• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Emergence of non-extensive seismic magnitude-frequency distribution from a Bayesian framework

    2022-11-03 07:25:38Ewinnchez
    Earthquake Science 2022年3期

    Ewin Sánchez

    Instituto de Investigación Multidisciplinario en Ciencia y Tecnología de la Universidad de La Serena 170000, Chile

    ABSTRACT Non-extensive statistical mechanics has been used in recent years as a framework in order to build some seismic frequencymagnitude models.Following a Bayesian procedure through a process of marginalization,it is shown that some of these models can arise from the result shown here,which reinforces the relevance of the non-extensive distributions to explain the data(earthquake’s magnitude) observed during the seismic manifestation.In addition,it makes possible to extend the non-extensive family of distributions,which could explain cases that,eventually,could not be covered by the currently known distributions within this framework.The model obtained was applied to six data samples,corresponding to the frequency-magnitude distributions observed before and after the three strongest earthquakes registered in Chile during the late millennium.In all cases,fit parameters show a strong trend to a particular non-extensive model widely known in literature.

    Keywords: Bayesian model;non-extensive statistics;frequency-magnitude distribution;earthquakes.

    1.Introduction

    Physics has long played an important role in understanding earthquake behaviour.There are aspects of materials physics such as elasticity theory,Rayleigh wave theory and dislocation models,among others,implicitly contained in arguments or processes discussed in some papers,as in Gutenberg and Richter (1954),B?th (1955),Ciiouhan and Shrivastava (1974) and Bormann and Di Giacomo (2011),for the released energy observed during the seismic activity (for instance).But,there are also quite a few frequency-magnitude distribution models that we can find in the more recent literature.For a long time,the Gutenberg-Richter (GR) law has dominated earthquake occurrence statistics.It expresses the dependence betweenN(m),the number of earthquakes with magnitude greater thanmin a given region and in a some specific time interval andm.

    whereaandbare positive constants,representing the regional level of seismicity and the proportion of small events to large events,respectively.However,for smaller magnitudes and also for larger ones the dependency is not fulfilled.Several of later models have been built using statistical physics as a framework (it can be read in some papers such as Main and Al-Kindy (2002),Al-Kindy and Main (2003),Berrill and Davis (1980) and Vallianatos et al.(2016),for example) and,in particular,a generalization of the Boltzmann-Gibbs statistics (which treat with physical equilibrium systems),the Tsallis statistics,has been one of the most used during the last time.This perspective was presented in Tsallis (1988) allowing to address many non-equilibrium systems through the following generalization of the Boltzmann-Gibss entropy

    wherekis the Boltzmann constant,piis the probability that the system is in thei-th microstate andqis called the nonextensivity index,which characterizes the system and converges to unity in an equilibrium situation (so the Boltzmann entropy of a system is defined only if it is in physical thermodynamic equilibrium).Recently,this formalism was presented in a seismic context in Sotolongo-Costa and Posadas (2004).The idea is that,due to the rupture dynamics between tectonic blocks,material residues should fill the space between the faults.So,an increase in stress should be observed on the plates to overcome the resistance of fragments.Specifically,the non-extensive formalism was applied in the description of fragmentation,where Tsallis entropy is used to describe the transition into scaling.Here,the parameterqis related to an effective temperature of breakage,where long-range correlations should be raised significantly as the energy of breakage increases.Asqincreases from 1,the physical state goes away from equilibrium,what means that the surface along which there is slip during an earthquake is not in a physical equilibrium.The result is a model (which we will call the SP-model) for the energy distribution of earthquakes (and by them∝logErelation,for its corresponding frequency distribution of magnitudes) connected to the size distribution of fragments between the faults.Here,it will be shown that some of these models can be obtained alternatively under a Bayesian perspective,through a process of marginalization.

    2.A Bayesian perspective

    If we look inside the seismic context presented in Main et al.(2000),we findas a distribution consistent with percolation theory and statistical physics of critical pointphenomena,explaining locally the buildup and release of tectonic strain energy,where strain energy responds to external force from plate tectonics.But our previous informationIindicates that,in addition,there are actually a lotof other di_erent models presented by other authors explaining the observed statistical seismic behaviour (Anagnos and Kiremidjian,1988;Mignan,2015),so,wecan see that complexity of seismic process becomes evident [you can read about this issue in Chelidze(2017)].Then,in the light ofI,we suggest a generalization ofsuch as

