王 鏈 姚約東 王孔杰 趙國翔
(1.中國石油大學(xué)油氣資源與探測國家重點實驗室,北京 102249;2.中國石油集團川慶鉆探工程有限公司長慶井下技術(shù)作業(yè)公司,陜西 西安 710018)
油藏井位的優(yōu)化設(shè)計是一種多維優(yōu)化問題,高效尋找合理的井位部署方案直接影響到油藏開發(fā)的效益和長期穩(wěn)產(chǎn)[1-3]。不同的井位組合伴隨著不同的油井產(chǎn)量、水驅(qū)波及效率和最終的經(jīng)濟效益[4-5],且這些影響隨著油藏非均質(zhì)性的增加顯得格外突出。因此,在油藏投產(chǎn)前進行合理的井位部署對于提高油藏的開發(fā)效益和生產(chǎn)潛力至關(guān)重要[6]。
常用的井位優(yōu)化方法主要有傳統(tǒng)的油藏工程方法、數(shù)值模擬法和優(yōu)化算法結(jié)合數(shù)值模擬技術(shù)的方法。對于傳統(tǒng)的油藏工程方法,孫致學(xué)等[7]改進生產(chǎn)潛力指標和矢量井網(wǎng)理論提出了一種新的深水油田井位優(yōu)化方法;房娜等[8]基于物質(zhì)平衡原理建立了流體運移模型并繪制了不同地層壓力下的合理垂向井位優(yōu)化圖版實現(xiàn)了氣頂邊水油藏井位優(yōu)化。對于數(shù)值模擬法,主要是應(yīng)用正交設(shè)計試驗、敏感性分析和灰色關(guān)聯(lián)分析等方法,這類方法簡單易行且廣泛地被應(yīng)用于實際油田的井位優(yōu)化,但這類方法對比分析的方案數(shù)量相對有限,主要依靠油藏工程師的現(xiàn)場經(jīng)驗,不容易實現(xiàn)全局搜索[9]。對于優(yōu)化算法結(jié)合數(shù)值模擬軟件的方法,姜瑞忠等[10]基于Matlab軟件中自帶的遺傳算法工具箱結(jié)合數(shù)值模擬軟件以凈現(xiàn)值作為優(yōu)化目標,對蘇里格氣田的井位進行了優(yōu)化研究;崔傳智等[11]提出了基于魚群算法的油藏井位優(yōu)化方法,該方法結(jié)合魚群算法和數(shù)值模擬軟件實現(xiàn)了對剩余油的加密井布井。這種基于數(shù)值模擬過程的智能優(yōu)化方法在尋優(yōu)過程中需要調(diào)用多次數(shù)值模擬過程,導(dǎo)致優(yōu)化計算負擔(dān)重,完成一次基于數(shù)值模擬模型的優(yōu)化過程需要很長的時間,極大的影響了油藏開發(fā)方案設(shè)計的效率。為了解決這個問題,基于代理輔助的優(yōu)化決策方法在近幾年得到廣泛的應(yīng)用,各種機器學(xué)習(xí)方法如高斯過程[12]、支持向量機[13]和卷積神將網(wǎng)絡(luò)[14]等作為減輕優(yōu)化過程中數(shù)模計算負擔(dān)的近似方法在油藏優(yōu)化上取得了成功應(yīng)用。
基于上述分析,結(jié)合野草猴群算法和徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)模型,建立基于代理輔助的井位快速智能決策方法,該方法能全面考慮油藏的各種性質(zhì),直接實現(xiàn)整個油藏全局的最優(yōu)化方案求解。應(yīng)用徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)模型代替尋優(yōu)過程中的數(shù)值模擬過程,并利用野草猴群算法能兼顧局部和全局最優(yōu)的性能,實現(xiàn)井位智能決策。將本文提出的智能決策方法應(yīng)用于水驅(qū)油藏井位設(shè)計中取得了很好的效果。
野草猴群算法(WMA)綜合考慮了野草入侵需要經(jīng)過對環(huán)境的適應(yīng)、繁殖進化和競爭排斥等過程和猴子爬山過程中不斷地爬、望和跳的過程,能利用生存競爭機制將優(yōu)秀個體的基因直接繼承給下一代,且具備猴群算法的兼顧局部和全局搜索的能力。算法所需輸入?yún)?shù)較少,適合求解井位優(yōu)化這種整數(shù)編碼的優(yōu)化問題。為此,本文利用該算法對油藏生產(chǎn)的井位進行優(yōu)化布置。
