROS and hyperthermia generated by photosensitizers and photothermal agents can kill all type of bacteria,including antibiotic resistant strains,with little chance to induce drug resistance.However,these two therapies have respective shortcomings,such as the limited damage to bacteria due to the oxygen-dependent antibacterial activity and the unnecessary damage to normal cells due to the excessive ROS and temperature [35,36].To address the issues,combined therapy of PDT and PTT is increasingly developed to maximize the advantages of two therapies and make up for the shortages of each other.Hydroxyl radical (·OH) is one kind of ROS and has stronger oxidation ability than other ROS,such as H2O2and1O2[37,38].Moreover,·OH can be generated by decomposition of H2O2with the aid of ferrous ion (Fe2+),which termed as Fenton reaction [39],without dependence of oxygen.It shows remarkable advantage over oxygen-dependent traditional PDT.Hence,Fenton reaction has attracted broad interest of researchers for development of chemodynamic therapy (CDT).Increasing works focus on the selection of nanomaterials and strategy to enhance the efficiency of CDT,offering important findings and rational instructions to the development of antitumor therapy [39,40].As most CDT agents are inorganic materials,organic materials also begin to be applied.Although the combined PTT and CDT for cancer treatment has been intensively investigated,for the antibacterial therapy combined two therapies remains rare,especially that mediated by organic materials.Therefore,it is imperative to develop organic materials with photothermal and catalytic Fenton reaction activity to realize synergistic treatment of bacterial infections.

    In this work,to effectively eradicate bacteria and lower the damage to normal tissue,we proposed a new antibacterial strategy of photothermal and chemodynamic synergistic promotion.Accordingly,we developed a hybrid nano-assembly with photothermal and catalytic Fenton reaction activity for synergetic antibacterial therapy (Scheme 1).The nano-assembly,termed as M1-Fe NPs,is comprised of ferrous ion-chelated conjugated oligomer M1 and amphiphilic polymer PLGA-PEG.M1 is designed to chelate with Fe2+offering catalytic activity of Fenton reaction and also act as photothermal agent.Furthermore,the chelation with Fe2+can in turn enhance the photothermal effect of M1.Hence,in the presence of H2O2and light irradiation (660 nm),M1-Fe NPs can catalyze decomposition of H2O2to generate stronger oxidizer·OH to damage bacteria.Meanwhile,the heat generated by M1 can further kill bacteria and promote the generation of·OH by accelerating Fenton reaction.TakingStaphylococcus aureus(S.aureus)as a typical representative,the synergistic damage of heat and·OH can effectively kill it by destroying membrane,proteins,enzyme and DNA.Besides,under light irradiation,M1-Fe NPs successfully treatS.aureus-infected wound of mice at the aid of low dosage of H2O2.Therefore,this work provides a hybrid nanoassembly based on conjugated oligmer to achieve highly effective and synergistic antibacterial PTT and CDT,and it also offers a novel multi-functional antibacterial platform for effective anti-infective therapy.

    Scheme 1.Schematic illustration of designed multifunctional hybrid nano-assembly M1-Fe NPs for highly effective and synergetic antibacterial therapy.

    Conjugated oligomer M1 is a kind of photothemal agent and can be prepared to nanoparticle M1-NPs,which has been reported by our previous literature [41].Its synthetic route is shown as Fig.S1 (Supporting information).However,it is necessary to develop new method to improve the photothmal property for better antibacterial application.Since the molecular structure of M1 contains heteroatoms such as sulfur and nitrogen,it is promise to have good chelation between M1 and Fe2+.The chelation probably changes the molecular configuration and light absorption ability of M1.And Fe2+is considered to have catalytic Fenton reaction activity that is heat-related and benefits antibacterial application.Therefore,Fe2+is designed to chelate with M1 to change the photothermal property and endow M1 with catalytic activity of Fenton reaction at the same time for obtaining enhanced antibacterial capability.

    M1 was cheated with Fe2+and then mixed with PLGA-PEG to prepare nanoparticles noted as M1-Fe NPs by nanoprecipitation method.The optical properties of chelated compound (M1-Fe) and nanoparticles were next investigated.As shown in Fig.S2 (Supporting information),the maximum absorption peak of oligomer M1 had an obvious blue-shift from 642 nm to 610 nm after chelated with Fe2+.Even processed to nanoparticles,the obvious blue-shift from 670 nm to 655 nm in the absorption spectra was still found(Fig.1a).It indicates that the chelation between M1 and Fe2+exist and is stable.Besides,the formation of nanoparticles made absorption spectrum broader (extending to 900 nm),especially better absorption at 660 nm,which provided excellent conditions for photothermal therapy.At an excitation wavelength of 650 nm,almost no fluorescence peak was observed in the fluorescent spectrum (ranging from 700 nm to 900 nm) of M1-Fe NPs (Fig.S3 in Supporting information),which further facilitated the conversion from light to heat.The average hydrodynamic diameter of M1-Fe NPs was measured to be ~60 nm by using dynamic light scattering(DLS) and was shown in Fig.1b.To further understand the morphology of M1-Fe NPs,scanning electron microscopy (SEM) was employed.As shown in Fig.S4 (Supporting information),M1-Fe NPs showed a uniformly spherical shape.

