• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Genetic Differentiation Among Populations of Octopus minor Based on Simple Sequence Repeats Mined from Transcriptome Data

    2022-10-24 05:52:12NANZeXURanHOUChunqiangandZHENGXiaodong
    Journal of Ocean University of China 2022年5期

    NAN Ze, XU Ran, HOU Chunqiang, and ZHENG Xiaodong, *

    Genetic Differentiation Among Populations ofBased on Simple Sequence Repeats Mined from Transcriptome Data

    NAN Ze1), 2), XU Ran1), 2), HOU Chunqiang3), and ZHENG Xiaodong1), 2), *

    1)Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China 2) Key Laboratory of Mariculture, Ocean University of China, Qingdao 266003, China 3) Tianjin Fisheries Research Institute, Tianjin 300457, China

    (Sasaki 1920) is an important commercial cephalopod species in China. This species has declined sharp- ly in recent years. Hence, genetic studies ofare imperative to exploit and manage the wild resource. In this study, 46192 microsatellite loci were discovered in 70174 unigenes from the transcriptomic data. Among all of the simple sequence repeat (SSR) unit categories, di-nucleotide and tri-nucleotide SSRs accounted for 45.26% and 14.49%, respectively. A total of 108 SSRs were test- ed, of which 21 were neutral and polymorphic. Seven SSRs were selected for genetics analyses of thepopulations in the Bohai Sea, the Yellow Sea, and the southwest coast of the Taiwan Strait region. Significant pairwisestvalues were detected among the samples. The UPGMA tree based on genetic distances suggested that the sampling locations could be arranged in three clusters. These markers are evidence that the populations in this region may be structured, with samples from Penghu differing remarkably from those in northern China. The present study characterized genetic markers for population assessment, management, and conser- vation of.

    ; transcriptome; simple sequence repeats; genetic divergence

    1 Introduction

    (Sasaki 1920) is widely distributed along the coastal waters of China, the Korean Peninsula, and the Japanese archipelago (Yamamoto, 1942; Kim., 2008). It is an important commercial fishery in China, Korea, andJapan. Many studies ofin physicology (Seol., 2007; Chen., 2019), aquaculture (Song., 2019), and genetics (Wang., 2017) have been reported. How-ever, overfishing has led to a sharp decline in the abun- dance of this species in recent years. Thus, it is crucial to study the genetic diversity and population structure for ra- tional utilization of.

    Simple sequence repeats (SSRs), or microsatellites aresimple tandem repeat DNA sequences consisting of 1–6 basesthat are widely distributed in the genome. Because of high polymorphism, neutrality, and codominance, SSRs have become an effective tool to investigate population genetics. Microsatellite markers inhave been de- veloped using the magnetic bead enrichment method (Zuo., 2011), and population genetics analyses have been carried out using the markers developed with this method (Kang., 2012; Gao., 2016). However, no study has characterized microsatellites based ontrans- criptome data. A large number of SSRs have been iden- tified by next-generation sequencing, providing numerous molecular markers to assess population diversity and ge- netic structure, which will contribute to the conservation of this species.

    In the last two decades, the development of molecular tools has contributed greatly to genetic studies (Moreira., 2011; Xu., 2018) and the identification of cryp- tic species (Allcock., 2015; Barco., 2016; Tang., 2020). Many studies have reported the genetic diver- sity and structure ofusing morphological diag- nostic (Gao., 2019) and molecular methods, such as mitochondrial DNA (Sun., 2010; Xu., 2018) and microsatellite markers (Kang., 2012; Gao., 2016). These studies have provided valuable information about the population genetic diversity and structure ofin Chinese waters; however, little is known about the ge- netic divergence between the Chinese populations (parti- cularly the South China Sea population) and other East Asian populations. The Korean Peninsula is bordered by China, so comparing the population genetics between Ko- rean and Chinesepopulations would advance our understanding of the genetic diversity and structure ofin East Asia. In this study, we investigated the po- pulation genetics of six geographic populations, including the Bohai Sea, the Yellow Sea, the South China Sea, and the Korean Peninsula, using seven polymorphic SSR mar- kers. We also evaluated whether geographical distance af- fected the genetic structure ofat different loca- tions. This study provides a theoretical basis for the sustain-able exploitation and utilization of this valuable fishery re- source.

    2 Materials and Methods

    2.1 Sample Collection and Preparation

    Samples were collected from six locations, including the Bohai Sea: Tianjin (TJ), Qinhuangdao (QHD); the Yellow Sea: Dandong (DD); the southwest coast of the Korean Peninsula: Mokpo (MP), Kunsan (KS); and the southwest coast of the Taiwan Strait: Penghu (PH). The detailed sam- ple information is shown in Fig.1 and Table 1. Genomic DNA was isolated frommantle muscle using an improved cetyl trimethyl ammonium bromide method (Winnepenninckx., 1993).

    2.2 SSR-Enriched Sequences

    The transcriptome library was constructed, and trans- criptome sequencing was performed by Gene Denovo Bio- technology Co. (Guangzhou, China) using the Illumina Hi-SeqTM 4000 (Xu and Zheng, 2020). MISA v2.1 (http://pgrc. ipk-gatersleben.de/misa/) was used to search all single gene clusters and identify the localization and type of microsa- tellites in the transcriptome following default parameters. Primers were designed using Primer3 (version 1.1.4).

    Fig.1 Map of the sampling locations and ocean currents. LBCC, Lubei Coastal Current; SBCC, Subei Coastal Cur-rent; CCC, China Coastal Current; YSWC, Yellow Sea Warm Current (Kaneko et al., 2011).

    Table 1 Details of the six O. minor sampling locations

    2.3 Speci?c Primers for SSR Loci Screening and SSR Genotyping

    A total of 108 primers were selected to test polymer-phism. The polymerase chain reaction (PCR) was perform- ed in a 10μL volume, including 1μL of 1× PCR Buffer (Mg2+plus), 1μL of 0.2mmolL?1dNTP mix, 0.22μL of 1mmolL?1fluorescent label (NED, VIC, or FAM), 0.1μL of the 1mmolL?1 M13 upstream primer (F), 0.22μL of the 1mmolL?1downstream primer (R), 0.05μL of 0.25UDNA polymerase, 1μL of the 50ng DNA template, and 6.41μL of dH2O. The DNA was amplified at 94℃ for 3min, followed by 35 cycles of 94℃ for 30s, optimal an- nealing temperature for 1min, 72℃ for 75s, and then eight cycles of 94℃ for 30s, 53℃ for 1min, 72℃ for 75s, and 72℃ for 10min. Microsatellite polymorphisms were screen- ed using the ABI 3730xl DNA Analyzer.