傳統(tǒng)的油藏生產(chǎn)優(yōu)化主要是對一些連續(xù)變量進行尋優(yōu),而井位優(yōu)化主要是對井位坐標這種整數(shù)變量進行尋優(yōu),需要對決策變量進行整數(shù)編碼?;谝安莺锶核惴ǖ木粌?yōu)化布置初始化過程是成功進行井位優(yōu)化過程的核心步驟,具體初始化流程為:
(1)將井位布置的位置編為整數(shù),以給定的網(wǎng)格為井位搜索空間。
(2)設(shè)置種群數(shù)量M,在種群中第i個個體即為第i種布井方案xi=[xi1,xi2,…,xin]T,其中i=1,2,…,M,n為井數(shù)。
(3)初始總?cè)荷?,初始方案的設(shè)定會直接影響算法收斂效果,為此設(shè)定布井方案中各個井的初始位置分布服從期望值μ,方差σ2的正態(tài)分布表達式為
式中:μ——期望值;σ2——方差。
根據(jù)實際油藏模型的網(wǎng)格,確定公式中的統(tǒng)計量,實現(xiàn)初始種群的合理分布。
爬過程即群體中的樣本模仿猴子爬行的過程迭代到下一個位置,實現(xiàn)決策空間的局部搜索。假設(shè)爬的步長為a,考慮到計算效率和求解精度的平衡,當步長太大時會影響精度太小時會降低優(yōu)化效率,設(shè)置隨迭代步數(shù)變化的自適應(yīng)變步長為l,其表達式為
式中:a——初始個體爬行步長,m;b——個體望的視野長度,m;t——個體當前迭代次數(shù);Nc——最大迭代步數(shù)。
當爬行次數(shù)增加時,爬行的步長減小,實現(xiàn)了局部的小步慢爬,同時增加了野草猴群算法的局部搜索能力和搜索精度。
當完成爬過程后,為了更精確地搜索局部最優(yōu)解,對個體進行望過程。每個個體在望區(qū)間內(nèi)瞭望新的個體,當瞭望到的個體比當前個體更優(yōu)時替代當前的解,反之維持當前種群不變。
跳過程是實現(xiàn)全局最優(yōu)的搜索過程,跳出爬和望過程。具體爬、望和跳過程的步驟參考文獻[15]。
模仿野草生長繁殖的思想,每一代種群的繁殖程度取決于個體的函數(shù)值,最大函數(shù)值的個體可以繁殖最多的后代,后代數(shù)公式為
式中:Ns——個體后代的數(shù)目,向下取整;φ——目標函數(shù)值;φmin——最小目標函數(shù)值;φmax——最大目標函數(shù)值;Smax——最大后代數(shù);Smin——最小后代數(shù)。
當生成下一代個體后,引入適者生存的機制,保留目標函數(shù)值大的個體,且保證種群規(guī)模不變生成新的種群。對新種群繼續(xù)爬、望、跳過程、繁殖進化和排斥競爭,直到達到最大迭代次數(shù)。詳細的繁殖進化和競爭排斥步驟參考文獻[16]。
對于油藏生產(chǎn)的經(jīng)濟指標一般選取凈現(xiàn)值作為評價指標,定義為整個生產(chǎn)時間內(nèi)的現(xiàn)金流按照折現(xiàn)率求得的現(xiàn)值的和。以最大凈現(xiàn)值為目標函數(shù)的井位優(yōu)化決策問題就是如何在油藏上布置合理的井位在一定的工作制度下得到最大的經(jīng)濟效益,為高效油藏生產(chǎn)提供最優(yōu)的布井方案。
考慮經(jīng)濟指標的油藏井位優(yōu)化決策即以井位布置在哪一個模型網(wǎng)格點為設(shè)計變量,在一個油藏上合理的布置油水井使得在一定的生產(chǎn)制度下該油藏的經(jīng)濟效益最大,凈現(xiàn)值目標函數(shù)計算公式為
式中:CNPV——凈現(xiàn)值,其為設(shè)計變量井位xwp的函數(shù);Nt——油藏模擬總時間,d;d——折現(xiàn)率,%;No——油井 數(shù);ro——油價,元/m3;qoi——油井i的產(chǎn)油量,m3/d;cpw——水處理成本,元/m3;qpwi——產(chǎn) 水 量,m3/d;Nw——水 井 數(shù);ciw——注水成本,元/m3;qiwj——注水井j的注入量,m3/d;co——油井平均鉆完井成本,元/口;cw——注水井的平均鉆完井成本,元/口。
