• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on Terahertz Backward-Wave Oscillator Based on Photonic Column Array Slow-Wave Structure

    2022-10-29 01:57:48XIAOChuanhongWUZhenhuaLIJielongSHIZongjunZHONGRenbinLIUDiweiZHAOTaoHUMinandLIUShenggang

    XIAO Chuanhong, WU Zhenhua*, LI Jielong, SHI Zongjun, ZHONG Renbin, LIU Diwei, ZHAO Tao,2,HU Min, and LIU Shenggang

    (1. School of Electronic Science and Engineering, University of Electronic Science and Technology of China Chengdu 611731;2. Higher Research Institute (Shenzhen) of University of Electronic Science and Technology of China Shenzhen Guangdong 518110)

    Abstract This article explores a photonic column array slow-wave structure (SWS). A 0.28-THz sheet beam backward-wave oscillator (BWO) was designed and simulated by calculating the dispersion, field distribution and particle simulation. When the cathode current density is only 10 A/cm2 (the minimum is less than 6 A/cm2), the voltage is 12.5 kV and the magnetic field is 0.5 T, the structure interacts with the sheet beam by immersion and the output power is 435 mW. On the basis of previous work, the SWS was fabricated using Lithography-Galvanoformung-Abformung (LIGA) fabrication technology. The results show that the column array structure can effectively improve the interaction efficiency and reduce the starting current density; and effectively improve the lifespan of terahertz (THz) vacuum electron device (VED) cathodes, which is a viable means of increasing the performance of THz vacuum radiation sources.

    Key words column array slow-wave structure; THz BWO; starting current; vacuum electron device

    The interest in millimeter and terahertz (THz)waves is on the rise due to their unique properties and suitability for a wide range of applications[1-3]. Thanks to advancements in the microfabrication technology,high-powered vacuum electron devices (VEDs) are capable of generating microwaves in the millimeter and THz range[4-5].

    In a typical VED, the amplitude of the synchronous slow-wave z-component in the electric field (EZ) decreases as its distance from the structure increases. Only a thin layer of electrons moving close to the structure can effectively interact with this highfrequencyEZfield. At the millimeter- and terahertzwave band, the beam interacting with the highfrequencyEZfield decreases. A number of methods have been proposed to improve VEDs, through increasing efficiency and decreasing starting current density[6-8]. There have been attempts at using sheet electron beam devices[9-11]to improve VED performance by enlarging interaction space and providing sufficiently high currents. High-operating current density reduces the lifespan of cathodes in millimeter-wave and THz VEDs, therefore, currents should be kept as low as possible.

    This article explores the photonic column array slow-wave structure (SWS), in order to improve the performance of THz VEDs[12-18]. The study designed and simulated a 0.28-THz backward-wave oscillator(BWO). The photonic column array SWS allows the flow of sheet beams. A planar SWS is a multi-column structure, which collects a large number of electrons on the surface of its columns. More electrons are lost in column array structures than in comb structures.This allows for the reduction of the starting current density in multi-column structures through increasing the length or width of the structure. Higher operating voltages (10~20 kV) can then be used to provide significant power and frequency increases. This article focuses on the design and analysis of a 0.28-THz BWO. We show that photonic column array structures are effective in improving the operation of microwave VEDs, such as BWOs.

    1 Model of the photonic column array SWS

    A schematic of the photonic column array SWS is shown in Fig. 1. The periodic slot-hole structure in this model can be extended along its length or breadth.Electron beams may flow through the structure, which increases the effective interaction of current with the slow-wave field. This makes the structure promising for applications in THz VEDs.

    The parameters of the structure are shown in Fig. 2. To enable a VED operating at 0.28 THz, the dimensions of the structure were chosen as follows:d1= 0.17 mm,a1= 0.08 mm,d2= 0.30 mm,a2= 0.12 mm, andh= 0.20 mm. Fig. 2b shows theEZfield amplitude as a function of distance at a frequency of 0.28 THz. TheEZfield peaked at heighth=0.20 mm.The beam interacted with the EZfield inside the structure, so it can be seen from Fig. 2b that the beam thickness is δ = 0.30 mm. This increased the effective beam-wave interaction.

