• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New α-Cyclopiazonic Acid Alkaloid Identified from the Weizhou Island Coral-Derived Fungus Aspergillus flavus GXIMD 02503

    2022-10-24 07:45:54WANGJiaminLIZhichaoZHANGYantingCHENChunmeiCHENWeihaoGAOChenghaiLIUYonghongTANYanhuiandLUOXiaowei
    Journal of Ocean University of China 2022年5期

    WANG Jiamin, LI Zhichao, ZHANG Yanting, CHEN Chunmei, CHEN Weihao,GAO Chenghai, LIU Yonghong, ,TAN Yanhui, and LUO Xiaowei, *

    A New-Cyclopiazonic Acid Alkaloid Identified from the Weizhou Island Coral-Derived FungusGXIMD 02503

    WANG Jiamin1), #, LI Zhichao3), #, ZHANG Yanting2), CHEN Chunmei1), CHEN Weihao1),GAO Chenghai2), LIU Yonghong1), 2),TAN Yanhui3), and LUO Xiaowei2), *

    1),,,510301,2),,530200,3),,,541004,

    A newoxygenated tricyclic cyclopiazonic acid (CPA) alkaloid, asperorydine Q (1), along with seven known compounds, namely, asperorydines O (2) and J (3), speradine H (4), cyclopiamides A (5) and H (6), saadamysin (7), and pyrazinemethanol (8), were isolated from the coral-associatedGXIMD 02503. The structures were elucidated by physicochemical pro- perties and comprehensive spectroscopic data analysis. Compounds 1?5 and 7?8 exhibited potent inhibition of lipopolysaccharide (LPS)-induced nuclear factor-B (NF-B) with the IC50values ranging from 6.5 to 21.8μmolL?1. In addition, the most potent one, pyrazinemethanol (8), dose-dependently suppressed receptor activator of NF-B ligand (RANKL)-induced osteoclast differentiation without obvious cytotoxicity in bone marrow macrophages cells (BMMCs), suggesting it is a promising lead compound for the treat- ment of osteolytic diseases.

    coral-derived fungi;; cyclopiazonic acid; NF-B; osteoclastogenesis

    1 Introduction

    The coral-derived microorganisms have proven their va- lue as a source of bioactive compounds (Sang., 2019).The funguswith ubiquitous marine, ter- restrial, or symbiotic sources,known as mutagenic myco- toxins production (Yang., 2019),is a rich origin of diversified secondary metabolites with significant bioac- tivities (Wu., 2018; Liu., 2019b), including the common-cyclopiazonic acid (CPA) alkaloids (Vaidet., 2017). Since the first CPA was reported as a mycotoxinfrom the fungusin 1968 (Chen.,2021), approximately 50 CPA-type alkaloids have been hi- therto found in the predominant fungal genera ofand(Ostry., 2018).CPA alkaloids are characterized with three main structural units: an in- dole, a dimethylallyl, and two acetic acids, and have been reported with attractive biological activities, including cy- totoxicity (Hymery., 2014), insecticidal activity (Ma., 2015), neurotrophic activity (Liu., 2018), and Ca2+-ATPase inhibitory activity (Walsh., 2013), which have attracted great attention among synthetic and biosyn-thetic chemists (Liu., 2019a; Zhurakovskyi., 2019; Ahmad., 2020).

    In our ongoing search for novel bioactive compounds from marine-derived fungi (Luo., 2019, 2020, 2021; Tan., 2020), the fungusGXIMD 02503 with interesting HPLC-DAD profiles of its EtOAc extract was isolated from a coral, which was collected from the Weizhou Island coral reef in Guangxi Zhuang Au- tonomous Region, China. Further chemical investigation of its extracts led to the isolation and identification of a new oxygenated tricyclic CPA alkaloid, asperorydine Q (1), along with seven known compounds (2?8). Herein, their isola- tion, structure elucidation, and bioactivity are described in detail.

    2 Materials and Methods

    2.1 General Experimental Procedure

    Optical rotations were acquired by an Anton Paar MPC 500 polarimeter (Anton Paar, Graz, Austria). ECD spectra were measured on a Chirascan Circular Dichroism spec- trometer (Applied Photophysics Ltd., Leatherhead, UK). UV and IR spectra were recorded on a Shimadzu UV-2600 PC spectrometer and an IR Affinity-1 spectrometer(Shimadzu Corporation, Nakagyo-ku, Kyoto, Japan, re- spectively). The NMR spectra were measured on a Bruker Avance spectrometer (Bruker BioSpin, F?llanden, Switzer-land) operating at 700MHz for1H NMR, 175MHz for13C NMR, using TMS as an internal standard. HR-ESI-MSspectra were acquired by a Bruker miXis TOF-QII massspectrometer (Bruker BioSpin, F?allanden, Switzerland). Semi-preparative HPLC was performed on a Hitachi Pri- maide (Hitachi, Tokyo, Japan) using an ODS column (YMC- pack ODS-A, YMC Co. Ltd., Japan, 10mm×250mm, 5μm, 12nm). Thin layer chromatography (TLC) and column chromatography (CC) were performed on plates precoat- ed with silica gel GF254(10?40μm) and over silica gel(200?300 mesh) (Qingdao Marine Chemical Factory, Chi- na), respectively. All solvents employed were of analyti- cal grade (Tianjin Damao Chemical and Industry Factory, China). The artificial sea salt was a commercial product(Guangzhou Haili Aquarium Technology Company, China).

    2.2 Fungal Collection and Fermentation

    The strain GXIMD 02503 was isolated from a coralcollected from the Weizhou Island coral reef in Guangxi Zhuang Autonomous Region, China, in March 2019. It was identified asby referring to sequence analysis of the internal spacer (ITS) regions ofthe rDNA (GenBank accession MT510157 and MT510158), and a voucher specimen has been deposited in our labora- tory. The strainGXIMD 02503 was cultured on MB-agar plates (malt extract 15g, artificial sea salt 15g, and agar 20g in 1.0L tap distilled H2O) at 25℃ for 7 days. Massive fermentation ofGXIMD 02503 was car- ried out in the liquid medium (mannitol 2.0%, maltose 2.0%, glucose 1.0%, corn steep liquor 0.1%, MSG 1.0%, KH2PO40.05%, MgSO4·7H2O 0.03%, yeast extract 0.3% and sea salt 1.5%, pH 7.4) employing with 300mL×100 Erlenme- yer flasks (1L) at room temperature for 40 days. Then all the cultures were overlaid and extracted with EtOAc to yield a brown extract (50g).

