• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Feature selection and machine learning approach for carotid atherosclerosis in asymptomatic adults

    2022-11-03 06:35:56TaoLiangQiaoLiWangXiaoQinLiuZhenZhouScottLoweZiHengChenChenYuSun
    Medical Data Mining 2022年4期

    Tao Liang ,Qiao-Li Wang ,Xiao-Qin Liu ,Zhen Zhou ,Scott Lowe ,Zi-Heng Chen ,Chen-Yu Sun

    1Department of Gastroenterology,Peoples’ Hospital of Deyang City,Deyang 618000,China.2Department of Physical Examination Center,Peoples’ Hospital of Deyang City,Deyang 618000,China.3Menzies Institute for Medical Research,University of Tasmania,Hobart,TAS 7000,Australia.4College of Osteopathic Medicine,Kansas City University,Kansas City,MO 64106,USA.5Applied Mathematics and Statistics,Stony Brook University,Stony Brook,NY 11794,USA.6AMITA Health Saint Joseph Hospital Chicago,University of Illinois Chicago,Chicago 60657,USA.

    Abstract Objective:The presence of carotid atherosclerosis reflects the overall atherosclerotic load and may predict cardiovascular and cerebrovascular accidents.Studies have reported risk factors for carotid atherosclerosis.However,few practical models have been established to predict carotid atherosclerosis risk.Thus,this study was conducted to investigate important features of carotid atherosclerosis and to propose a machine learning-based method for predicting carotid atherosclerosis in asymptomatic adults.Methods:Cross-sectional study was conducted using routine medical check-up data of individuals from January 2019 to January 2020.Pearson’s correlation analysis was performed to correlate the features.Then,features were selected by python’s feature-selection library and analyzed through three algorithms.Multiple machine learning algorithms,including Decision Tree,Random Forest and Logistic Regression (LR) were used to predict the risk of carotid atherosclerotic plaques and compared their precision,accuracy,recall,F1-score and area under the curve.Results:A total of 150 individuals were enrolled in this study,30 (20%) of them were found with carotid atherosclerotic plaques.Sex,age,body mass index,total cholesterol,Systolic blood pressure (SBP),and carbohydrate antigen 724 (CA724) were independently correlated to carotid atherosclerosis.Pepsinogen I and pepsinogen II serum levels had no correlations with Carotid intima-media thickness and pulse wave velocity.SBP,diastolic blood pressure age,low-density lipoprotein,Pepsinogen I,pepsinogen II,body mass index,Waist,CA724,and Uric Acid contribute to the cumulative importance of 0.9,and SBP was the most crucial feature for carotid atherosclerosis.LR algorithm has the precision (0.92),values of recall(0.91),F1 (0.9),and area under the curve (0.95),and showed the optimal performance to predict the presence or absence of carotid atherosclerosis in asymptomatic adults.The code for analysis in this article was uploaded to GitHub(https://github.com/ganbingliangyi/machine-learning).Conclusions:SBP was the most crucial feature in ranking features,the LR algorithm showed the optimal performance to predict the presence or absence of carotid atherosclerosis in asymptomatic adults.

    Keywords: machine learning;feature selection;gastric biomarkers;carotid atherosclerosis;asymptomatic adults

    Background

    Carotid atherosclerosis is a comprehensive disease whose pathology is mainly characterized by carotid intima thickening and is a risk factor for stroke,which can be diagnosed with image tests such as ultrasound[1-3].However,the diagnosis of carotid atherosclerosis often happens after the patient presents with neurovascular symptoms,such as syncope,instead of diagnosis at an early stage by routine screening.This is mainly because there is uncertainty regarding the asymptomatic patients at higher risk of poor outcomes that may benefit most from early screening [4].

    In recent years,artificial intelligence (AI) has been a technological breakthrough and contributes to the analysis of clinical data in biomedical fields such as cardiovascular medicine [5].Machine learning (ML) is a subset of AI that can automate decision-making and predict outcomes based on patient data [6].Fan et al.predicted the risk of carotid atherosclerosis using ML,which found that logistic regression (LR) showed optimal performance (area under the curve(AUC) 0.809,accuracy 74.7%,and F1-score 59.9%) in predicting carotid atherosclerosis [7].

    Serum gastric biomarkers,such as pepsinogens I (PGI),and pepsinogens II (PGII),are essential parameters in clinical screening for atrophic gastritis and gastric cancer.Previous studies found a positive correlation between gastric biomarkers and atherosclerosis in individuals [8].However,as we know,no previous studies explored the feature of serum gastric biomarkers in predicting carotid atherosclerosis risk in asymptomatic adults using the ML approach.Therefore,this study was conducted to identify ML approaches for predicting carotid atherosclerosis risk in asymptomatic adults.This could provide a new theoretical foundation for future research on the screening and diagnosis of carotid atherosclerosis.

