• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on will-dimension SIFT algorithms for multi-attitude face recognition①

    2022-10-22 02:23:34SHENGWenshun圣文順SUNYanwenXULiujing
    High Technology Letters 2022年3期

    SHENG Wenshun (圣文順), SUN Yanwen, XU Liujing

    (*Pujiang Institute, Nanjing Tech University, Nanjing 211200, P.R.China)

    (**School of Information Engineering, Nanjing Audit University, Nanjing 211815, P.R.China)

    Abstract The results of face recognition are often inaccurate due to factors such as illumination, noise intensity, and affine/projection transformation.In response to these problems, the scale invariant feature transformation (SIFT) is proposed, but its computational complexity and complication seriously affect the efficiency of the algorithm. In order to solve this problem, SIFT algorithm is proposed based on principal component analysis (PCA) dimensionality reduction. The algorithm first uses PCA algorithm, which has the function of screening feature points, to filter the feature points extracted in advance by the SIFT algorithm; then the high-dimensional data is projected into the low-dimensional space to remove the redundant feature points, thereby changing the way of generating feature descriptors and finally achieving the effect of dimensionality reduction. In this paper, through experiments on the public ORL face database, the dimension of SIFT is reduced to 20 dimensions,which improves the efficiency of face extraction;the comparison of several experimental results is completed and analyzed to verify the superiority of the improved algorithm.

    Key words: face recognition, scale invariant feature transformation (SIFT), dimensionality reduction, principal component analysis-scale invariant feature transformation (PCA-SIFT)

    0 Introduction

    Face recognition is an important branch of computer vision research. It is a subject that belongs to both the field of biometric recognition and artificial intelligence, and also one of the most successful applications of image analysis and understanding, involving computer graphics,pattern recognition,artificial intelligence,image processing and other related technologies[1-3]. The feasibility technology of face recognition has been studied for more than 30 years, and has been widely used in business, security, identity authentication, law enforcement and so on. This technology has attracted more and more attention, and has gradually become a dynamic research field.

    Face recognition can be divided into frontal face recognition and multipose face recognition according to whether the pose changes or not[4]. The former has high requirements for frontal face posture and is very sensitive to posture changes, the robustness[5]of the system is often difficult to guarantee; the latter uses multiple face images of multiple vision to build a multisample and multi-posetraining set[6], and adds a feature fusion process after feature extraction[7], so the recognition rate is high and more universal. However,further in-depth researches and improvements are needed for dynamic face recognition and detection as well as for faces under complex multi background.Face recognition is an important research field in biometric recognition technology. Due to the changes of emotion and environment in the process of facial image acquisition,such as multi pose expressions, changes in light intensity, change in noise intensity, rotation, scaling scale,occlusions on the face[8-9](glasses, sunglasses, hats,wound dressings, etc.), age change, accurate and powerful face recognition system is facing great challenges. The scale invariant feature transformation (SIFT)algorithm[10-12]is based on the potential of the image on the scale space to be invariant to the scale and selection points of interest, which is independent of image size, scale scaling and rotation[13]. The algorithm solves the above problem by using Gaussian differential function to find extreme points. SIFT feature is based on some local appearance interest points on the object.The processed image can detect the face under the changes of illumination intensity, noise intensity and microscopic angle of view, with high stability. In addition, the detection rate of partial object masking described by SIFT features is also quite high, and even more than three sift object features are enough to calculate the position and direction.However, although SIFT algorithm can deal with face clearly,it has high dimensionality, high computational complexity and cumbersome computational process, which seriously affects the realtime performance of face recognition[14]. The classical SIFT algorithm has a large amount of computation, and each feature point contains 4 ×4 ×8 =128 feature description vectors. Extracting too many feature points in areas with complex details is prone to produce false matching. For the realtime performance of target tracking, the efficiency of SIFT algorithm is extremely low.In this paper, a SIFT feature extraction and dimensionality reduction algorithm based on principal component analysis (PCA)[15]is proposed. On the original basis of the SIFT algorithm in face recognition,the dimensionality reduction algorithm is used to reduce the dimensionality, simplify the tedious calculation process and reduce the calculation complexity, and improve the efficiency of face recognition. The improved SIFT algorithm has obvious advantages over the original SIFT algorithm in that it can speed up the processing of massive data while maintaining the illumination invariance, rotation invariance, scale invariance and occlusion invariance of the original algorithm.