    2.3 Extraction and Isolation

    The crude extract was separated into ten fractions (Frs. 1–10) by silica gel vacuum liquid chromatography (VLC) using a gradient solvent system with CH2Cl2/MeOH (, 1:0–1:1) based on TLC (GF254) analysis. Fr. 4 was further divided into nine subfractions (Frs. 4-1–4-9) by ODS silica gel chromatography eluting with MeOH/H2O (10–100%). After repeating the above operation, Fr. 4-4 was further divided into four subfractions (Frs. 4-4-1–4-4-4) by ODS silica gel chromatography eluting with MeOH/H2O (10%–100%). Fr. 4-4-1 was then purified by semiprepa- rative HPLC (60% MeOH/H2O, 2mLmin?1, 230nm) toafford 1 (2.4mg,R18min), 2 (2.8mg,R22min), 3 (2.8mg,R29min). Fr. 4-6 was purified by semipreparative HPLC (60% MeOH/H2O, 2mLmin?1, 230nm) to afford 4 (2.7mg,R15min). Additionally, eight subfractions (Frs. 3-1–3-8) were obtained from Fr. 3ODS silica gel chroma- tography eluting with MeOH/H2O (10%–100%). Fr. 3-1 was further divided into five subfractions (Frs. 3-1-1–3-1-5)ODS silica gel chromatography eluting with MeOH/H2O (10%–100%). Fr. 3-1-2 was then purified by semipreparative HPLC (50% MeOH/H2O, 2mLmin?1, 230nm) to afford 8 (16.5mg,R23min). Fr. 5 was further di- vided into twelve subfractions (Frs. 5-1–5-12) by ODS silica gel chromatography eluting with MeOH/H2O (10%–100%). Compound 7 (11.6mg,R11min) was isolated from Fr. 5-3 by semipreparative HPLC (60% MeOH/H2O, 2mLmin?1, 230nm). Fr. 6 was further divided into thir- teen subfractions (Frs. 6-1–6-13) by ODS silica gel chro- matography eluting with MeOH/H2O (10%–100%). Fr. 6-6 was further divided into six subfractions (Frs. 6-6-1–6-6-6) by ODS silica gel chromatography eluting with MeOH/ H2O (10%–100%). And Fr. 6-6-4 was subsequently sepa- rated by semipreparative HPLC (60% MeOH/H2O, 2mLmin?1, 230nm) to afford 5 (7.7mg,R15min) and 6 (1.0mg,R12min).

    2.4 ECD Calculation

    The theoretical ECD curves of 2 were calculated by the Gaussian 16 software. Conformational searches were car- ried out by means of the Spartan’14 software using a Mole- cular Merck force field (MMFF). Low-energy conformers with a Boltzmann distribution over 1% were chosen for ECD calculations by TD-DFT method at the B3LYP/6- 311+G (d, p)//B3LYP/6-31+G (d) level in MeOHby adopt- ing 30 excited states. The ECD spectra were generated by the SpecDis 1.71 under a half band width of 0.3eV to fa- cilitate comparison to the experimental data.

    2.5 Spectral Data

    Asperorydine O (2): Yellow powder; []25 D?20 (0.10, MeOH); UV (MeOH) λmax(log) 218 (3.52), 278 (3.02), 412 (2.93)nm; ECD (5.6í10?4molL?1, MeOH) λmax(Δ) 215 (?5.16), 246 (+5.84), 282 (+2.78), 335 (+0.94), 412 (?2.43)nm; IR (film)max3318, 2922, 1701, 1612, 1321, 1204cm?1; HR-ESI-MS/[M+H]+peak at 359.1606 (calculated for C19H23N2O5, 359.1607).1H NMR (700MHz, CD3OD):H7.37 (1H, dd,=8.6, 7.3Hz, H-13), 6.62 (1H, d,=8.6Hz, H-14), 6.49 (1H, d,=8.0Hz, H-12), 3.88 (3H, overlapped, H3-16), 3.33 (1H, m, H-10b), 2.96 (1H, dd,=17.9, 3.5Hz, H-10a), 2.92 (3H, s, N-CH3), 2.56 (1H, dd,=6.7, 3.5Hz, H-9), 2.25 (3H, s, H3-18), 1.68 (3H,s, H3-19), 1.21 (3H, s, H3-20);13C NMR (175MHz, CD3OD)C204.2 (C-17), 193.5 (C-4), 174.9 (C-6), 169.6 (C-15), 154.8 (C-2), 145.0 (C-11), 138.0 (C-13), 115.2 (C-12), 113.9 (C-3), 110.2 (C-14), 77.9 (C-5), 64.4 (C-8), 54.3 (C-16), 49.8 (C-9), 30.1 (C-18), 29.4 (1N-CH3), 25.7 (C-10), 28.3 (C-19), 22.3 (C-20).

    2.6 Bioassay

    The isolated compounds (1?8) were evaluated for their inhibitory activities of lipopolysaccharide (LPS)-induced NF-B activation in RAW264.7 cells by luciferase repor- ter gene assay as described previously (Tan., 2020). In brief, the RAW264.7 cells stably transfected with a lu- ciferase reporter gene were plated in 96-well plates, and then pretreated with these compounds (10μmolL?1) and BAY11-7082 (NF-B inhibitor as positive control, 5μmolL?1, Sigma-Aldrich) for 30min, followed by 5μgmL?1LPSstimulation for 8h. Cells were harvested, and luciferase ac- tivities of the triplicate tests were measured by the luci-ferase assay system (Promega, Madison, WI, USA). The dose-dependent effects of compounds (50, 20, 10, 5, and 1μmolL?1) on LPS induced NF-B luciferase activity were also detected by the same assay.