    The genotypes of the samples were analyzed at seven polymorphic microsatellite loci: OMS41, OMS44, OMS51, OMS78, OMS80, OMS96, and OMS99 (Table 1).

    2.4 Statistical Analysis

    Micro-Checker 2.2.3 (Oosterhout., 2004) was used to inspect the null alleles.GenALEx v.6.5 (Peakall.,2012) was used to calculate the Hardy–Weinberg equili- brium (-HWE), the number of alleles per locus (a), ob- served heterozygosity (o), expected heterozygosity (e),thestvalues,and Nei’s genetic distance. Cervus v.3.0.3 (Marshall., 1998) was used to estimate the polymor- phism information content (PIC). The neutrality of the po- lymorphic loci was analyzed using the Ewens–Watterson test in POPGENE v.1.32. Multilocus analysis of molecu- lar variance (AMOVA) and pairwisest,values were explored with ARLEQUIN v.3.5 (Excoffier and Lischer, 2010). A Mantel test implemented in Genepop (https:// genepop.curtin.edu.au/) was performed to test the isola- tion of distance (IBD) model by correlating geographic dis- tance to genetic distance (st/(1?st); Rousset, 1997). An unweighted pair group method with arithmetic mean (UP- GMA) tree was constructed based on the genetic distances among the samples from 6 locations using MEGA v.6.0.

    3 Results

    3.1 Characterization of the Genic Microsatellites

    A total of 46192 SSR loci were discovered in 70174 uni- genes from the transcriptome, and the frequency of SSR occurrence in the unigenes was 65.82%. The best repre- sented microsatellite categories were di-nucleotide (45.26%)and mono-nucleotide (39.40%), followed by tri-nucleotideSSRs (14.94%), while tetra-nucleotide and penta-nucleotide SSRs comprised <1%. Among the dinucleotiderepeats, the most abundant repeat motif was AT/AT (22.41%), fol- lowed by AC/GT (16.49%) (Table 2). Repeating units be- tween 4 and 14 were detected in the SSRs of thetranscriptome, accounting for 99.97% of the total number, and the highest proportion of repeated times (including mo- no-nucleotide and penta-nucleotide) was six (31.89%).

    3.2 Speci?c Primers for SSR Loci Screening

    In this study, 21 of the 108 analyzed markers (19.44%) were polymorphic (showed in Table 3). The amplicon se- quences were deposited in the GenBank database (acces- sion numbers: KX061842–KX061864). The number of al- leles per loci ranged from 3 to 12, with an average of 5.6. Three loci (OMS78, OMS64, and OMS34) deviated sig- nificantly from the-HWE after a Bonferroni correction (<0.05).oranged from 0.267 to 0.941 (mean=0.614).eranged from 0.242 to 0.868 (mean=0.619). The PIC ranged from 0.231 to 0.854 (mean=0.572).The Ewens- Watterson neutral test showed that 21 microsatellite loci were located within the 95% confidence interval (Obs. F>L95), indicating the neutrality of these polymorphic markers.

    Table 2 Frequency of di-, tri-, and tetra-nucleotide repeat motifs in the transcriptome (–, not available)

    Table 3 Basic genetic information of the 21 microsatellite primers

    ()

    ()

    LocusGenBank accessionno.Repeat motifPrimer sequences (5’ – 3’)Ta (℃)Size (bp)NHoHeP-HWEPICEwens-Watterson test Obs. FL95*U95* OMS15MN565070(TC)9F:TGGACATGATGGTGCTTTTG58184–19050.6210.5540.6580.5060.44590.26040.7776 R:CCATCATCATCGTCATCAGC OMS28MN565071(TA)9n(GAT)6n(ATT)6F:GCATCAGCTGGAACAGAACC58196–19920.5810.4940.4310.3870.50620.36780.9370 R:CTGTCATTGAGCCAATGGTG OMS99MN565072(ACG)6F:ACCAACCGTCAGTCGAAGAG55197–20950.7240.6930.9030.6360.30680.25510.7771 R:GGAAGAATGATGCCGTTCAC OMS32MN565073(TAC)6F:CATGGATGAGCAGATCCTGA52216–22850.9410.6930.4900.6110.33510.24830.7700 R:CCTTGCAGAGATCCATAACCA OMS45MN565074(TGG)6n(ATTT)5F:CACTCCATTCTTAGCACACAGC52211–22160.4290.6790.0470.6410.32090.21320.6644 R:TGTTGCAACGGTAGCTTGTAG OMS106MN565075(TAC)6F:CAGCTTTGCCATTGCTACC52187–20860.5670.5990.7470.5570.40060.22060.7033 R:AGTGGTGGTGGAGGCAGTAG OMS51MN565076(TAG)6F:TCATGATCATTGCCATAACAG52199–21150.5170.4980.5550.4720.50240.24790.7788 R:CTCCATTCACGAGACACACC OMS11MN565077(TTG)6F:CCTAGGTTAGGGGCCTTGAT58184–20590.7240.7280.1310.6870.27170.15520.4893 R:ATTGTTCCCAGGCTTCCTTC OMS84MN565078(GACG)6F:CAACGCTCTCGTTGAAGATG55179–207120.9350.8680.8630.8540.13220.12120.3476 R:CCGTTGTTCGTTCTGTTTGA OMS37MN565079(TTC)6F:GGTCGTCATTACCGAACTGG52194–21260.9310.7210.1570.6750.27880.21820.6968 R:GCAGGTAGAGGAGGTTGTGG OMS107MN565080(TGT)6F:TGTTGTGATTGGCACCACTT55208–22360.7420.6860.4450.6520.31370.23000.7102 R:CATCAGCAACAGCATCGTCT OMS77MN565081(TAA)7n(AAT)6n(TTA)6F:GCACACACTTCAGGAACACG55195–20440.2860.4700.0190.4260.53000.30290.8642 R:TATGCAACACAGGGTGGTGT OMS96MN565082(ATG)6n(TGG)6F:TCCGTCGGACAGAATTATCC55247–25640.5770.6380.0680.5930.36170.28700.8543 R:ACCACCACCACCAATACCAT

    Notes: Ta, annealing temperature;o, observed heterozygosity;e, expected heterozygosity; PIC, polymorphism information content.*Sig- ni?cant deviations from-HWE after Bonferroni correction (<0.05;=21).