    Material and Methods

    Study participants

    Our study included individuals who underwent annual health examinations at the People’s Hospital of Deyang City between January 2019 and January 2020.Inclusion criteria: (1) age of 18-80 years old;(2) individuals who have carotid duplex ultrasonography.Excluded criteria: (1) mental illness,communication disorders;(2) Patients with tumors.The Ethics Committee approved this study of Peoples’Hospital of Deyang City (No.2022-04-135).De-identified retrospective data that were collected during the health screening process were used.

    Methods

    Demographic data acquisition.Data from 150 individuals were collected.These data included sex,age,lifestyle factors,waist,body mass index (BMI),systolic blood pressure (SBP),diastolic blood pressure(DBP),fasting blood glucose,uric acid(UA),total cholesterol,triglycerides,high-density lipoprotein cholesterol,low-density lipoprotein cholesterol,pulse wave velocity (PWV),PGI,PGII,and CA724.Blood pressure,height,weight,and waist circumference were measured according to standard operation.

    A standard questionnaire was administered by trained staff to obtain data on lifestyle risk factors,including cigarette smoking(defined as subjects who smoked ≥1 cigarette/day during the past 30 days or had smoked ≥100 cigarettes in their lifetime or still have the habit of smoking during the study),and alcohol consumption (defined as drinking ≥500 g of alcohol/week for ≥1 year) [9,10].

    Carotid ultrasonography and atherosclerotic tests.Senior doctors checked the Carotid intima-media thickness (CIMT) with B-ultrasound(Philips IU22,Philips Healthcare).The study determined carotid atherosclerosis if CIMT ≥ 1.3 mm with or without atherosclerotic plaque[11,12].

    Trained medical practitioners were responsible for the measurement of PWV by the automated device (Beijing Chioy Medical Technology,Model VBP-9T),with the subject lying supine in the resting condition.

    Machine learning-based diagnostic model

    Data preprocessing.Data shall be preprocessed before training machine learning algorithm models.Missing values and high heterogeneity were cleared,replacing the secondary variable with 0 or 1.

    Feature and model selection.Feature selection was made using the Feature-selector library,a tool for ML datasets(https://github.com/WillKoehrsen/feature-selector).Model selection was made using three ML algorithms,including Decision Tree (DT),Random Forest (RF),and LR.Among the individuals enrolled,the remaining 15% (testing sample) served to test the model,and 85%were randomly selected (training sample),who were used to develop the model.We set model parameters to LogisticRegression(C=1.0,class_weight=None,dual=False,fit_intercept=True,intercept_scaling=1,max_iter=100,multi_class=‘ovr’,n_jobs=1,penalty=‘l2’,random_state=None,solver=‘liblinear’,tol=0.0001,verbose=0,warm_start=False),RandomForestClassifier(n_estimators=100,max_depth=5,oob_score=True,class_weight=“balanced”,random_state=1),DecisionTreeClassifier(criterion=‘entropy’,max_depth=5).

    Predictive performance measurements.Several evaluation parameters related to the performance of machine learning algorithm models will be described and used to compare three different algorithm models.For example,the receiver operating characteristic curve (ROC) and the AUC value,accuracy,precision,recall,and F1 values.ROC and AUC are used to evaluate the overall performance of classification and prediction [13].

    Precision was the ratio of the actual positive sample to all positive samples in the predicted sample.The recall was the ratio of actual positive samples to the number of predicted samples in the forecast sample.F1 was the summed average of precision and recall.Accuracy is the ratio of the number of all predicted correct samples divided by the total number of samples [13].

    All models were built using the Python environment (version 3.9.0)using the sklearn,numpy,pandas,matplotlib,seaborn and scipy packages.

    Statistical analysis

    Statistical analysis and ML algorithms were conducted using Python version 3.9.0 programming language (http://www.python.org).Categorical variables are presented in the form of cases (percentage).Variables that fitted normal distribution (e.g.,age,BMI) were represented by “mean ± standard deviation” (normal distribution).The correlations of characteristics were estimated using Pearson’s correlation analysis and multiple linear regression analysis.Multivariate analysis was performed using a logistic regression model.P<0.05 indicated a difference of statistical significance.

    Results

    Baseline characteristics of included subjects

    A total of 150 individuals aged 30-77 years met the inclusion criteria,with a mean age of 53.90 ± 8.84 years and a male-to-female ratio of 1.78:1.Among them,37 (24.7%) had hypertension,and 30 (20%) had carotid atherosclerosis plaques (Table 1).