    In order to study the effect of the potent NF-B inhibi- tor (8) on osteoclastogenesis, pyrazinemethanol (8) (1–4 μmolL?1) was added in bone marrow macrophages cells(BMMCs, extracted from the femurs of C57BL/6 mice) with macrophage-stimulating factor (M-CSF) (50ngmL?1) and RANKL (100ngmL?1) stimulation for 3 days. Then the cells were fixed and stained to detect tartrate-resistant aci- dic phosphatase activity (TRAP) and the images were pho-tographed by using an inverted microscope (Nikon, Japan). CCK-8 kit was used to evaluate the cytotoxic effects of 8on BMMCs as described previously(Tan., 2020). BMMCs (1×105cellsmL?1) with M-CSF (50ngmL?1) were seeded with or without 8 (0.1, 1, 5, 10μmolL?1) for 72h. Cell viability was carried out as a percentage of the con- trol. Data were expressed as the mean±SD and analyzedusing GraphPad Prism 7.0 software (San Diego, CA, USA). Statistical differences among groups were performed using one-way analysis of variance (ANOVA) with Bonferronitest. A-value of <0.05 was considered statisti- cally significant.

    3 Results and Discussion

    3.1 Structural Determination

    The fermentation broth ofGXIMD 02503 was extracted with EtOAc for three times. The whole extract was then partitioned and purified by repeated column chro- matography. And the HPLC-DAD-guided purification fi- nally led to the discovery of eight compounds (Fig.1), in- cluding a new CPA alkaloid, asperorydine Q (1), along with seven known compounds (2?8), which were identi- fied as asperorydines O (2) (Xiang., 2021) and J (3) (Liu., 2018), speradine H (4) (Hu., 2014), cy- clopiamides A (5) (Holzapfel., 1990) and H (6) (Xu., 2015), saadamysin (7) (Lin., 2008), and pyra- zinemethanol (8) (Ran., 2020)by comparison with literature data.

    Fig.1 Structures of compounds 1–8.

    Asperorydine Q (1)was isolated as yellow powder with the molecular formula of C19H22N2O6as determined by HRESIMS peak at/375.1553 [M+H]+. The IR spec- trum indicated the presence of hydroxy (3385cm?1) and carbonyl (1684cm?1) groups. The1H NMR data (Table 1) aided with HSQC spectrum of 1 revealed CPA character- istics with three aromatic protons, assigned to H-12 (H6.50, d,=8.0Hz), H-13 (H7.38, m), H-14 (H6.62, d,=8.6Hz); one methine, H-9 (H2.59, dd,=6.7, 3.5Hz); two methylenes, H2-10 (H2.97, dd,=17.9, 3.5Hz; 3.33, d,=6.8Hz) and H2-16 (H3.90, overlapped); and four singlet methyls, attributed to 1N-CH3(H2.92), H3-19 (H1.68), H3-20 (H1.21); and one methoxy group, H3-18 (H3.69). Analysis of13C NMR data of 1 classified the nine- teen carbons into four methyls (C52.7, 29.4, 28.2, 22.1), two methylenes (C45.4, 25.7), four methines (C138.1, 115.6, 110.3, 49.8), as well as nine nonprotonated carbons (C193.4, 175.0, 169.5, 168.5, 154.8, 145.0, 114.0, 77.8, 64.4). The above NMR data highly resembled those of the co-isolated asperorydine J (3).The only obvious difference was the occurrence of a hydroxyl group located at C-5 (C77.8) in 1 instead of a hydrogen in 3 (C54.0). This deduc- tion was verified by the HMBC correlations (Fig.2a) from H-9 and H2-10 to C-5, and the strongly deshielded chemi- cal shift of C-5. The NOESY correlation (Fig.2a) of H-9and H3-19 allowed the same orientation of H-9 and Me-19.

    The absolute configuration of 1 was determined by com- parison between the calculated and experimental ECD cur- ves, in combination with biosynthetic considerations. Com- pound 1 shared the nearly identical experimental ECD cur- ve (positive Cotton effects at 245 and 280nm, and nega- tive ones at 215 and 410nm) with that of the very recent- ly reported co-isolated asperorydine O (2) (Xiang., 2021), revealing the (5, 9)-configuration of 1. This de- duction was also further confirmed by the well-matchedexperimental and/or calculated ECD curves of 1 and 2 (Fig.2b).

    Table 1 1H (700MHz) and 13C (175 MHz) NMR data of 1 (CD3OD)

    Fig.2 Structural assignments of asperorydine Q (1).Key HMBC, 1H-1H COSY, and NOESY correlations of 1 (a). Experimental and/or calculated ECD spectra of 1–2 (b).

    3.2 Effects on Osteoclast Differentiation of the Compounds

    Osteolytic disease is a pathologic condition character- ized by the imbalance of two coordinating and opposite as- pects, bone formation by osteoblastogenesis and bone re- sorption by osteoclastogenesis (Zhou., 2020). Target- ing osteoclast differentiation is a therapeutic strategy for osteolytic diseases (Tan., 2020). The differentiation and formation of osteoclasts are regulated by several sig- naling pathways, while the critical pathway is induced by RANKL secreted mainly by osteocytes (Hong., 2020). During our course of screening osteoclast differentiation inhibitors from marine natural products, all the isolated com-pounds (1?8) were primarily evaluated for their inhibitory activities of lipopolysaccharide (LPS)-induced NF-B acti-vation in RAW264.7 cells (Fig.3a). Interestingly,compounds 3 and 8 significantly and dose-dependently suppressed NF-B activation with the IC50values of (8.6±1.3) and (6.5±1.4)μmolL?1(Fig.3b), respectively. In addition, compounds1, 2, 4, 5, and 7 exhibited moderate inhibitory activities of NF-B activation, with IC50values of (14.1±1.5), (21.8±1.9), (17.4±1.7), (11.3±2.0), and (10.7±1.3)μmolL?1, re-spectively. Meanwhile, the positive control, BAY11-7082, showed inhibitory activities of NF-B activation with an IC50value of (1.5±1.4)μmolL?1.However, compound 6 was found to be inactive (IC50>50μmolL?1).