    Table 4 O. minor genetic diversity indices

    Notes: Ta, annealing temperature;o, observed heterozygosity;e, expected heterozygosity; R, allelic size range;*Significant deviations from the-HWE after Bonferroni correction (<0.05;=7); –, not available.

    Table 4 summarizes the genetic diversity indices of 7microsatellite loci from the six sampling locations. The number of alleles per locus varied from 5 (at OMS99) to 11 (at OMS11). Observed heterozygosity values ranged from 0.241 to 0.850, and expected heterozygosity values ranged from 0.242 to 0.860. Among all loci, the average number of alleles for each location varied from 4.1 to 5.0. The lowest average number of alleles was detected in the DD (4.1), whereas TJ, QHD, and PH showed an average of five alleles per location. The average observed and ex- pected heterozygosity value per location ranged from 0.392(PH) to 0.581 (MP), and from 0.483 (PH) to 0.592 (DD), respectively. No linkage disequilibrium was detected in the locus pairs, suggesting that the loci can be treated as in-dependent variables. After the Bonferroni correction, ten of42 locus-location combinations significantly deviated from-HWE (<0.05), among which OMS78 showed a devia- tion at all four locations.

    3.3 Genetic Diversity and Structure Among the Samples

    Table 5 lists the Nei’s genetic distance (Dc, above thediagonal) and pairwisestvalues (below the diagonal) in pairwise comparisons at different locations. Pairwisestvalues ranged from 0.014 to 0.174, with relatively high va- lues being detected between PH and the other locations (Ta- ble 5). Similarly, the genetic distances between PH and the other locations were much larger than the pairwise com- parisons between the other locations. These results were further confirmed by a UPGMA dendrogram, which show- ed three distinct clades: a single clade for PH, one for the Korean samples (MP and KS), and one for the northern Chinese samples (TJ, QHD, and DD) (Fig.2).

    Fig.2 UPGMA tree based on matrices of the pairwise Nei’s genetic distances of the microsatellites.

    Table 5 Nei’s genetic distance (Dc, above the diagonal) and pairwise Fst values (below the diagonal) among the six O. minor locations

    Note:*Significant difference after the Bonferroni correction.

    3.4 Analysis of Molecular Variance and IBD

    AMOVA indicated that 12% of the total genetic varia- tion occurred among the populations in the six sampling lo- cations; 26% was attributed to variation among individu- als and 63% occurred within individuals (Table 6). Accord- ing to the IBD analysis, the genetic and geographic dis- tances were highly positively correlated, and the genetic dis- tances explained 80% of the total variance (2=0.7906,=0.001), as shown in Fig.3.

    Table 6 Analysis of molecular variance (AMOVA) of genetic differentiation in O. minor (–, not available)

    Fig.3 Scatter plot of the genetic and geographical distances for the pairwise location comparisons.

    4 Discussion

    A total of 46192 SSR loci inwas discovered in 70174 unigenes, and the frequency of SSR occurrence in the unigenes was 65.82%, which was much higher than that reported in(48.70%) (Guan., 2018). Mono-nucleotide and di-nucleotide SSRs accoun- ted for 39.40% and 45.26%, respectively. Similarly, di-nu- cleotides are highly over-represented in thegenome (Wang., 2018). Repeating units be- tween 4 and 14 occurred in theSSRs, account- ing for 99.97% of the total, and the highest number of re- peats was six (31.89%). The number of markers decreased as the number of repeated units and the number of repeti- tions increased, which was also observed by Sun(2017) and Shang. (2019). The markers developed in this study were highly polymorphic, as 76% of the PIC was>0.5. These highly polymorphic markers can be applied to subsequent population genetics studies.

    We investigated the genetic structure offrom six geographic locations using seven microsatellite DNA markers. The average number of alleles in the different geographic populations ranged from 4.1 to 5.0, which was slightly lower than the number reported by other studies (Kang., 2012; Gao., 2016). This difference can be explained in two ways: 1) variations among the different SSR markers used in the studies; and 2) differences in the diversity and abundance of the different sampling locations. Ten of the 42 locus-location combinations significantly deviated from-HWE after a Bonferroni correction (<0.05). Kang(2012) and Gao(2016) reported that 23 of 56 and 20 of 80 locus-location combinations deviated from HWE, respectively.In addition, si- milar results have been reported in other cephalopods (Ca- branes., 2008; Doubleday., 2009). This devia-tion may be due to the small population or sample size, in-breeding, or the presence of null alleles, as indicated byother studies (Shaw., 1999; Perez-Losada., 2002; Kang., 2012).

    The UPGMA tree based on Nei’s genetic distance sug- gests that samples could be arranged in three clusters. The Korean samples formed a sister clade to the samples from the Bohai Sea and the Yellow Sea, while PH samples fromthe South China Sea were separated from the other samples. PH had the largest geographical distance to the other lo- cations and the samples from PH presented the highest ge- netic distance compared to the samples from the other lo- cations. Moreover, the Korean samples (MP and KS) were also different from those of the three northern Chinese samples(TJ, QHD, and DD). Similarly, thestvalues be- tween PH and the other locations were the highest among all the comparisons. The Korean samples also had a highstvalue compared to the samples from northern China, but thestand the genetic distance values between sam-ples from the two Korean locations were relatively low. Taken together, our results indicate the divergence in the populations containing the northern Chinese samples (TJ, QHD, and DD), the Korean samples (MP and KS), and the southern Chinese sample (PH). Our results are consistent with the findings in other studies using mitochondrial and morphological markers, which reported large divergences between northern and southern populations (Xu., 2018; Gao., 2019). The population divergences between the Korean and northern Chinese samples were also revealed by Kang. (2012).