    Next,to verify the catalytic activity of M1-Fe NPs for catalyzing decomposition of H2O2,aminophenylfluorescein (APF) was used to detected the production of·OH by measuring the fluorescence of oxidized APF [42].Considering the acidic microenvironment at the site of infection,the detection was performed at a pH of 6.5.As shown in Fig.1c,compared with M1 NPs,M1-Fe NPs can catalyze H2O2to generate more·OH with stronger fluorescent intensity.After light irradiation,the amount of generated·OH was a little more,which might because M1-Fe NPs generate heat to accelerate the heat-related catalytic reaction.With the pH at 7.4,the generated·OH was obviously lower than that of 6.5 (Fig.1d).It indicates the introduction of Fe2+endows the nanoparticles with catalytic property and the catalytic activity is potential to be better in bacterial microenvironment under light irradiation.

    The ability of converting light to heat is important for photothermal antibacterial application,therefore,we investigated the photothermal property of M1-Fe NPs,and a 660 nm laser was used to irradiate nanoparticle solution.At a power density of 1.0 W/cm2,the temperature of M1-Fe NPs dispersion with different concentrations increased to varying degrees and the increase was positively correlated with nanoparticles concentrations and irradiation time(Fig.2a).After an irradiation of 8 min,the temperature of M1-Fe NPs was up to to 55 °C at a low concentration of 10.0 μg/mL,which indicated M1-Fe NPs had good photothermal capability.The corresponding thermal images that visualized the temperature changes of solutions are displayed as Fig.2b.In addition,the increase of temperature was also positively correlated with power density of light.As shown in Fig.S5 (Supporting information),the temperature of M1-Fe NPs (10.0 μg/mL) increased to 60 °C at an irradiated power density of 1.25 W/cm2.To further verify the boost effect of Fe2+on the photothermal property of M1 NPs,we compared the temperature changes of two nanoparticles under the same condition.As shown in Fig.2c,the temperature of M1-Fe NPs was higher than that of M1 NPs about 4 °C.It proved that the chelation indeed enhanced the photothermal conversion capability of M1 NPs.After five heating-cooling cycles,the temperature profiles of M1-Fe NPs were little changed,indicating the good photothermal stability (Fig.2d).All above mentioned results illustrate that fabricated M1-Fe NPs are potential to be applied in the photothermal antibacterial application.

    Fig.2.(a) Temperature changes and (b) infrared thermal images of M1-Fe NPs with different concentrations under light irradiation (660 nm,1.0 W/cm2).(c) Temperature profiles of M1 NPs and M1-Fe NPs under the same experimental condition (660 nm,1.0 W/cm2),respectively.(d) Temperature curve of M1-Fe NPs for 5 cycles of on/off light irradiation (660 nm laser,1 W/cm2).

    After verifying the photothermal and catalytic property of M1-Fe NPs,we next examined its antibacterial activity against planktonic bacteria.S.aureusis chosen as the model bacteria for it is a common pathogen and has better heat resistance [43].H2O2is employed as a source of·OH.Considering that the microenvironment of bacterial infected site was acidic,we performed the antibacterial experiment at a pH of 6.5 to simulate the infected environment,and set pH of 7.4 as contrast condition.As shown in Fig.3a,bacterial viability was decreased with the increase of M1-Fe NPs concentration,proving efficient and synergistic dual treatment mode.The corresponding bacterial plates are displayed as Fig.3b and Fig.S6 (Supporting information).In contrast,even treated with the highest concentration of M1-Fe NPs,about 70% of bacteria were still alive at pH of 7.4 and 6.5 without light irradiation.It indicates that·OH generated by decomposition of H2O2is not enough to eradicate bacteria.As the light introduced,the bacterial activity decreased obviously,no matter pH was 7.4 or 6.5.It verifies that heat plays an important role in killing bacteria.The decrease of bacterial activity was more remarkable at pH of 6.5,stating that the Fenton reaction was favored by the heat and acidic condition.These results illustrate that M1-Fe NPs are potential to effectively kill bacteria at infected site by generating heat and catalyzing H2O2.