    Fig. 2 Dimensions of the photonic column array SWS and electric field amplitude at gap

    The simulation software CST was used to analyze the cold cavity. After the simulation calculation, the dispersion curves of the photonic column array SWS,for BWOs are shown in Fig.3. The point of beamwave interaction (at aboutf= 280 GHz) and the intersection of the dispersion curve with the beam lines for 10 kV, 12.5 kV and 15 kV electrons are shown in Fig. 3. The operating frequency is changed by adjusting the operating voltage. The electric field distribution of the TM11mode is shown in Fig. 4.

    Fig. 3 Dispersion curves of the photonic column array SWS

    Fig. 4 Field distribution of the TM11 mode in the photonic column array SWS

    2 Design and simulation of a 0.28-THz BWO

    A 0.28-THz BWO was designed and simulated using CHIPIC, a three-dimensional (3D) electromagnetic particle-in-cell (PIC) finite-difference timedomain (FDTD) code. The system used the photonic column array SWS.

    The SWS and baseplate cover consisted of copper. The simulation parameters of the BWO are shown in Table 1. Fig. 5 shows the electron beam passing through the photonic column array SWS on theY-ZandX-Zplanes. The THz signal output through a coupler, which consisted of a slot coupled to a WR10 waveguide.

    Table 1 Operating parameters of the BWO

    Fig. 5 Position distribution of the electron beam in the SWS

    The results of the PIC simulation are shown in Fig. 6. The average beam energy was reduced through absorption by the SWS, as shown in Fig. 6a. The total current in the SWS was 78 mA, and the interaction current was about 51.5 mA. About 29.7% of electrons were lost in the multi-column structures, because the sheet beam was immersed in the SWS, as shown in Fig. 5a. However, this increased the surface of the beam-wave interaction.

    Fig. 6 The results of PIC simulation

    The output power as a function of time, and the corresponding FFT power spectrum are shown in Figs. 6c and 6d, respectively. In accordance with the power lawP∝E2, the amplitude on the FFT power spectrum corresponding to 0.56 THz was much higher than that corresponding to 0.28 THz. The operating frequency of 0.28 THz matches the intersection in Fig. 3.

    Fig. 7a shows the high-frequency field power as a function of SWS length. Most of the field power was retained in the BWO, unlike the output power in Fig. 6c. This shows that the output coupling efficiency of this device was very low. Fig. 7b shows the surface power loss in the BWO. Surface power loss was much higher than the output power loss shown in Fig. 6c.Power loss to structures cannot be ignored in simulations, especially for high-frequency devices.

    Fig. 7 High-Frequency field power and loss

    Fig. 8 shows power as a function of various parameters. Fig. 8a shows that the power increased as the number of periods increased, and Fig. 8b shows that power increased as the number of rows increased.After a series of calculations and comparisons, the numbers of periods and rows were chosen to be 80 and 7, respectively.

    Sweeping simulation of the beam voltage, as shown in Fig. 8c, shows that the power peaked at operating voltageU= 12.5 kV, and the frequency increased with increasing voltage. This suggests that the operating frequency of the oscillator can be changed by adjusting the operating voltage. Power increases with increasing current density, as shown in Fig. 8d. The BWO functioned at a current density of 6 A/cm2and must maintain a relatively low operating current density to increase the lifespan of the cathode.Referring to Fig. 8e, the output power increased as the guiding magnetic field increased. Stronger magnetic fields increased the size and cost of the device. A 0.5-T guiding magnetic field was adopted for the device in this study.

    Fig. 8 Output power as a function of different parameters

    3 Fabrication

    The structure was fabricated using the lithography-galvanoformung-abformung (LIGA) fabrication technology, as shown in Fig. 9. Some issues were identified using a scanning electron microscope(SEM), manufactured by ZEISS. First, thin irregular burrs were found on the top of the structure, as highlighted by the blue squares in Fig. 9. These burrs were formed during the polishing process, and they may obstruct beam-wave interaction. The burrs can be removed with applied acid or thermal shocking by an electron beam. Second, thin wires were found to have accumulated inside the structure, as highlighted by the red square in Fig. 9a. These wires can also affect beam-wave interaction. They can be removed using ultrasonic methods or a micromanipulator. Finally, the actual size deviates from the design size by 5 μm(about 3%) because of the lack of optical precision during the fabrication process. The aforementioned issues can be resolved through advanced processing techniques and equipment. However, the obtained outcome was satisfactory because of its superior collimation of the metal column, its periodicity, and its bottom smoothness. The LIGA fabrication technology is suitable for such small structures and high frequencies.