    Since NF-B plays an important role in RANKL-in- duced osteoclast differentiation (Hong., 2020; Tan., 2020; Zhou., 2020), the most potent compound, pyrazinemethanol (8), was further evaluated for its effects on RANKL-induced osteoclastogenesis, and the results showed that 8 suppressed RANKL induced osteoclast dif- ferentiation in BMMCs in a dose-dependent manner with- out an obvious cytotoxicity (Figs.3c?e). Taken together, compound 8 can be a promising osteoclast differentiation inhibitor for the treatment of osteoclast-related diseases.

    Fig.3 The inhibitory effects of compounds 1–8 on LPS-induced NF-κB activation in RAW264.7 cells and pyrazineme- thanol (8) suppresses RANKL-induced osteoclast differentiation.NF-κB inhibitions of 1–8 at 10μmolL?1 (a) and gradient concentrations (b). C, concentration of compounds (μmolL?1). Representative images of osteoclasts from BMMCs treated with 8 (1–4μmolL?1) for 3 days, TRAP-positive multinucleated cells were regarded as osteoclasts (c) and quantified (d). Cell viability of 8 at different concentrations on BMMCs for 72h were measured by cell counting kit 8 assay (e). All ex- periments were performed at least three times. The data are presented as the mean±SD of representative experiments. ### P<0.001 vs. control group; * P<0.05, ** P<0.01, *** P<0.001 vs. LPS or RANKL group. Scale bars, 500μm.

    4 Conclusions

    Chemical investigation of the cultures of the Weizhou Island coral-derived fungusGXIMD 02503 led to the identification of a new oxygenated tricyclic CPA al- kaloid, asperorydine Q (1), along with seven known com- pounds (2?8). Compounds 1?5 and 7?8 exhibited potent inhibition of LPS-induced NF-B activation in RAW264.7 cells with the IC50values ranging from 6.5 to 21.8μmolL?1. Notably, the most potent one, pyrazinemethanol (8), dose- dependently suppressed RANKL-induced osteoclast diffe- rentiation without obvious cytotoxicity in BMMCs, sug- gesting a promising lead compound for the treatment ofosteolytic diseases. Our findings would enrich chemical context of the fungusand expand the structuraland biological diversity of CPA alkaloids and/or pyrazinone derivatives.

    Acknowledgements

    This work was supported by the Natural Science Foun- dation of Guangxi (No. 2020GXNSFGA297002), the Spe- cific Research Project of Guangxi for Research Bases and Talents (No. AD20297003), the Special Fund for Bagui Scholars of Guangxi (Y. Liu), the National Natural Sci- ence Foundation of China (Nos. U20A20101, 22007019), the Key State Laboratory Talent Project of Guangxi Nor- mal University (No. CMEMR 2019-A05), and the Open Project of CAS Key Laboratory of Tropical Marine Bio- resources and Ecology (No. LMB20211005).

    Ahmad, M., Hameed, S., Zhurakovskyi, O., and Inayat, H., 2020.-cyclopiazonic acid from synthesis perspective., 5 (45): 14408-14415.

    Chen, W. H., Li, K. L., Lin, X. P., Liao, S. R., Yang, B., Zhou, X. F.,., 2021. Antioxidant CPA-type indole alkaloids pro- duced from the deep-sea derived fungussp. SCSIO 41024., 35 (23): 5266-5270, DOI: 10.1080/14786419.2020.1749614.

    Holzapfel, C. W., Bredenkamp, M. W., Snyman, R. W., Boeyens, J. C. A., and Allen, C. C., 1990. Cyclopiamide, an isoindolo [4,6-cd] indole from., 29 (2): 639-642.

    Hong, G. J., Zhou, L., Han, X. R., Sun, P., Chen, Z. Q., He, W.,., 2020. Asiatic acid inhibits OVX-induced osteoporosis and osteoclastogenesisregulating RANKL-mediated NF-B and NFATC1 signaling pathways., 11: 331.

    Hu, X., Xia, Q. W., Zhao, Y. Y., Zheng, Q. H., Liu, Q. Y., Chen, L.,., 2014. Speradines F-H, three new oxindole alkaloids from the marine-derived fungus., 62 (9): 942-946.

    Hymery, N., Masson, F., Barbier, G., and Coton, E., 2014. Cy- totoxicity and immunotoxicity of cyclopiazonic acid on human cells., 28 (5): 940-947.

    Lin, A. Q., Lu, X. M., Fang, Y. C., Zhu, T. J., Gu, Q. Q., and Zhu, W. M., 2008. Two new 5-hydroxy-2-pyrone derivatives iso- lated from a marine-derived fungus., 61 (4): 245-249.

    Liu, H. C., Chen, L. J., Yuan, K., and Jia, Y. X., 2019a. A ten- step total synthesis of speradine C., 58 (19): 6362-6365.

    Liu, L., Bao, L., Wang, L., Ma, K., Han, J. J., Yang, Y. L.,., 2018. Asperorydines A-M: Prenylated tryptophan-derived alkaloids with neurotrophic effects from., 83 (2): 812-822.

    Liu, Z., Zhao, J. Y., Sun, S. F., Li, Y., Qu, J., Liu, H. T.,., 2019b. Sesquiterpenes from an endophytic., 82 (5): 1063-1071.

    Luo, X. W., Cai, G. D., Guo, Y. F., Gao, C. H., Huang, W. F., Zhang, Z. H.,., 2021. Exploring marine-derived ascochlorins as novel hDHODH inhibitors for treatment of triple-negative breast cancer., 64 (18): 13918-13932.

    Luo, X. W., Chen, C. M., Tao, H. M., Lin, X. P., Yang, B., Zhou, X. F.,, 2019. Structurally diverse diketopiperazine alka- loids from the marine-derived fungusSCSIO 41016., 6 (6): 736-740.

    Luo, X. W., Gao, C. H., Lu, H. M., Wang, J. M., Su, Z. Q., Tao, H. M.,., 2020. HPLC-DAD-guided isolation of diversi- fied chaetoglobosins from the coral-associated fungusC2F17., 25 (5): 1237.