    Fig.3.(a) Antibacterial activity of M1-Fe NPs with the aid of H2O2 under different concentration and pH conditions.(b) Corresponding bacterial plate images at killing concentration (10.0 μg/mL).(c) Antibacterial activity of different components at pH of 6.5 in dark or under irradiation and corresponding (d) bacterial plate images.(e)Fluorescence staining and (f) SEM images of S.aureus without and with treatment of M1-Fe NPs+H2O2 in dark or under irradiation.The scale bars are 20 μm in (e)and 1 μm in (f).Data are presented as mean ± SD (n=3).The light is a 660 nm laser (1.0 W/cm2).The concentration of M1-Fe NPs is 10.0 μg/mL.The concentration of H2O2 is 1 mmol/L.

    To figure out the synergistic antibacterial effect of heat and·OH,S.aureuswas treated with H2O2,Fe2+,H2O2+Fe2+,M1 NPs,M1-Fe NPs,and M1-Fe NPs+H2O2,respectively.The concentration of M1-Fe NPs is 10.0 μg/mL.As shown in Fig.3c,under light irradiation,the·OH generated from catalytic decomposition of 1 mmol/L H2O2by individual Fe2+could only kill 30% of bacteria.The heat generated from M1-Fe NPs under the same light irradiation damaged 50% of bacteria.Without light irradiation,the·OH generated from catalytic decomposition of H2O2by M1-Fe NPs might inhibit 34%of bacteria.In contrast,95% of bacteria could be killed by M1-Fe NPs and H2O2under the same light irradiation.The corresponding bacterial plates are displayed in Fig.3d and Fig.S7 (Supporting information).The result proves that the heat and·OH synergistically kill bacteria to obtain the best antibacterial effect in M1-Fe NPs-mediated antibacterial therapy.

    Further,the antibacterial mechanism of M1-Fe NPs with aid of H2O2was investigated.After different treatments,S.aureuswas stained by SYTO9 and PI to observe the state of bacteria through confocal laser scanning microscopy (CLSM).As shown in Fig.3e,bacteria treated with M1-Fe NPs and H2O2without light irradiation was mostly stained by SYTO9 showing green fluorescence.It indicates that most bacteria have intact membrane and kept alive.While,the bacteria was almost all stained by PI showing red fluorescence when light was performed.It demonstrates that the membranes of bacteria are ruptured and bacteria are dead.To further observe the morphology of bacteria after different treatments,SEM was employed to capture the images of bacteria.As depicted in Fig.S8 (Supporting information),the surface of bacteria treated with Fe2+and H2O2had a little collapsed,which might result from the oxidative damage of·OH that generated by Fe2+-catalyzed decomposition of H2O2.For bacteria treated with M1 NPs and M1-Fe NPs without light irradiation had little morphology change compared to that of blank group.However,upon light irradiation,the surface of some bacteria was fused,which might result from the heat produced by nanoparticles.Only the bacteria treated with M1-Fe NPs and H2O2under light irradiation appeared obvious wrinkled and fused morphology (Fig.3f).It indicates that the heat and·OH generated by M1-Fe NPs and H2O2synergistically break the membrane structure and other components of bacteria to kill them.

    Fig.4.(a) Cell viability of EA.hy926 and 293T after treatment of M1-Fe NPs with different concentrations.(b) Infrared thermal images of infected wound of mice after different treatments (660 nm,1.0 W/cm2).(c) Photographs of S.aureus-infected wounds of mice after 10-day treatment by various therapies.

    After understanding the antibacterial effects of M1-Fe NPs and H2O2,we next investigated their anti-infective ability.Firstly,the cytotoxicity of M1-Fe NPs was determined by standard MTT method.As shown in Fig.4a,M1-Fe NPs had little effect on the growth of two human cells EA.hy926 and 293T even at a concentration of 20.0 μg/mL,implying the low cytotoxicity and application possibility of M1-Fe NPs for anti-infective treatment.ThenS.aureus-infected mice modes were established to perform the antiinfective experiment.All animal procedures were performed according to the relevant laws and guidelines approved by the Animal Care and Use Committee of Shanxi University.Besides the treatment of M1-Fe NPs+H2O2,other treatments including saline,H2O2+Fe2+,M1 NPs,and M1-Fe NPs were performed as control treatments.The concentration of H2O2was 1.0 mmol/L,a low concentration for antibacterial application [38,44].Each treatment involved two groups: dark and light.The light group employed a 660 nm laser and the power density was 1.0 W/cm2plus an irradiation time of 8 min.As displayed in Fig.4b,after laser irradiation,the temperature of wound treated with M1-Fe NPs+H2O2increased to 55 °C,which was obviously higher than that of saline treated (43°C).Such locally high temperature of 55 °C can kill most bacteria and trigger little damage to normal tissue.Hence,the wound area of mice in M1-Fe NPs+H2O2plus light group decreases about 60%on the fourth day,which decreased the most in all groups (Fig.S9 in Supporting information).And after a 10-day treatment,the wound treated with M1-Fe NPs+H2O2under light irradiation had the best healing effect compared to other treatments (Fig.4c).It confirms that the synergistic PTT/CDT based on M1-Fe NPs and H2O2can effectively treatS.aureus-infected wound and get the best therapeutic effect than any other single therapy.All of the results demonstrated that M1-Fe NPs-mediated synergistic antibacterial therapy had a great potential for highly effective and safe treatment of bacterial infection.

