• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Feature selection and machine learning approach for carotid atherosclerosis in asymptomatic adults

    2022-11-03 06:35:56TaoLiangQiaoLiWangXiaoQinLiuZhenZhouScottLoweZiHengChenChenYuSun
    Medical Data Mining 2022年4期

    Tao Liang ,Qiao-Li Wang ,Xiao-Qin Liu ,Zhen Zhou ,Scott Lowe ,Zi-Heng Chen ,Chen-Yu Sun

    1Department of Gastroenterology,Peoples’ Hospital of Deyang City,Deyang 618000,China.2Department of Physical Examination Center,Peoples’ Hospital of Deyang City,Deyang 618000,China.3Menzies Institute for Medical Research,University of Tasmania,Hobart,TAS 7000,Australia.4College of Osteopathic Medicine,Kansas City University,Kansas City,MO 64106,USA.5Applied Mathematics and Statistics,Stony Brook University,Stony Brook,NY 11794,USA.6AMITA Health Saint Joseph Hospital Chicago,University of Illinois Chicago,Chicago 60657,USA.

    Abstract Objective:The presence of carotid atherosclerosis reflects the overall atherosclerotic load and may predict cardiovascular and cerebrovascular accidents.Studies have reported risk factors for carotid atherosclerosis.However,few practical models have been established to predict carotid atherosclerosis risk.Thus,this study was conducted to investigate important features of carotid atherosclerosis and to propose a machine learning-based method for predicting carotid atherosclerosis in asymptomatic adults.Methods:Cross-sectional study was conducted using routine medical check-up data of individuals from January 2019 to January 2020.Pearson’s correlation analysis was performed to correlate the features.Then,features were selected by python’s feature-selection library and analyzed through three algorithms.Multiple machine learning algorithms,including Decision Tree,Random Forest and Logistic Regression (LR) were used to predict the risk of carotid atherosclerotic plaques and compared their precision,accuracy,recall,F1-score and area under the curve.Results:A total of 150 individuals were enrolled in this study,30 (20%) of them were found with carotid atherosclerotic plaques.Sex,age,body mass index,total cholesterol,Systolic blood pressure (SBP),and carbohydrate antigen 724 (CA724) were independently correlated to carotid atherosclerosis.Pepsinogen I and pepsinogen II serum levels had no correlations with Carotid intima-media thickness and pulse wave velocity.SBP,diastolic blood pressure age,low-density lipoprotein,Pepsinogen I,pepsinogen II,body mass index,Waist,CA724,and Uric Acid contribute to the cumulative importance of 0.9,and SBP was the most crucial feature for carotid atherosclerosis.LR algorithm has the precision (0.92),values of recall(0.91),F1 (0.9),and area under the curve (0.95),and showed the optimal performance to predict the presence or absence of carotid atherosclerosis in asymptomatic adults.The code for analysis in this article was uploaded to GitHub(https://github.com/ganbingliangyi/machine-learning).Conclusions:SBP was the most crucial feature in ranking features,the LR algorithm showed the optimal performance to predict the presence or absence of carotid atherosclerosis in asymptomatic adults.

    Keywords: machine learning;feature selection;gastric biomarkers;carotid atherosclerosis;asymptomatic adults

    Background

    Carotid atherosclerosis is a comprehensive disease whose pathology is mainly characterized by carotid intima thickening and is a risk factor for stroke,which can be diagnosed with image tests such as ultrasound[1-3].However,the diagnosis of carotid atherosclerosis often happens after the patient presents with neurovascular symptoms,such as syncope,instead of diagnosis at an early stage by routine screening.This is mainly because there is uncertainty regarding the asymptomatic patients at higher risk of poor outcomes that may benefit most from early screening [4].

    In recent years,artificial intelligence (AI) has been a technological breakthrough and contributes to the analysis of clinical data in biomedical fields such as cardiovascular medicine [5].Machine learning (ML) is a subset of AI that can automate decision-making and predict outcomes based on patient data [6].Fan et al.predicted the risk of carotid atherosclerosis using ML,which found that logistic regression (LR) showed optimal performance (area under the curve(AUC) 0.809,accuracy 74.7%,and F1-score 59.9%) in predicting carotid atherosclerosis [7].

    Serum gastric biomarkers,such as pepsinogens I (PGI),and pepsinogens II (PGII),are essential parameters in clinical screening for atrophic gastritis and gastric cancer.Previous studies found a positive correlation between gastric biomarkers and atherosclerosis in individuals [8].However,as we know,no previous studies explored the feature of serum gastric biomarkers in predicting carotid atherosclerosis risk in asymptomatic adults using the ML approach.Therefore,this study was conducted to identify ML approaches for predicting carotid atherosclerosis risk in asymptomatic adults.This could provide a new theoretical foundation for future research on the screening and diagnosis of carotid atherosclerosis.