    Note that a function of the form (3) has already been used to explain observed seismic data (Wu MH et al.,2019).Here(E) is obtained as a particular case withδ=1.Now,we have a distribution for a scalar variableE,the energy released in the seismic activity,which depends on the parameterβ.For a discrete case of parameterβ,being able to take the valueβ1or the valueβ2,etc.,we have thatp(β1+β2+…|I)=1 (the Boolean operator "+" implies that one of propositionsβiis correct).The probability of the compound proposition is

    Usingtheproductrule and simplifying the expression for

    Boolean algebra allows an expansion of the righthand side,and extending to the case whereβis a continuously variable parameter,we have the marginal posterior distribution forE,given by

    We don't know in advance the shape of the marginalp(β|I) related to the joint probabilityp(E,β|I),so it should be also determined based on our most recent knowledge update.In the literature we find that a Gamma distribution has a good performance in seismic applications through a Bayesian perspective (see,for example,Stavrakakis and Tselentis,1987;Galanis et al.,2002;Campbell,1982;Parvez,2007).Here,for the marginal,we also choose a more general form

    So,with (6) we obtain

    forE ≥ 0,γ > 0,ρ > 0,δ > 0,b > 0.This marginalization incorporates the uncertainty associated to the assignment of a specifi c value to the parameterβ,as well as the intrinsic uncertainty present inthe context of our specific problem.Here we see both,g(E|β) andf(β|I) in the generalized gamma family of functions.

    3.Emergence of some non-extensive seismic models

    3.1.Some current non-extensive models

    As you can see in Section 1,a non-extensive model(the SP-model) for frequency distribution of seismic magnitudes was presented.There,authors thought about the different fragments of material filling the gaps between the interacting tectonic plates which generate seismic activity.Then,through the Tsallis formalism,a probability function of finding a fragment with specific surface sizeσwas obtained,resulting in theq-exponential distribution for the fragment size

    whereqis the non-extensivity parameter (which leads us to the Boltzmann statistic whenq→1).The seismic energyEdistribution,is obtained assuming

    On the other hand,in Silva et al.(2006) a different choice of constraints for maximizing the non-extensive entropy led to the following fragment size distribution:

    where,again,qis the non-extensivity parameter,whereq≠1(and some papers,as Silva and Lima (2005),indicate that it lies on the open interval [0,2]).Here,the choiceE∝σ3/2leads to the emergence of a different seismic energy distribution function,

    3.2.Extended family of non-extensive distributions

    We can get both of the non-extensive models from the caseγ=δin equation (8),that is,from

    So,models given by equations (10) and (13)correspond to casesδ=2 andδ=2/3 respectively in equation (15).In this perspective,we have that

    where constraints given forδandρin equation (8) lead us to 1 <q< 2 (see Figure 1).

    Figure 1.q parameter dependence,for ρ > 0 and δ > 0.

    Figure 2.The three earthquakes selected for application of the model (17) to corresponding observed data.(Image taken from Map data ?2021 Google).

    It seems that the relationship between the energy released from the earthquake and the size of fragments is something that could lead us to suggest new models.Quoting Sotolongo-Costa and Posadas (2004),about the SP-model,“No ad hoc hypotheses were introduced except the proportionality of E and r,which seems justified,....This is the simplest model that we can make,since in this representation a proportionality of the energy can be introduced with another power of r”.The above should allow us to pick aE∝σ1/δassumption.So,we also can take them∝logErelation in equation (15) to obtain the cumulative frequency-magnitude distribution

    3.2.1 Application

    At first glance,we might think that a non-fixed parameterδin equation (15) could explain different seismic behaviours observed in different geographical regions,while the other models could be limited due to the fixed value of said parameter.To test this,all the events reported in the Centro Sismológico Nacional de la Universidad de Chile (CSN) catalogue,for one month before and one month after three strong earthquakes ocurred in different regions (see Fig.2) were considered,