根據(jù)野草猴群算法的搜索流程和油藏井位優(yōu)化的特點,基于野草猴群算法的井位優(yōu)化流程有7個主要步驟:
(1)初始化,設(shè)置種群數(shù)量M,初始種群正態(tài)分布的期望值μ和方差σ2;最大迭代次數(shù)Imax;每次迭代的爬行次數(shù)Nc和第一次迭代的爬行步長a;望的視野長度b和每次迭代的望次數(shù)Nw;跳過程的迭代次數(shù)Nmax;繁殖過程最小和最大后代數(shù)Smin和Smax,子代的初始和最終標準差σini和σfin,非線性調(diào)和指數(shù)h等;
(2)生成初始化種群及野草猴群算法編碼;
(3)進行爬、望和跳過程,直到分別達到最大迭代次數(shù);
(4)模擬野草繁殖過程,確定后代數(shù)目Ns并生成子代種群;
(5)野草排斥競爭,在子代種群和父代種群中篩選出優(yōu)秀的個體組成下一次迭代的新種群;
(6)對新種群重復(fù)過程(3)—(5)直到迭代次數(shù)達到Nmax;
(7)選出最后一代種群中的最優(yōu)解,即為最優(yōu)的布井方案。
詳細的算法流程圖如圖1所示。
圖1 野草猴群算法流程Fig.1 Workflow of weed monkey algorithm(WMA)
在野草猴群算法的井位優(yōu)化決策過程中,爬、望和跳過程會不斷產(chǎn)生新的布井方案,涉及到多次的方案評估,需要調(diào)用多次數(shù)值模擬計算。因此利用徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)(RBFNN)模型去代替爬、望和跳過程中生成新個體評估的數(shù)值模擬計算。
徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)[17]具有訓(xùn)練簡單、計算復(fù)雜度低、學(xué)習(xí)收斂速度快和唯一最佳逼近等特點,且能以任意精度近似逼近任意非線性關(guān)系,被廣泛應(yīng)用于函數(shù)逼近、故障診斷和模式識別等方面。本模型中選取常用于油藏模擬訓(xùn)練的高斯函數(shù)作為徑向基核,其表達式為
令訓(xùn)練數(shù)據(jù)集D={[xi,f(xi)],i=1,2,…,n},高斯函數(shù)形狀因子ε,則徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)模型計算公式為
權(quán)重系數(shù)計算公式為
式 中:ω={ω1,ω2,...,ωN}T——權(quán) 重 系 數(shù) 向 量;——核矩陣;y——樣本的目標函數(shù)向量。
截取SPE10模型第一層的50×50×1共計2 500個網(wǎng)格,網(wǎng)格長×寬×高為6 m×6 m×10 m,作為實例應(yīng)用模型驗證本文提出的基于徑向基神經(jīng)網(wǎng)絡(luò)代理和野草猴群算法的井位智能決策方法。油藏滲透率場如圖2所示,區(qū)塊原始地層壓力為30 MPa,初始含油飽和度為80%,油水密度分別為0.8 g/cm3和1.0 g/cm3,設(shè)定生產(chǎn)井以固定井底壓力25 MPa,注水井以固定井底壓力35 MPa注入,共生產(chǎn)1 000 d。在油藏上布置1口注水井和4口生產(chǎn)井,在所有網(wǎng)格上進行井位組合搜索。計算凈現(xiàn)值的經(jīng)濟指標參數(shù)如表1所示。
表1 凈現(xiàn)值計算相關(guān)參數(shù)Table 1 Relative parameters of NPV calculation
圖2 區(qū)塊滲透率分布Fig.2 Permeability distribution in the block