    Material and Methods

    Study participants

    Our study included individuals who underwent annual health examinations at the People’s Hospital of Deyang City between January 2019 and January 2020.Inclusion criteria: (1) age of 18-80 years old;(2) individuals who have carotid duplex ultrasonography.Excluded criteria: (1) mental illness,communication disorders;(2) Patients with tumors.The Ethics Committee approved this study of Peoples’Hospital of Deyang City (No.2022-04-135).De-identified retrospective data that were collected during the health screening process were used.

    Methods

    Demographic data acquisition.Data from 150 individuals were collected.These data included sex,age,lifestyle factors,waist,body mass index (BMI),systolic blood pressure (SBP),diastolic blood pressure(DBP),fasting blood glucose,uric acid(UA),total cholesterol,triglycerides,high-density lipoprotein cholesterol,low-density lipoprotein cholesterol,pulse wave velocity (PWV),PGI,PGII,and CA724.Blood pressure,height,weight,and waist circumference were measured according to standard operation.

    A standard questionnaire was administered by trained staff to obtain data on lifestyle risk factors,including cigarette smoking(defined as subjects who smoked ≥1 cigarette/day during the past 30 days or had smoked ≥100 cigarettes in their lifetime or still have the habit of smoking during the study),and alcohol consumption (defined as drinking ≥500 g of alcohol/week for ≥1 year) [9,10].

    Carotid ultrasonography and atherosclerotic tests.Senior doctors checked the Carotid intima-media thickness (CIMT) with B-ultrasound(Philips IU22,Philips Healthcare).The study determined carotid atherosclerosis if CIMT ≥ 1.3 mm with or without atherosclerotic plaque[11,12].

    Trained medical practitioners were responsible for the measurement of PWV by the automated device (Beijing Chioy Medical Technology,Model VBP-9T),with the subject lying supine in the resting condition.

    Machine learning-based diagnostic model

    Data preprocessing.Data shall be preprocessed before training machine learning algorithm models.Missing values and high heterogeneity were cleared,replacing the secondary variable with 0 or 1.

    Feature and model selection.Feature selection was made using the Feature-selector library,a tool for ML datasets(https://github.com/WillKoehrsen/feature-selector).Model selection was made using three ML algorithms,including Decision Tree (DT),Random Forest (RF),and LR.Among the individuals enrolled,the remaining 15% (testing sample) served to test the model,and 85%were randomly selected (training sample),who were used to develop the model.We set model parameters to LogisticRegression(C=1.0,class_weight=None,dual=False,fit_intercept=True,intercept_scaling=1,max_iter=100,multi_class=‘ovr’,n_jobs=1,penalty=‘l2’,random_state=None,solver=‘liblinear’,tol=0.0001,verbose=0,warm_start=False),RandomForestClassifier(n_estimators=100,max_depth=5,oob_score=True,class_weight=“balanced”,random_state=1),DecisionTreeClassifier(criterion=‘entropy’,max_depth=5).

    Predictive performance measurements.Several evaluation parameters related to the performance of machine learning algorithm models will be described and used to compare three different algorithm models.For example,the receiver operating characteristic curve (ROC) and the AUC value,accuracy,precision,recall,and F1 values.ROC and AUC are used to evaluate the overall performance of classification and prediction [13].

    Precision was the ratio of the actual positive sample to all positive samples in the predicted sample.The recall was the ratio of actual positive samples to the number of predicted samples in the forecast sample.F1 was the summed average of precision and recall.Accuracy is the ratio of the number of all predicted correct samples divided by the total number of samples [13].

    All models were built using the Python environment (version 3.9.0)using the sklearn,numpy,pandas,matplotlib,seaborn and scipy packages.

    Statistical analysis

    Statistical analysis and ML algorithms were conducted using Python version 3.9.0 programming language (http://www.python.org).Categorical variables are presented in the form of cases (percentage).Variables that fitted normal distribution (e.g.,age,BMI) were represented by “mean ± standard deviation” (normal distribution).The correlations of characteristics were estimated using Pearson’s correlation analysis and multiple linear regression analysis.Multivariate analysis was performed using a logistic regression model.P<0.05 indicated a difference of statistical significance.

    Results

    Baseline characteristics of included subjects

    A total of 150 individuals aged 30-77 years met the inclusion criteria,with a mean age of 53.90 ± 8.84 years and a male-to-female ratio of 1.78:1.Among them,37 (24.7%) had hypertension,and 30 (20%) had carotid atherosclerosis plaques (Table 1).