    1 Face recognition and SIFT algorithm principle

    1.1 Face recognition

    The face recognition system can be roughly divided into the following four stages, namely, face image acquisition and detection, face image preprocessing,face image feature extraction, face image matching and recognition[16]. Firstly, the basic process is to collect images containing facial information through cameras,scanners, video streams, etc., and use face detection technology to detect or track the faces in the images,judge the location of the faces in the images,determine and complete accurate positioning of faces. Secondly,the face image preprocessing technology is used to denoise the image obtained in the previous stage of positioning and normalize the illumination to improve the face quality, so as to facilitate the extraction of face features in the next stage. Thirdly, the face image feature extraction technology is used to extract features of the face image after the second stage of correction preprocessing, that is, to extract the features of the main parts of the face image such as eyes, ears, mouth, and nose, and perform classification and recognition. Finally, using the face image matching and recognition technology, the feature data of the face image extracted in the previous stage and the feature data collected and extracted from the face database image are searched,recognized and matched, so as to distinguish, judge and recognize the human identity. The specific process is shown in Fig.1.

    Fig.1 The process of face recognition

    As an important biological feature, human face has the following advantages in the fields of electronic information security, security protection, human trace tracking, human-computer interaction and so on.

    (1) Universality: a biological characteristic possessed by all.

    (2) Directness and operability:it is convenient to obtain the face exposed, and the cost of acquisition equipment is low. The face image can be obtained by only the camera, and the operation is simple.

    (3) Concealment: undetectable to the identifier at the time of authentication.

    (4) Non-contact: it is obtained in a non-contact manner through shooting equipment, which is easy to be accepted and promoted.

    (5) Security and reliability: in addition to medical factors, facial features are stable, not easy to lose and difficult to forge.

    1.2 Classical SIFT algorithm

    1.2.1 Basic principle of algorithm

    Based on the image in scale space, SIFT algorithm uses Gaussian differential function to identify potential points of interest that are invariant to scale and selection. It is a very stable local feature descriptor algorithm. The local feature descriptor extracted by SIFT algorithm has strong tolerance for many factors such as the change of illumination intensity, noise intensity,rotation, scaling scale, change of micro vision angle and so on[17].

    1.2.2 SIFT algorithm steps

    (1) Establish scale space through Gaussian convolution.

    (2) Construct a Gaussian difference pyramid to detect extreme points, and verify the extreme points by traversal.

    (3) Delete extreme points of edge response and low contrast.

    (4) Determine the direction of the feature point through the gradient histogram.

    (5) Create feature descriptors.

    The basic flow of SIFT algorithm implementation is shown in Fig.2.

    Fig.2 Basic flow of SIFT algorithm

    2 Dimension reduction algorithm and improved SIFT algorithm based on dimension reduction algorithm

    2.1 Dimensionality reduction algorithm

    When processing an image,a large number of feature points or some more complex feature points are extracted to improve accuracy, but each feature point will generate 128-dimensional feature descriptor. Assuming that the database needs to store an image, SIFT algorithm will decompose it into 400 feature points when processing the image,which will occupy a lot of memory and slow down the retrieval speed, which will seriously affect the efficiency. In order to improve this characteristic of SIFT algorithm, it is necessary to introduce dimensionality reduction technology to reduce the dimension of 120-dimensional feature vector to 64 dimensions, or even 32 dimensions. The commonly used dimensionality reduction techniques are principal component analysis (PCA) algorithm and linear discriminant analysis (LDA) algorithm. In this study,the PCA algorithm is more appropriate.