    Correlation of features

    The correlations of characteristics were estimated using Pearson’s correlation analysis (Figure 1).Correlation analysis showed that serum PGI level was not correlated with CIMT or PWV (P=0.296,P=0.518,respectively),nor the serum PGII level was correlated with CIMT or PWV (P=0.172,P=0.466,respectively).CA724 level was positively correlated with CIMT (R=0.188,P=0.021).CA724 level was not correlated with PWV (R=0.037,P=0.651).

    Ranking of influencing carotid atherosclerosis feature

    The presence of carotid atherosclerosis was considered a target variable.Use github’s feature analysis library “Feature selector” toanalyze the data and rank the features affecting high to low carotid atherosclerosis.From the perspective of clinical practice,the results of feature ranking are analyzed and screened,and the final results can be regarded as the risk factors of carotid atherosclerosis.

    Table 1 Baseline characteristics of participants(N=150)

    The carotid atherosclerosis results for feature selection techniques using the ‘Feature-selector’ library,we further ranked those 16 features (Figure 2).SBP,Age,low-density lipoprotein (LDL),PGI,BMI,Waist,CA724,UA,PGII,and DBP contribute to the cumulative importance of 0.9 (Figure 3).SBP contributed the most to the carotid atherosclerosis outcome.The code for analysis in this article was uploaded to GitHub (https://github.com/ganbingliangyi/machine-lea rning)

    Prediction model of machine learning

    In Table 2,the results of three algorithm models,DT,RF and LR,are evaluated and compared.Which was accuracy precision,recall,and F1 value,ROC curves were drawn respectively.DT is shown in Figure 4,RF is shown in Figure 5,and LR is shown in Figure 6.

    Among the three algorithms,the LR algorithm has the best performance,including precision (0.92),recall (0.91),F1 (0.9),and AUC (0.95) respectively.The final results showed that the LR algorithm model was superior to other algorithms in recall,F1,accuracy and AUC,showing the best model classification and prediction capabilities.Combined with the clinical situation,after evaluating the performance of the algorithm model based on various factors,the study chose to use the LR algorithm model to predict carotid atherosclerosis.

    Discussion

    In this study,SBP,Age,LDL,PGI,BMI,Waist,CA724,UA,PGII,and DBP were significant for carotid atherosclerosis in asymptomatic adults.These findings are similar to some previous studies,among them,Gender,Age and SBP associated with the risk of carotid pulsatile atherosclerosis [14,15].Compared with traditional statistical analysis,a feature selection tool was used in the present study to obtain the importance of relevant factors for carotid atherosclerosis.In addition,our study showed the ranking of influencing carotid atherosclerosis feature,and SBP,Age,LDL,PGI and BMI were the feature of weights of top-five.This information is essential for guiding the prevention of carotid atherosclerosis.

    It was proposed that Gastrin,PGI,and PGII were positively correlated with carotid atherosclerosis in patients with H.pylori infection [16].However,our study showed that serum PGI and PGII were not correlated with carotid atherosclerosis in HP -negative individuals.Instead,we also found that serum CA724 weakly correlated with CIMT.

    With the rapid advances in recent years,AI-based techniques have gained popularity and have been more widely applied in medicine,particularly in medical imaging and decision support system [17-19].Luca Saba et al.reviewed that AI technology was used to assist in the diagnosis of arteriosclerosis plaque [20].CT-based carotid arteries were used for features by training several ML algorithms.The support vector machine algorithm received an accuracy of 0.88,with a sensitivity of 0.90 and a specificity of 0.86 [21].

    Figure 1 The correlations of characteristics were shown by Pearson Correlation Heatmap.BMI,body mass index;SBP,systolic blood pressure;DBP,diastolic blood pressure;UA,uric acid;GLU,glucose;TC,total cholesterol;TG,triglycerides;HDL-C,high-density lipoprotein cholesterol;LDL-C,low-density lipoprotein cholesterol;CA724,carbohydrate antigen 724;PGI,Pepsinogen I;PGII,pepsinogen II;PWV,pulse wave velocity;CIMT,carotid intima-media thickness.

    Figure 2 Feature importance based on feature permutation for carotid atherosclerosis.BMI,body mass index;SBP,systolic blood pressure;DBP,diastolic blood pressure;UA,uric acid;GLU,glucose;TC,total cholesterol;TG,triglycerides;LDL,low-density lipoprotein;HDL,high-density lipoprotein;PGI,Pepsinogen I;PGII,pepsinogen II.