    Fig. 9 High-frequency structure diagram

    4 Conclusions

    A 0.28-THz BWO, driven by sheet beams, was designed and simulated. The device was based on photonic column array SWS. The SWS allowed beams move through its structure, which effectively reduced the operating current density of the BWO. The simulation results showed that the starting current density was below 6 A/cm2. The SWS was fabricated using the LIGA fabrication technology. The fabricated structure was satisfactory, and more experimental results will be published in future. This study shows that multi-column SWS represents a viable means for improving the performance of millimeter wave and THz VEDs.

    性色av一级| 亚洲中文av在线| 大型av网站在线播放| 欧美日韩福利视频一区二区| 校园人妻丝袜中文字幕| 国产高清视频在线播放一区 | 国产精品.久久久| 亚洲精品日韩在线中文字幕| 国产成人啪精品午夜网站| 一区二区三区乱码不卡18| 18禁观看日本| 女人久久www免费人成看片| 成人手机av| www.熟女人妻精品国产| 亚洲熟女毛片儿| 亚洲五月色婷婷综合| 亚洲三区欧美一区| 99国产精品一区二区三区| 国产精品99久久99久久久不卡| 麻豆国产av国片精品| 制服诱惑二区| 老司机深夜福利视频在线观看 | 国产无遮挡羞羞视频在线观看| 久久热在线av| 18在线观看网站| 久久久欧美国产精品| 考比视频在线观看| 男人添女人高潮全过程视频| 人妻一区二区av| 51午夜福利影视在线观看| 99热全是精品| 精品卡一卡二卡四卡免费| 一边摸一边做爽爽视频免费| 自线自在国产av| 欧美黄色片欧美黄色片| 日本a在线网址| 69精品国产乱码久久久| 精品国产一区二区久久| 亚洲欧洲精品一区二区精品久久久| 日韩大片免费观看网站| 国产精品秋霞免费鲁丝片| 国产视频首页在线观看| 不卡av一区二区三区| 久久久久久久大尺度免费视频| 日韩制服丝袜自拍偷拍| 成年动漫av网址| 女人高潮潮喷娇喘18禁视频| 如日韩欧美国产精品一区二区三区| 秋霞在线观看毛片| 久久女婷五月综合色啪小说| 99久久人妻综合| 精品亚洲乱码少妇综合久久| 日韩视频在线欧美| 日韩视频在线欧美| 99re6热这里在线精品视频| 视频区欧美日本亚洲| 51午夜福利影视在线观看| 男女边摸边吃奶| 日本午夜av视频| 桃花免费在线播放| 午夜久久久在线观看| 啦啦啦视频在线资源免费观看| 夜夜骑夜夜射夜夜干| 97精品久久久久久久久久精品| 乱人伦中国视频| 午夜福利,免费看| 久久精品亚洲av国产电影网| 亚洲色图综合在线观看| 丁香六月天网| av欧美777| 青春草亚洲视频在线观看| 国产国语露脸激情在线看| 99香蕉大伊视频| 成年女人毛片免费观看观看9 | 成人黄色视频免费在线看| av片东京热男人的天堂| 国产精品 欧美亚洲| 久久青草综合色| 亚洲一区中文字幕在线| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产看品久久| 