    In summary,we have fabricated a multifunctional hybrid nanoassembly (M1-Fe NPs) based on conjugated oligomer M1 and Fe2+for synergetic PTT/CDT antibacterial therapy.The introduction of Fe2+not only increased the photothermal conversion property (increased 4 °C at 10.0 μg/mL),but also endowed the nanoparticles with catalytic capability of transferring H2O2into stronger oxidant·,OH.Moreover,the generated heat could further accelerate the catalytic decomposition of H2O2to kill more bacteria.Hence,upon light irradiation,the M1-Fe NPs could efficiently killS.aureuswith the aid of low dosage H2O2,which antibacterial effect was better than any other monotherapy.Finally,they also treated theS.aureus-infected wound of mice.This study offers a novel drug resistant antibacterial platform for effective,safe and synergistic anti-infective therapy.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    We are grateful to the National Natural Science Foundation of China (Nos.21977065,22177065 and 21807067),SanJin Scholars Support Plan under Special Funding (No.2017-06),Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Nos.201802106,2019L0022),Supported by the Fund for Shanxi “1331” Project (1331),and the Program for Introducing Overseas High-level Talents of Shanxi (Hundred Talents Plan).

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi:10.1016/j.cclet.2022.03.076.

    韩国高清视频一区二区三区| 青青草视频在线视频观看| 免费不卡的大黄色大毛片视频在线观看| www.熟女人妻精品国产 | 夫妻性生交免费视频一级片| 大香蕉久久成人网| 制服人妻中文乱码| 在现免费观看毛片| 国产乱人偷精品视频| 国产av一区二区精品久久| 国产成人精品在线电影| 亚洲欧洲国产日韩| 免费观看性生交大片5| 最近的中文字幕免费完整| 午夜影院在线不卡| 天堂中文最新版在线下载| 黄片无遮挡物在线观看| 久久人人爽av亚洲精品天堂| 侵犯人妻中文字幕一二三四区| 少妇精品久久久久久久| 免费女性裸体啪啪无遮挡网站| 精品酒店卫生间| 国产黄色视频一区二区在线观看| 99热网站在线观看| 精品国产乱码久久久久久小说| 成人亚洲欧美一区二区av| 晚上一个人看的免费电影| 18禁动态无遮挡网站| 最近2019中文字幕mv第一页| 99热6这里只有精品| 婷婷成人精品国产| 