• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Feature selection and machine learning approach for carotid atherosclerosis in asymptomatic adults

    2022-11-03 06:35:56TaoLiangQiaoLiWangXiaoQinLiuZhenZhouScottLoweZiHengChenChenYuSun
    Medical Data Mining 2022年4期

    Tao Liang ,Qiao-Li Wang ,Xiao-Qin Liu ,Zhen Zhou ,Scott Lowe ,Zi-Heng Chen ,Chen-Yu Sun

    1Department of Gastroenterology,Peoples’ Hospital of Deyang City,Deyang 618000,China.2Department of Physical Examination Center,Peoples’ Hospital of Deyang City,Deyang 618000,China.3Menzies Institute for Medical Research,University of Tasmania,Hobart,TAS 7000,Australia.4College of Osteopathic Medicine,Kansas City University,Kansas City,MO 64106,USA.5Applied Mathematics and Statistics,Stony Brook University,Stony Brook,NY 11794,USA.6AMITA Health Saint Joseph Hospital Chicago,University of Illinois Chicago,Chicago 60657,USA.

    Abstract Objective:The presence of carotid atherosclerosis reflects the overall atherosclerotic load and may predict cardiovascular and cerebrovascular accidents.Studies have reported risk factors for carotid atherosclerosis.However,few practical models have been established to predict carotid atherosclerosis risk.Thus,this study was conducted to investigate important features of carotid atherosclerosis and to propose a machine learning-based method for predicting carotid atherosclerosis in asymptomatic adults.Methods:Cross-sectional study was conducted using routine medical check-up data of individuals from January 2019 to January 2020.Pearson’s correlation analysis was performed to correlate the features.Then,features were selected by python’s feature-selection library and analyzed through three algorithms.Multiple machine learning algorithms,including Decision Tree,Random Forest and Logistic Regression (LR) were used to predict the risk of carotid atherosclerotic plaques and compared their precision,accuracy,recall,F1-score and area under the curve.Results:A total of 150 individuals were enrolled in this study,30 (20%) of them were found with carotid atherosclerotic plaques.Sex,age,body mass index,total cholesterol,Systolic blood pressure (SBP),and carbohydrate antigen 724 (CA724) were independently correlated to carotid atherosclerosis.Pepsinogen I and pepsinogen II serum levels had no correlations with Carotid intima-media thickness and pulse wave velocity.SBP,diastolic blood pressure age,low-density lipoprotein,Pepsinogen I,pepsinogen II,body mass index,Waist,CA724,and Uric Acid contribute to the cumulative importance of 0.9,and SBP was the most crucial feature for carotid atherosclerosis.LR algorithm has the precision (0.92),values of recall(0.91),F1 (0.9),and area under the curve (0.95),and showed the optimal performance to predict the presence or absence of carotid atherosclerosis in asymptomatic adults.The code for analysis in this article was uploaded to GitHub(https://github.com/ganbingliangyi/machine-learning).Conclusions:SBP was the most crucial feature in ranking features,the LR algorithm showed the optimal performance to predict the presence or absence of carotid atherosclerosis in asymptomatic adults.

    Keywords: machine learning;feature selection;gastric biomarkers;carotid atherosclerosis;asymptomatic adults

    Background

    Carotid atherosclerosis is a comprehensive disease whose pathology is mainly characterized by carotid intima thickening and is a risk factor for stroke,which can be diagnosed with image tests such as ultrasound[1-3].However,the diagnosis of carotid atherosclerosis often happens after the patient presents with neurovascular symptoms,such as syncope,instead of diagnosis at an early stage by routine screening.This is mainly because there is uncertainty regarding the asymptomatic patients at higher risk of poor outcomes that may benefit most from early screening [4].

    In recent years,artificial intelligence (AI) has been a technological breakthrough and contributes to the analysis of clinical data in biomedical fields such as cardiovascular medicine [5].Machine learning (ML) is a subset of AI that can automate decision-making and predict outcomes based on patient data [6].Fan et al.predicted the risk of carotid atherosclerosis using ML,which found that logistic regression (LR) showed optimal performance (area under the curve(AUC) 0.809,accuracy 74.7%,and F1-score 59.9%) in predicting carotid atherosclerosis [7].

    Serum gastric biomarkers,such as pepsinogens I (PGI),and pepsinogens II (PGII),are essential parameters in clinical screening for atrophic gastritis and gastric cancer.Previous studies found a positive correlation between gastric biomarkers and atherosclerosis in individuals [8].However,as we know,no previous studies explored the feature of serum gastric biomarkers in predicting carotid atherosclerosis risk in asymptomatic adults using the ML approach.Therefore,this study was conducted to identify ML approaches for predicting carotid atherosclerosis risk in asymptomatic adults.This could provide a new theoretical foundation for future research on the screening and diagnosis of carotid atherosclerosis.