    Figure 3 Cumulative importance versus the number of features

    Table 2 compared in terms of precision,recall,F1 value,and AUC

    Figure 4 Receiver operating characteristic curves for the decision tree(DT)model.The area under the receiver operating characteristic curve.DT,Decision Tree.

    Figure 5 Receiver operating characteristic curves for the RandomForest model.The area under the receiver operating characteristic curve.

    Figure 6 Receiver operating characteristic curves for the LogisticRegression model.The area under the receiver operating characteristic curve.

    Jian Yu et al.built ML algorithms to diagnosis carotid atherosclerosis using RF,DT,support vector machine,extreme gradient boosting,and multilayer perceptron with more than a dozen features.Among them,the multilayer perceptron,an artificial neural network,obtained the highest accuracy (0.748),F1 score (0.742),and AUC (0.766) [22].

    In this study,carotid atherosclerosis was accurately estimated using three ML models,including DT,RF,and LR.The result showed that the model evaluation of the LR algorithm performs best,precision(0.92) and recall (0.91),F1 score (0.9),and AUC (0.95).The relevant indicators are better than those in the previous studies [23].

    Our study has several limitations.Firstly,it is a cross-sectional study rather than a randomized controlled trial.We use test sets to evaluate the models,but the randomized trial is the most widely accepted model evaluation method in clinical research.Secondly,this study only included people who received annual physical examinations,and these participants are generally healthier than those who do not receive annual physical examinations.Thus,our study cohort might not be representative of the general population.Thirdly,some input features could affect the model’s accuracy,and the mode’s false positive and false negative results predicted by the model should be further analyzed in the future.Fourthly,the sample size of this study is small,a larger sample size and multicenter clinical are still needed in future studies.

    Conclusion

    Our results demonstrated that serum PGI and PGII are not correlated with CIMT or PWV.However,we found the valence of PGI as a predictor of carotid atherosclerosis as a feature.Furthermore,SBP was the most crucial feature in ranking features.LR algorithm has a precision (0.92),values of recall (0.91),F1 (0.9),and AUC (0.95),and showed the optimal performance to predict carotid atherosclerosis in asymptomatic adults.Our study may offer an alarming early system,allowing a non-imaging diagnosis of carotid atherosclerosis in asymptomatic adults.