    · Cauquenes 2010 (36.290° S,73.239° W),8.8 magnitude,February 27,2010

    · Iquique 2014 (19.63° S,70.86° W),8.2 magnitude,April 01,2014

    · Coquimbo 2015 (31.535° S,71.919° W),8.4 magnitude,September 16,2015

    So,a set of six data samples was obtained.Each data sample contains local Richter magnitudes (ML) recorded in the entire territory of Chile during a month previous to the main event and,on the other hand,the magnitudes recorded during a month after the main event,including it(moment magnitude (MW) was taken whenMLmagnitude was not available).In this way,for the period between January 27,2010 and February 27,2010 (before the Cauquenes 2010 main event),we found 166 earthquakes in the CSN catalogue,with the minimum magnitude beingmmin=2.3 and the maximum magnitudemmax=6.4.Also,in the period between February 27,2010 (from the main event) and March 27,2010 we found 1 687 earthquakes,withmmin=2.5 andmmax=8.8.On the other hand,for the period between March 1,2014 and April 1,2014 (before the Iquique 2014 main event) we found 945 earthquakes,withmmin=2.5 andmmax=6.7.Futhermore,in the period between April 1,2014 (from the main event) and May 1,2014 there are 1 458 earthquakes recorded,withmmin=2.5 andmmax=8.2.And finally,during the period between August 16,2015 and September 16,2015 (before the main event of Coquimbo 2015) we have 362 earthquakes,withmmin=2.5 andmmax=6.0.Also,in the period between September 16,2015 (from the main event) and October 16,2015 we found 1 797 earthquakes,withmmin=2.5 andmmax=8.4.It should be noted that some papers show that small earthquakes provide relevant information on the seismic process,allowing to learn about the seismotectonics of the observed region (Ebel,2008),and we just have that,in the early stage of an aftershock sequence,small events may be missing from the catalogue.Missing data could affect certain types of analysis (Kagan,2004)but we want to know how our model behaves in this situation.So,the cumulative normalized distribution equation (17) was fitted to each of the data samples,as it can be seen in Figure 3,in order to check the ability of our expression to fit the data,sinceδis a free parameter.Simultaneously,equations (11) and (14) (both cases with a specific value for theδparameter in the perspective of our model) were applied to the same data samples for comparison purposes (their fit curves are not shown here,but they roughly overlap the plotted one).

    Figure 3.Fitted curve obtained with model (17) before (a) and after (b) of the main 2010 Cauquenes earthquake is shown.The same in (c) and (d) for the case before and after the 2015 Coquimbo earthquake,correspondingly,and for the case of Iquique 2014,in (e) and (f).Goodness of fit was inserted into each panel (sum of squared errors SSE,R-square,adjusted Rsquared and the root mean square deviation RMSE).

    A summary of the fit parameters obtained through the nonlinear least squares (curve fitting) for all the models can be seen in Table 1.No exclusion was used to select the final dataset ,therefore,magnitudes less than the magnitude of completeness mc of the catalog,which the GR law has shown not be able to cover,were considered(an issue that can be seen in some papers where new models have been presented,such as Darooneh and Mehri(2010),Silva et al.(2006) and Sotolongo-Costa and Posadas (2004).) We can also readly see that,from the cumulative distribution corresponding to Equation (15),the well known power law scalingN(>E)~E-Bcan be obtained.

    Additionally,for comparison purposes,the GR relation and the model (17) are shown in Figure 4 for the seismic data belonging to the 2015 Coquimbo (after) event (which was already shown in Figure 3).Applying the GR model it is obtained that the value ofbis 0.808 5,while the value ofais 2.725.Usually,the Gutenberg-Richter cumulative frequency-magnitude law is used for assessing comp-leteness of an earthquake catalogue.(In Ruiz et al.(2016),about the seismic sequence of Coquimbo 2015 earthquake,it was determined that the CSN catalog for the Coquimbo region is complete fromML~ 4.0).

    Figure 4.Cumulative distribution versus magnitude for Coquimbo 2015 seismic data (black diamonds),our model (17)(red solid line) and the GR law (blue dashed line).

    4.Remarks

    We have shown an alternative way that leads us to energy distributions of earthquakes (and hence to frequency distributions of magnitudes) known in the literature and based on non-extensive formalism,thus evidencing the relevance of these distributions in the explanation of the observed data.Also,we have that our model could be useful to explain data that,eventually,some known non-extensive models couldn’t.

    We then wonder if we need to extend the known family of non-extensive distributions,that is,if distributions built by other authors (expressions (11) and(14),for example) are enough to explain the different data sets that may arise in different seismic events.This is equivalent to asking if our model can work satisfactorily with a fixed specificδparameter.Apparently,there would be no reason to think that there should be a single value forδ.

    Looking at the seismic context,it seems reasonable to us to think that each geographical area,and its corresponding sub-soil structure,seismically responds according to its different configurations and specific failure mechanisms that controls the magnitude of stress at a particular time and place in the lithosphere (Engelder,1993).Therefore,opting for a free parameterδcould be a fair decision,because this might allow an adaptation of the model to different regions,according to local characteristics.However,when model (17) was applied to six different data samples,it has been found that its fit parameters show values that suggest a convergence towards the SP model.This can be seen in the summary presented in Table 1,where we get a same value for parameterqin both models (11) and (14),very close to the one obtained with our model (17),through equation (16).