    Material and Methods

    Study participants

    Our study included individuals who underwent annual health examinations at the People’s Hospital of Deyang City between January 2019 and January 2020.Inclusion criteria: (1) age of 18-80 years old;(2) individuals who have carotid duplex ultrasonography.Excluded criteria: (1) mental illness,communication disorders;(2) Patients with tumors.The Ethics Committee approved this study of Peoples’Hospital of Deyang City (No.2022-04-135).De-identified retrospective data that were collected during the health screening process were used.

    Methods

    Demographic data acquisition.Data from 150 individuals were collected.These data included sex,age,lifestyle factors,waist,body mass index (BMI),systolic blood pressure (SBP),diastolic blood pressure(DBP),fasting blood glucose,uric acid(UA),total cholesterol,triglycerides,high-density lipoprotein cholesterol,low-density lipoprotein cholesterol,pulse wave velocity (PWV),PGI,PGII,and CA724.Blood pressure,height,weight,and waist circumference were measured according to standard operation.

    A standard questionnaire was administered by trained staff to obtain data on lifestyle risk factors,including cigarette smoking(defined as subjects who smoked ≥1 cigarette/day during the past 30 days or had smoked ≥100 cigarettes in their lifetime or still have the habit of smoking during the study),and alcohol consumption (defined as drinking ≥500 g of alcohol/week for ≥1 year) [9,10].

    Carotid ultrasonography and atherosclerotic tests.Senior doctors checked the Carotid intima-media thickness (CIMT) with B-ultrasound(Philips IU22,Philips Healthcare).The study determined carotid atherosclerosis if CIMT ≥ 1.3 mm with or without atherosclerotic plaque[11,12].

    Trained medical practitioners were responsible for the measurement of PWV by the automated device (Beijing Chioy Medical Technology,Model VBP-9T),with the subject lying supine in the resting condition.

    Machine learning-based diagnostic model

    Data preprocessing.Data shall be preprocessed before training machine learning algorithm models.Missing values and high heterogeneity were cleared,replacing the secondary variable with 0 or 1.

    Feature and model selection.Feature selection was made using the Feature-selector library,a tool for ML datasets(https://github.com/WillKoehrsen/feature-selector).Model selection was made using three ML algorithms,including Decision Tree (DT),Random Forest (RF),and LR.Among the individuals enrolled,the remaining 15% (testing sample) served to test the model,and 85%were randomly selected (training sample),who were used to develop the model.We set model parameters to LogisticRegression(C=1.0,class_weight=None,dual=False,fit_intercept=True,intercept_scaling=1,max_iter=100,multi_class=‘ovr’,n_jobs=1,penalty=‘l2’,random_state=None,solver=‘liblinear’,tol=0.0001,verbose=0,warm_start=False),RandomForestClassifier(n_estimators=100,max_depth=5,oob_score=True,class_weight=“balanced”,random_state=1),DecisionTreeClassifier(criterion=‘entropy’,max_depth=5).

    Predictive performance measurements.Several evaluation parameters related to the performance of machine learning algorithm models will be described and used to compare three different algorithm models.For example,the receiver operating characteristic curve (ROC) and the AUC value,accuracy,precision,recall,and F1 values.ROC and AUC are used to evaluate the overall performance of classification and prediction [13].

    Precision was the ratio of the actual positive sample to all positive samples in the predicted sample.The recall was the ratio of actual positive samples to the number of predicted samples in the forecast sample.F1 was the summed average of precision and recall.Accuracy is the ratio of the number of all predicted correct samples divided by the total number of samples [13].

    All models were built using the Python environment (version 3.9.0)using the sklearn,numpy,pandas,matplotlib,seaborn and scipy packages.

    Statistical analysis

    Statistical analysis and ML algorithms were conducted using Python version 3.9.0 programming language (http://www.python.org).Categorical variables are presented in the form of cases (percentage).Variables that fitted normal distribution (e.g.,age,BMI) were represented by “mean ± standard deviation” (normal distribution).The correlations of characteristics were estimated using Pearson’s correlation analysis and multiple linear regression analysis.Multivariate analysis was performed using a logistic regression model.P<0.05 indicated a difference of statistical significance.

    Results

    Baseline characteristics of included subjects

    A total of 150 individuals aged 30-77 years met the inclusion criteria,with a mean age of 53.90 ± 8.84 years and a male-to-female ratio of 1.78:1.Among them,37 (24.7%) had hypertension,and 30 (20%) had carotid atherosclerosis plaques (Table 1).