    国产真实伦视频高清在线观看| 精品卡一卡二卡四卡免费| 国产免费视频播放在线视频| 亚洲国产精品专区欧美| 亚洲精品日韩av片在线观看| 亚洲av中文av极速乱| 亚洲精华国产精华液的使用体验| 国模一区二区三区四区视频| 热re99久久国产66热| 激情五月婷婷亚洲| 午夜激情久久久久久久| 国产黄频视频在线观看| 午夜福利影视在线免费观看| 六月丁香七月| 人妻人人澡人人爽人人| 麻豆成人午夜福利视频| 免费黄色在线免费观看| 极品教师在线视频| 亚洲国产欧美日韩在线播放 | 波野结衣二区三区在线| 哪个播放器可以免费观看大片| 噜噜噜噜噜久久久久久91| 国产精品久久久久久精品电影小说| 久久精品国产鲁丝片午夜精品| 九草在线视频观看| 搡女人真爽免费视频火全软件| 观看美女的网站| 国产精品国产三级国产专区5o| 久久毛片免费看一区二区三区| 两个人的视频大全免费| 有码 亚洲区| 老司机影院成人| 午夜影院在线不卡| 两个人的视频大全免费| av一本久久久久| 精品人妻熟女av久视频| 中国美白少妇内射xxxbb| 成人毛片a级毛片在线播放| 黑人高潮一二区| 人妻人人澡人人爽人人| 国产高清三级在线| 久久免费观看电影| 国产高清国产精品国产三级| 麻豆乱淫一区二区| 一个人看视频在线观看www免费| 在线看a的网站| 日韩三级伦理在线观看| 免费观看的影片在线观看| 亚洲精品乱码久久久v下载方式| 成年人免费黄色播放视频 | 男人和女人高潮做爰伦理| 精品亚洲成国产av| 九九在线视频观看精品| 大片电影免费在线观看免费| 国产精品久久久久久精品电影小说| 欧美97在线视频| 永久网站在线| 大片电影免费在线观看免费| 亚洲精品成人av观看孕妇| 人人妻人人看人人澡| 中文天堂在线官网| 我要看日韩黄色一级片| 亚洲国产成人一精品久久久| 久久国产精品大桥未久av | 亚洲丝袜综合中文字幕| 在线观看av片永久免费下载| 国产日韩一区二区三区精品不卡 | 成年av动漫网址| 久久久久国产网址| av免费观看日本| 啦啦啦中文免费视频观看日本| 韩国高清视频一区二区三区| 欧美激情极品国产一区二区三区 | 欧美精品一区二区大全| 在线观看国产h片| 国产日韩欧美视频二区| 人妻制服诱惑在线中文字幕| 久久久久久久久大av| av卡一久久| 97在线人人人人妻| 国产色婷婷99| 伊人亚洲综合成人网| 国国产精品蜜臀av免费| 国产精品伦人一区二区| 黄色日韩在线| 欧美精品国产亚洲| 亚洲精品成人av观看孕妇| 日日摸夜夜添夜夜添av毛片| 久久久久精品久久久久真实原创| 热re99久久国产66热| 亚洲不卡免费看| 波野结衣二区三区在线| 爱豆传媒免费全集在线观看| 免费黄色在线免费观看| 女性生殖器流出的白浆| 五月玫瑰六月丁香| 亚洲高清免费不卡视频| 日本黄色片子视频| 国产高清三级在线| 欧美人与善性xxx| 五月开心婷婷网| 亚洲精品久久久久久婷婷小说| 黄片无遮挡物在线观看| 国产精品麻豆人妻色哟哟久久| 80岁老熟妇乱子伦牲交| 成人美女网站在线观看视频| 久久精品国产亚洲av涩爱| 久久女婷五月综合色啪小说| 高清欧美精品videossex| 妹子高潮喷水视频| 精品亚洲成国产av| 欧美日本中文国产一区发布| 天天操日日干夜夜撸| 欧美日韩精品成人综合77777| 国产精品免费大片| 国产成人a∨麻豆精品| 日韩免费高清中文字幕av| 国产成人aa在线观看| 国产爽快片一区二区三区| 国产欧美日韩精品一区二区| 看十八女毛片水多多多| 22中文网久久字幕| 人人妻人人澡人人看| 久久综合国产亚洲精品| 日韩亚洲欧美综合| 国产欧美日韩一区二区三区在线 | 观看免费一级毛片| 亚洲性久久影院| 午夜福利网站1000一区二区三区| 亚洲综合色惰| 青青草视频在线视频观看| 乱系列少妇在线播放| av不卡在线播放| 又粗又硬又长又爽又黄的视频| 一边亲一边摸免费视频| 国产高清国产精品国产三级| 免费av中文字幕在线| 99久久精品国产国产毛片| 91精品国产九色| 大又大粗又爽又黄少妇毛片口| 国产精品.