    Ma, X. H., Peng, J. X., Wu, G. W., Zhu, T. J., Li, G. Q., Gu, Q. Q.,., 2015. Speradines B-D, oxygenated cyclopiazonic acid alkaloids from the sponge-derived fungusMXH-X104., 71: 3522-3527.

    Ostry, V., Toman, J., Grosse, Y., and Malir, F., 2018. Cyclopiazo- nic acid: 50th anniversary of its discovery., 11 (1): 135-148.

    Ran, Y. Q., Lan, W. J., Qiu, Y., Guo, Q., Feng, G. K., Deng, R.,, 2020. Monarubins A–C from the marine shellfish-as- sociated fungusBB5., 18 (2): 100.

    Sang, V. T., Dat, T. T. H., Vinh, L. B., Cuong, L. C. V., Oanh, P. T. T., Ha, H.,., 2019. Coral and coral-associated microor- ganisms: A prolific source of potential bioactive natural pro- ducts,, 17: 468.

    Tan, Y. H., Deng, W. D., Zhang, Y. Y., Ke, M. H., Zou, B. H., Luo, X. W.,., 2020. A marine fungus-derived nitroben- zoyl sesquiterpenoid suppresses receptor activator of NF-B ligand-induced osteoclastogenesis and inflammatory bone de- struction., 177 (18): 4242- 4260.

    Vaidet, U., Geromy, M., Natalia, A. M., Dashnor, N., Sarah, D. S., and José, D. D. M., 2017. Unravelling the diversity of the cyclopiazonic acid family of mycotoxins inby UHPLC Triple-TOF HRMS., 9 (1): 35.

    Walsh, C. T., Haynes, S. W., Ames, B. D., Gao, X., and Tang, Y., 2013. Short pathways to complexity generation: Fungal pep- tidyl alkaloid multicyclic scaffolds from anthranilate building blocks., 8 (7): 1366-1382.

    Wu, Y. N., Chen, Y., Huang, X. S., Pan, Y. H., Liu, Z. M., Yan, T.,., 2018.-glucosidase inhibitors: Diphenyl ethers and phe- nolic bisabolane sesquiterpenoids from the mangrove endo- phytic fungusQQSG-3., 16 (9): 307.

    Xiang, Y., Zeng, Q., Mai, Z. M., Chen, Y. C., Shi, X. F., Chen, X. Y.,., 2021. Asperorydines N-P, three new cyclopiazonic acid alkaloids from the marine-derived fungusSCSIO F025., 150: 104839.

    Xu, X. Y., Zhang, X. Y., Nong, X. H., Wei, X. Y., and Qi, S. H. 2015. Oxindole alkaoids from the fungusDFFSCS026 isolated from deep-sea derived sediments., 71 (4): 610-615.

    Yang, K. L., Liu, Y. H., Wang, S., Wu, L. H., Xie, R., Lan, H. H.,., 2019. Cyclase-associated protein cap with multiple do- mains contributes to mycotoxin biosynthesis and fungal viru- lence in., 67 (15): 4200-4213.

    Zhou, Y., Wang, C. W., Si, J. Y., Wang, B. X., Zhang, D. H., Ding, D.,, 2020. Melatonin up-regulates bone marrow mesen- chymal stem cells osteogenic action but suppresses their me- diated osteoclastogenesisMT2-inactivated NF-B pathway.,177(9): 2106-2122.

    Zhurakovskyi, O., Shaw, M. A., and Aggarwal, V. K., 2019. Total synthesis of (-)--cyclopiazonic acid: A study in perseverance., 14: 1-33.

    February 20, 2021;

    April 6, 2021;

    September 21, 2021

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2022

    #The two authors contributed equally to this work.

    . E-mail: luoxiaowei1991@126.com

    (Edited by Qiu Yantao)