    Correlation of features

    The correlations of characteristics were estimated using Pearson’s correlation analysis (Figure 1).Correlation analysis showed that serum PGI level was not correlated with CIMT or PWV (P=0.296,P=0.518,respectively),nor the serum PGII level was correlated with CIMT or PWV (P=0.172,P=0.466,respectively).CA724 level was positively correlated with CIMT (R=0.188,P=0.021).CA724 level was not correlated with PWV (R=0.037,P=0.651).

    Ranking of influencing carotid atherosclerosis feature

    The presence of carotid atherosclerosis was considered a target variable.Use github’s feature analysis library “Feature selector” toanalyze the data and rank the features affecting high to low carotid atherosclerosis.From the perspective of clinical practice,the results of feature ranking are analyzed and screened,and the final results can be regarded as the risk factors of carotid atherosclerosis.

    Table 1 Baseline characteristics of participants(N=150)

    The carotid atherosclerosis results for feature selection techniques using the ‘Feature-selector’ library,we further ranked those 16 features (Figure 2).SBP,Age,low-density lipoprotein (LDL),PGI,BMI,Waist,CA724,UA,PGII,and DBP contribute to the cumulative importance of 0.9 (Figure 3).SBP contributed the most to the carotid atherosclerosis outcome.The code for analysis in this article was uploaded to GitHub (https://github.com/ganbingliangyi/machine-lea rning)

    Prediction model of machine learning

    In Table 2,the results of three algorithm models,DT,RF and LR,are evaluated and compared.Which was accuracy precision,recall,and F1 value,ROC curves were drawn respectively.DT is shown in Figure 4,RF is shown in Figure 5,and LR is shown in Figure 6.

    Among the three algorithms,the LR algorithm has the best performance,including precision (0.92),recall (0.91),F1 (0.9),and AUC (0.95) respectively.The final results showed that the LR algorithm model was superior to other algorithms in recall,F1,accuracy and AUC,showing the best model classification and prediction capabilities.Combined with the clinical situation,after evaluating the performance of the algorithm model based on various factors,the study chose to use the LR algorithm model to predict carotid atherosclerosis.

    Discussion

    In this study,SBP,Age,LDL,PGI,BMI,Waist,CA724,UA,PGII,and DBP were significant for carotid atherosclerosis in asymptomatic adults.These findings are similar to some previous studies,among them,Gender,Age and SBP associated with the risk of carotid pulsatile atherosclerosis [14,15].Compared with traditional statistical analysis,a feature selection tool was used in the present study to obtain the importance of relevant factors for carotid atherosclerosis.In addition,our study showed the ranking of influencing carotid atherosclerosis feature,and SBP,Age,LDL,PGI and BMI were the feature of weights of top-five.This information is essential for guiding the prevention of carotid atherosclerosis.

    It was proposed that Gastrin,PGI,and PGII were positively correlated with carotid atherosclerosis in patients with H.pylori infection [16].However,our study showed that serum PGI and PGII were not correlated with carotid atherosclerosis in HP -negative individuals.Instead,we also found that serum CA724 weakly correlated with CIMT.

    With the rapid advances in recent years,AI-based techniques have gained popularity and have been more widely applied in medicine,particularly in medical imaging and decision support system [17-19].Luca Saba et al.reviewed that AI technology was used to assist in the diagnosis of arteriosclerosis plaque [20].CT-based carotid arteries were used for features by training several ML algorithms.The support vector machine algorithm received an accuracy of 0.88,with a sensitivity of 0.90 and a specificity of 0.86 [21].

    Figure 1 The correlations of characteristics were shown by Pearson Correlation Heatmap.BMI,body mass index;SBP,systolic blood pressure;DBP,diastolic blood pressure;UA,uric acid;GLU,glucose;TC,total cholesterol;TG,triglycerides;HDL-C,high-density lipoprotein cholesterol;LDL-C,low-density lipoprotein cholesterol;CA724,carbohydrate antigen 724;PGI,Pepsinogen I;PGII,pepsinogen II;PWV,pulse wave velocity;CIMT,carotid intima-media thickness.

    Figure 2 Feature importance based on feature permutation for carotid atherosclerosis.BMI,body mass index;SBP,systolic blood pressure;DBP,diastolic blood pressure;UA,uric acid;GLU,glucose;TC,total cholesterol;TG,triglycerides;LDL,low-density lipoprotein;HDL,high-density lipoprotein;PGI,Pepsinogen I;PGII,pepsinogen II.