亚洲中文av在线| 亚洲人成电影观看| 亚洲国产欧美在线一区| 日日夜夜操网爽| 一本综合久久免费| 少妇被粗大的猛进出69影院| 欧美精品一区二区大全| 日韩一本色道免费dvd| 成年av动漫网址| 老熟女久久久| 久久av网站| 成在线人永久免费视频| 天天添夜夜摸| cao死你这个sao货| 超色免费av| e午夜精品久久久久久久| 丰满迷人的少妇在线观看| netflix在线观看网站| 亚洲五月色婷婷综合| 涩涩av久久男人的天堂| 亚洲国产精品999| 大话2 男鬼变身卡| av福利片在线| 男女国产视频网站| 欧美人与性动交α欧美软件| 丝袜在线中文字幕| 在线观看免费视频网站a站| 电影成人av| 伦理电影免费视频| 国产一级毛片在线| 99国产综合亚洲精品| 亚洲成国产人片在线观看| 亚洲精品日本国产第一区| 精品视频人人做人人爽| 大香蕉久久成人网| 中文字幕av电影在线播放| 丝瓜视频免费看黄片| 成在线人永久免费视频| 免费av中文字幕在线| 韩国高清视频一区二区三区| 色网站视频免费| 婷婷丁香在线五月| 97精品久久久久久久久久精品| av线在线观看网站| 一级,二级,三级黄色视频| 亚洲情色 制服丝袜| 国产精品久久久久久精品古装| 日韩熟女老妇一区二区性免费视频| 欧美日韩福利视频一区二区| a级毛片黄视频| 国产精品国产av在线观看| 久久性视频一级片| 好男人视频免费观看在线| 国产成人系列免费观看| 一级片免费观看大全| 亚洲欧洲精品一区二区精品久久久| 亚洲熟女毛片儿| 岛国毛片在线播放| 精品国产一区二区久久| 黄色毛片三级朝国网站| 男人添女人高潮全过程视频| 最黄视频免费看| 午夜福利影视在线免费观看| 考比视频在线观看| bbb黄色大片| 又黄又粗又硬又大视频| 亚洲国产精品999| 视频区图区小说| 我要看黄色一级片免费的| 精品一品国产午夜福利视频| 波多野结衣一区麻豆| 99久久综合免费| 国产日韩欧美在线精品| 超色免费av| 国产成人a∨麻豆精品| tube8黄色片| 婷婷色麻豆天堂久久| 啦啦啦在线免费观看视频4| 十八禁高潮呻吟视频| av网站免费在线观看视频| 亚洲国产精品一区三区| www.自偷自拍.com| 精品免费久久久久久久清纯 | 亚洲精品中文字幕在线视频| 女人被躁到高潮嗷嗷叫费观| 热99久久久久精品小说推荐| 满18在线观看网站| 国产精品亚洲av一区麻豆| 高清不卡的av网站| 婷婷成人精品国产| 黄片小视频在线播放| 日韩av在线免费看完整版不卡| 91麻豆av在线| 夜夜骑夜夜射夜夜干| 极品少妇高潮喷水抽搐| 性高湖久久久久久久久免费观看| 欧美日韩视频精品一区| 制服人妻中文乱码| 亚洲专区国产一区二区| 日韩 欧美 亚洲 中文字幕| 久久人妻熟女aⅴ| 精品欧美一区二区三区在线| 中文字幕制服av| 性色av乱码一区二区三区2| 丰满迷人的少妇在线观看| 日本五十路高清| 久久久亚洲精品成人影院| 久久久久久久精品精品| 国产主播在线观看一区二区 | 在线亚洲精品国产二区图片欧美| 免费观看人在逋| 两性夫妻黄色片| 国产伦理片在线播放av一区| 国产不卡av网站在线观看| 纵有疾风起免费观看全集完整版| 99久久精品国产亚洲精品| 久久 成人 亚洲| 久久久久久久大尺度免费视频| 国产欧美日韩精品亚洲av| 国产色视频综合| 精品第一国产精品| 欧美成人午夜精品| 亚洲第一青青草原| 91国产中文字幕| 黄片播放在线免费| 亚洲精品在线美女| 十八禁网站网址无遮挡| 国产精品一国产av| 精品一区二区三区av网在线观看 | 香蕉国产在线看| 好男人视频免费观看在线| 考比视频在线观看| 亚洲成国产人片在线观看| 妹子高潮喷水视频| 精品免费久久久久久久清纯 | 香蕉丝袜av| 欧美久久黑人一区二区| 青春草视频在线免费观看| 