    On the other hand,when verifying the resulting value ofδparameter for each of chosen samples,it can be seen that it is much closer to theδ=2value,that characterizes the SP model.In fact,if we take an average ofδvalues obtained for all the data samples with (17),it is verified that=1.914.

    Note that,on the other hand,this work could be a motivation to exhaustively explore a physical framework that takes into account the relevance,or not,of expression(15),considering that the Bayesian perspective used here and the expression obtained from it,have already been related to some physical formalisms known in the literature (see,for example Lavenda,1995;Beck and Cohen,2003;Mathai and Haubold,2011;Sattin,2006;Umpierrez and Davis,2021).

    成人午夜高清在线视频| 亚洲精品色激情综合| www日本黄色视频网| 少妇丰满av| 午夜a级毛片| 国产成人91sexporn| 亚洲欧美成人综合另类久久久 | 日韩一区二区视频免费看| 天堂av国产一区二区熟女人妻| 国内精品久久久久精免费| 国产精品电影一区二区三区| 啦啦啦韩国在线观看视频| 亚洲丝袜综合中文字幕| 国产伦一二天堂av在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 岛国毛片在线播放| 国产精品99久久久久久久久| 不卡视频在线观看欧美| 成人午夜精彩视频在线观看| 午夜视频国产福利| 欧美高清成人免费视频www| 国产亚洲精品av在线| 成人永久免费在线观看视频| 看十八女毛片水多多多| 在线天堂最新版资源| 国产极品精品免费视频能看的| 人体艺术视频欧美日本| 亚洲欧美精品自产自拍| 91久久精品电影网| 悠悠久久av| 日本五十路高清| 亚洲成人中文字幕在线播放| 欧美日韩精品成人综合77777| 日日撸夜夜添| 国产男人的电影天堂91| 国产精品日韩av在线免费观看| 舔av片在线| 一个人免费在线观看电影| 欧美在线一区亚洲| 哪里可以看免费的av片| 精品久久久久久久久av| 国产视频首页在线观看| 久久精品国产亚洲av香蕉五月| 中出人妻视频一区二区| 蜜桃久久精品国产亚洲av| 成年av动漫网址| 国产精品久久久久久久久免| 国产久久久一区二区三区| 在线播放国产精品三级| 精品久久久久久久久久免费视频| 一级毛片aaaaaa免费看小| av专区在线播放| 波多野结衣巨乳人妻| 搞女人的毛片| 黄色一级大片看看| 成人亚洲欧美一区二区av| 天堂中文最新版在线下载 | 日韩一区二区视频免费看| 久久这里有精品视频免费| 免费av观看视频| 久久久久久久久久成人| 免费无遮挡裸体视频| av福利片在线观看| 国产精品一区二区性色av| 国产精品综合久久久久久久免费| 2022亚洲国产成人精品| 婷婷色综合大香蕉| 久久这里只有精品中国| 久久久久久久久大av| 又粗又硬又长又爽又黄的视频 | 人妻少妇偷人精品九色| 国产精品一二三区在线看| 国产精品一二三区在线看| 