    Correlation of features

    The correlations of characteristics were estimated using Pearson’s correlation analysis (Figure 1).Correlation analysis showed that serum PGI level was not correlated with CIMT or PWV (P=0.296,P=0.518,respectively),nor the serum PGII level was correlated with CIMT or PWV (P=0.172,P=0.466,respectively).CA724 level was positively correlated with CIMT (R=0.188,P=0.021).CA724 level was not correlated with PWV (R=0.037,P=0.651).

    Ranking of influencing carotid atherosclerosis feature

    The presence of carotid atherosclerosis was considered a target variable.Use github’s feature analysis library “Feature selector” toanalyze the data and rank the features affecting high to low carotid atherosclerosis.From the perspective of clinical practice,the results of feature ranking are analyzed and screened,and the final results can be regarded as the risk factors of carotid atherosclerosis.

    Table 1 Baseline characteristics of participants(N=150)

    The carotid atherosclerosis results for feature selection techniques using the ‘Feature-selector’ library,we further ranked those 16 features (Figure 2).SBP,Age,low-density lipoprotein (LDL),PGI,BMI,Waist,CA724,UA,PGII,and DBP contribute to the cumulative importance of 0.9 (Figure 3).SBP contributed the most to the carotid atherosclerosis outcome.The code for analysis in this article was uploaded to GitHub (https://github.com/ganbingliangyi/machine-lea rning)

    Prediction model of machine learning

    In Table 2,the results of three algorithm models,DT,RF and LR,are evaluated and compared.Which was accuracy precision,recall,and F1 value,ROC curves were drawn respectively.DT is shown in Figure 4,RF is shown in Figure 5,and LR is shown in Figure 6.

    Among the three algorithms,the LR algorithm has the best performance,including precision (0.92),recall (0.91),F1 (0.9),and AUC (0.95) respectively.The final results showed that the LR algorithm model was superior to other algorithms in recall,F1,accuracy and AUC,showing the best model classification and prediction capabilities.Combined with the clinical situation,after evaluating the performance of the algorithm model based on various factors,the study chose to use the LR algorithm model to predict carotid atherosclerosis.

    Discussion

    In this study,SBP,Age,LDL,PGI,BMI,Waist,CA724,UA,PGII,and DBP were significant for carotid atherosclerosis in asymptomatic adults.These findings are similar to some previous studies,among them,Gender,Age and SBP associated with the risk of carotid pulsatile atherosclerosis [14,15].Compared with traditional statistical analysis,a feature selection tool was used in the present study to obtain the importance of relevant factors for carotid atherosclerosis.In addition,our study showed the ranking of influencing carotid atherosclerosis feature,and SBP,Age,LDL,PGI and BMI were the feature of weights of top-five.This information is essential for guiding the prevention of carotid atherosclerosis.

    It was proposed that Gastrin,PGI,and PGII were positively correlated with carotid atherosclerosis in patients with H.pylori infection [16].However,our study showed that serum PGI and PGII were not correlated with carotid atherosclerosis in HP -negative individuals.Instead,we also found that serum CA724 weakly correlated with CIMT.

    With the rapid advances in recent years,AI-based techniques have gained popularity and have been more widely applied in medicine,particularly in medical imaging and decision support system [17-19].Luca Saba et al.reviewed that AI technology was used to assist in the diagnosis of arteriosclerosis plaque [20].CT-based carotid arteries were used for features by training several ML algorithms.The support vector machine algorithm received an accuracy of 0.88,with a sensitivity of 0.90 and a specificity of 0.86 [21].

    Figure 1 The correlations of characteristics were shown by Pearson Correlation Heatmap.BMI,body mass index;SBP,systolic blood pressure;DBP,diastolic blood pressure;UA,uric acid;GLU,glucose;TC,total cholesterol;TG,triglycerides;HDL-C,high-density lipoprotein cholesterol;LDL-C,low-density lipoprotein cholesterol;CA724,carbohydrate antigen 724;PGI,Pepsinogen I;PGII,pepsinogen II;PWV,pulse wave velocity;CIMT,carotid intima-media thickness.

    Figure 2 Feature importance based on feature permutation for carotid atherosclerosis.BMI,body mass index;SBP,systolic blood pressure;DBP,diastolic blood pressure;UA,uric acid;GLU,glucose;TC,total cholesterol;TG,triglycerides;LDL,low-density lipoprotein;HDL,high-density lipoprotein;PGI,Pepsinogen I;PGII,pepsinogen II.

    Figure 3 Cumulative importance versus the number of features

    Table 2 compared in terms of precision,recall,F1 value,and AUC

    Figure 4 Receiver operating characteristic curves for the decision tree(DT)model.The area under the receiver operating characteristic curve.DT,Decision Tree.