    Figure 3 Cumulative importance versus the number of features

    Table 2 compared in terms of precision,recall,F1 value,and AUC

    Figure 4 Receiver operating characteristic curves for the decision tree(DT)model.The area under the receiver operating characteristic curve.DT,Decision Tree.

    Figure 5 Receiver operating characteristic curves for the RandomForest model.The area under the receiver operating characteristic curve.

    Figure 6 Receiver operating characteristic curves for the LogisticRegression model.The area under the receiver operating characteristic curve.

    Jian Yu et al.built ML algorithms to diagnosis carotid atherosclerosis using RF,DT,support vector machine,extreme gradient boosting,and multilayer perceptron with more than a dozen features.Among them,the multilayer perceptron,an artificial neural network,obtained the highest accuracy (0.748),F1 score (0.742),and AUC (0.766) [22].

    In this study,carotid atherosclerosis was accurately estimated using three ML models,including DT,RF,and LR.The result showed that the model evaluation of the LR algorithm performs best,precision(0.92) and recall (0.91),F1 score (0.9),and AUC (0.95).The relevant indicators are better than those in the previous studies [23].

    Our study has several limitations.Firstly,it is a cross-sectional study rather than a randomized controlled trial.We use test sets to evaluate the models,but the randomized trial is the most widely accepted model evaluation method in clinical research.Secondly,this study only included people who received annual physical examinations,and these participants are generally healthier than those who do not receive annual physical examinations.Thus,our study cohort might not be representative of the general population.Thirdly,some input features could affect the model’s accuracy,and the mode’s false positive and false negative results predicted by the model should be further analyzed in the future.Fourthly,the sample size of this study is small,a larger sample size and multicenter clinical are still needed in future studies.

    Conclusion

    Our results demonstrated that serum PGI and PGII are not correlated with CIMT or PWV.However,we found the valence of PGI as a predictor of carotid atherosclerosis as a feature.Furthermore,SBP was the most crucial feature in ranking features.LR algorithm has a precision (0.92),values of recall (0.91),F1 (0.9),and AUC (0.95),and showed the optimal performance to predict carotid atherosclerosis in asymptomatic adults.Our study may offer an alarming early system,allowing a non-imaging diagnosis of carotid atherosclerosis in asymptomatic adults.