国产爽快片一区二区三区| 精品亚洲成a人片在线观看| 夜夜爽夜夜爽视频| 久久韩国三级中文字幕| 中文字幕最新亚洲高清| 人人澡人人妻人| 黄色毛片三级朝国网站| 欧美国产精品va在线观看不卡| 天堂俺去俺来也www色官网| 一级黄片播放器| 精品人妻在线不人妻| 亚洲第一区二区三区不卡| 色婷婷av一区二区三区视频| 亚洲国产最新在线播放| 亚洲国产精品国产精品| 精品酒店卫生间| 日韩中字成人| 在线观看免费高清a一片| 午夜精品国产一区二区电影| 色94色欧美一区二区| 国产欧美日韩综合在线一区二区| 国产精品久久久久久av不卡| 高清在线视频一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 久久这里只有精品19| 国产精品久久久久久av不卡| 国产色爽女视频免费观看| 黑丝袜美女国产一区| www.色视频.com| 男男h啪啪无遮挡| 午夜精品国产一区二区电影| 人人妻人人澡人人爽人人夜夜| 少妇被粗大猛烈的视频| 国产免费一区二区三区四区乱码| 一个人免费看片子| 99国产综合亚洲精品| 日韩制服骚丝袜av| 春色校园在线视频观看| 久久婷婷青草| 国产黄频视频在线观看| 国精品久久久久久国模美| 免费看av在线观看网站| 精品酒店卫生间| 亚洲美女视频黄频| 春色校园在线视频观看| 两个人免费观看高清视频| 久久久亚洲精品成人影院| 国产精品三级大全| 久久99热6这里只有精品| 精品国产一区二区三区四区第35| 午夜日本视频在线| 人人妻人人添人人爽欧美一区卜| 自线自在国产av| 成人亚洲欧美一区二区av| 99久久中文字幕三级久久日本| 丰满少妇做爰视频| 一级爰片在线观看| 男女免费视频国产| 国产激情久久老熟女| 人妻少妇偷人精品九色| 亚洲,欧美精品.| 人妻系列 视频| 久热这里只有精品99| 一级,二级,三级黄色视频| 亚洲欧洲日产国产| 性色av一级| 97超碰精品成人国产| 中文天堂在线官网| 亚洲内射少妇av| 黄色视频在线播放观看不卡| 午夜福利,免费看| 黄片无遮挡物在线观看| 日日摸夜夜添夜夜爱| 精品99又大又爽又粗少妇毛片| 黄色一级大片看看| 我的女老师完整版在线观看| 亚洲欧美日韩另类电影网站| 久久久久国产网址| 成人国产av品久久久| 亚洲精品,欧美精品| 9色porny在线观看| 高清毛片免费看| 波野结衣二区三区在线| 高清av免费在线| 97精品久久久久久久久久精品| 亚洲精品久久成人aⅴ小说| 日韩av不卡免费在线播放| 伦理电影免费视频| 一级黄片播放器| 99国产精品免费福利视频| 国产熟女午夜一区二区三区| av电影中文网址| 国产一区有黄有色的免费视频| 久久99一区二区三区| 免费久久久久久久精品成人欧美视频 | 在线 av 中文字幕| 少妇的逼水好多| 菩萨蛮人人尽说江南好唐韦庄| 91在线精品国自产拍蜜月| 三上悠亚av全集在线观看| videosex国产| 日韩三级伦理在线观看| 国产精品国产三级国产专区5o| 人妻一区二区av| 日本色播在线视频| 热99国产精品久久久久久7| 久久婷婷青草| 26uuu在线亚洲综合色| 美女内射精品一级片tv| 亚洲国产毛片av蜜桃av| av在线观看视频网站免费| 久久99热这里只频精品6学生| 亚洲精品中文字幕在线视频| 久久狼人影院| 看十八女毛片水多多多| 国产精品一区二区在线观看99| 国产福利在线免费观看视频| 国产精品一国产av| 国产激情久久老熟女| 精品少妇内射三级| 狂野欧美激情性bbbbbb| 午夜福利视频在线观看免费| 精品人妻熟女毛片av久久网站| 精品福利永久在线观看| 亚洲综合色惰| 啦啦啦中文免费视频观看日本| 国产精品一区www在线观看| 日日啪夜夜爽| 色网站视频免费| 最新的欧美精品一区二区| 国产成人av激情在线播放| 久久精品国产亚洲av天美| 欧美日韩一区二区视频在线观看视频在线| 黄片播放在线免费| 又黄又爽又刺激的免费视频.