    Figure 5 Receiver operating characteristic curves for the RandomForest model.The area under the receiver operating characteristic curve.

    Figure 6 Receiver operating characteristic curves for the LogisticRegression model.The area under the receiver operating characteristic curve.

    Jian Yu et al.built ML algorithms to diagnosis carotid atherosclerosis using RF,DT,support vector machine,extreme gradient boosting,and multilayer perceptron with more than a dozen features.Among them,the multilayer perceptron,an artificial neural network,obtained the highest accuracy (0.748),F1 score (0.742),and AUC (0.766) [22].

    In this study,carotid atherosclerosis was accurately estimated using three ML models,including DT,RF,and LR.The result showed that the model evaluation of the LR algorithm performs best,precision(0.92) and recall (0.91),F1 score (0.9),and AUC (0.95).The relevant indicators are better than those in the previous studies [23].

    Our study has several limitations.Firstly,it is a cross-sectional study rather than a randomized controlled trial.We use test sets to evaluate the models,but the randomized trial is the most widely accepted model evaluation method in clinical research.Secondly,this study only included people who received annual physical examinations,and these participants are generally healthier than those who do not receive annual physical examinations.Thus,our study cohort might not be representative of the general population.Thirdly,some input features could affect the model’s accuracy,and the mode’s false positive and false negative results predicted by the model should be further analyzed in the future.Fourthly,the sample size of this study is small,a larger sample size and multicenter clinical are still needed in future studies.

    Conclusion

    Our results demonstrated that serum PGI and PGII are not correlated with CIMT or PWV.However,we found the valence of PGI as a predictor of carotid atherosclerosis as a feature.Furthermore,SBP was the most crucial feature in ranking features.LR algorithm has a precision (0.92),values of recall (0.91),F1 (0.9),and AUC (0.95),and showed the optimal performance to predict carotid atherosclerosis in asymptomatic adults.Our study may offer an alarming early system,allowing a non-imaging diagnosis of carotid atherosclerosis in asymptomatic adults.