    色尼玛亚洲综合影院| 国产真实伦视频高清在线观看| av免费在线看不卡| 日韩av在线大香蕉| 又爽又黄无遮挡网站| 美女被艹到高潮喷水动态| 免费av不卡在线播放| 18禁黄网站禁片免费观看直播| 丰满乱子伦码专区| 99热全是精品| 人人妻人人看人人澡| 色哟哟哟哟哟哟| 精品国产三级普通话版| 国产成人a∨麻豆精品| 成人二区视频| 岛国毛片在线播放| 热99在线观看视频| 欧美zozozo另类| 成人二区视频| 内射极品少妇av片p| 日产精品乱码卡一卡2卡三| 男女边吃奶边做爰视频| 国产中年淑女户外野战色| 精品久久久久久久久久免费视频| 国产一级毛片七仙女欲春2| 日日撸夜夜添| 99久久精品国产国产毛片| 级片在线观看| 国产午夜福利久久久久久| 免费电影在线观看免费观看| 给我免费播放毛片高清在线观看| 免费观看精品视频网站| 欧美+亚洲+日韩+国产| 中文精品一卡2卡3卡4更新| 插阴视频在线观看视频| 天堂影院成人在线观看| 日本黄大片高清| 亚州av有码| 最近手机中文字幕大全| 国产探花在线观看一区二区| 波多野结衣高清无吗| 亚洲欧洲日产国产| 日韩一区二区三区影片| 亚洲精华国产精华液的使用体验 | 日韩一区二区三区影片| 搞女人的毛片| 国内揄拍国产精品人妻在线| 久久久久九九精品影院| 久久久久久久亚洲中文字幕| 国内少妇人妻偷人精品xxx网站| 又粗又硬又长又爽又黄的视频 | 人妻制服诱惑在线中文字幕| 久久亚洲精品不卡| 国产亚洲精品久久久com| 亚洲在线自拍视频| 日韩av不卡免费在线播放| 国产一区二区在线av高清观看| 插阴视频在线观看视频| 国产av麻豆久久久久久久| 日本免费一区二区三区高清不卡| 舔av片在线| 麻豆乱淫一区二区| 亚洲国产精品合色在线| 91麻豆精品激情在线观看国产| 最后的刺客免费高清国语| 级片在线观看| 午夜福利高清视频| 激情 狠狠 欧美| 麻豆乱淫一区二区| 欧美+日韩+精品| 免费观看a级毛片全部| 精品免费久久久久久久清纯| 亚洲精品乱码久久久v下载方式| 看十八女毛片水多多多| 国产一区亚洲一区在线观看| 少妇人妻精品综合一区二区 | 国产国拍精品亚洲av在线观看| 国产精品嫩草影院av在线观看| 亚洲在线观看片| 寂寞人妻少妇视频99o| 又粗又硬又长又爽又黄的视频 | 欧美日韩一区二区视频在线观看视频在线 | 欧美区成人在线视频| 国产蜜桃级精品一区二区三区| 亚洲五月天丁香| 久久久久久久久久久丰满| 人体艺术视频欧美日本| 麻豆国产97在线/欧美| 国产成人aa在线观看| 国产成人午夜福利电影在线观看| 亚洲精品日韩在线中文字幕 | 成人亚洲欧美一区二区av| 久久久成人免费电影| 国模一区二区三区四区视频| 亚洲天堂国产精品一区在线| 久久精品人妻少妇| 国产精品女同一区二区软件| 日本黄色片子视频| 99久国产av精品| 欧美激情久久久久久爽电影| 国产精品免费一区二区三区在线| 在线免费观看不下载黄p国产| 亚洲精华国产精华液的使用体验 | 亚洲天堂国产精品一区在线| 久久欧美精品欧美久久欧美| 99久久无色码亚洲精品果冻| 久久久久久久久久久丰满| 成人特级黄色片久久久久久久| 日韩三级伦理在线观看| 麻豆精品久久久久久蜜桃| 熟妇人妻久久中文字幕3abv| 国产精品一及| 热99re8久久精品国产| 亚洲人成网站在线观看播放| 亚洲第一区二区三区不卡| 色哟哟哟哟哟哟| 一进一出抽搐动态| 秋霞在线观看毛片| 亚洲精品456在线播放app| 又黄又爽又刺激的免费视频.| 特级一级黄色大片| 婷婷亚洲欧美| 边亲边吃奶的免费视频| 国产午夜精品久久久久久一区二区三区| 日产精品乱码卡一卡2卡三| 国产不卡一卡二| 亚洲av.av天堂| 淫秽高清视频在线观看| 春色校园在线视频观看| 亚洲美女搞黄在线观看| 国产伦在线观看视频一区| 国产精品久久久久久久电影| 亚洲av.av天堂| 免费观看的影片在线观看| av在线老鸭窝| 亚洲第一区二区三区不卡| 欧美bdsm另类| 精品午夜福利在线看| 成人漫画全彩无遮挡| а√天堂www在线а√下载| 免费看美女性在线毛片视频| 色播亚洲综合网| 高清毛片免费观看视频网站| 国产精品美女特级片免费视频播放器| 少妇人妻精品综合一区二区 | 久久精品夜色国产| 一级av片app| 真实男女啪啪啪动态图| 波多野结衣巨乳人妻| 日本熟妇午夜| .