久久久| 国产精品无大码| 少妇人妻久久综合中文| 午夜久久久在线观看| 能在线免费看毛片的网站| 久久精品久久久久久久性| 午夜影院在线不卡| 国产欧美亚洲国产| 婷婷色麻豆天堂久久| 97超视频在线观看视频| av在线播放精品| 日韩一区二区三区影片| 一级毛片aaaaaa免费看小| av福利片在线观看| 国产精品无大码| 在线观看国产h片| 久久久久网色| 99热这里只有是精品50| 国产男女超爽视频在线观看| 国产精品秋霞免费鲁丝片| 亚洲欧美清纯卡通| 99re6热这里在线精品视频| 美女国产视频在线观看| 99热6这里只有精品| 亚洲欧美日韩东京热| 久久久久久伊人网av| 日韩亚洲欧美综合| 免费大片黄手机在线观看| 久久久久久伊人网av| 久久久久网色| av专区在线播放| 亚洲精品视频女| √禁漫天堂资源中文www| 99九九在线精品视频 | 国内揄拍国产精品人妻在线| 成年人午夜在线观看视频| 色5月婷婷丁香| 日韩av在线免费看完整版不卡| av福利片在线观看| 性色avwww在线观看| 女人精品久久久久毛片| 天堂8中文在线网| 亚洲四区av| 成年av动漫网址| 亚洲第一区二区三区不卡| 国产精品福利在线免费观看| 国产亚洲欧美精品永久| 一区二区三区四区激情视频| 欧美日韩亚洲高清精品| 99re6热这里在线精品视频| 国产亚洲5aaaaa淫片| 欧美精品国产亚洲| 婷婷色综合www| 高清不卡的av网站| 美女视频免费永久观看网站| 成人免费观看视频高清| 亚洲欧美成人综合另类久久久| 激情五月婷婷亚洲| 啦啦啦啦在线视频资源| 国产伦理片在线播放av一区| 午夜福利视频精品| 啦啦啦啦在线视频资源| 成人亚洲精品一区在线观看| 菩萨蛮人人尽说江南好唐韦庄| 亚洲国产精品一区三区| 99热6这里只有精品| 午夜免费观看性视频| 免费高清在线观看视频在线观看| 一级二级三级毛片免费看| 国产精品伦人一区二区| 久久狼人影院| 成年美女黄网站色视频大全免费 | 一区在线观看完整版| 18禁在线播放成人免费| 亚洲国产欧美日韩在线播放 | 亚洲va在线va天堂va国产| 国产色爽女视频免费观看| 一级毛片黄色毛片免费观看视频| 99热国产这里只有精品6| 一区二区三区免费毛片| 久久久a久久爽久久v久久| 国产精品一区二区三区四区免费观看| 婷婷色麻豆天堂久久| 观看美女的网站| av黄色大香蕉| 免费观看av网站的网址| 亚洲美女视频黄频| 精品卡一卡二卡四卡免费| 精品久久久噜噜| 插逼视频在线观看| 精品久久久久久电影网| 99九九在线精品视频 | 国产精品秋霞免费鲁丝片| 美女cb高潮喷水在线观看| 国产色爽女视频免费观看| 看十八女毛片水多多多| 少妇人妻久久综合中文| 色婷婷久久久亚洲欧美| 蜜桃在线观看..| 欧美日韩在线观看h| 啦啦啦中文免费视频观看日本| 亚洲国产成人一精品久久久| 成人免费观看视频高清| 最黄视频免费看| 在线观看免费高清a一片| 午夜精品国产一区二区电影| 在线观看免费视频网站a站| 三级经典国产精品| 久久99蜜桃精品久久| 亚洲欧洲日产国产| 欧美 亚洲 国产 日韩一| 日本91视频免费播放| av天堂中文字幕网| 成人国产麻豆网| 在线 av 中文字幕| 伦理电影大哥的女人| 国产亚洲午夜精品一区二区久久| 又爽又黄a免费视频| 欧美亚洲 丝袜 人妻 在线| 国产精品久久久久久av不卡| 久久毛片免费看一区二区三区| 久久精品久久久久久噜噜老黄| 看免费成人av毛片| 精品久久国产蜜桃| 久久久久久久亚洲中文字幕| 亚洲综合色惰| 嘟嘟电影网在线观看| 边亲边吃奶的免费视频| 精品久久久精品久久久| 黄色配什么色好看| 国产精品女同一区二区软件| 十八禁高潮呻吟视频 | 九九爱精品视频在线观看| 亚洲精品中文字幕在线视频 | av卡一久久| 日韩成人伦理影院| 男女国产视频网站| 国产免费又黄又爽又色| 国内揄拍国产精品人妻在线| 欧美日韩亚洲高清精品| 久久国产乱子免费精品| 久久99热6这里只有精品| 男女免费视频国产| 一本久久精品| 亚洲经典国产精华液单| 久久99热这里只频精品6学生| av视频免费观看在线观看| 亚州av有码| 蜜桃久久精品国产亚洲av| 久久99蜜桃精品久久| 国产精品一区www在线观看| av天堂中文字幕网| 亚洲成人手机| 伦理电影大哥的女人| 久久人人爽av亚洲精品天堂| 国产成人午夜福利电影在线观看| 日本猛色少妇xxxxx猛交久久| 伊人久久国产一区二区| 九九久久精品国产亚洲av麻豆| 日本黄色片子视频| 国产永久视频网站| 欧美日韩av久久| 插逼视频在线观看| 成人无遮挡网站| 国产伦理片在线播放av一区| 亚洲欧洲日产国产| 欧美97在线视频| 成人国产av品久久久| 在线观看人妻少妇| 亚洲怡红院男人天堂| 