成年av动漫网址| 联通29元200g的流量卡| 国产午夜精品一二区理论片| 免费看光身美女| 国产老妇女一区| 永久网站在线| 神马国产精品三级电影在线观看| 国产三级在线视频| 少妇被粗大猛烈的视频| 亚洲av.av天堂| 久久久精品94久久精品| 日韩成人av中文字幕在线观看| 六月丁香七月| 男人和女人高潮做爰伦理| 国产精品美女特级片免费视频播放器| 热99re8久久精品国产| 狂野欧美白嫩少妇大欣赏| 男人和女人高潮做爰伦理| 91精品国产九色| 天堂网av新在线| 特级一级黄色大片| 熟女电影av网| 成人毛片a级毛片在线播放| 日产精品乱码卡一卡2卡三| www日本黄色视频网| 九九久久精品国产亚洲av麻豆| 久久久久久久久久黄片| 国产一区二区三区在线臀色熟女| 国产黄片视频在线免费观看| 岛国在线免费视频观看| av女优亚洲男人天堂| 麻豆乱淫一区二区| 成年av动漫网址| 美女被艹到高潮喷水动态| 欧美+日韩+精品| 夫妻性生交免费视频一级片| 国产极品精品免费视频能看的| 午夜福利在线在线| 最新中文字幕久久久久| 亚洲熟妇中文字幕五十中出| 久久久精品94久久精品| 日日摸夜夜添夜夜爱| 成人av在线播放网站| 欧美成人精品欧美一级黄| 99久久成人亚洲精品观看| 麻豆精品久久久久久蜜桃| 国产亚洲5aaaaa淫片| 久久婷婷人人爽人人干人人爱| 亚洲精品粉嫩美女一区| 欧美在线一区亚洲| 51国产日韩欧美| 一卡2卡三卡四卡精品乱码亚洲| 国产成人a区在线观看| 欧美高清成人免费视频www| 在线天堂最新版资源| 日韩一本色道免费dvd| 男人舔女人下体高潮全视频| 少妇的逼好多水| 一区二区三区四区激情视频 | 波野结衣二区三区在线| 日产精品乱码卡一卡2卡三| 国产极品天堂在线| www日本黄色视频网| 亚洲自偷自拍三级| 免费看美女性在线毛片视频| 欧美xxxx黑人xx丫x性爽| 亚洲成人久久爱视频| 亚洲美女搞黄在线观看| a级一级毛片免费在线观看| 成人永久免费在线观看视频| 一区二区三区高清视频在线| 少妇被粗大猛烈的视频| 日韩欧美三级三区| 精品久久久久久久久av| 一个人免费在线观看电影| 欧美成人一区二区免费高清观看| 最近2019中文字幕mv第一页| 一本精品99久久精品77| 亚洲无线观看免费| 九九在线视频观看精品| 自拍偷自拍亚洲精品老妇| 久久久久久久久大av| 综合色丁香网| 99久久精品国产国产毛片| 亚洲一区高清亚洲精品| 观看免费一级毛片| 成人高潮视频无遮挡免费网站| 99视频精品全部免费 在线| 蜜臀久久99精品久久宅男| 九九久久精品国产亚洲av麻豆| 亚洲最大成人av| 春色校园在线视频观看| 成人鲁丝片一二三区免费| 国产成人a区在线观看| 九草在线视频观看| 国内少妇人妻偷人精品xxx网站| 男人舔女人下体高潮全视频| 国产一区二区亚洲精品在线观看| 99久久无色码亚洲精品果冻| 国产精品嫩草影院av在线观看| 欧美3d第一页| 国产乱人偷精品视频| 亚洲无线观看免费| 国产午夜福利久久久久久| 日本色播在线视频| 淫秽高清视频在线观看| 国产精品久久久久久av不卡| 久久午夜亚洲精品久久| 国产精品久久久久久久久免| 免费av观看视频| 麻豆久久精品国产亚洲av| 成人国产麻豆网| 欧美性猛交黑人性爽| 高清毛片免费观看视频网站| 亚洲欧美精品综合久久99| 天天躁日日操中文字幕| 麻豆成人午夜福利视频| 成年av动漫网址| 天堂网av新在线| 色综合色国产| 蜜臀久久99精品久久宅男| 国产av不卡久久| 日韩欧美精品免费久久| 欧美另类亚洲清纯唯美| 亚洲人成网站在线观看播放| 日本黄色视频三级网站网址| 日韩精品有码人妻一区| a级毛片a级免费在线| 成人性生交大片免费视频hd| 高清在线视频一区二区三区 | 内地一区二区视频在线| 伊人久久精品亚洲午夜| 久久99精品国语久久久| 国产亚洲91精品色在线| 精品久久久久久久末码| 