国产精品久久| 国产极品精品免费视频能看的| 自拍偷自拍亚洲精品老妇| 国产精品免费一区二区三区在线| 日韩成人av中文字幕在线观看| 男女视频在线观看网站免费| 一本一本综合久久| 免费看av在线观看网站| 亚洲图色成人| 啦啦啦韩国在线观看视频| 欧美日韩国产亚洲二区| 国产亚洲精品久久久久久毛片| ponron亚洲| 一区福利在线观看| 成人特级av手机在线观看| 99在线视频只有这里精品首页| 国产色爽女视频免费观看| 亚洲经典国产精华液单| 久久欧美精品欧美久久欧美| 久久久成人免费电影| 成年女人永久免费观看视频| 青春草亚洲视频在线观看| 国产精品日韩av在线免费观看| 亚州av有码| 床上黄色一级片| 亚洲一区高清亚洲精品| 国产极品精品免费视频能看的| 99九九线精品视频在线观看视频| 精品久久久久久久久久免费视频| 26uuu在线亚洲综合色| 亚洲av免费高清在线观看| 欧美日韩国产亚洲二区| 亚洲内射少妇av| 蜜桃亚洲精品一区二区三区| 一进一出抽搐gif免费好疼| 青青草视频在线视频观看| 久久99热6这里只有精品| 国产色婷婷99| 九草在线视频观看| 久久99蜜桃精品久久| 日本免费a在线| 桃色一区二区三区在线观看| 麻豆一二三区av精品| 日本成人三级电影网站| 只有这里有精品99| 亚洲无线在线观看| 一进一出抽搐动态| 亚洲av中文字字幕乱码综合| 男的添女的下面高潮视频| av又黄又爽大尺度在线免费看 | 我的女老师完整版在线观看| 午夜老司机福利剧场| 别揉我奶头 嗯啊视频| 白带黄色成豆腐渣| 黄片wwwwww| 免费搜索国产男女视频| 成熟少妇高潮喷水视频| av天堂中文字幕网| 一级毛片久久久久久久久女| 99热精品在线国产| 久久久久久伊人网av| 精品无人区乱码1区二区| 三级经典国产精品| 午夜亚洲福利在线播放| 99精品在免费线老司机午夜| 亚洲综合色惰| 女的被弄到高潮叫床怎么办| av天堂在线播放| 午夜老司机福利剧场| 亚洲成av人片在线播放无| www.色视频.com| 国内精品一区二区在线观看| 天堂√8在线中文| 欧美成人精品欧美一级黄| 国产一级毛片七仙女欲春2| 天美传媒精品一区二区| 午夜免费男女啪啪视频观看| 亚洲18禁久久av| 如何舔出高潮| 男的添女的下面高潮视频| 免费搜索国产男女视频| 一个人看视频在线观看www免费| 国产男人的电影天堂91| 别揉我奶头 嗯啊视频| 日日啪夜夜撸| 国产真实乱freesex| 色综合色国产| 在线观看美女被高潮喷水网站| 真实男女啪啪啪动态图| 婷婷六月久久综合丁香| 成人二区视频| 日本五十路高清| 日本一二三区视频观看| 国产精品一区二区在线观看99 | 国产午夜精品久久久久久一区二区三区| 国产亚洲精品久久久com| 亚洲在久久综合| 99在线人妻在线中文字幕| 高清毛片免费看| 蜜臀久久99精品久久宅男| 亚洲四区av| 亚洲国产精品合色在线| 免费观看人在逋| 99热精品在线国产| 国产一区亚洲一区在线观看| 国产在视频线在精品| 国产真实伦视频高清在线观看| 国产淫片久久久久久久久| 99久久九九国产精品国产免费| 丰满乱子伦码专区| 美女被艹到高潮喷水动态| 国产成人91sexporn| 又爽又黄无遮挡网站| 91久久精品电影网| 日韩亚洲欧美综合| 少妇高潮的动态图| 91在线精品国自产拍蜜月| 看黄色毛片网站| 99久久中文字幕三级久久日本| 久久草成人影院| 大型黄色视频在线免费观看| 久久久色成人| 九九在线视频观看精品| 精品久久久久久久末码| 国产白丝娇喘喷水9色精品| 中国国产av一级| 国产成人a区在线观看| eeuss影院久久| 日本撒尿小便嘘嘘汇集6| av在线蜜桃| 久久午夜福利片| 伊人久久精品亚洲午夜| 色哟哟·www| 午夜久久久久精精品| 日本色播在线视频| 久久久国产成人精品二区| 在线观看av片永久免费下载| 欧美成人一区二区免费高清观看| 欧美不卡视频在线免费观看| 女人十人毛片免费观看3o分钟| 亚洲欧美成人精品一区二区| a级毛片免费高清观看在线播放| av在线老鸭窝| 日韩欧美三级三区| 最近最新中文字幕大全电影3| 男女下面进入的视频免费午夜| 日本黄色片子视频| 人人妻人人澡欧美一区二区| 免费观看的影片在线观看| 免费无遮挡裸体视频| 免费观看人在逋| 国产成人午夜福利电影在线观看| 欧美性猛交黑人性爽| 一级黄片播放器| 国产伦在线观看视频一区| 国产午夜精品久久久久久一区二区三区| 最后的刺客免费高清国语| 午夜免费男女啪啪视频观看| 此物有八面人人有两片| 深爱激情五月婷婷| 成熟少妇高潮喷水视频| 