亚洲精品456在线播放app| 日韩一本色道免费dvd| 婷婷色综合www| 国产精品一区二区在线观看99| 午夜免费鲁丝| 亚洲性久久影院| 91久久精品国产一区二区三区| 99热这里只有是精品50| 一本—道久久a久久精品蜜桃钙片| 国产欧美日韩一区二区三区在线 | 一级毛片久久久久久久久女| 人妻一区二区av| 伦理电影免费视频| 亚洲人成网站在线观看播放| 亚洲精品国产色婷婷电影| 免费人成在线观看视频色| 久久久久视频综合| 国产亚洲av片在线观看秒播厂| 亚洲av成人精品一二三区| 晚上一个人看的免费电影| 久久99蜜桃精品久久| 在线免费观看不下载黄p国产| 亚洲精品aⅴ在线观看| 亚洲精品国产av成人精品| 国产精品一区二区在线观看99| 日日爽夜夜爽网站| 三级经典国产精品| videossex国产| 人妻制服诱惑在线中文字幕| 精品少妇久久久久久888优播| 亚洲国产精品999| 久久久精品94久久精品| a级一级毛片免费在线观看| 久久久国产一区二区| 亚洲第一av免费看| 国产成人精品婷婷| 久久这里有精品视频免费| 自拍欧美九色日韩亚洲蝌蚪91 | 欧美国产精品一级二级三级 | 久久精品久久精品一区二区三区| 久久久久国产网址| 毛片一级片免费看久久久久| .国产精品久久| 国产免费视频播放在线视频| 免费av不卡在线播放| 少妇猛男粗大的猛烈进出视频| 欧美激情极品国产一区二区三区 | 欧美另类一区| 久久久欧美国产精品| 精品一区在线观看国产| 日日摸夜夜添夜夜添av毛片| 久久午夜综合久久蜜桃| 伦精品一区二区三区| 亚洲av电影在线观看一区二区三区| 午夜视频国产福利| 噜噜噜噜噜久久久久久91| 国产成人午夜福利电影在线观看| 一级二级三级毛片免费看| 少妇的逼水好多| 成人特级av手机在线观看| 精品亚洲乱码少妇综合久久| 亚洲真实伦在线观看| 少妇 在线观看| 男女免费视频国产| 国产精品久久久久久av不卡| 国产一区二区三区综合在线观看 | 国产精品欧美亚洲77777| 美女中出高潮动态图| 少妇的逼好多水| 精品一区二区三卡| 男女边吃奶边做爰视频| 久久亚洲国产成人精品v| 亚洲欧洲精品一区二区精品久久久 | 一区二区三区免费毛片| 欧美日韩一区二区视频在线观看视频在线| 五月天丁香电影| 我的老师免费观看完整版| 国产精品嫩草影院av在线观看| 日本-黄色视频高清免费观看| 高清欧美精品videossex| 成年美女黄网站色视频大全免费 | 国产日韩欧美在线精品| 午夜久久久在线观看| 两个人免费观看高清视频 | 日韩成人伦理影院| 久久精品久久精品一区二区三区| 人人妻人人澡人人爽人人夜夜| videossex国产| 插逼视频在线观看| 亚洲国产色片| 亚洲精品乱码久久久久久按摩| 99热6这里只有精品| 一区二区三区精品91| 韩国高清视频一区二区三区| av福利片在线| 日日啪夜夜爽| 国产亚洲91精品色在线| 成人午夜精彩视频在线观看| 中国国产av一级| 亚洲久久久国产精品| 久久99热这里只频精品6学生| av有码第一页| 精品久久久精品久久久| 纵有疾风起免费观看全集完整版| 日韩一区二区三区影片| 看非洲黑人一级黄片| 丝瓜视频免费看黄片| av免费在线看不卡| 亚洲三级黄色毛片| 青春草亚洲视频在线观看| 午夜福利,免费看| 天美传媒精品一区二区| 国产精品.久久久| 精品国产国语对白av| 波野结衣二区三区在线| 一本一本综合久久| 婷婷色麻豆天堂久久| 一级av片app| 日韩不卡一区二区三区视频在线| 91成人精品电影| 高清av免费在线| 久久久欧美国产精品| 在线观看美女被高潮喷水网站| 免费大片黄手机在线观看| 久久午夜福利片| 插逼视频在线观看| 久久久久网色| 日本与韩国留学比较| 欧美成人精品欧美一级黄| 国产男女内射视频| 日韩欧美一区视频在线观看 | a级片在线免费高清观看视频| 日本av手机在线免费观看| 国产精品.久久久| 午夜福利影视在线免费观看| 久久久亚洲精品成人影院| 久久精品久久久久久久性| 少妇丰满av| av在线app专区| 亚州av有码| 欧美变态另类bdsm刘玥| 日本爱情动作片www.