    The IBD analysis in Fig.3 shows a strong correlationbetween genetic distance and geographical distance, ac- counting for about 80% of the total divergence. Therefore, our results indicate that these divergence results can be mainly explained by the theory of genetic and geographi- cal distances, which hypothesizes that the effect of gene flow can lead to genetic similarities among locations with small geographical distances; therefore, geographical pro- ximity may reflect the high correlation between genetic distance and geographical distance (Scribner., 1986). However, other effects, such as ecological habitat and oceancurrents, can also contribute to population divergence. For example, Kang. (2012) suggested that divergence of theKorean population may be due to ecological differences in the habitats between the western muddy coast and the southern rocky areas. Many studies have shown that ocean currents play a crucial role in the popu- lation genetic differentiation of benthic marine organisms (Doubleday., 2009; Zhan., 2009; Ni., 2011; Gao., 2016). The Yellow Sea Warm Current flows through the west coast of the Korean Peninsula into the northwestern coast of China during April–August. How- ever, this current is relatively weak compared with the coastal waters of China and rarely reaches the inside of the Gulf of Bohai Sea (Pang and Kim, 1998). The dura- tion of the benthic planktoniclarval stage ofis relatively short (Zheng., 2014). Weinferred that geo-graphic distance is one of the main factors affecting the dispersal ofAlthough other factors might simul- taneously affect genetic differentiation, the IBD model ex- plained about 80% of the variance of the six geographical populations in this study.

    5 Conclusions

    In the present study, 16 of 21 genetic SSR markers were polymorphic, demonstrating the feasibility and effective- ness of developing neutral and polymorphic SSRs derived fromtranscriptomic data. The genetic differentia- tion amongsampling locations based on SSRs showed that the samples from the Taiwan Strait differed greatly from the northern Chinese and Korean samples, and genetic divergence was also detected between the Chinese and Korean samples. The present results reveal valuable information to describe the genetic structure and to mo- nitordemographic parameters.These markers will be helpful to manage and conserve thefish- ery.

    Acknowledgements

    We thank Associate Professor Mongfang Li (National Penghu University of Science and Technology) and Dr. Hae-Li Lee (Kunsan Seafood Company) for providing the specimens. This study was supported by the National Na- tural Science Foundation of China (No31672257), and theNational Key Research and Development Program of Chi- na (No. 2020YFD0900705).

    Allcock, A. L., Lindgren, A., and Strugnell, J. M., 2015. The con- tribution of molecular data to our understanding of cephalo- pod evolution and systematics: A review., 49 (21-24): 1373-1421.

    Barco, A., Raupach, M. J., Laakmann, S., Neumann, H., and Knebelsberger, T., 2016. Identification of North Sea mollusks with DNA barcoding., 16 (1): 288-297.

    Cabranes, C., Fernandez-Rueda, P., and Martinez, J. L., 2008. Genetic structure ofaround the Iberian Pe- ninsula and Canary Islands as indicated by microsatellite DNA variation., 65: 12-16.

    Chen, Z. W., Xu, R., Nan, Z., and Zheng, X. D., 2019. Determi- nation of the median lethal concentration and acute toxicity ofunder different concentrations of ammonia andnitrogen stress., 50 (6): 1361-1370 (in Chinese with English abstract).

    Doubleday, Z. A., Semmens, J. M., Smolenski, A. J., and Shaw, P. W., 2009. Microsatellite DNA markers and morphometrics reveal a complex population structure in a merobenthicspecies () in south-east Australia and New Zealand., 156 (6): 1183-1192.

    Excoffier, L., and Lischer, H. E. L., 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics ana- lyses under Linux and Windows., 10: 564-567.

    Gao, X., Xu, R., Zhang, Z., and Zheng, X., 2019. Morphological variation analysis ofin the coastal waters ofChina., 43 (7): 1593-1602 (in Chinese with English abstract).

    Gao, X., Zheng, X., Bo, Q., and Qi, L., 2016. Population geneticsof the common long-armed octopus(Sasaki,1920) (Cephalopoda: Octopoda) in Chinese waters based onmicrosatellite analysis.,66: 129-136.

    Guan, A., Wu, Y., Chen, Y., Sun, Y., Qi, P., and Guo, B., 2018. Deep sequence-based transcriptome analysis of microsatelli- tes in the cuttlefish ()., 39: 144-151 (in Chinese with English abstract).

    Kaneko, N., Kubodera, T., and Iguchis, A., 2011. Taxonomic study of shallow-water octopuses (Cephalopoda: Octopodidae) in Ja- pan and adjacent waters using mitochondrial genes with per- spectives on octopus DNA barcoding., 54 (1-2): 97-108.

    Kang, J. H., Kim, Y. K., Park, J. Y., An, C. M., and Jun, J. C., 2012. Development of microsatellite markers to genetically diffe- rentiate populations offrom Korea and China., 39: 8277-8286.

    Kim, D. H., An, H. C., Lee, K. H., and Hwang, J. W., 2008. Op- timal economic fishing efforts in Korean common octopustrap fishery., 74: 1215-1221.

    Marshall, T. C., Slate, J., Kruk, L. E., and Pemberton, J. M., 1998. Statistical confidence for likelihood-based paternity in- ference in natural populations., 7: 639-655.

    Moreira, A. A., Tomas, A. R. G., and Hilsdorf, A. W. S., 2011. Evi- dence for genetic differentiation of(Mol-lusca, Cephalopoda) fishery populations from the southern coastof Brazil as revealed by microsatellites., 407 (1): 34-40.

    Ni, L. H., Li, Q., and Kong, L. F., 2011. Microsatellites reveal fine-scale genetic structure of the Chinese surf clam(Mollusca, Bivalvia, Mactridae) in Northern China., 32 (4): 488-497.

    Oosterhout, C. V., Hutchinson, W. F., Wills, D. P. M., and Ship- ley, P., 2004.MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data., 4 (3): 535-538.

    Pang, I. C., and Kim, K. H., 1998. Seasonal variation of water mass distributions in the eastern Yellow Sea and the Yellow Sea Warm Current., 3 (3): 41-52.

    Peakall, R., and Smouse, P. E., 2012. Genalex 6.5: Genetic ana- lysis in Excel. Population genetic software for teaching and research–An update., 28: 2537-2539.

    Perez-Losada, M., Guerra, A., Carvalho, G. R., Sanjuan, A., and Shaw, P. W., 2002. Extensive population subdivision of the cuttlefish(Mollusca: Cephalopoda) around the Iberian Peninsula indicated by microsatellite DNA variation., 89: 417-424.