人妻久久中文字幕网| 久久久久免费精品人妻一区二区| 欧美一区二区精品小视频在线| 久久婷婷人人爽人人干人人爱| 国产高清有码在线观看视频| 午夜精品在线福利| 好男人在线观看高清免费视频| 日本黄色片子视频| 91精品国产九色| 成人永久免费在线观看视频| 午夜福利高清视频| 亚洲18禁久久av| 嫩草影院入口| 男人狂女人下面高潮的视频| 国产精品电影一区二区三区| 日本黄大片高清| 国产私拍福利视频在线观看| av在线播放精品| 老司机福利观看| 国产伦一二天堂av在线观看| 神马国产精品三级电影在线观看| 精品久久国产蜜桃| 男人和女人高潮做爰伦理| 国产亚洲av片在线观看秒播厂 | 久久中文看片网| 男女视频在线观看网站免费| 婷婷色av中文字幕| 久久久欧美国产精品| 亚洲精品乱码久久久久久按摩| 精品久久久久久久久av| 国产精品一区www在线观看| 国产精品野战在线观看| 欧美一区二区精品小视频在线| 少妇的逼好多水| 可以在线观看的亚洲视频| 99久久精品一区二区三区| 国产高潮美女av| 国产一区亚洲一区在线观看| 亚洲四区av| 真实男女啪啪啪动态图| 日本黄大片高清| 有码 亚洲区| 卡戴珊不雅视频在线播放| 国产麻豆成人av免费视频| 黄色欧美视频在线观看| 成年女人看的毛片在线观看| 亚洲av男天堂| 好男人视频免费观看在线| 级片在线观看| 精品不卡国产一区二区三区| 久久99热这里只有精品18| 在线观看午夜福利视频| 别揉我奶头 嗯啊视频| 三级男女做爰猛烈吃奶摸视频| 亚洲美女视频黄频| 亚洲高清免费不卡视频| 欧美成人免费av一区二区三区| 国产精品国产高清国产av| www日本黄色视频网| 欧美激情在线99| 亚洲av不卡在线观看| www.av在线官网国产| 欧美日韩在线观看h| 成人漫画全彩无遮挡| 人妻系列 视频| 午夜免费男女啪啪视频观看| 国产精品久久久久久亚洲av鲁大| 成年女人永久免费观看视频| 可以在线观看的亚洲视频| 十八禁国产超污无遮挡网站| 精品久久久久久久人妻蜜臀av| 12—13女人毛片做爰片一| 一边亲一边摸免费视频| 免费人成视频x8x8入口观看| 18禁裸乳无遮挡免费网站照片| 尤物成人国产欧美一区二区三区| 午夜精品一区二区三区免费看| 你懂的网址亚洲精品在线观看 | 久久99热这里只有精品18| 97热精品久久久久久| 十八禁国产超污无遮挡网站| 亚洲中文字幕一区二区三区有码在线看| 国产一区亚洲一区在线观看| 亚洲国产精品成人久久小说 | 国产精品人妻久久久影院| 精品一区二区三区视频在线| 欧美最黄视频在线播放免费| 天天躁夜夜躁狠狠久久av| 亚洲国产欧美人成| 亚洲成a人片在线一区二区| 91精品一卡2卡3卡4卡| 久久精品人妻少妇| 少妇裸体淫交视频免费看高清| 久久精品国产99精品国产亚洲性色| 久久精品国产亚洲av涩爱 | 亚洲av电影不卡..在线观看| 国产精品1区2区在线观看.| av又黄又爽大尺度在线免费看 | 青春草亚洲视频在线观看| 99热全是精品| 免费搜索国产男女视频| 精品日产1卡2卡| 日本成人三级电影网站| 99热网站在线观看| 精品一区二区三区视频在线| 日韩欧美在线乱码| 97人妻精品一区二区三区麻豆| 91在线精品国自产拍蜜月| 精品久久久久久久久久久久久| 永久网站在线| 男女边吃奶边做爰视频| 亚洲av不卡在线观看| av福利片在线观看| 日韩三级伦理在线观看| 简卡轻食公司| 日日摸夜夜添夜夜添av毛片| 国产精品久久久久久亚洲av鲁大| 一夜夜www| 在线播放国产精品三级| 久久久久久九九精品二区国产| 国产精品精品国产色婷婷| 99热这里只有精品一区| 九九在线视频观看精品| a级毛片a级免费在线| 午夜福利成人在线免费观看| 美女脱内裤让男人舔精品视频 | 亚洲成人久久爱视频| 一个人看视频在线观看www免费| 丰满的人妻完整版| 亚洲欧美中文字幕日韩二区| 91狼人影院| 国产蜜桃级精品一区二区三区| 