在线观看| 久久女婷五月综合色啪小说| 五月天丁香电影| 免费高清在线观看视频在线观看| 熟妇人妻不卡中文字幕| 国产欧美另类精品又又久久亚洲欧美| 赤兔流量卡办理| 人人妻人人添人人爽欧美一区卜| 色94色欧美一区二区| 一本大道久久a久久精品| 久久免费观看电影| 亚洲av不卡在线观看| 99久久中文字幕三级久久日本| 秋霞伦理黄片| 91在线精品国自产拍蜜月| av天堂中文字幕网| 熟女人妻精品中文字幕| 69精品国产乱码久久久| 国产一区有黄有色的免费视频| 男女国产视频网站| 性高湖久久久久久久久免费观看| 色婷婷久久久亚洲欧美| 91aial.com中文字幕在线观看| 熟妇人妻不卡中文字幕| 国产国拍精品亚洲av在线观看| 中国美白少妇内射xxxbb| 一二三四中文在线观看免费高清| 大话2 男鬼变身卡| 亚洲成人一二三区av| 日本vs欧美在线观看视频 | 免费观看性生交大片5| 最近中文字幕2019免费版| 黄色视频在线播放观看不卡| 精华霜和精华液先用哪个| 91成人精品电影| 一级毛片电影观看| 女人久久www免费人成看片| 大香蕉97超碰在线| 在线观看免费日韩欧美大片 | 久久久久久久久久人人人人人人| 精品人妻熟女av久视频| 国产一区二区在线观看日韩| 久久精品国产a三级三级三级| 高清av免费在线| 在线精品无人区一区二区三| 一本久久精品| 只有这里有精品99| 伊人久久国产一区二区| 亚洲精品国产色婷婷电影| 女性生殖器流出的白浆| 能在线免费看毛片的网站| 日韩人妻高清精品专区| 女的被弄到高潮叫床怎么办| 亚洲一级一片aⅴ在线观看| 久久这里有精品视频免费| 久久影院123| 内射极品少妇av片p| 色哟哟·www| 能在线免费看毛片的网站| 在线观看www视频免费| 自拍偷自拍亚洲精品老妇| 韩国高清视频一区二区三区| h日本视频在线播放| 日韩欧美精品免费久久| 熟女电影av网| 日本欧美国产在线视频| 99精国产麻豆久久婷婷| 大片免费播放器 马上看| 全区人妻精品视频| 国产精品久久久久久av不卡| 欧美最新免费一区二区三区| 精品久久久精品久久久| 熟女电影av网| 大香蕉97超碰在线| 人妻夜夜爽99麻豆av| av女优亚洲男人天堂| 纵有疾风起免费观看全集完整版| 男人爽女人下面视频在线观看| 交换朋友夫妻互换小说| 99热6这里只有精品| 在线观看免费日韩欧美大片 | 人妻少妇偷人精品九色| 天天躁夜夜躁狠狠久久av| 欧美日韩av久久| 亚洲激情五月婷婷啪啪| 人妻系列 视频| 欧美日韩在线观看h| 特大巨黑吊av在线直播| 亚洲美女视频黄频| 高清在线视频一区二区三区| 日韩大片免费观看网站| 少妇精品久久久久久久| 日韩大片免费观看网站| 精品久久久噜噜| 色哟哟·www| 蜜桃在线观看..| 久久精品久久精品一区二区三区| 99re6热这里在线精品视频| 在线观看美女被高潮喷水网站| 免费看光身美女| 久久青草综合色| 久久久国产精品麻豆| 99九九在线精品视频 | 亚洲婷婷狠狠爱综合网| 精品国产露脸久久av麻豆| 女性被躁到高潮视频| 亚洲精品aⅴ在线观看| 欧美xxxx性猛交bbbb| 亚洲美女黄色视频免费看| 91精品国产九色| 日韩不卡一区二区三区视频在线| 亚洲av在线观看美女高潮| 99久久中文字幕三级久久日本| 美女中出高潮动态图| 日韩强制内射视频| 一个人看视频在线观看www免费| 卡戴珊不雅视频在线播放| 国产熟女欧美一区二区| 免费观看的影片在线观看| 永久网站在线| 大片免费播放器 马上看| 亚洲在久久综合| 一二三四中文在线观看免费高清| 五月开心婷婷网| 日韩欧美精品免费久久| 国产一区二区三区综合在线观看 | 亚洲美女搞黄在线观看| 亚洲av欧美aⅴ国产| 日韩 亚洲 欧美在线| 欧美日韩在线观看h| 国产爽快片一区二区三区| 日韩制服骚丝袜av| 欧美精品高潮呻吟av久久| 亚洲自偷自拍三级| av专区在线播放| 丰满迷人的少妇在线观看| 久久鲁丝午夜福利片| 一级毛片我不卡| 我的老师免费观看完整版| 免费黄色在线免费观看| 亚洲精品,欧美精品| 中文字幕制服av| 国产成人91sexporn| 青春草视频在线免费观看| 伦理电影免费视频| 99国产精品免费福利视频| av卡一久久| 亚洲欧美精品自产自拍| 国产精品久久久久久精品电影小说| 2022亚洲国产成人精品| 亚洲国产成人一精品久久久| 一区二区av电影网| 欧美一级a爱片免费观看看| 国产亚洲最大av| 免费大片黄手机在线观看| 我要看黄色一级片免费的| 男的添女的下面高潮视频| 性色av一级| 婷婷色综合大香蕉| 极品少妇高潮喷水抽搐| 中文精品一卡2卡3卡4更新| 亚洲精品一二三| 精品少妇内射三级| 久久人妻熟女aⅴ|