為了建立初始訓(xùn)練和尋優(yōu)樣本,采用拉丁超立方抽樣生成200種布井方案建立樣本集。在樣本集中隨機選取150組方案進行RBFNN模型訓(xùn)練,剩下50組方案作為驗證對比方案。驗證方案的真實凈現(xiàn)值和RBFNN模型預(yù)測的凈現(xiàn)值見圖3,其均方根誤差為1.602 5×106,評價系數(shù)R2為0.989 7,誤差小且滿足工程誤差要求。且在相同的處理器(Intel i7-9700)條件下極大地節(jié)省了優(yōu)化過程的計算負擔(dān),在滿足精度的同時大幅度的加快了尋優(yōu)速度。
圖3 徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)模型對比Fig.3 Comparison of RBFNN model
選擇合理的算法相關(guān)參數(shù)對于算法計算效率和收斂速度至關(guān)重要。對于野草猴群算法,爬、望和跳步驟的復(fù)雜程度直接關(guān)系到每一次迭代的時間,繁殖進化和競爭排斥過程中的參數(shù)關(guān)系到優(yōu)秀基因的保留和利用,因此參考前人常用的參數(shù)并結(jié)合油藏布井的實際情況,野草猴群算法的參數(shù)設(shè)定如表2所示。
表2 WMA參數(shù)設(shè)置Table 2 Determined WAM parameters
基于上述參數(shù)設(shè)定,結(jié)合RBFNN代理模型進行目標函數(shù)計算,優(yōu)化迭代計算50步,各迭代步的最優(yōu)解及相對優(yōu)的9個方案共計10個方案對應(yīng)的目標函數(shù)值變化如圖4所示,當?shù)螖?shù)達到40次時,凈現(xiàn)值達到了8.76×107元。為了驗證基于代理輔助的可靠性和野草猴群算法的性能,將采用相同的參數(shù)基于數(shù)值模擬模型與基于代理模型的結(jié)果進行對比,以及與粒子群算法PSO(Particle Swarm Optimization)和差分進化算法DE(Differential Evolution)對比,其結(jié)果如圖5所示,基于代理輔助和基于數(shù)值模擬模型的迭代收斂趨勢相近,在同樣的條件下,WMA能較PSO和DE在井位決策過程中能得到更優(yōu)的解,驗證了基于代理模型輔助優(yōu)化的可靠性和WMA算法的優(yōu)越性能。
圖4 基于RBFNN代理的WMA井位優(yōu)化收斂效果對比Fig.4 Convergence of WMA well location optimization based on RBFNN surrogate
圖5 基于代理模型和野草猴群算法的井位優(yōu)化效果對比Fig.5 Comparison of well location optimization effects based on surrogate model and WMA
選取4口生產(chǎn)井在4個角落,1口注水井在油藏中心注入的標準五點井網(wǎng)作為基礎(chǔ)方案,與基于WMA算法迭代50次后的凈現(xiàn)值最大方案對比,在相同的工作制度下生產(chǎn)1 000 d后,基礎(chǔ)方案和最優(yōu)方案凈現(xiàn)值分別為7.48×107和8.76×107元,相較于基礎(chǔ)方案,最優(yōu)方案增加了17.11%的經(jīng)濟效益;其累計產(chǎn)油量分別為3.63×104、4.13×104m3,提高了13.78%的產(chǎn)油量,其中基礎(chǔ)方案的生產(chǎn)井距離注水井均為212 m,優(yōu)化后的4口生產(chǎn)井距離注水井分別為178、186、110和175 m。結(jié)合滲透率分布,注采井之間滲透率相對大的井距相對大,注采井之間滲透率相對小的井距相對小,保證了水驅(qū)前緣向前推進得更加均勻,相對基礎(chǔ)方案避免了高滲通道的形成。基礎(chǔ)方案和最優(yōu)方案的剩余油分布如圖6所示。
從圖6中可以明顯看出,在相同的生產(chǎn)井和注水井工作制度下,通過WMA算法優(yōu)化配置后的井位部署方案相較于基礎(chǔ)五點井網(wǎng)方案,能使得注入水置換的原油量顯著增加,提高了油藏開發(fā)的經(jīng)濟效益。優(yōu)化后的生產(chǎn)井主要分布在滲透率相對較高的部位,注水井相較于基礎(chǔ)五點井網(wǎng)方案布在了滲透率更低的地方,避免了水驅(qū)前緣突進且增加了波及面積,延緩了各個生產(chǎn)井見水時間,提高了水驅(qū)效率,增加了換油率。