欧美色视频一区免费| 在线播放无遮挡| 菩萨蛮人人尽说江南好唐韦庄 | 淫秽高清视频在线观看| 老司机福利观看| 天堂中文最新版在线下载 | 亚洲自偷自拍三级| 国产美女午夜福利| 看免费成人av毛片| 美女黄网站色视频| 秋霞在线观看毛片| 看十八女毛片水多多多| 国产男人的电影天堂91| 午夜激情福利司机影院| 看免费成人av毛片| 97超视频在线观看视频| 夜夜夜夜夜久久久久| 一级黄色大片毛片| 丰满乱子伦码专区| 内地一区二区视频在线| 成年女人看的毛片在线观看| 18禁在线播放成人免费| 精品久久久久久久久久久久久| 亚洲精品自拍成人| 亚洲aⅴ乱码一区二区在线播放| 十八禁国产超污无遮挡网站| 亚洲精品日韩在线中文字幕 | 国内精品一区二区在线观看| 日韩欧美一区二区三区在线观看| 成人av在线播放网站| 国内精品一区二区在线观看| 亚洲国产欧洲综合997久久,| 免费看日本二区| 亚洲电影在线观看av| 嫩草影院精品99| 亚洲美女搞黄在线观看| ponron亚洲| 少妇猛男粗大的猛烈进出视频 | 国产色爽女视频免费观看| 只有这里有精品99| 女人十人毛片免费观看3o分钟| 日韩视频在线欧美| 91av网一区二区| 一本一本综合久久| 一个人看视频在线观看www免费| 久久久久久伊人网av| 男人狂女人下面高潮的视频| 久久精品91蜜桃| 欧美性猛交╳xxx乱大交人| 日本在线视频免费播放| 亚洲中文字幕一区二区三区有码在线看| 久久久精品欧美日韩精品| 尤物成人国产欧美一区二区三区| 男女啪啪激烈高潮av片| 国产高清有码在线观看视频| 精品国内亚洲2022精品成人| 91aial.com中文字幕在线观看| 中国美女看黄片| 欧美变态另类bdsm刘玥| 成人国产麻豆网| 亚洲国产色片| www.av在线官网国产| 麻豆国产97在线/欧美| 成熟少妇高潮喷水视频| 国产亚洲精品久久久久久毛片| 国产视频首页在线观看| 亚洲不卡免费看| 日韩欧美 国产精品| 欧美激情在线99| 午夜免费男女啪啪视频观看| 九九久久精品国产亚洲av麻豆| 国产人妻一区二区三区在| 一个人看视频在线观看www免费| 日韩三级伦理在线观看| 久久精品久久久久久久性| 全区人妻精品视频| 一夜夜www| 欧美最黄视频在线播放免费| 亚洲欧洲国产日韩| 男人的好看免费观看在线视频| 熟妇人妻久久中文字幕3abv| 国产男人的电影天堂91| 中出人妻视频一区二区| 欧美一区二区精品小视频在线| 久久韩国三级中文字幕| 欧美高清成人免费视频www| 免费电影在线观看免费观看| 美女高潮的动态| 我的老师免费观看完整版| 91久久精品国产一区二区成人| 波多野结衣巨乳人妻| 久久精品久久久久久噜噜老黄 | 1024手机看黄色片| 欧美激情久久久久久爽电影| 亚洲内射少妇av| 欧美另类亚洲清纯唯美| 日韩人妻高清精品专区| av卡一久久| 久久久欧美国产精品| 国产精品一及| 麻豆av噜噜一区二区三区| 身体一侧抽搐| 欧美激情在线99| 久99久视频精品免费| 99久久人妻综合| 波多野结衣高清无吗| 国产亚洲精品久久久com| 91狼人影院| 亚洲内射少妇av| 亚洲天堂国产精品一区在线| 哪个播放器可以免费观看大片| 午夜爱爱视频在线播放| 国产高清不卡午夜福利| 最近中文字幕高清免费大全6| 亚洲丝袜综合中文字幕| 亚洲欧美成人综合另类久久久 | 免费在线观看成人毛片| 天堂中文最新版在线下载 | 色综合站精品国产| 亚洲图色成人| 久久久午夜欧美精品| 亚洲欧美日韩高清专用| 国语自产精品视频在线第100页| 嫩草影院精品99| 国产探花在线观看一区二区| 男人舔女人下体高潮全视频| 韩国av在线不卡| av.在线天堂| 久久6这里有精品| 日韩在线高清观看一区二区三区| 国产精品免费一区二区三区在线| 亚洲av不卡在线观看| 亚洲成人久久性| 亚洲婷婷狠狠爱综合网| 麻豆成人av视频| 长腿黑丝高跟| 乱系列少妇在线播放| 国产精品.