国产欧美日韩综合在线一区二区| 一边摸一边做爽爽视频免费| 最近中文字幕2019免费版| 男女边吃奶边做爰视频| 乱人伦中国视频| 日韩大码丰满熟妇| 女性被躁到高潮视频| 久久久久精品人妻al黑| 中国国产av一级| 新久久久久国产一级毛片| 婷婷色麻豆天堂久久| 人妻人人澡人人爽人人| 久久久久精品人妻al黑| 午夜久久久在线观看| av线在线观看网站| 99香蕉大伊视频| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲一区二区三区欧美精品| 不卡av一区二区三区| 老汉色av国产亚洲站长工具| 一级片'在线观看视频| 午夜视频精品福利| 两性夫妻黄色片| 女性被躁到高潮视频| 国产亚洲欧美在线一区二区| 我的亚洲天堂| 亚洲,欧美精品.| 777米奇影视久久| 亚洲 国产 在线| 色精品久久人妻99蜜桃| 免费日韩欧美在线观看| 午夜福利在线免费观看网站| 久久99热这里只频精品6学生| 成年动漫av网址| 日韩一卡2卡3卡4卡2021年| 日韩一区二区三区影片| 欧美在线一区亚洲| 久久精品亚洲熟妇少妇任你| 久久人妻福利社区极品人妻图片 | 性色av乱码一区二区三区2| 国产99久久九九免费精品| 国产主播在线观看一区二区 | 午夜福利视频在线观看免费| 亚洲欧美成人综合另类久久久| 97精品久久久久久久久久精品| 美女脱内裤让男人舔精品视频| 国产日韩一区二区三区精品不卡| 两个人免费观看高清视频| 欧美日韩福利视频一区二区| 欧美成人午夜精品| 美女大奶头黄色视频| 亚洲av片天天在线观看| 亚洲国产精品999| 大片电影免费在线观看免费| 久久久国产欧美日韩av| 99久久精品国产亚洲精品| 国产成人欧美| 亚洲精品久久久久久婷婷小说| 2021少妇久久久久久久久久久| 欧美激情极品国产一区二区三区| 一级毛片女人18水好多 | 中文字幕高清在线视频| 久热这里只有精品99| 一本—道久久a久久精品蜜桃钙片| 晚上一个人看的免费电影| 又大又爽又粗| 亚洲五月色婷婷综合| 亚洲av日韩在线播放| 国产成人精品久久二区二区免费| 黄色视频不卡| 日本av手机在线免费观看| 热99久久久久精品小说推荐| 丰满人妻熟妇乱又伦精品不卡| 国产日韩欧美在线精品| 最新在线观看一区二区三区 | 一区二区三区精品91| 9热在线视频观看99| 国产亚洲精品久久久久5区| 黄色毛片三级朝国网站| 国产精品九九99| 国产精品一区二区免费欧美 | 久久精品成人免费网站| 国产精品99久久99久久久不卡| 免费观看av网站的网址| 高清欧美精品videossex| 午夜福利免费观看在线| 亚洲中文日韩欧美视频| 欧美日本中文国产一区发布| 精品第一国产精品| 国产精品久久久人人做人人爽| 精品欧美一区二区三区在线| 免费少妇av软件| 亚洲av男天堂| 国产亚洲精品第一综合不卡| 国产97色在线日韩免费| 波多野结衣av一区二区av| 女警被强在线播放| 天天躁夜夜躁狠狠躁躁| 亚洲欧美成人综合另类久久久| 欧美亚洲日本最大视频资源| 欧美日韩视频精品一区| 悠悠久久av| 国产一区二区三区av在线| 亚洲专区国产一区二区| 婷婷色麻豆天堂久久| 精品福利观看| 99国产精品一区二区蜜桃av | 午夜av观看不卡| 亚洲专区国产一区二区| 国产黄色免费在线视频| 国产日韩欧美视频二区| 国产成人影院久久av| 亚洲欧美一区二区三区国产| 久久免费观看电影| 亚洲欧美一区二区三区国产| 亚洲一区二区三区欧美精品| 国产精品国产三级国产专区5o| 亚洲黑人精品在线| 老司机在亚洲福利影院| 亚洲国产欧美一区二区综合| 欧美精品亚洲一区二区| 日韩av在线免费看完整版不卡| 精品福利观看| 免费看十八禁软件| 一级黄色大片毛片| 嫁个100分男人电影在线观看 | 国产极品粉嫩免费观看在线| 999久久久国产精品视频| 