    黄色配什么色好看| 久久99热这里只频精品6学生| 亚洲精品国产av成人精品| 亚洲欧美日韩另类电影网站| 久久久a久久爽久久v久久| 捣出白浆h1v1| 国产一区二区三区av在线| 中文精品一卡2卡3卡4更新| 久久97久久精品| 亚洲国产色片| 国产亚洲精品第一综合不卡 | 99热国产这里只有精品6| 精品一区在线观看国产| 51国产日韩欧美| 国产高清三级在线| 色网站视频免费| 99热国产这里只有精品6| 久久影院123| 曰老女人黄片| 国产精品久久久av美女十八| 成年美女黄网站色视频大全免费| 精品久久久久久电影网| 亚洲婷婷狠狠爱综合网| 日日啪夜夜爽| 国产av精品麻豆| 日本午夜av视频| 91久久精品国产一区二区三区| 久久国内精品自在自线图片| 一级爰片在线观看| 满18在线观看网站| 97在线视频观看| 日本欧美国产在线视频| 久久精品熟女亚洲av麻豆精品| 亚洲经典国产精华液单| 国产国语露脸激情在线看| 黑人欧美特级aaaaaa片| 韩国高清视频一区二区三区| 高清视频免费观看一区二区| 中文欧美无线码| 夫妻午夜视频| 最近2019中文字幕mv第一页| 涩涩av久久男人的天堂| 99精国产麻豆久久婷婷| 久久这里只有精品19| 午夜免费鲁丝| 午夜精品国产一区二区电影| 精品人妻熟女毛片av久久网站| 男女边摸边吃奶| 国产精品人妻久久久影院| 国产精品久久久久久av不卡| 中文字幕亚洲精品专区| 久久女婷五月综合色啪小说| 美女大奶头黄色视频| 亚洲av福利一区| 最后的刺客免费高清国语| 久久久久久人人人人人| videosex国产| 免费播放大片免费观看视频在线观看| 少妇猛男粗大的猛烈进出视频| 欧美亚洲日本最大视频资源| 国产一区二区激情短视频 | 中文字幕最新亚洲高清| 亚洲精品第二区| 80岁老熟妇乱子伦牲交| 日产精品乱码卡一卡2卡三| 国产精品欧美亚洲77777| 中文乱码字字幕精品一区二区三区| 日本91视频免费播放| 亚洲经典国产精华液单| 黑人高潮一二区| av电影中文网址| 91成人精品电影| 亚洲人成77777在线视频| 久久这里只有精品19| av卡一久久| 如何舔出高潮| 亚洲成色77777| 免费播放大片免费观看视频在线观看| 日韩免费高清中文字幕av| 18禁观看日本| 国产男女超爽视频在线观看| 日韩中文字幕视频在线看片| 熟女人妻精品中文字幕| 久久av网站| 久久99精品国语久久久| 久久精品久久精品一区二区三区| 日韩制服丝袜自拍偷拍| 精品熟女少妇av免费看| 免费av中文字幕在线| 国产 精品1| 亚洲丝袜综合中文字幕| 免费高清在线观看视频在线观看| 天美传媒精品一区二区| 国产乱人偷精品视频| 亚洲av中文av极速乱| 日韩制服骚丝袜av| 色婷婷久久久亚洲欧美| av视频免费观看在线观看| 久久久亚洲精品成人影院| 丰满乱子伦码专区| 成人二区视频| 波野结衣二区三区在线| 国产一区亚洲一区在线观看| 九色亚洲精品在线播放| 伦精品一区二区三区| 国产熟女午夜一区二区三区| 久久午夜福利片| 亚洲国产精品国产精品| 在线看a的网站| 午夜激情久久久久久久| 曰老女人黄片| 高清视频免费观看一区二区| 精品一区二区三区四区五区乱码 | 熟女av电影| 超色免费av| 国产高清国产精品国产三级| 男人舔女人的私密视频| 成年美女黄网站色视频大全免费| 国产视频首页在线观看| 男人舔女人的私密视频| 久久99一区二区三区| 久久人人爽人人爽人人片va| 青春草国产在线视频| a级片在线免费高清观看视频| 国产黄频视频在线观看| av卡一久久| 91成人精品电影| 久久99一区二区三区| 欧美国产精品一级二级三级| 黄色 视频免费看| 看免费成人av毛片| 各种免费的搞黄视频| 热99国产精品久久久久久7| 男人添女人高潮全过程视频| 99视频精品全部免费 在线| 七月丁香在线播放| 少妇熟女欧美另类| 成人亚洲精品一区在线观看| 大片电影免费在线观看免费| 妹子高潮喷水视频| 最近中文字幕2019免费版| 久久这里只有精品19| 99久久精品国产国产毛片| 又黄又爽又刺激的免费视频.| 天天操日日干夜夜撸| 欧美另类一区| 天天躁夜夜躁狠狠躁躁| 免费观看在线日韩| 久久热在线av| videos熟女内射| 日本黄大片高清| 免费av中文字幕在线| 妹子高潮喷水视频| 免费女性裸体啪啪无遮挡网站| 国产精品三级大全| 亚洲国产成人一精品久久久| 高清黄色对白视频在线免费看| 欧美少妇被猛烈插入视频| 天堂俺去俺来也www色官网| 久久鲁丝午夜福利片| 日本wwww免费看| 久久国内精品自在自线图片| 人人妻人人爽人人添夜夜欢视频| 七月丁香在线播放| 天堂俺去俺来也www色官网| 国产一区二区激情短视频 | 高清欧美精品videossex| 国产av一区二区精品久久| 少妇被粗大猛烈的视频| a级毛片黄视频| 人妻一区二区av| 视频区图区小说| 春色校园在线视频观看| 精品一品国产午夜福利视频| 又大又黄又爽视频免费| 国产黄色视频一区二区在线观看| 90打野战视频偷拍视频| 中文字幕最新亚洲高清| 少妇精品久久久久久久| 日本av免费视频播放| 午夜福利影视在线免费观看| 在线精品无人区一区二区三| 自拍欧美九色日韩亚洲蝌蚪91| 黄网站色视频无遮挡免费观看| 久久久国产精品麻豆| 亚洲综合色网址| 黄网站色视频无遮挡免费观看| 亚洲成色77777| 精品久久国产蜜桃| av线在线观看网站| 日韩av在线免费看完整版不卡| 亚洲色图综合在线观看| 80岁老熟妇乱子伦牲交| 成人国语在线视频| 国产亚洲一区二区精品| 插逼视频在线观看| 黄片播放在线免费| 成年动漫av网址| 欧美日韩精品成人综合77777| 性色avwww在线观看| 亚洲人成网站在线观看播放| 少妇的丰满在线观看| 久久人人爽人人片av| 人人妻人人澡人人爽人人夜夜| 国产亚洲欧美精品永久| av线在线观看网站| 1024视频免费在线观看| 