    Rousset, F., 1997. Genetic differentiation and estimation of gene flow from-statistics under isolation by distance.,145: 1219-1228.

    Scribner, K. T., Evans, J. E., Morreale, S. J., and Smith, M. H., and Gibbons, J. W., 1986. Genetic divergence among popula- tions of the yellow-bellied slider turtle () se- parated by aquatic and terrestrial habitats., 3: 691-700.

    Seol, D. W., Lee, J., and Im, S. Y., 2007. Clove oil as an anes- thetic for common octopus (, Sasaki)., 38 (1): 45-49.

    Shang, G. J., Xu, A., Hu, X., and Li, Z., 2019. Isolation and cha- racterization of genic microsatellites fromassembly transcriptome in the bivalve, 37: 1071-1079.

    Shaw, P., Pierce, J., and Boyle, P. R., 1999. Subtle population structuring within a highly vagile marine invertebrate, the vein-ed squid, demonstrated with microsatellite DNA markers., 8: 407-417.

    Song, M. P., Wang, J. H., and Zheng, X. D., 2019. Prey prefer- ence of the common long-armed octopus(Ce- phalopoda: Octopodidae) on three different species of bivalves., 37 (5): 1595-1603.

    Sun, B. C., Yang, J. M., Sun, G. H., Liu, X. Q., Liu, L. J., Wang, W. J.,., 2010. Sequence and molecular phylogeny of mitochondrial COI gene fragment in five populations ofin China., 41 (2): 259-265 (in Chinese with English abstract).

    Sun, X., Li, D., Liu, Z., Zhou, L., Wu, B., and Yang, A., 2017.assembly of pen shell () transcrip- tome and screening of its genic microsatellites., 16: 882-888.

    Tang, Y., Zheng, X., Liu, H., and Sun, F. G., 2020. Population ge- netics and comparative mitogenomic analyses reveal cryptic diversity of(Cephalopoda: Octopodi- dae)., 112 (6): 3893-3902.

    Wang, J. H., and Zheng, X. D., 2017. Comparison of the genetic relationship between nine cephalopod species based on clus- ter analysis of karyotype evolutionary distance., 11 (3): 477-494.

    Wang, L., Yu, H., and Li, Q., 2018. Identi?cation and characterization of 23 microsatellite loci forbased on RAD-seq.,97 (1): 61-65.

    Winnepenninckx, B., Backeljau, T., and Wachter, R. D., 1993. Extraction of high molecular weight DNA from molluscs., 9 (12): 407.

    Xu, R., and Zheng, X. D., 2020. Hemocytes transcriptomes re- veal metabolism changes and detoxification mechanisms in response to ammonia stress in., 29 (9): 1441-1452.

    Xu, R., Bo, Q. K., and Zheng, X. D., 2018. A divergent lineage among(Sasaki, 1920) populations in the North- west Pacific supported by DNA barcoding., 14 (4): 335-349.

    Yamamoto, T., 1942. On the ecology of(Sasaki), with special reference to its breeding habits., 12: 9-20.

    Zhan, A. B., Hu, J. J., Hu, X. L., Zhou, Z. C., Hui, M., Wang, S.,., 2009. Fine-scale population genetic structure of Zhikong scallop (): Do local marine currents drive geo- graphical differentiation?, 11 (2): 223- 235.

    Zheng, X. D., Qian, Y. S., Liu, C., and Li, Q., 2014.. In:Iglesias, P.,., eds., Springer, New York, 415-426.

    Zuo, Z. R., Zheng, X. D., Yang, Y., and Li, Q., 2011. Development and characterization of 12 polymorphic microsatellite loci in(Sasaki, 1920).,3: 489-491.

    February 1, 2021;

    May 24, 2021;

    November 11, 2021

    ? Ocean University of China, Science Press and Springer-Verlag GmbH Germany 2022

    . Tel: 0086-532-82032873

    E-mail:xdzheng@ouc.edu.cn

    (Edited by Qiu Yantao)