    看免费av毛片| 国产一区二区激情短视频 | 男女床上黄色一级片免费看| 亚洲三区欧美一区| 国产免费视频播放在线视频| 国产伦人伦偷精品视频| 亚洲久久久国产精品| 亚洲国产欧美日韩在线播放| 婷婷色综合www| 久久ye,这里只有精品| 欧美亚洲 丝袜 人妻 在线| 亚洲精品国产av蜜桃| 日日爽夜夜爽网站| 又粗又硬又长又爽又黄的视频| 国产黄频视频在线观看| 天天添夜夜摸| 热99久久久久精品小说推荐| www.自偷自拍.com| 午夜激情久久久久久久| 最近最新中文字幕大全免费视频 | 久久99精品国语久久久| 欧美日韩亚洲综合一区二区三区_| 日韩欧美一区视频在线观看| 久久国产精品影院| 亚洲国产最新在线播放| 可以免费在线观看a视频的电影网站| 午夜av观看不卡| 国产有黄有色有爽视频| 国产一区有黄有色的免费视频| 丝袜脚勾引网站| 91精品国产国语对白视频| 热99国产精品久久久久久7| 在现免费观看毛片| 一区二区三区乱码不卡18| 一本综合久久免费| 搡老乐熟女国产| 黄片播放在线免费| 色综合欧美亚洲国产小说| 日本色播在线视频| 国产成人精品久久二区二区91| 波野结衣二区三区在线| 蜜桃在线观看..| 亚洲第一av免费看| 新久久久久国产一级毛片| 老熟女久久久| 亚洲 国产 在线| 欧美日韩黄片免| 国产片特级美女逼逼视频| 亚洲国产最新在线播放| 99久久99久久久精品蜜桃| 国产av国产精品国产| 午夜激情久久久久久久| 亚洲国产av新网站| 成人国语在线视频| 国产成人精品久久久久久| 亚洲人成77777在线视频| 考比视频在线观看| 久久国产精品男人的天堂亚洲| 亚洲精品一区蜜桃| 亚洲国产欧美日韩在线播放| 亚洲熟女毛片儿| 在现免费观看毛片| 老司机深夜福利视频在线观看 | 男女高潮啪啪啪动态图| 性少妇av在线| 女警被强在线播放| 日本色播在线视频| 亚洲精品久久久久久婷婷小说| 丝袜美腿诱惑在线| 女性生殖器流出的白浆| 久久亚洲国产成人精品v| 日韩欧美一区视频在线观看| 欧美av亚洲av综合av国产av| 女人久久www免费人成看片| 国产又爽黄色视频| www.自偷自拍.com| 日韩中文字幕欧美一区二区 | 成年人免费黄色播放视频| 日韩欧美一区视频在线观看| 国产在线一区二区三区精| 欧美日韩精品网址| av电影中文网址| 亚洲精品国产色婷婷电影| 大片电影免费在线观看免费| 爱豆传媒免费全集在线观看| 日本一区二区免费在线视频| 亚洲人成电影观看| 一级,二级,三级黄色视频| 99国产综合亚洲精品| 国产欧美亚洲国产| 人妻 亚洲 视频| 无遮挡黄片免费观看| 老熟女久久久| 在线亚洲精品国产二区图片欧美| 一级a爱视频在线免费观看| 婷婷色综合www| 亚洲精品av麻豆狂野| 成年女人毛片免费观看观看9 | 极品少妇高潮喷水抽搐| 一区二区三区激情视频| 又黄又粗又硬又大视频| 免费在线观看日本一区| 一边亲一边摸免费视频| 久久这里只有精品19| 视频在线观看一区二区三区| 高清黄色对白视频在线免费看| 亚洲激情五月婷婷啪啪| 国产精品国产三级专区第一集| 精品福利永久在线观看| 两性夫妻黄色片| 熟女少妇亚洲综合色aaa.| 搡老乐熟女国产| 高清欧美精品videossex| 久久精品国产a三级三级三级| 成年人免费黄色播放视频| 免费高清在线观看视频在线观看| 黑人猛操日本美女一级片| 曰老女人黄片| 欧美黑人精品巨大| 看十八女毛片水多多多| 国产福利在线免费观看视频| 久久九九热精品免费| 国产成人av教育| 午夜久久久在线观看| 黄色毛片三级朝国网站| 97人妻天天添夜夜摸| 黑人巨大精品欧美一区二区蜜桃| 一个人免费看片子| 一区二区日韩欧美中文字幕| 肉色欧美久久久久久久蜜桃| 性少妇av在线| 欧美日韩国产mv在线观看视频| 国产日韩欧美视频二区| 在线观看一区二区三区激情| 十八禁网站网址无遮挡| 国产熟女欧美一区二区| 日本a在线网址| 如日韩欧美国产精品一区二区三区| 午夜av观看不卡| 日本wwww免费看| 婷婷丁香在线五月| 精品少妇久久久久久888优播| 黄色a级毛片大全视频| 91精品伊人久久大香线蕉| 91精品伊人久久大香线蕉| 丁香六月欧美| 人妻人人澡人人爽人人| 在现免费观看毛片| 欧美日韩av久久| 亚洲国产欧美日韩在线播放| 老汉色∧v一级毛片| 国产精品久久久久久精品古装| 国产日韩欧美视频二区| 丝袜在线中文字幕| 久久久久久人人人人人| 国产欧美日韩一区二区三区在线| 