高清欧美精品videossex| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 十分钟在线观看高清视频www| 侵犯人妻中文字幕一二三四区| 欧美激情极品国产一区二区三区 | 国产成人一区二区在线| 啦啦啦在线观看免费高清www| 欧美3d第一页| 免费观看在线日韩| 日日摸夜夜添夜夜爱| 夜夜爽夜夜爽视频| 极品人妻少妇av视频| 狂野欧美激情性bbbbbb| 中文字幕人妻丝袜制服| 一二三四中文在线观看免费高清| kizo精华| 自拍欧美九色日韩亚洲蝌蚪91| 欧美日韩亚洲高清精品| 亚洲精品日韩在线中文字幕| 久久精品国产综合久久久 | 丝袜美足系列| 中国美白少妇内射xxxbb| 桃花免费在线播放| 国产爽快片一区二区三区| 高清黄色对白视频在线免费看| 青青草视频在线视频观看| 国产精品久久久av美女十八| 国产欧美日韩综合在线一区二区| 久久精品久久久久久久性| 亚洲第一区二区三区不卡| 久久青草综合色| 午夜福利欧美成人| 午夜老司机福利片| 亚洲精品在线美女| 亚洲五月天丁香| 午夜日韩欧美国产| 99在线人妻在线中文字幕 | 99re6热这里在线精品视频| 国产成人一区二区三区免费视频网站| 欧美日韩精品网址| 午夜亚洲福利在线播放| 亚洲av成人一区二区三| 亚洲熟妇熟女久久| 久久影院123| 国产在线观看jvid| 夜夜夜夜夜久久久久| 婷婷成人精品国产| 国产精品 国内视频| 在线观看舔阴道视频| 欧美激情 高清一区二区三区| 大码成人一级视频| 十八禁高潮呻吟视频| 亚洲五月婷婷丁香| 黑人巨大精品欧美一区二区mp4| 欧美激情高清一区二区三区| 国产乱人伦免费视频| 午夜福利在线免费观看网站| 免费在线观看日本一区| 久久精品国产清高在天天线| 校园春色视频在线观看| 亚洲国产毛片av蜜桃av| 99精品久久久久人妻精品| 777久久人妻少妇嫩草av网站| 成在线人永久免费视频| 一区二区三区国产精品乱码| 99re6热这里在线精品视频| 免费久久久久久久精品成人欧美视频| 国产精品久久久av美女十八| 亚洲一区高清亚洲精品| 99久久人妻综合| 亚洲色图 男人天堂 中文字幕| 欧美日韩精品网址| cao死你这个sao货| 超碰成人久久| 亚洲av日韩精品久久久久久密| 国产片内射在线| 日韩成人在线观看一区二区三区| 亚洲成a人片在线一区二区| 国产一区二区三区视频了| 啪啪无遮挡十八禁网站| 女性被躁到高潮视频| 午夜福利在线免费观看网站| 一区二区三区国产精品乱码| 国产精品.久久久| 久久影院123| 日韩精品免费视频一区二区三区| 国产欧美日韩综合在线一区二区| 国产高清视频在线播放一区| 国产色视频综合| 下体分泌物呈黄色| 精品福利永久在线观看| 亚洲国产精品合色在线| 亚洲七黄色美女视频| 精品国产国语对白av| 人妻一区二区av| av一本久久久久| 亚洲欧美色中文字幕在线| 久久久精品国产亚洲av高清涩受| 精品国产超薄肉色丝袜足j| 日韩人妻精品一区2区三区| 老司机亚洲免费影院| 露出奶头的视频| 亚洲色图综合在线观看| 国产欧美亚洲国产| 黄色毛片三级朝国网站| 久久久水蜜桃国产精品网| 9色porny在线观看| 午夜福利,免费看| 在线播放国产精品三级| 国产高清激情床上av| 日本wwww免费看| 国产欧美日韩一区二区三区在线| 制服诱惑二区| 悠悠久久av| 国产成人影院久久av| 国产精品99久久99久久久不卡| 亚洲七黄色美女视频| 亚洲一区二区三区不卡视频| 久久国产精品大桥未久av| 免费观看精品视频网站| 久久久水蜜桃国产精品网| 亚洲情色 制服丝袜| 一区二区日韩欧美中文字幕| 亚洲国产中文字幕在线视频| 国产精品香港三级国产av潘金莲| 一级片'在线观看视频| 欧美精品高潮呻吟av久久| aaaaa片日本免费| 12—13女人毛片做爰片一| 久久久久国内视频| 国产亚洲一区二区精品| 后天国语完整版免费观看| 九色亚洲精品在线播放| 又大又爽又粗| 欧美成人午夜精品| 丝袜人妻中文字幕| 亚洲熟女毛片儿| 免费看十八禁软件| 亚洲成人免费电影在线观看| 大香蕉久久成人网| 少妇 在线观看| 电影成人av| 亚洲色图av天堂| 免费人成视频x8x8入口观看| 欧美日韩av久久| 精品福利永久在线观看| 一边摸一边抽搐一进一出视频| 男女免费视频国产| 水蜜桃什么品种好| 99riav亚洲国产免费| 亚洲精品一卡2卡三卡4卡5卡| av网站免费在线观看视频| www日本在线高清视频| 国产亚洲精品久久久久5区| 午夜福利影视在线免费观看| а√天堂www在线а√下载 | 制服诱惑二区| 久久久久久久国产电影| 老司机午夜十八禁免费视频| 国产日韩欧美亚洲二区| 久久久久国产一级毛片高清牌| 黑人巨大精品欧美一区二区蜜桃| 日本vs欧美在线观看视频| 十八禁高潮呻吟视频| 性少妇av在线| 久久久国产欧美日韩av| 成熟少妇高潮喷水视频| 国产免费av片在线观看野外av| 国内久久婷婷六月综合欲色啪| av欧美777| 欧美另类亚洲清纯唯美| 国产精品国产av在线观看| 国产高清videossex| 久久久精品免费免费高清| www.