| 精品福利永久在线观看| 两个人看的免费小视频| 91成人精品电影| 91午夜精品亚洲一区二区三区| 久久99热这里只频精品6学生| 亚洲少妇的诱惑av| 国产精品国产三级专区第一集| 在线观看免费高清a一片| 国产又爽黄色视频| 超色免费av| 国产av国产精品国产| 午夜福利视频在线观看免费| 亚洲熟女精品中文字幕| 色婷婷久久久亚洲欧美| 在线天堂中文资源库| 各种免费的搞黄视频| 久久精品夜色国产| 99国产综合亚洲精品| 一级毛片电影观看| 91成人精品电影| 午夜日本视频在线| 欧美人与性动交α欧美软件 | 久久久久久久精品精品| 成人综合一区亚洲| 大香蕉久久成人网| 成年人午夜在线观看视频| 久久亚洲国产成人精品v| 日韩伦理黄色片| 一本久久精品| 亚洲成av片中文字幕在线观看 | 亚洲内射少妇av| 黄色 视频免费看| 精品国产露脸久久av麻豆| 伦理电影免费视频| 少妇精品久久久久久久| 26uuu在线亚洲综合色| 99久久精品国产国产毛片| 18+在线观看网站| 免费在线观看黄色视频的| 国产精品久久久久成人av| 国产成人午夜福利电影在线观看| 亚洲精品乱久久久久久| 亚洲精品456在线播放app| 国产av码专区亚洲av| 免费av中文字幕在线| 女人被躁到高潮嗷嗷叫费观| 男女免费视频国产| 99久久综合免费| 国产又色又爽无遮挡免| 日韩大片免费观看网站| 中文字幕制服av| 一级毛片黄色毛片免费观看视频| 亚洲精品av麻豆狂野| 成人综合一区亚洲| 国产成人91sexporn| 99热全是精品| 久久人妻熟女aⅴ| 丰满迷人的少妇在线观看| 国产深夜福利视频在线观看| 欧美精品一区二区免费开放| 国产免费视频播放在线视频| 国产日韩欧美在线精品| 国产女主播在线喷水免费视频网站| 男女边摸边吃奶| av国产精品久久久久影院| 丝瓜视频免费看黄片| 成人亚洲欧美一区二区av| 国产激情久久老熟女| 欧美3d第一页| 最近中文字幕2019免费版| 各种免费的搞黄视频| 秋霞在线观看毛片| 国产精品不卡视频一区二区| 国产欧美日韩综合在线一区二区| 在线 av 中文字幕| videosex国产| 久久午夜综合久久蜜桃| 少妇精品久久久久久久| 国产一区二区在线观看av| 99热全是精品| 男的添女的下面高潮视频| 国产成人a∨麻豆精品| 一区二区日韩欧美中文字幕 | 热re99久久精品国产66热6| 免费av不卡在线播放| 亚洲内射少妇av| 久久精品国产亚洲av天美| 2022亚洲国产成人精品| 五月天丁香电影| 五月开心婷婷网| 国产亚洲午夜精品一区二区久久| 丁香六月天网| 国产极品粉嫩免费观看在线| a级毛色黄片| 在线天堂最新版资源| 9色porny在线观看| 人妻 亚洲 视频| 精品少妇久久久久久888优播| 精品人妻一区二区三区麻豆| 69精品国产乱码久久久| 一二三四在线观看免费中文在 | 色视频在线一区二区三区| 男人添女人高潮全过程视频| 成人国语在线视频| 熟妇人妻不卡中文字幕| 观看av在线不卡| 久久久久精品性色| 香蕉丝袜av| 在线观看美女被高潮喷水网站| 国产xxxxx性猛交| 免费在线观看黄色视频的| 欧美成人午夜精品| 天天操日日干夜夜撸| 亚洲高清免费不卡视频| av有码第一页| 日韩成人av中文字幕在线观看| 男人添女人高潮全过程视频| av免费在线看不卡| 自线自在国产av| av播播在线观看一区| 国内精品宾馆在线| 国产有黄有色有爽视频| 久久午夜福利片| 人妻一区二区av| 一边亲一边摸免费视频| 一个人免费看片子| 女人精品久久久久毛片| 内地一区二区视频在线| 26uuu在线亚洲综合色| 黄网站色视频无遮挡免费观看| 免费观看在线日韩| 亚洲综合精品二区| 美女脱内裤让男人舔精品视频| 综合色丁香网| 另类亚洲欧美激情| 亚洲内射少妇av| 久久久a久久爽久久v久久| 观看av在线不卡| 人妻系列 视频| 交换朋友夫妻互换小说| 欧美 亚洲 国产 日韩一| 国产在线免费精品| xxxhd国产人妻xxx| 人妻一区二区av| 男女高潮啪啪啪动态图| 午夜视频国产福利| 国产国拍精品亚洲av在线观看| 国产日韩欧美亚洲二区| 精品国产一区二区久久| 日韩制服丝袜自拍偷拍| 日韩伦理黄色片| 妹子高潮喷水视频| 香蕉国产在线看| 水蜜桃什么品种好| 亚洲av欧美aⅴ国产| 国产精品久久久久成人av| 免费高清在线观看日韩| 美女内射精品一级片tv| 