    午夜精品久久久久久毛片777| 白带黄色成豆腐渣| 婷婷精品国产亚洲av在线| 亚洲久久久国产精品| 午夜福利在线观看吧| 欧美成狂野欧美在线观看| 精品久久久久久成人av| 美国免费a级毛片| 悠悠久久av| 99热只有精品国产| 欧美zozozo另类| 女人被狂操c到高潮| 一区二区三区国产精品乱码| 日本免费一区二区三区高清不卡| 久久久水蜜桃国产精品网| 黄片大片在线免费观看| 国产在线精品亚洲第一网站| 老汉色∧v一级毛片| 他把我摸到了高潮在线观看| 久久久久九九精品影院| 中文字幕最新亚洲高清| 欧美三级亚洲精品| 精品乱码久久久久久99久播| 久9热在线精品视频| 观看免费一级毛片| 亚洲一区二区三区色噜噜| 久久精品国产清高在天天线| 久久性视频一级片| 国产激情欧美一区二区| 韩国精品一区二区三区| 国产精品自产拍在线观看55亚洲| 日韩一卡2卡3卡4卡2021年| 看片在线看免费视频| 亚洲成人久久性| 美女高潮喷水抽搐中文字幕| 国产欧美日韩一区二区精品| 精品一区二区三区av网在线观看| 少妇粗大呻吟视频| 女性生殖器流出的白浆| 亚洲免费av在线视频| 中文字幕高清在线视频| 2021天堂中文幕一二区在线观 | 日本在线视频免费播放| 亚洲电影在线观看av| 91麻豆精品激情在线观看国产| 老鸭窝网址在线观看| 美女扒开内裤让男人捅视频| 女同久久另类99精品国产91| 十八禁网站免费在线| 香蕉国产在线看| 淫妇啪啪啪对白视频| 精品国产亚洲在线| 亚洲精品粉嫩美女一区| 日韩一卡2卡3卡4卡2021年| 人人妻人人看人人澡| 天天躁夜夜躁狠狠躁躁| 制服丝袜大香蕉在线| 国产区一区二久久| 757午夜福利合集在线观看| 91成人精品电影| 免费看美女性在线毛片视频| 日本三级黄在线观看| 成年版毛片免费区| 黄色女人牲交| 久久精品91无色码中文字幕| 久久青草综合色| 老汉色∧v一级毛片| 天堂动漫精品| aaaaa片日本免费| 91九色精品人成在线观看| 女人高潮潮喷娇喘18禁视频| 免费女性裸体啪啪无遮挡网站| 国产亚洲欧美98| 搡老熟女国产l中国老女人| 老司机靠b影院| 哪里可以看免费的av片| 亚洲成a人片在线一区二区| 中文字幕高清在线视频| 亚洲国产精品999在线| 中文字幕另类日韩欧美亚洲嫩草| 久久久久国产一级毛片高清牌| 亚洲专区字幕在线| 男人舔女人下体高潮全视频| 1024视频免费在线观看| 啦啦啦观看免费观看视频高清| 一区二区三区高清视频在线| 午夜亚洲福利在线播放| 成人国语在线视频| 黄色成人免费大全| 欧美激情极品国产一区二区三区| 女人被狂操c到高潮| 女性被躁到高潮视频| 一级a爱片免费观看的视频| а√天堂www在线а√下载| 精品日产1卡2卡| 国产黄片美女视频| 丰满的人妻完整版| 制服诱惑二区| 国产精品亚洲美女久久久| 97人妻精品一区二区三区麻豆 | 看片在线看免费视频| 女人高潮潮喷娇喘18禁视频| 欧美成人一区二区免费高清观看 | 可以免费在线观看a视频的电影网站| 欧美国产精品va在线观看不卡| 国产精品香港三级国产av潘金莲| 午夜精品在线福利| 亚洲一区二区三区不卡视频| 在线永久观看黄色视频| 真人一进一出gif抽搐免费| 国产1区2区3区精品| 午夜免费成人在线视频| 亚洲精品久久国产高清桃花| 久久久久久久久中文| 国产三级在线视频| 国产成人影院久久av| 人人澡人人妻人| 亚洲一区二区三区色噜噜| 色综合站精品国产| 亚洲精品色激情综合| 1024手机看黄色片| 老司机深夜福利视频在线观看| 亚洲精品一区av在线观看| 亚洲精品美女久久av网站| 久久精品影院6| 亚洲激情在线av| 99精品欧美一区二区三区四区| 国产精品久久久久久精品电影 | 国产99久久九九免费精品| 成年版毛片免费区| 久久欧美精品欧美久久欧美| 少妇被粗大的猛进出69影院| 亚洲精品粉嫩美女一区| 夜夜爽天天搞| 别揉我奶头~嗯~啊~动态视频| 亚洲男人的天堂狠狠| 欧美乱码精品一区二区三区| 777久久人妻少妇嫩草av网站| 免费电影在线观看免费观看| 国产黄色小视频在线观看| 午夜福利在线观看吧| 国产视频内射| 中文字幕最新亚洲高清| 怎么达到女性高潮| 国产一区二区三区视频了| 88av欧美| 亚洲成av人片免费观看| 国产亚洲欧美精品永久| 搞女人的毛片| 国产精品久久久av美女十八| 夜夜爽天天搞| 久久伊人香网站| 精品卡一卡二卡四卡免费| 丝袜在线中文字幕| 久久香蕉国产精品| 一边摸一边抽搐一进一小说| 午夜福利成人在线免费观看| 曰老女人黄片| 色综合亚洲欧美另类图片| cao死你这个sao货| 亚洲国产中文字幕在线视频| 国产伦在线观看视频一区| 麻豆久久精品国产亚洲av| 亚洲精品美女久久av网站| 国产成人av教育| 搡老熟女国产l中国老女人| 成人三级黄色视频| 在线免费观看的www视频| 香蕉国产在线看| 高清在线国产一区| 黄网站色视频无遮挡免费观看| 亚洲精品久久成人aⅴ小说| 女性生殖器流出的白浆| 午夜老司机福利片| 久久 成人 亚洲| 12—13女人毛片做爰片一| 免费高清视频大片| 在线观看日韩欧美| 亚洲avbb在线观看| 国产精品亚洲一级av第二区| 亚洲第一青青草原| 国产伦人伦偷精品视频| 男女之事视频高清在线观看| 一本久久中文字幕| 老司机午夜十八禁免费视频| 国产精品永久免费网站| 亚洲中文日韩欧美视频| 99国产精品一区二区三区| 变态另类成人亚洲欧美熟女| 男人舔女人的私密视频| 亚洲av成人不卡在线观看播放网| 亚洲国产精品999在线| 90打野战视频偷拍视频| 99精品久久久久人妻精品| 亚洲av中文字字幕乱码综合 | 免费搜索国产男女视频| 日日摸夜夜添夜夜添小说| 日韩 欧美 亚洲 中文字幕| 真人一进一出gif抽搐免费| 亚洲自偷自拍图片 自拍| 亚洲成人国产一区在线观看| 精品日产1卡2卡| 悠悠久久av| av视频在线观看入口| 午夜免费鲁丝| 午夜福利一区二区在线看| 