亚洲电影在线观看av| 国产精品爽爽va在线观看网站| 成人二区视频| av福利片在线观看| 男女边吃奶边做爰视频| 秋霞在线观看毛片| 国产精品不卡视频一区二区| 丰满的人妻完整版| 好男人在线观看高清免费视频| 国产精品一区二区三区四区免费观看| 色哟哟·www| 久久草成人影院| 欧美最新免费一区二区三区| 哪里可以看免费的av片| 女的被弄到高潮叫床怎么办| 国产精品久久久久久亚洲av鲁大| 最后的刺客免费高清国语| 特级一级黄色大片| 国产黄a三级三级三级人| 啦啦啦啦在线视频资源| 国产高潮美女av| 性插视频无遮挡在线免费观看| 日韩大尺度精品在线看网址| 美女大奶头视频| av女优亚洲男人天堂| 日本成人三级电影网站| 亚洲七黄色美女视频| 国产在线男女| 日韩欧美三级三区| 男人狂女人下面高潮的视频| av在线蜜桃| 91久久精品国产一区二区成人| 亚洲人成网站高清观看| 欧美日韩在线观看h| 老司机影院成人| 免费看光身美女| 国产精品av视频在线免费观看| 欧美色视频一区免费| 网址你懂的国产日韩在线| 欧美性猛交黑人性爽| 亚洲av成人精品一区久久| 国产av在哪里看| 国产黄片视频在线免费观看| 中文字幕久久专区| 国产精品福利在线免费观看| 亚洲欧美日韩高清专用| 国产午夜精品论理片| 丰满的人妻完整版| 午夜精品在线福利| 内射极品少妇av片p| 中文精品一卡2卡3卡4更新| 夜夜夜夜夜久久久久| 黄色日韩在线| 亚洲国产欧美人成| 中文在线观看免费www的网站| 黄片无遮挡物在线观看| 97热精品久久久久久| 欧美激情国产日韩精品一区| 日韩三级伦理在线观看| 亚洲人成网站在线播| 在线天堂最新版资源| 久久久久久国产a免费观看| 亚洲精品乱码久久久v下载方式| 国产老妇女一区| 丰满乱子伦码专区| 亚洲av不卡在线观看| 在线观看66精品国产| 最新中文字幕久久久久| 久久午夜亚洲精品久久| 国产在线男女| 婷婷色综合大香蕉| 成人特级黄色片久久久久久久| 久久久精品94久久精品| 又爽又黄a免费视频| 天天躁夜夜躁狠狠久久av| 免费大片18禁| 老师上课跳d突然被开到最大视频| 亚洲国产精品sss在线观看| 亚洲va在线va天堂va国产| 国产伦精品一区二区三区四那| 日韩精品有码人妻一区| 日本欧美国产在线视频| 久久鲁丝午夜福利片| 精品久久国产蜜桃| 免费黄网站久久成人精品| 久久久久久九九精品二区国产| 色播亚洲综合网| 国产亚洲精品av在线| 免费不卡的大黄色大毛片视频在线观看 | 高清毛片免费观看视频网站| 久久久久免费精品人妻一区二区| 亚洲自偷自拍三级| 亚洲精品乱码久久久v下载方式| 欧美日本亚洲视频在线播放| 欧美色视频一区免费| 成人亚洲欧美一区二区av| av在线播放精品| 亚洲最大成人中文| 一边摸一边抽搐一进一小说| 麻豆久久精品国产亚洲av| 亚洲欧美中文字幕日韩二区| av天堂在线播放| 婷婷色av中文字幕| 搡女人真爽免费视频火全软件| 久久精品国产鲁丝片午夜精品| 国产精品,欧美在线| 天堂网av新在线| 久久久久久国产a免费观看| 91精品一卡2卡3卡4卡| 天美传媒精品一区二区| .国产精品久久| 春色校园在线视频观看| 日韩人妻高清精品专区| 男人狂女人下面高潮的视频| 精品一区二区免费观看| 免费人成在线观看视频色| or卡值多少钱| 一个人看视频在线观看www免费| 免费人成视频x8x8入口观看| 精品熟女少妇av免费看| 久久精品夜色国产| 亚洲精品成人久久久久久| 高清毛片免费看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 此物有八面人人有两片| 久久精品国产99精品国产亚洲性色| 男人舔女人下体高潮全视频| 十八禁国产超污无遮挡网站| 国产精品三级大全| 国产探花极品一区二区| 国产精品久久视频播放| 身体一侧抽搐| 久久99热6这里只有精品| 国产不卡一卡二| 久久久久久久久久久丰满| 亚洲国产欧美在线一区| 亚洲国产日韩欧美精品在线观看| 欧美3d第一页| 亚洲成人中文字幕在线播放| 成年av动漫网址| av免费观看日本| 日韩 亚洲 欧美在线| 国内精品一区二区在线观看| 国产黄片视频在线免费观看| 熟妇人妻久久中文字幕3abv| 18禁在线播放成人免费| 十八禁国产超污无遮挡网站| 精华霜和精华液先用哪个| 三级毛片av免费| 亚洲电影在线观看av| 少妇猛男粗大的猛烈进出视频 | 国产片特级美女逼逼视频| 日本五十路高清| 