女性生殖器流出的白浆| 毛片一级片免费看久久久久| 国产免费现黄频在线看| 日日摸夜夜添夜夜爱| 亚洲,欧美,日韩| 欧美少妇被猛烈插入视频| 久久国产精品男人的天堂亚洲 | 两个人免费观看高清视频| 五月玫瑰六月丁香| 丝袜喷水一区| 桃花免费在线播放| 日日啪夜夜爽| av免费在线看不卡| tube8黄色片| 亚洲av男天堂| 97在线人人人人妻| 我的女老师完整版在线观看| av在线老鸭窝| 日韩大片免费观看网站| av在线app专区| 日韩不卡一区二区三区视频在线| 亚洲国产成人一精品久久久| 久久久久精品久久久久真实原创| 亚洲国产成人一精品久久久| 免费播放大片免费观看视频在线观看| 国产爽快片一区二区三区| 五月伊人婷婷丁香| 香蕉精品网在线| 亚洲精品日韩在线中文字幕| 少妇 在线观看| 亚洲av欧美aⅴ国产| 五月天丁香电影| 寂寞人妻少妇视频99o| 91精品伊人久久大香线蕉| 99re6热这里在线精品视频| 亚洲欧洲精品一区二区精品久久久 | 亚洲欧美精品自产自拍| 国产av国产精品国产| 国产日韩欧美亚洲二区| 汤姆久久久久久久影院中文字幕| 人妻人人澡人人爽人人| 在线精品无人区一区二区三| 我的女老师完整版在线观看| 人妻系列 视频| 久久精品人人爽人人爽视色| 中国三级夫妇交换| 亚洲欧美一区二区三区国产| 午夜视频国产福利| 下体分泌物呈黄色| 日韩成人伦理影院| 国产熟女午夜一区二区三区| 综合色丁香网| 国产av一区二区精品久久| 日韩中字成人| 下体分泌物呈黄色| 久久国产精品大桥未久av| 免费av中文字幕在线| 中文字幕免费在线视频6| 日本免费在线观看一区| 欧美少妇被猛烈插入视频| 国产爽快片一区二区三区| 汤姆久久久久久久影院中文字幕| 亚洲婷婷狠狠爱综合网| a级毛色黄片| 成年人免费黄色播放视频| 亚洲av男天堂| 黄色 视频免费看| 黄色视频在线播放观看不卡| 国产亚洲精品第一综合不卡 | 亚洲伊人久久精品综合| 亚洲欧美中文字幕日韩二区| 五月开心婷婷网| 啦啦啦在线观看免费高清www| 九色亚洲精品在线播放| 免费在线观看完整版高清| 99久久中文字幕三级久久日本| 日韩免费高清中文字幕av| 国产欧美亚洲国产| 黑人高潮一二区| av不卡在线播放| 伦精品一区二区三区| 少妇的丰满在线观看| 亚洲欧美一区二区三区国产| 纵有疾风起免费观看全集完整版| 9色porny在线观看| 97在线人人人人妻| 亚洲av国产av综合av卡| 在线观看免费高清a一片| 免费大片黄手机在线观看| 两性夫妻黄色片 | 性色av一级| 成人毛片a级毛片在线播放| 男男h啪啪无遮挡| 日韩熟女老妇一区二区性免费视频| 午夜久久久在线观看| 老熟女久久久| 国产成人精品福利久久| 激情五月婷婷亚洲| 国产亚洲精品第一综合不卡 | 啦啦啦啦在线视频资源| 男女边吃奶边做爰视频| 久久精品国产亚洲av天美| 街头女战士在线观看网站| 亚洲成人手机| 欧美老熟妇乱子伦牲交| 亚洲精品色激情综合| 蜜桃国产av成人99| 精品人妻偷拍中文字幕| 日韩免费高清中文字幕av| 亚洲中文av在线| 欧美精品av麻豆av| 亚洲国产毛片av蜜桃av| 最新中文字幕久久久久| 免费黄色在线免费观看| 最近中文字幕2019免费版| 久久精品久久精品一区二区三区| 亚洲精华国产精华液的使用体验| 久久久久久伊人网av| 国产深夜福利视频在线观看| 色婷婷av一区二区三区视频| 亚洲国产看品久久| 夫妻午夜视频| 国产xxxxx性猛交| 女人精品久久久久毛片| 一本色道久久久久久精品综合| 青青草视频在线视频观看| 久久精品国产a三级三级三级| 在线观看免费日韩欧美大片| 黑人猛操日本美女一级片| 晚上一个人看的免费电影| 国产男女超爽视频在线观看| 啦啦啦在线观看免费高清www| 狠狠精品人妻久久久久久综合| 丝袜人妻中文字幕| 春色校园在线视频观看| 黄色一级大片看看| 观看美女的网站| 久久国产精品男人的天堂亚洲 | 欧美xxxx性猛交bbbb| 精品熟女少妇av免费看| 卡戴珊不雅视频在线播放| 欧美老熟妇乱子伦牲交| 欧美国产精品一级二级三级| 精品亚洲成a人片在线观看| 免费人成在线观看视频色| 又粗又硬又长又爽又黄的视频| 精品人妻在线不人妻| 色视频在线一区二区三区| 波野结衣二区三区在线| 国产 精品1| 一区二区三区精品91| 如何舔出高潮| 国产欧美另类精品又又久久亚洲欧美| 蜜桃在线观看..