久久久| 嫩草影院精品99| 成人午夜精彩视频在线观看| 丰满人妻一区二区三区视频av| 成人亚洲精品av一区二区| 亚洲av中文av极速乱| 日韩亚洲欧美综合| av天堂中文字幕网| 天美传媒精品一区二区| 看黄色毛片网站| 国产亚洲91精品色在线| 国产日韩欧美在线精品| 国产私拍福利视频在线观看| 亚洲不卡免费看| 男人舔女人下体高潮全视频| 国产69精品久久久久777片| 神马国产精品三级电影在线观看| 亚洲av免费高清在线观看| 亚洲成人av在线免费| 一区二区三区四区激情视频 | 久久精品综合一区二区三区| 日本一本二区三区精品| 99热网站在线观看| 高清毛片免费看| 午夜a级毛片| 亚洲av电影不卡..在线观看| 亚洲精品日韩av片在线观看| 夜夜夜夜夜久久久久| 国产av在哪里看| 可以在线观看的亚洲视频| 欧美一区二区精品小视频在线| 亚洲国产色片| 亚洲一区二区三区色噜噜| 禁无遮挡网站| 亚洲欧美精品自产自拍| 美女cb高潮喷水在线观看| 美女脱内裤让男人舔精品视频 | 特大巨黑吊av在线直播| 亚洲成人精品中文字幕电影| 青春草国产在线视频 | 久久综合国产亚洲精品| av在线老鸭窝| 国内揄拍国产精品人妻在线| 国产中年淑女户外野战色| 国产三级中文精品| 日韩 亚洲 欧美在线| 午夜福利高清视频| 99久国产av精品国产电影| 中文亚洲av片在线观看爽| 日韩欧美精品免费久久| 成人亚洲欧美一区二区av| 欧美成人a在线观看| 婷婷精品国产亚洲av| 日韩av在线大香蕉| 大香蕉久久网| 成人午夜高清在线视频| 不卡视频在线观看欧美| 国产黄色小视频在线观看| av在线亚洲专区| 青春草亚洲视频在线观看| 人人妻人人看人人澡| 麻豆国产97在线/欧美| 啦啦啦韩国在线观看视频| 日韩欧美三级三区| 黄色欧美视频在线观看| 日日撸夜夜添| 99久久成人亚洲精品观看| 国产蜜桃级精品一区二区三区| 乱码一卡2卡4卡精品| 免费av毛片视频| 国产综合懂色| 免费不卡的大黄色大毛片视频在线观看 | 中文字幕人妻熟人妻熟丝袜美| 丰满的人妻完整版| 亚洲国产精品国产精品| 草草在线视频免费看| 99久久成人亚洲精品观看| 国产精品一及| 国产高清三级在线| 国产男人的电影天堂91| av专区在线播放| 久久久久久国产a免费观看| 免费观看精品视频网站| 一边亲一边摸免费视频| 欧美一级a爱片免费观看看| 久久中文看片网| 久久精品国产99精品国产亚洲性色| 成人毛片a级毛片在线播放| 午夜爱爱视频在线播放| 亚洲激情五月婷婷啪啪| 精品无人区乱码1区二区| 又粗又爽又猛毛片免费看| 男女视频在线观看网站免费| 看黄色毛片网站| 一级毛片久久久久久久久女| av专区在线播放| 99久久精品热视频| 蜜桃久久精品国产亚洲av| 丰满的人妻完整版| 久久久精品大字幕| 国国产精品蜜臀av免费| 亚洲欧美成人精品一区二区| 日韩成人av中文字幕在线观看| 久久鲁丝午夜福利片| 免费人成视频x8x8入口观看| 国语自产精品视频在线第100页| 18禁在线无遮挡免费观看视频| 99视频精品全部免费 在线| 免费观看的影片在线观看| 国内少妇人妻偷人精品xxx网站| 可以在线观看的亚洲视频| 日本五十路高清| 91精品国产九色| 亚洲美女视频黄频| av在线老鸭窝| 九色成人免费人妻av| 国产精品不卡视频一区二区| 69人妻影院| 夫妻性生交免费视频一级片| 99久久精品国产国产毛片| 悠悠久久av| 亚洲成a人片在线一区二区| www日本黄色视频网| 欧美高清性xxxxhd video| 久久久久久久久大av| 99精品在免费线老司机午夜| 色综合站精品国产| 成人永久免费在线观看视频| 欧美激情在线99| 国产亚洲精品久久久久久毛片| 久久久久网色| 国产极品天堂在线| 女人被狂操c到高潮| 日韩精品有码人妻一区| av免费在线看不卡| 亚洲av成人精品一区久久| 亚洲国产欧美人成| 日日摸夜夜添夜夜添av毛片|