亚洲精品国产av蜜桃| 亚洲图色成人| 巨乳人妻的诱惑在线观看| 久热这里只有精品99| 精品少妇黑人巨大在线播放| 波野结衣二区三区在线| 亚洲国产精品一区二区三区在线| 母亲3免费完整高清在线观看| 久久久久久久久久久久大奶| 亚洲天堂av无毛| 菩萨蛮人人尽说江南好唐韦庄| 成人国产av品久久久| 欧美 亚洲 国产 日韩一| 欧美人与性动交α欧美软件| 老司机影院成人| 如日韩欧美国产精品一区二区三区| 国产黄频视频在线观看| 日韩大片免费观看网站| 一级片'在线观看视频| 中国国产av一级| 国产精品久久久久成人av| 亚洲欧美精品综合一区二区三区| 中文字幕制服av| 免费黄频网站在线观看国产| 一本一本久久a久久精品综合妖精| 精品人妻熟女毛片av久久网站| 成人免费观看视频高清| 黄频高清免费视频| 麻豆av在线久日| 精品久久久久久电影网| 国产亚洲午夜精品一区二区久久| xxxhd国产人妻xxx| 中文乱码字字幕精品一区二区三区| 纯流量卡能插随身wifi吗| 国产伦理片在线播放av一区| av网站免费在线观看视频| 在线观看免费午夜福利视频| 久久久久国产一级毛片高清牌| 日韩中文字幕视频在线看片| 男男h啪啪无遮挡| 亚洲欧美清纯卡通| 久久久精品区二区三区| 国产亚洲精品第一综合不卡| 男女床上黄色一级片免费看| 99国产综合亚洲精品| 大香蕉久久成人网| 少妇人妻 视频| 两个人看的免费小视频| 亚洲欧美清纯卡通| 99热全是精品| 伊人久久大香线蕉亚洲五| 欧美人与善性xxx| 亚洲av国产av综合av卡| 欧美日韩亚洲国产一区二区在线观看 | 9191精品国产免费久久| 老司机影院成人| 亚洲少妇的诱惑av| 色网站视频免费| 男人操女人黄网站| 国产片内射在线| 欧美乱码精品一区二区三区| 国产精品一二三区在线看| 欧美 日韩 精品 国产| 新久久久久国产一级毛片| 日韩欧美一区视频在线观看| 成人免费观看视频高清| 日本a在线网址| 一区在线观看完整版| 日韩中文字幕视频在线看片| 国产激情久久老熟女| 精品卡一卡二卡四卡免费| 侵犯人妻中文字幕一二三四区| 久久久久久久国产电影| 日韩欧美一区视频在线观看| 久久毛片免费看一区二区三区| 国产在线免费精品| 久久精品亚洲av国产电影网| 日韩大片免费观看网站| 国产免费视频播放在线视频| 少妇 在线观看| 国产在线观看jvid| 一级毛片黄色毛片免费观看视频| 美女主播在线视频| 国产精品亚洲av一区麻豆| svipshipincom国产片| 精品国产国语对白av| 九色亚洲精品在线播放| 亚洲成人免费av在线播放| 欧美黑人欧美精品刺激| 中文字幕人妻丝袜制服| 欧美精品一区二区免费开放| 亚洲国产欧美在线一区| 欧美日韩精品网址| 午夜福利乱码中文字幕| 久久天躁狠狠躁夜夜2o2o | 亚洲国产看品久久| 亚洲精品久久久久久婷婷小说| www.精华液| 精品卡一卡二卡四卡免费| 建设人人有责人人尽责人人享有的| 十八禁高潮呻吟视频| 人妻一区二区av| 亚洲天堂av无毛| 久久久久久久精品精品| 欧美日韩精品网址| 久久精品国产a三级三级三级| 国产一区二区激情短视频 | 日本av免费视频播放| 夫妻午夜视频| 老司机深夜福利视频在线观看 | 精品少妇一区二区三区视频日本电影| 精品亚洲成a人片在线观看| 深夜精品福利| 午夜福利免费观看在线| 大话2 男鬼变身卡| 国产一区亚洲一区在线观看| 91老司机精品| 一区二区三区激情视频| 亚洲精品久久成人aⅴ小说| 免费观看av网站的网址| 一级片免费观看大全| 在线av久久热| 免费在线观看日本一区| 女性被躁到高潮视频| 国产日韩欧美亚洲二区| 婷婷色av中文字幕| 欧美精品高潮呻吟av久久| videosex国产| a级毛片在线看网站| 在线观看免费日韩欧美大片| 亚洲国产精品一区三区| 亚洲欧美激情在线| 人人妻人人爽人人添夜夜欢视频| av网站免费在线观看视频| 自拍欧美九色日韩亚洲蝌蚪91| netflix在线观看网站| 国产日韩欧美亚洲二区| 日本wwww免费看| 久久久精品区二区三区| 97人妻天天添夜夜摸| 国产97色在线日韩免费| 大码成人一级视频| 欧美国产精品一级二级三级| 久久ye,这里只有精品| 人人妻人人添人人爽欧美一区卜| 一区二区三区四区激情视频| 高清欧美精品videossex| 一区二区三区激情视频| 国产亚洲av高清不卡| 午夜视频精品福利| 欧美av亚洲av综合av国产av| 成人午夜精彩视频在线观看| 亚洲av电影在线进入| 