熟女人妻精品国产| 高清视频免费观看一区二区| 国产激情欧美一区二区| 日韩视频一区二区在线观看| 亚洲一区二区三区不卡视频| 99国产精品一区二区蜜桃av | 制服诱惑二区| 亚洲 国产 在线| 三级毛片av免费| 91字幕亚洲| 美女 人体艺术 gogo| 91字幕亚洲| 极品人妻少妇av视频| 精品亚洲成a人片在线观看| 日本vs欧美在线观看视频| 国产野战对白在线观看| 99久久综合精品五月天人人| 久久狼人影院| av一本久久久久| 丰满的人妻完整版| 狂野欧美激情性xxxx| ponron亚洲| 热99re8久久精品国产| 超碰97精品在线观看| 亚洲七黄色美女视频| 国产免费男女视频| 国产精品 国内视频| 精品少妇一区二区三区视频日本电影| 制服诱惑二区| 国产精品影院久久| 色综合欧美亚洲国产小说| 亚洲精品久久成人aⅴ小说| 国产精品免费大片| 久久中文看片网| 夜夜躁狠狠躁天天躁| 久久久水蜜桃国产精品网| 男男h啪啪无遮挡| 国产男女超爽视频在线观看| 女性被躁到高潮视频| 亚洲五月天丁香| 国产亚洲精品久久久久久毛片 | 国产野战对白在线观看| 美女扒开内裤让男人捅视频| 午夜福利,免费看| 亚洲精品av麻豆狂野| 视频区欧美日本亚洲| 国产亚洲精品一区二区www | 国产高清视频在线播放一区| e午夜精品久久久久久久| tube8黄色片| 91麻豆av在线| 亚洲成人国产一区在线观看| 啦啦啦视频在线资源免费观看| 老司机影院毛片| 欧美乱色亚洲激情| av网站免费在线观看视频| 中文亚洲av片在线观看爽 | 国产精品久久久av美女十八| 高清在线国产一区| 啦啦啦 在线观看视频| 在线国产一区二区在线| 狠狠狠狠99中文字幕| 欧美日韩av久久| 一区二区三区精品91| 久久婷婷成人综合色麻豆| 久久这里只有精品19| 天天影视国产精品| 国产高清videossex| 国产欧美日韩精品亚洲av| 美女福利国产在线| 久久99一区二区三区| 女同久久另类99精品国产91| 国产精品美女特级片免费视频播放器 | 精品一区二区三区四区五区乱码| 国产精品久久久av美女十八| av天堂久久9| 国产午夜精品久久久久久| 美国免费a级毛片| 国产成人精品久久二区二区91| 在线观看免费视频日本深夜| 一进一出抽搐动态| 99re在线观看精品视频| 窝窝影院91人妻| 久久天堂一区二区三区四区| 国产激情欧美一区二区| 黄频高清免费视频| 亚洲成人免费电影在线观看| 日本wwww免费看| 99re在线观看精品视频| 黄片播放在线免费| 精品国产一区二区三区久久久樱花| 欧美日韩瑟瑟在线播放| 大香蕉久久成人网| 亚洲少妇的诱惑av| 国内久久婷婷六月综合欲色啪| 国产欧美日韩精品亚洲av| 在线观看舔阴道视频| 母亲3免费完整高清在线观看| 国产精品久久久久久精品古装| 日本vs欧美在线观看视频| 一区福利在线观看| 99精品在免费线老司机午夜| 欧美激情高清一区二区三区| 一边摸一边做爽爽视频免费| 久久久精品国产亚洲av高清涩受| 亚洲精品久久成人aⅴ小说| 亚洲在线自拍视频| 久久中文字幕人妻熟女| 女同久久另类99精品国产91| 国产麻豆69| 啦啦啦免费观看视频1| 91大片在线观看| 国产免费现黄频在线看| 午夜激情av网站| 久久久国产成人免费| 新久久久久国产一级毛片| 免费av中文字幕在线| 亚洲精品粉嫩美女一区| 岛国在线观看网站| 亚洲熟女精品中文字幕| 丁香欧美五月| 91老司机精品| 黄频高清免费视频| 妹子高潮喷水视频| 少妇的丰满在线观看| a级片在线免费高清观看视频| 看黄色毛片网站| 亚洲一码二码三码区别大吗| 国产99白浆流出| 欧美黄色淫秽网站| 91麻豆精品激情在线观看国产 | 午夜免费成人在线视频| 在线播放国产精品三级| 精品久久久久久久毛片微露脸| 国产精品一区二区精品视频观看| 日韩有码中文字幕| 一区福利在线观看| 真人做人爱边吃奶动态| a级毛片在线看网站| 亚洲专区中文字幕在线| 高清av免费在线| 亚洲久久久国产精品| 搡老熟女国产l中国老女人| a级毛片在线看网站| 亚洲 国产 在线| 夫妻午夜视频| 午夜福利免费观看在线| 变态另类成人亚洲欧美熟女 | 欧美乱妇无乱码| 新久久久久国产一级毛片| 中文字幕最新亚洲高清| 99国产综合亚洲精品| 精品少妇一区二区三区视频日本电影| 精品无人区乱码1区二区| 国产av一区二区精品久久| 亚洲中文日韩欧美视频| 免费看十八禁软件| 女人高潮潮喷娇喘18禁视频| 丰满迷人的少妇在线观看| 日韩欧美免费精品| 不卡一级毛片| 大片电影免费在线观看免费| 大香蕉久久网| 精品福利观看| 很黄的视频免费| 久久精品国产清高在天天线| 天天躁日日躁夜夜躁夜夜| 在线观看免费日韩欧美大片| 涩涩av久久男人的天堂| 人人澡人人妻人| а√天堂www在线а√下载 | 自拍欧美九色日韩亚洲蝌蚪91| 老汉色av国产亚洲站长工具| 欧美不卡视频在线免费观看 | 亚洲国产欧美网| 中亚洲国语对白在线视频| 99久久人妻综合| av天堂久久9| 国产有黄有色有爽视频| 身体一侧抽搐| 亚洲精品国产一区二区精华液| 成人免费观看视频高清| 黑人巨大精品欧美一区二区mp4| e午夜精品久久久久久久| 深夜精品福利| 欧美激情久久久久久爽电影 | 国产精品成人在线| 日韩成人在线观看一区二区三区| 人妻丰满熟妇av一区二区三区 | 欧美乱码精品一区二区三区| 欧美精品一区二区免费开放| 国产一区在线观看成人免费| 一级毛片高清免费大全| 99riav亚洲国产免费| tube8黄色片| 亚洲 欧美一区二区三区| 亚洲国产欧美一区二区综合| 韩国精品一区二区三区| 久久午夜综合久久蜜桃| 香蕉丝袜av| 飞空精品影院首页| 免费av中文字幕在线| 久久中文字幕人妻熟女| 欧美亚洲日本最大视频资源| 欧美中文综合在线视频| 精品国产一区二区三区久久久樱花| 超碰97精品在线观看| 国产精品久久电影中文字幕 | 亚洲 欧美一区二区三区| 国产精品 国内视频| 涩涩av久久男人的天堂| 免费观看精品视频网站| 久久精品91无色码中文字幕| 亚洲成人免费av在线播放| 一级毛片女人18水好多| 中亚洲国语对白在线视频| 村上凉子中文字幕在线| 亚洲 欧美一区二区三区| 久久精品91无色码中文字幕| 日韩成人在线观看一区二区三区| 窝窝影院91人妻| 18禁裸乳无遮挡免费网站照片 | 黄色片一级片一级黄色片| av视频免费观看在线观看| 欧美乱色亚洲激情| 免费在线观看黄色视频的| 宅男免费午夜| 色婷婷久久久亚洲欧美| 久久这里只有精品19| 99re6热这里在线精品视频| 国产精品一区二区精品视频观看| 亚洲一区高清亚洲精品| 亚洲精品国产精品久久久不卡| 在线观看66精品国产|