圖6 基礎(chǔ)方案和最優(yōu)方案剩余油飽和度分布Fig.6 Remaining oil saturation distributions of basic and optimal schemes
在實例一的基礎(chǔ)上,為了進一步驗證該方法在復(fù)雜油藏上的適用性,選取東部某復(fù)雜斷塊油藏為例進行八注十六采共24口井的井位布置優(yōu)化。該區(qū)塊存在4條主要的斷層,砂體分布在主斷層附近。區(qū)塊原始地層壓力為12~13 MPa,滲透率和含油飽和度分布如圖7所示,在斷層附近區(qū)域的含油飽和度相對較高,設(shè)定生產(chǎn)井以定井底壓力6 MPa,注水井以定井底壓力15 MPa注入,共生產(chǎn)10 a。參數(shù)選取和實例一相同,且采用與實例一相同的步驟進行井位優(yōu)化設(shè)計。為了加速算法的收斂,給定井布置在含油飽和度高于20%的網(wǎng)格作為約束條件。
圖7 區(qū)塊滲透率和含油飽和度分布Fig.7 Distributions of permeability and oil saturation in the block
以在砂體邊部布置注水井,斷層附近含油飽和度高的位置布置生產(chǎn)井作為基礎(chǔ)方案,通過基于代理模型輔助的WMA算法優(yōu)化配置后的井位部署方案相較于基礎(chǔ)方案,能使得注入水置換的原油量顯著增加,提高了油藏開發(fā)的經(jīng)濟效益。基礎(chǔ)方案和最優(yōu)方案的凈現(xiàn)值分別為2.11×109和2.49×109元,增加了18.01%的經(jīng)濟效益;累計產(chǎn) 油 量 分 別 為1.61×106和1.82×106m3,提 高 了13.04%的產(chǎn)油量?;A(chǔ)方案和最優(yōu)方案的剩余油分布如圖8所示。
圖8 基礎(chǔ)方案和最優(yōu)方案剩余油飽和度分布Fig.8 Remaining oil saturation distributions of basic and optimal schemes
對于基礎(chǔ)方案,由于很多生產(chǎn)井布置于滲透率相對低的部位,在相同的生產(chǎn)壓力條件下影響了單井產(chǎn)量,優(yōu)化后的生產(chǎn)井主要分布在滲透率相對較高且油層厚度較大的部位,注水井相較于基礎(chǔ)方案布在了滲透率相對分布更均勻的地方,降低了注入水迅速沿高滲通道竄流的概率,這樣增大了生產(chǎn)井周圍地層的供液能力和水驅(qū)的波及面積,延緩了各個生產(chǎn)井見水時間,提高了水驅(qū)效率,增加了換油率,最后在相同的生產(chǎn)方案下得到了更大的經(jīng)濟效益。
(1)本文在野草猴群算法全局搜索井位決策的基礎(chǔ)上引入徑向基函數(shù)神經(jīng)網(wǎng)絡(luò)作為代理模型,提出了以凈現(xiàn)值為目標函數(shù),井位坐標為決策變量的井位優(yōu)快決策新方法,相較于基于數(shù)值模擬模型的方法極大地提高了算法收斂的速度,且與傳統(tǒng)的粒子群算法和差分進化算法相比搜索能力大大增強,在相同的條件下能得到更優(yōu)目標函數(shù)的解。
(2)在SPE10油藏模型上以一注四采5口井的布井優(yōu)化為實例對方法進行應(yīng)用,在生產(chǎn)井和注水井相同的工作制度下生產(chǎn)相同的時間得到了凈現(xiàn)值更大的井位布置方案。相較于基礎(chǔ)五點井網(wǎng)方案,提高了17.11%的經(jīng)濟效益和13.78%的產(chǎn)油量。
(3)在某斷塊油藏上以八注十六采共計24口井的井位優(yōu)化對方法進行應(yīng)用,在相同的工作制度下,優(yōu)化后的布井方案相較于基礎(chǔ)方案提高了18.01%的經(jīng)濟效益和13.04%的產(chǎn)油量。