免费在线观看黄色视频的| 美女国产高潮福利片在线看| 国产精品精品国产色婷婷| 正在播放国产对白刺激| 精华霜和精华液先用哪个| 青草久久国产| 国产精品98久久久久久宅男小说| 丝袜美腿诱惑在线| 可以在线观看毛片的网站| 在线观看一区二区三区| 最新在线观看一区二区三区| 色哟哟哟哟哟哟| 男女之事视频高清在线观看| 人人妻人人看人人澡| 他把我摸到了高潮在线观看| 亚洲欧美精品综合久久99| 麻豆久久精品国产亚洲av| 最近最新中文字幕大全免费视频| 一级毛片女人18水好多| 国产精品久久久av美女十八| 精品无人区乱码1区二区| 国产视频一区二区在线看| 国产精品自产拍在线观看55亚洲| 一本精品99久久精品77| 一a级毛片在线观看| 一级作爱视频免费观看| 成人特级黄色片久久久久久久| 国产精品av久久久久免费| 欧美久久黑人一区二区| 丁香欧美五月| 18禁黄网站禁片午夜丰满| 麻豆成人av在线观看| 国产精品av久久久久免费| 人人澡人人妻人| 久久国产精品男人的天堂亚洲| 禁无遮挡网站| 亚洲专区国产一区二区| 欧美zozozo另类| 黄色毛片三级朝国网站| 男女床上黄色一级片免费看| 国产久久久一区二区三区| 日韩免费av在线播放| 中国美女看黄片| 欧美乱色亚洲激情| 99在线人妻在线中文字幕| 国产精品 欧美亚洲| 此物有八面人人有两片| 好男人在线观看高清免费视频 | 亚洲一码二码三码区别大吗| 国产精品电影一区二区三区| 深夜精品福利| 国产人伦9x9x在线观看| 午夜a级毛片| 女警被强在线播放| 亚洲一区二区三区色噜噜| 啪啪无遮挡十八禁网站| 不卡av一区二区三区| 天堂√8在线中文| 久久久久国产一级毛片高清牌| 999久久久国产精品视频| 免费看十八禁软件| 欧美最黄视频在线播放免费| 国产欧美日韩一区二区三| 成年免费大片在线观看| 黄色 视频免费看| 亚洲欧美一区二区三区黑人| 久久久久久久久中文| 18禁国产床啪视频网站| 人妻久久中文字幕网| 欧美一区二区精品小视频在线| 成人午夜高清在线视频 | 满18在线观看网站| 中文字幕av电影在线播放| 欧美午夜高清在线| 欧美中文综合在线视频| 亚洲成人精品中文字幕电影| 夜夜夜夜夜久久久久| 老汉色∧v一级毛片| 中国美女看黄片| 日本熟妇午夜| 搡老妇女老女人老熟妇| 亚洲一区二区三区不卡视频| 黑丝袜美女国产一区| 日韩大尺度精品在线看网址| 岛国视频午夜一区免费看| www.精华液| 91字幕亚洲| 午夜精品在线福利| 国产一级毛片七仙女欲春2 | www.自偷自拍.com| 国产极品粉嫩免费观看在线| 免费在线观看影片大全网站| 两性夫妻黄色片| 国产精品99久久99久久久不卡| 丝袜美腿诱惑在线| 香蕉久久夜色| 嫩草影院精品99| 国产99久久九九免费精品| 亚洲第一青青草原| 91大片在线观看| 久久精品aⅴ一区二区三区四区| 国产单亲对白刺激| 亚洲国产精品sss在线观看| 国产麻豆成人av免费视频| 亚洲一区二区三区色噜噜| 日韩高清综合在线| 久热爱精品视频在线9| 亚洲av第一区精品v没综合| 久久久久久久久中文| 久久精品影院6| 久久人妻av系列| 黄色女人牲交| 国产人伦9x9x在线观看| 免费电影在线观看免费观看| 欧美大码av| 国产av一区二区精品久久| 欧美成人免费av一区二区三区| 91成人精品电影| 很黄的视频免费| 大型黄色视频在线免费观看| 免费在线观看黄色视频的| 999精品在线视频| 一边摸一边抽搐一进一小说| 久久香蕉精品热| 欧美成人一区二区免费高清观看 | 在线观看舔阴道视频| 国产一区二区激情短视频| 怎么达到女性高潮| 国产午夜精品久久久久久| 黑人欧美特级aaaaaa片| 精品国产美女av久久久久小说| 人妻久久中文字幕网| 国产成人系列免费观看| 成年女人毛片免费观看观看9| 2021天堂中文幕一二区在线观 | 国产主播在线观看一区二区| 亚洲国产精品久久男人天堂| 亚洲片人在线观看| 日本在线视频免费播放| 午夜免费观看网址| 观看免费一级毛片| 一二三四社区在线视频社区8| 久久热在线av| 国产精品,欧美在线| 久久伊人香网站| 草草在线视频免费看| 99热这里只有精品一区 | 亚洲av五月六月丁香网| 老鸭窝网址在线观看| 成年版毛片免费区| 亚洲精品久久国产高清桃花| 动漫黄色视频在线观看| 午夜精品在线福利| 亚洲精品国产区一区二| 久9热在线精品视频| 麻豆久久精品国产亚洲av| 久久九九热精品免费| 一区二区三区激情视频| 黄片大片在线免费观看| 免费在线观看影片大全网站| 国产国语露脸激情在线看| 久久精品人妻少妇| 桃色一区二区三区在线观看| 亚洲第一av免费看| 欧美另类亚洲清纯唯美| 国产免费av片在线观看野外av| 久久伊人香网站| 国产免费av片在线观看野外av| 日本在线视频免费播放| 在线永久观看黄色视频| 黄片播放在线免费| 国产av不卡久久| 国产激情欧美一区二区| 久久久精品欧美日韩精品| 亚洲av成人一区二区三| 天天添夜夜摸| 亚洲最大成人中文| 免费人成视频x8x8入口观看| 国产精品亚洲一级av第二区| 好男人在线观看高清免费视频 | 免费看日本二区| 一级a爱片免费观看的视频| 欧美成人免费av一区二区三区| 国产又色又爽无遮挡免费看| √禁漫天堂资源中文www| av在线播放免费不卡| 法律面前人人平等表现在哪些方面| 国产不卡一卡二| 欧美另类亚洲清纯唯美| 91麻豆精品激情在线观看国产| 九色国产91popny在线| 男女床上黄色一级片免费看| 久久 成人 亚洲| 国产精品爽爽va在线观看网站 | 国产av不卡久久| 国产激情偷乱视频一区二区| 极品教师在线免费播放| 又黄又爽又免费观看的视频| 又大又爽又粗| 老司机靠b影院| 一进一出抽搐动态| 国产男靠女视频免费网站| 国产97色在线日韩免费| 亚洲片人在线观看| 国产aⅴ精品一区二区三区波| 美女高潮喷水抽搐中文字幕| 波多野结衣巨乳人妻| 黄色视频,在线免费观看| 