69精品国产乱码久久久| 欧美成人精品欧美一级黄| 中文欧美无线码| 午夜激情av网站| 90打野战视频偷拍视频| 免费久久久久久久精品成人欧美视频| 午夜激情av网站| 国产三级黄色录像| 久久国产亚洲av麻豆专区| 999久久久国产精品视频| 人成视频在线观看免费观看| 久久国产精品人妻蜜桃| av线在线观看网站| 天天躁夜夜躁狠狠久久av| 精品高清国产在线一区| 赤兔流量卡办理| 亚洲天堂av无毛| 国产黄色视频一区二区在线观看| 成人免费观看视频高清| 免费av中文字幕在线| 亚洲伊人色综图| 欧美日韩成人在线一区二区| av电影中文网址| 91精品三级在线观看| 亚洲综合色网址| 伊人久久大香线蕉亚洲五| 日韩av不卡免费在线播放| 欧美日韩国产mv在线观看视频| 国产一卡二卡三卡精品| 成人国语在线视频| 女人高潮潮喷娇喘18禁视频| 日韩中文字幕视频在线看片| 欧美97在线视频| 午夜激情久久久久久久| 久久亚洲精品不卡| 亚洲av电影在线观看一区二区三区| 久久久欧美国产精品| 久久午夜综合久久蜜桃| 日韩,欧美,国产一区二区三区| 免费在线观看日本一区| 午夜福利在线免费观看网站| 91九色精品人成在线观看| 久久人妻福利社区极品人妻图片 | 最新的欧美精品一区二区| 建设人人有责人人尽责人人享有的| 国产黄频视频在线观看| 亚洲国产成人一精品久久久| 亚洲av成人精品一二三区| 国产在线一区二区三区精| 桃花免费在线播放| 日韩电影二区| 中国国产av一级| 99国产精品免费福利视频| 高清不卡的av网站| 国产精品一区二区在线观看99| 亚洲欧美一区二区三区久久| 在线看a的网站| 丝袜脚勾引网站| 亚洲一区二区三区欧美精品| 999精品在线视频| 免费在线观看黄色视频的| 99久久人妻综合| 十分钟在线观看高清视频www| 国产成人系列免费观看| 91麻豆av在线| 精品亚洲乱码少妇综合久久| 久久久久精品人妻al黑| 人成视频在线观看免费观看| 国精品久久久久久国模美| 日韩电影二区| bbb黄色大片| 国产亚洲一区二区精品| 国产女主播在线喷水免费视频网站| 国产免费一区二区三区四区乱码| 一本一本久久a久久精品综合妖精| 一级片'在线观看视频| 少妇精品久久久久久久| 汤姆久久久久久久影院中文字幕| 老司机深夜福利视频在线观看 | 黄片小视频在线播放| 日本猛色少妇xxxxx猛交久久| 日韩精品免费视频一区二区三区| 久久热在线av| 久久人妻熟女aⅴ| 亚洲,一卡二卡三卡| 久久久欧美国产精品| 亚洲综合色网址| 新久久久久国产一级毛片| 中文字幕人妻熟女乱码| 国产亚洲av高清不卡| 男女免费视频国产| 人妻人人澡人人爽人人| 女性生殖器流出的白浆| 青青草视频在线视频观看| 国产主播在线观看一区二区 | 国产精品麻豆人妻色哟哟久久| 亚洲欧洲国产日韩| 妹子高潮喷水视频| 久久精品成人免费网站| 亚洲精品久久午夜乱码| 女人高潮潮喷娇喘18禁视频| bbb黄色大片| 美女视频免费永久观看网站| 两性夫妻黄色片| 妹子高潮喷水视频| 两人在一起打扑克的视频| 日韩 欧美 亚洲 中文字幕| av天堂久久9| 国产一区二区三区综合在线观看| 我的亚洲天堂| 欧美日韩综合久久久久久| 免费日韩欧美在线观看| 91国产中文字幕| www.自偷自拍.com| 大片电影免费在线观看免费| 亚洲,欧美,日韩| 国产99久久九九免费精品| 99精国产麻豆久久婷婷| 亚洲精品一卡2卡三卡4卡5卡 | 18禁裸乳无遮挡动漫免费视频| 一区二区日韩欧美中文字幕| 校园人妻丝袜中文字幕| 免费观看人在逋| 亚洲专区国产一区二区| 操出白浆在线播放| 日本欧美视频一区| 精品第一国产精品| 欧美日韩综合久久久久久| 手机成人av网站| 制服诱惑二区| 丝袜喷水一区| 久久久久精品国产欧美久久久 | 久久精品国产亚洲av高清一级| 侵犯人妻中文字幕一二三四区| 