久久精品国产亚洲av高清一级| 欧美精品一区二区免费开放| 久久久久久亚洲精品国产蜜桃av| 大码成人一级视频| 中国国产av一级| 啦啦啦在线免费观看视频4| 我要看黄色一级片免费的| 亚洲一区中文字幕在线| 午夜两性在线视频| 乱人伦中国视频| 日韩电影二区| 欧美激情极品国产一区二区三区| 老汉色av国产亚洲站长工具| 国产xxxxx性猛交| 国产淫语在线视频| 在线观看免费视频网站a站| 一二三四社区在线视频社区8| 国产高清不卡午夜福利| 免费看十八禁软件| 一本色道久久久久久精品综合| 一本—道久久a久久精品蜜桃钙片| 丰满迷人的少妇在线观看| 亚洲精品国产av成人精品| 美女视频免费永久观看网站| 国产精品麻豆人妻色哟哟久久| 精品人妻熟女毛片av久久网站| 久久精品国产亚洲av高清一级| 国产黄频视频在线观看| 成年女人毛片免费观看观看9 | 精品亚洲成国产av| 人妻一区二区av| 国产福利在线免费观看视频| 又大又爽又粗| 免费不卡黄色视频| 亚洲国产中文字幕在线视频| 欧美日韩国产mv在线观看视频| 精品国产超薄肉色丝袜足j| 巨乳人妻的诱惑在线观看| 成人亚洲精品一区在线观看| 超色免费av| 国产亚洲欧美精品永久| 日日爽夜夜爽网站| 9热在线视频观看99| 亚洲av成人不卡在线观看播放网 | 999精品在线视频| av在线app专区| 人人妻人人爽人人添夜夜欢视频| 成人免费观看视频高清| 大型av网站在线播放| av福利片在线| 久久久久国产一级毛片高清牌| 国产成人a∨麻豆精品| 亚洲精品成人av观看孕妇| 天天影视国产精品| 视频区欧美日本亚洲| 视频在线观看一区二区三区| 亚洲欧美成人综合另类久久久| 搡老乐熟女国产| 又黄又粗又硬又大视频| 晚上一个人看的免费电影| 天天影视国产精品| 香蕉丝袜av| 久久性视频一级片| 色综合欧美亚洲国产小说| 9191精品国产免费久久| 午夜视频精品福利| a级片在线免费高清观看视频| 国产女主播在线喷水免费视频网站| 日本av免费视频播放| 国产男人的电影天堂91| 国产精品一区二区免费欧美 | 久久久久精品国产欧美久久久 | 午夜av观看不卡| 夫妻午夜视频| 欧美乱码精品一区二区三区| 人人妻,人人澡人人爽秒播 | videosex国产| 欧美人与性动交α欧美精品济南到| 亚洲精品国产一区二区精华液| 99国产精品99久久久久| 国产高清视频在线播放一区 | 成年av动漫网址| 99re6热这里在线精品视频| 亚洲av欧美aⅴ国产| 熟女少妇亚洲综合色aaa.| 国产精品久久久久成人av| 人人妻,人人澡人人爽秒播 | 这个男人来自地球电影免费观看| √禁漫天堂资源中文www| 一区二区三区乱码不卡18| av在线app专区| 久久精品成人免费网站| 男男h啪啪无遮挡| 欧美在线黄色| 亚洲五月婷婷丁香| 亚洲欧美一区二区三区久久| 久久天堂一区二区三区四区| 国产欧美日韩综合在线一区二区| 日本欧美国产在线视频| 熟女av电影| 亚洲精品乱久久久久久| 亚洲三区欧美一区| 成在线人永久免费视频| 国产精品欧美亚洲77777| 一区二区三区激情视频| 香蕉丝袜av| 脱女人内裤的视频| 男女无遮挡免费网站观看| 国产黄色免费在线视频| 高清不卡的av网站| 国产精品香港三级国产av潘金莲 | 一级黄片播放器| av有码第一页| 成人影院久久| 亚洲伊人色综图| 国产成人影院久久av| 精品久久久精品久久久| 久久毛片免费看一区二区三区| 国产精品秋霞免费鲁丝片| 97人妻天天添夜夜摸| 看十八女毛片水多多多| 国产精品 欧美亚洲| 韩国精品一区二区三区| 97人妻天天添夜夜摸| 久久av网站| 成人三级做爰电影| 亚洲国产成人一精品久久久| 男女下面插进去视频免费观看| 日日夜夜操网爽| 精品国产一区二区三区四区第35| 欧美成狂野欧美在线观看| 2021少妇久久久久久久久久久| 亚洲成人国产一区在线观看 | 黄网站色视频无遮挡免费观看| 国产伦人伦偷精品视频| 亚洲美女黄色视频免费看| 咕卡用的链子| 91精品三级在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 欧美成人午夜精品| 大陆偷拍与自拍| 国产片内射在线| 精品亚洲成国产av| 日本午夜av视频| 国产老妇伦熟女老妇高清| 日本黄色日本黄色录像| 丰满人妻熟妇乱又伦精品不卡| 亚洲成人免费av在线播放| 欧美日韩视频精品一区| 美女国产高潮福利片在线看| 日本黄色日本黄色录像| 成人影院久久| 免费少妇av软件| 