无限看片的www在线观看| 国产成人精品久久二区二区91| 婷婷精品国产亚洲av| 亚洲精品久久国产高清桃花| 亚洲成人久久性| 热99re8久久精品国产| av中文乱码字幕在线| 性欧美人与动物交配| 在线观看一区二区三区| 观看免费一级毛片| 琪琪午夜伦伦电影理论片6080| 久久精品国产综合久久久| 一夜夜www| 国产乱人伦免费视频| 一边摸一边抽搐一进一小说| 午夜视频精品福利| 成人国语在线视频| 久久99热这里只有精品18| 黄片播放在线免费| 国产一区二区三区在线臀色熟女| 岛国在线观看网站| 男人的好看免费观看在线视频 | 国产一区二区激情短视频| 在线观看舔阴道视频| 国产高清有码在线观看视频 | 久久精品人妻少妇| 国产v大片淫在线免费观看| 久久婷婷人人爽人人干人人爱| 国产精华一区二区三区| 18禁观看日本| 久久久久国产一级毛片高清牌| 久久精品国产亚洲av香蕉五月| 精品第一国产精品| 成人亚洲精品一区在线观看| 欧美 亚洲 国产 日韩一| 母亲3免费完整高清在线观看| 亚洲人成网站在线播放欧美日韩| 精品熟女少妇八av免费久了| 国产成人系列免费观看| 欧美大码av| 亚洲精品国产精品久久久不卡| 国产熟女xx| 啪啪无遮挡十八禁网站| 丝袜在线中文字幕| 级片在线观看| 免费在线观看完整版高清| 欧美最黄视频在线播放免费| 日韩欧美免费精品| 亚洲欧美精品综合一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 日本五十路高清| 老司机午夜福利在线观看视频| 色综合亚洲欧美另类图片| 脱女人内裤的视频| 黄频高清免费视频| 日韩中文字幕欧美一区二区| 99久久国产精品久久久| 中文字幕人成人乱码亚洲影| 我的亚洲天堂| a级毛片a级免费在线| 免费在线观看视频国产中文字幕亚洲| 久久久久国内视频| 亚洲专区中文字幕在线| 久久草成人影院| 欧美午夜高清在线| 男男h啪啪无遮挡| 日本a在线网址| 一级黄色大片毛片| 无人区码免费观看不卡| 国内揄拍国产精品人妻在线 | 少妇被粗大的猛进出69影院| 看片在线看免费视频| 亚洲七黄色美女视频| 黑人巨大精品欧美一区二区mp4| 麻豆国产av国片精品| 亚洲自拍偷在线| 精品久久久久久久久久久久久 | 制服人妻中文乱码| a级毛片a级免费在线| 曰老女人黄片| 一级作爱视频免费观看| 欧美在线黄色| 看免费av毛片| 欧美成人性av电影在线观看| 欧美三级亚洲精品| 久久久久久亚洲精品国产蜜桃av| 香蕉av资源在线| 久久 成人 亚洲| 亚洲av熟女| 999精品在线视频| 亚洲成国产人片在线观看| 国产一卡二卡三卡精品| 人人妻人人看人人澡| 亚洲黑人精品在线| 国产高清视频在线播放一区| 成人亚洲精品av一区二区| 亚洲熟妇中文字幕五十中出| 亚洲av片天天在线观看| 亚洲国产欧美一区二区综合| 午夜视频精品福利| 熟女少妇亚洲综合色aaa.| 老汉色av国产亚洲站长工具| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品精品国产色婷婷| 一级a爱视频在线免费观看| 欧美日韩福利视频一区二区| 欧美在线黄色| 亚洲 欧美一区二区三区| 国产高清有码在线观看视频 | 亚洲成人精品中文字幕电影| 久久热在线av| 少妇裸体淫交视频免费看高清 | av天堂在线播放| 日本三级黄在线观看| 欧美日韩中文字幕国产精品一区二区三区| 日韩精品中文字幕看吧| 日韩有码中文字幕| av在线播放免费不卡| 国产激情欧美一区二区| 欧美在线一区亚洲| 国产爱豆传媒在线观看 | 亚洲色图av天堂| 久99久视频精品免费| 午夜a级毛片| 国产激情偷乱视频一区二区| 亚洲国产欧美一区二区综合| 韩国精品一区二区三区| 国产高清videossex| 亚洲性夜色夜夜综合| 国产精品亚洲一级av第二区| 国产亚洲欧美98| 美女高潮喷水抽搐中文字幕| 两性午夜刺激爽爽歪歪视频在线观看 | 真人一进一出gif抽搐免费| 国产在线观看jvid| 成人一区二区视频在线观看| 啪啪无遮挡十八禁网站| 日韩精品青青久久久久久| 在线播放国产精品三级| av在线天堂中文字幕| 亚洲熟女毛片儿| e午夜精品久久久久久久| 日韩欧美三级三区| 无限看片的www在线观看| 欧美成狂野欧美在线观看| 欧美av亚洲av综合av国产av| 午夜免费鲁丝| 免费人成视频x8x8入口观看| www.自偷自拍.com| 一本精品99久久精品77| 国产亚洲精品久久久久5区| 在线观看www视频免费| 精品久久蜜臀av无| 国产精品九九99| 午夜激情av网站| 无人区码免费观看不卡| 国产一卡二卡三卡精品| 老司机深夜福利视频在线观看| 99在线视频只有这里精品首页| avwww免费| 亚洲av成人一区二区三| 91国产中文字幕| 巨乳人妻的诱惑在线观看| 看免费av毛片| a级毛片在线看网站| 亚洲 国产 在线| www.熟女人妻精品国产| 亚洲狠狠婷婷综合久久图片| 亚洲 欧美 日韩 在线 免费| 色综合欧美亚洲国产小说| 久久久久久国产a免费观看| 亚洲五月色婷婷综合| 女人被狂操c到高潮| 日韩三级视频一区二区三区| 一级a爱视频在线免费观看| 亚洲免费av在线视频| 亚洲av成人av| 国产精品1区2区在线观看.| 成年免费大片在线观看| 国产av不卡久久| 变态另类成人亚洲欧美熟女| 首页视频小说图片口味搜索| 亚洲精品美女久久av网站| 亚洲欧美精品综合一区二区三区| 最新在线观看一区二区三区| 亚洲精品美女久久av网站| 黄色成人免费大全| 亚洲成国产人片在线观看| 国产精品九九99| 国产亚洲精品久久久久久毛片| 国产成人欧美在线观看| av有码第一页| 亚洲五月色婷婷综合| 中出人妻视频一区二区| 视频区欧美日本亚洲| 在线观看免费视频日本深夜| 国产v大片淫在线免费观看| 亚洲无线在线观看| 国产午夜福利久久久久久| 欧洲精品卡2卡3卡4卡5卡区| 成在线人永久免费视频|