| 日日摸夜夜添夜夜爱| 免费女性裸体啪啪无遮挡网站| 97人妻天天添夜夜摸| 成人黄色视频免费在线看| 黑人巨大精品欧美一区二区蜜桃 | 考比视频在线观看| 丰满乱子伦码专区| 日韩电影二区| 亚洲成国产人片在线观看| 男女午夜视频在线观看 | 久久精品国产鲁丝片午夜精品| 国产成人欧美| 寂寞人妻少妇视频99o| 好男人视频免费观看在线| 人妻一区二区av| 久久青草综合色| 日韩,欧美,国产一区二区三区| 国产av国产精品国产| 国产男女超爽视频在线观看| 91久久精品国产一区二区三区| 黑人巨大精品欧美一区二区蜜桃 | 一边摸一边做爽爽视频免费| 国产免费一级a男人的天堂| 国语对白做爰xxxⅹ性视频网站| 免费大片黄手机在线观看| 午夜激情久久久久久久| 亚洲国产成人一精品久久久| 视频在线观看一区二区三区| 亚洲四区av| 成年人免费黄色播放视频| 一级毛片电影观看| 又黄又爽又刺激的免费视频.| 又大又黄又爽视频免费| 久热久热在线精品观看| 免费高清在线观看视频在线观看| 卡戴珊不雅视频在线播放| 亚洲精品美女久久久久99蜜臀 | 精品国产一区二区三区久久久樱花| 国产一区二区在线观看日韩| 国产欧美日韩一区二区三区在线| 在线看a的网站| 51国产日韩欧美| 午夜福利网站1000一区二区三区| 午夜老司机福利剧场| 日本黄色日本黄色录像| 午夜免费鲁丝| 午夜福利,免费看| 久久99热这里只频精品6学生| 欧美激情极品国产一区二区三区 | 久久久精品94久久精品| 国产精品久久久av美女十八| 色吧在线观看| 丝袜喷水一区| 一级毛片 在线播放| 国产无遮挡羞羞视频在线观看| 久久久久久久久久人人人人人人| 91精品国产国语对白视频| 高清视频免费观看一区二区| 狂野欧美激情性xxxx在线观看| 久久亚洲国产成人精品v| 人人妻人人添人人爽欧美一区卜| 人妻一区二区av| 青青草视频在线视频观看| 大香蕉久久网| 久久午夜福利片| 国产成人精品无人区| 久久精品夜色国产| 大香蕉久久成人网| 亚洲av在线观看美女高潮| 啦啦啦在线观看免费高清www| 人妻 亚洲 视频| 青青草视频在线视频观看| 欧美+日韩+精品| 国产1区2区3区精品| 肉色欧美久久久久久久蜜桃| 99久久精品国产国产毛片| 男的添女的下面高潮视频| 麻豆精品久久久久久蜜桃| 午夜av观看不卡| 中文字幕免费在线视频6| 亚洲精品乱久久久久久| 赤兔流量卡办理| 中文字幕av电影在线播放| 看免费成人av毛片| 黄色毛片三级朝国网站| 午夜福利在线观看免费完整高清在| 夜夜骑夜夜射夜夜干| 一级片免费观看大全| 999精品在线视频| 精品国产一区二区久久| videos熟女内射| 亚洲成国产人片在线观看| 亚洲欧美色中文字幕在线| 精品一区在线观看国产| 亚洲精品美女久久久久99蜜臀 | 亚洲五月色婷婷综合| 欧美亚洲 丝袜 人妻 在线| 另类精品久久| 少妇人妻 视频| 精品一区二区三卡| 男女国产视频网站| 捣出白浆h1v1| 亚洲成人手机| 国产福利在线免费观看视频| 国产日韩欧美视频二区| 91国产中文字幕| 高清毛片免费看| 国产成人精品婷婷| 亚洲欧美成人精品一区二区| 久久97久久精品| 亚洲成人av在线免费| 日本欧美国产在线视频| 亚洲精品乱码久久久久久按摩| 一级黄片播放器| 婷婷色综合大香蕉| 丁香六月天网| 欧美精品国产亚洲| 国产午夜精品一二区理论片| 国产视频首页在线观看| 免费大片黄手机在线观看| 欧美日韩国产mv在线观看视频| 久久人妻熟女aⅴ| 麻豆精品久久久久久蜜桃| 国产国语露脸激情在线看| 亚洲少妇的诱惑av| 国产国拍精品亚洲av在线观看| 国产毛片在线视频| 国产免费视频播放在线视频| 成年美女黄网站色视频大全免费| 侵犯人妻中文字幕一二三四区| 香蕉国产在线看| av黄色大香蕉| 国国产精品蜜臀av免费| 久久久久精品人妻al黑| 精品久久久精品久久久| 日韩一本色道免费dvd| 欧美日韩亚洲高清精品|