中文字幕免费在线视频6| 日韩欧美三级三区| 日韩在线高清观看一区二区三区| 久久韩国三级中文字幕| 国产午夜福利久久久久久| 非洲黑人性xxxx精品又粗又长| 精华霜和精华液先用哪个| 中文在线观看免费www的网站| 变态另类丝袜制服| 日韩国内少妇激情av| 在线观看午夜福利视频| 国产乱人视频| 成人亚洲精品av一区二区| 高清日韩中文字幕在线| a级一级毛片免费在线观看| 日本av手机在线免费观看| 在线a可以看的网站| 国产老妇伦熟女老妇高清| 国产三级在线视频| av黄色大香蕉| 久久久精品94久久精品| 99久久九九国产精品国产免费| 毛片女人毛片| 最好的美女福利视频网| 日本在线视频免费播放| 精品久久久久久久久av| 国产成人freesex在线| 亚洲欧美清纯卡通| 99国产极品粉嫩在线观看| 成人二区视频| 国产精品福利在线免费观看| 国产片特级美女逼逼视频| 国产亚洲精品久久久久久毛片| 国模一区二区三区四区视频| 成人高潮视频无遮挡免费网站| 亚洲精品粉嫩美女一区| 内地一区二区视频在线| 男人舔女人下体高潮全视频| 免费看av在线观看网站| 婷婷色综合大香蕉| 国产久久久一区二区三区| 亚洲成人精品中文字幕电影| 男人狂女人下面高潮的视频| 精品人妻视频免费看| 国产一级毛片在线| 最好的美女福利视频网| 日韩一区二区三区影片| 99国产极品粉嫩在线观看| 干丝袜人妻中文字幕| 一区二区三区高清视频在线| 高清毛片免费观看视频网站| 在线天堂最新版资源| 亚洲国产精品成人综合色| 久久精品国产亚洲av涩爱 | 国内精品久久久久精免费| 国产高清视频在线观看网站| av专区在线播放| 久久中文看片网| 十八禁国产超污无遮挡网站| 亚洲一级一片aⅴ在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲av男天堂| 日韩欧美国产在线观看| 久久精品国产清高在天天线| 婷婷色av中文字幕| 国产一区二区三区av在线 | 又粗又爽又猛毛片免费看| 男人和女人高潮做爰伦理| 亚洲一区二区三区色噜噜| 午夜福利视频1000在线观看| 日本成人三级电影网站| 插阴视频在线观看视频| 日本黄色视频三级网站网址| 禁无遮挡网站| 两个人的视频大全免费| 日韩 亚洲 欧美在线| 久久99精品国语久久久| 久久精品久久久久久久性| 91av网一区二区| 亚洲欧美精品综合久久99| 国产一区二区在线观看日韩| 中出人妻视频一区二区| 91av网一区二区| 老司机福利观看| 久久精品夜夜夜夜夜久久蜜豆| 免费黄网站久久成人精品| 在线观看一区二区三区| 如何舔出高潮| 免费观看a级毛片全部| 国产久久久一区二区三区| 99热只有精品国产| 观看免费一级毛片| 国产男人的电影天堂91| 天堂网av新在线| 中文精品一卡2卡3卡4更新| 亚洲人成网站高清观看| 丝袜喷水一区| 精品久久久久久久久av| 亚洲性久久影院| 嫩草影院入口| 99久久久亚洲精品蜜臀av| 久久99热6这里只有精品| 26uuu在线亚洲综合色| av在线老鸭窝| 91久久精品国产一区二区三区| 少妇熟女aⅴ在线视频| 中国美女看黄片| ponron亚洲| 久久久国产成人精品二区| www.色视频.com| 久久这里有精品视频免费| 偷拍熟女少妇极品色| 少妇高潮的动态图| 日本欧美国产在线视频| 99国产极品粉嫩在线观看| 欧美另类亚洲清纯唯美| 爱豆传媒免费全集在线观看| 久久久欧美国产精品| 日韩av在线大香蕉| 国产成人精品久久久久久| 一级黄片播放器| 男女下面进入的视频免费午夜| 久久久a久久爽久久v久久| 九九热线精品视视频播放| 欧美激情久久久久久爽电影| 国产精品久久视频播放| 一进一出抽搐gif免费好疼| 女人被狂操c到高潮| 欧美bdsm另类| 中出人妻视频一区二区| 久久精品国产亚洲av香蕉五月| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧洲国产日韩| 精品久久久久久久久久免费视频| 最近视频中文字幕2019在线8| 国产毛片a区久久久久| 亚洲精品国产av成人精品| 大型黄色视频在线免费观看| 性欧美人与动物交配| 亚洲av男天堂| 波多野结衣巨乳人妻| 一夜夜www| 亚洲av二区三区四区| 精品欧美国产一区二区三| 久久欧美精品欧美久久欧美| 欧美成人免费av一区二区三区| 免费av毛片视频| 国产色婷婷99| 免费大片18禁| 欧美区成人在线视频| 成人性生交大片免费视频hd|