欧美精品一区二区免费开放| 涩涩av久久男人的天堂| 欧美精品av麻豆av| 人人妻人人澡人人爽人人夜夜| 国产老妇伦熟女老妇高清| 十八禁人妻一区二区| 999久久久国产精品视频| 大码成人一级视频| 亚洲,欧美,日韩| 91九色精品人成在线观看| 天天躁夜夜躁狠狠久久av| 悠悠久久av| 爱豆传媒免费全集在线观看| 亚洲国产精品999| netflix在线观看网站| 母亲3免费完整高清在线观看| 丝袜在线中文字幕| xxx大片免费视频| 欧美老熟妇乱子伦牲交| 丰满少妇做爰视频| 国产黄色免费在线视频| av天堂在线播放| √禁漫天堂资源中文www| 国产在线视频一区二区| 国产精品熟女久久久久浪| 两性夫妻黄色片| 国产亚洲精品第一综合不卡| 青春草亚洲视频在线观看| 免费高清在线观看日韩| 国产精品99久久99久久久不卡| 欧美日韩一级在线毛片| 日韩电影二区| 黄色毛片三级朝国网站| av网站免费在线观看视频| 久久久久久人人人人人| 777米奇影视久久| 精品少妇黑人巨大在线播放| 精品国产国语对白av| 肉色欧美久久久久久久蜜桃| 欧美性长视频在线观看| 国产精品国产三级国产专区5o| 亚洲人成77777在线视频| 亚洲 欧美一区二区三区| 欧美日本中文国产一区发布| 黄色a级毛片大全视频| 欧美黄色片欧美黄色片| av天堂久久9| 久久毛片免费看一区二区三区| 国产视频首页在线观看| 宅男免费午夜| 欧美日韩视频高清一区二区三区二| 老汉色av国产亚洲站长工具| 国精品久久久久久国模美| 成人免费观看视频高清| 9191精品国产免费久久| 美女脱内裤让男人舔精品视频| 又黄又粗又硬又大视频| 国产免费福利视频在线观看| 男人爽女人下面视频在线观看| 天天躁夜夜躁狠狠久久av| 国产亚洲av高清不卡| 久久九九热精品免费| 老汉色∧v一级毛片| 又大又黄又爽视频免费| 精品人妻1区二区| 亚洲成国产人片在线观看| 欧美在线黄色| 国产亚洲午夜精品一区二区久久| 久久久精品免费免费高清| 黑人欧美特级aaaaaa片| 久久久久精品人妻al黑| 99久久综合免费| 交换朋友夫妻互换小说| 丝瓜视频免费看黄片| 亚洲欧洲精品一区二区精品久久久| 大陆偷拍与自拍| 日韩一区二区三区影片| 爱豆传媒免费全集在线观看| 日韩,欧美,国产一区二区三区| 国产精品久久久久久精品电影小说| 久久免费观看电影| 国产日韩欧美视频二区| 成年人黄色毛片网站| 亚洲精品国产区一区二| 免费观看a级毛片全部| 欧美成人精品欧美一级黄| 免费在线观看黄色视频的| 日本五十路高清| 中文精品一卡2卡3卡4更新| 在线观看免费视频网站a站| 男女高潮啪啪啪动态图| 99国产精品免费福利视频| 91精品伊人久久大香线蕉| 丝袜美腿诱惑在线| 手机成人av网站| 在线观看免费日韩欧美大片| 国产欧美日韩一区二区三区在线| 少妇人妻久久综合中文| 巨乳人妻的诱惑在线观看| 亚洲精品国产色婷婷电影| 日韩,欧美,国产一区二区三区| 99九九在线精品视频| 国产女主播在线喷水免费视频网站| 一边摸一边做爽爽视频免费| 精品熟女少妇八av免费久了| 久久久国产欧美日韩av| 欧美另类一区| 欧美日本中文国产一区发布| 女人爽到高潮嗷嗷叫在线视频| 纵有疾风起免费观看全集完整版| 亚洲三区欧美一区| 精品国产乱码久久久久久小说| 涩涩av久久男人的天堂| 夫妻午夜视频| 人妻一区二区av| 男男h啪啪无遮挡| 国产成人精品久久久久久| 超色免费av| 激情视频va一区二区三区| 免费高清在线观看视频在线观看| 少妇粗大呻吟视频| 在线观看免费午夜福利视频| 精品亚洲成国产av| 日韩av免费高清视频| 亚洲成人国产一区在线观看 | 搡老岳熟女国产| av天堂久久9| videosex国产| 曰老女人黄片| 青草久久国产| 新久久久久国产一级毛片| 国产精品 欧美亚洲| 久久精品国产亚洲av涩爱| 丰满少妇做爰视频|