菩萨蛮人人尽说江南好唐韦庄| 日韩中文字幕欧美一区二区 | 亚洲,一卡二卡三卡| 成人午夜精彩视频在线观看| 在线av久久热| 亚洲国产欧美日韩在线播放| 国产成人影院久久av| 我要看黄色一级片免费的| 女人久久www免费人成看片| 精品一区在线观看国产| 午夜福利视频在线观看免费| 99精品久久久久人妻精品| 国产日韩欧美视频二区| 欧美激情高清一区二区三区| 久久久久久久精品精品| 一区福利在线观看| 成人国产av品久久久| 岛国毛片在线播放| 免费av中文字幕在线| 国产一区有黄有色的免费视频| 欧美日韩一级在线毛片| 麻豆乱淫一区二区| 男女下面插进去视频免费观看| 一本久久精品| 99re6热这里在线精品视频| av一本久久久久| tube8黄色片| 日韩制服骚丝袜av| 亚洲国产欧美日韩在线播放| 国产黄色免费在线视频| 水蜜桃什么品种好| 亚洲七黄色美女视频| 一级毛片我不卡| 成人亚洲精品一区在线观看| 精品少妇久久久久久888优播| 免费看不卡的av| 一级片'在线观看视频| 国产精品久久久av美女十八| 国产成人91sexporn| 女人被躁到高潮嗷嗷叫费观| 亚洲美女黄色视频免费看| 亚洲成人免费电影在线观看 | 老司机在亚洲福利影院| 叶爱在线成人免费视频播放| 色播在线永久视频| 黄色视频不卡| 欧美大码av| 国产av一区二区精品久久| 国产亚洲午夜精品一区二区久久| 国产成人系列免费观看| 免费不卡黄色视频| 精品亚洲乱码少妇综合久久| 国产精品秋霞免费鲁丝片| 亚洲 国产 在线| 又大又黄又爽视频免费| 在线观看www视频免费| 亚洲精品久久久久久婷婷小说| 亚洲精品第二区| 久久精品成人免费网站| 国产精品免费视频内射| 99国产精品一区二区蜜桃av | 热re99久久精品国产66热6| 久久久久久久久久久久大奶| www日本在线高清视频| 国产亚洲精品久久久久5区| 好男人视频免费观看在线| 精品人妻熟女毛片av久久网站| 成人国语在线视频| 黄色 视频免费看| 一区二区三区精品91| 亚洲av片天天在线观看| 亚洲男人天堂网一区| 天堂8中文在线网| 高清视频免费观看一区二区| 制服人妻中文乱码| 国产欧美日韩一区二区三 | 久久精品久久久久久噜噜老黄| 好男人电影高清在线观看| 极品人妻少妇av视频| 极品少妇高潮喷水抽搐| av福利片在线| 亚洲av成人不卡在线观看播放网 | 中文精品一卡2卡3卡4更新| 国产日韩欧美亚洲二区| 18禁裸乳无遮挡动漫免费视频| 丁香六月天网| av片东京热男人的天堂| 国产日韩欧美亚洲二区| 可以免费在线观看a视频的电影网站| 免费少妇av软件| 啦啦啦在线观看免费高清www| 国产一区有黄有色的免费视频| 国产男人的电影天堂91| 在线观看免费视频网站a站| 2018国产大陆天天弄谢| 男人添女人高潮全过程视频| 又粗又硬又长又爽又黄的视频| 日韩精品免费视频一区二区三区| 各种免费的搞黄视频| 美女午夜性视频免费| www.精华液| 久久天堂一区二区三区四区| 青春草亚洲视频在线观看| 十八禁网站网址无遮挡| 人人妻人人添人人爽欧美一区卜| 国产欧美亚洲国产| 久久青草综合色| 国产亚洲欧美在线一区二区| 王馨瑶露胸无遮挡在线观看| 人体艺术视频欧美日本| 色婷婷久久久亚洲欧美| 纵有疾风起免费观看全集完整版| 99国产精品一区二区三区| av网站免费在线观看视频| 亚洲精品一卡2卡三卡4卡5卡 | 赤兔流量卡办理| 欧美国产精品一级二级三级| 黄片小视频在线播放| xxxhd国产人妻xxx| 国产高清不卡午夜福利| 欧美性长视频在线观看| 日韩人妻精品一区2区三区| 一级黄色大片毛片| 91国产中文字幕| 婷婷成人精品国产| 国产极品粉嫩免费观看在线| av线在线观看网站| 大码成人一级视频| 亚洲人成网站在线观看播放| 国产一区二区 视频在线| 五月开心婷婷网| 咕卡用的链子| 伊人亚洲综合成人网| 日韩一区二区三区影片| 成年人黄色毛片网站| 国产视频一区二区在线看| 日本av免费视频播放| 天天躁夜夜躁狠狠躁躁| 色婷婷av一区二区三区视频| 国产成人系列免费观看| 精品一区在线观看国产| 看免费成人av毛片| 丰满少妇做爰视频| 天天操日日干夜夜撸| 韩国高清视频一区二区三区| 在线观看免费日韩欧美大片| 午夜精品国产一区二区电影| 国产成人91sexporn| 久久精品熟女亚洲av麻豆精品| 久久久久精品国产欧美久久久 | 亚洲国产精品国产精品| 亚洲精品乱久久久久久| 久久精品aⅴ一区二区三区四区|