    PCA is one of the most commonly used linear dimensionality reduction techniques[18], which takes many samples of relevant input features as inputs and outputs orthogonal features as linear combinations of input features. It is an effective method for information processing, compression and extraction, and has high efficiency in dimensionality reduction and feature extraction. In essence the PCA method is based on the K-L transformation principle[19], which extracts the features of the data to form the feature space, and then projects the test set to the feature space to obtain the projection coefficient[20]. In other words, the high-dimensional original image is mapped to the low-dimensional space through the projection method, retaining as many pixels of the original image as possible and removing the pixels with a small amount of information.The larger the variance of the mapped data, the more feature points of the original image are retained. Studies have proved that PCA is a linear dimensionality reduction technique that has the least number of pixels lost in the original image. Therefore, PCA algorithm is used to reduce the dimensionality of the image.

    The main idea of PCA is to construct a series of linear combinations of original features to form low dimensional features. In this way, it can not only remove the correlation of the data, but also keep the variance information of the original data to the greatest extentafter dimensionality reduction.

    The core of the algorithm is to find the maximum variance. Suppose thatWis the projection matrix,then the projection of the imagexin the new coordinates isWTx,the variance isWTxxTW,and the objective function is

    Among them-λis the eigenvalue ofXXT,to reduce the image fromn-dimension tok-dimension, the eigenvectors corresponding tokeigenvalues and the matrixWcomposed ofkeigenvectors are needed.

    2. 2 Reduced dimensional improvement of the SIFT algorithm

    2.2.1 Principle of PCA-SIFT algorithm

    Although SIFT algorithm is applied to face recognition to solve the problems of image rotation, scale scaling, illumination changes, noise interference and so on, due to the existence of high-dimensional (128-dimensional) feature vectors, the computational complexity is high, the recognition process takes a long time and the realtime performance is not high. In order to solve this problem, a SIFT algorithm based on PCA dimensionality reduction is proposed. Using the PCA algorithm with the function of filtering feature points,the feature points extracted in advance by SIFT algorithm are filtered, and the high-dimensional data are projected into the low-dimensional space to remove redundant feature points, thereby changing the way of generating feature descriptors and achieving the effect of dimensionality reduction, as shown in Fig.3.

    Fig.3 Projection target of PCA algorithm

    2.2.2 Calculate the projection matrix

    The calculation of the PCA-SIFT projection matrix mainly involves the following steps.

    (1) Use the SIFT algorithm to extract the feature points in the training set, and the number is recorded asn.

    (2) Divide a 41 ×41 neighborhood window and rotate the coordinate axis to the main direction of each feature point when generating a feature descriptor for each feature point. Remove the edge pixels of the four corners, calculate the gradient of each remaining pixel in the horizontal and vertical directions, and obtain a description vector of 39 ×39 ×2 =3042.

    (3) Calculate the average vector of the 3042-dimensional description vector of thenfeature points,and subtract the average vector from the 3042-dimensional vector of thenfeature points, and put the resulting difference into then×3042 matrixW.

    (4) Calculate the covariance matrix CovWof the matrixW, and calculate the eigenvalues and eigenvectors of the covariance matrix CovW[21].

    (5) Sort the obtained eigenvalues from large to small, and select the eigenvectors corresponding to the firstkeigenvalues as the principal component directions to form ak×3042 projection matrix, wherekis the dimension of the PCA-SIFT feature descriptor[22].

    The above steps(3) - (5) are pre-calculated,that is, the projection matrix is calculated in advance through the same type of image set using the PCA principle. After the feature points in the image are calculated to obtain the 3042-dimensional feature descriptor,it only needs to be multiplied by the projection matrix to achieve the effect of dimensionality reduction. Regarding the selection ofnof the projection matrix, the value ofncan be fixed as needed, or the size ofncan be automatically determined according to the percentage of the eigenvalue energy value of the covariance matrix. The flow chart for its generation of PCA-SIFT descriptors is shown in Fig.4.

    Fig.4 Flow chart for generating PCA-SIFT descriptors

    2.2.3 Generate PCA-SIFT feature descriptor

    The steps to generate the PCA-SIFT feature descriptor are as follows.

    (1) Rotate the coordinate axis to the main direction of the feature point, divide a 41 ×41 neighborhood window, and calculate the horizontal and vertical gradient of each pixel after removing the edge corner pixels, that is, a 39 ×39 ×2 =3042 dimensional description vector.

    (2) Multiply the vector by the projection matrix obtained in the previous section to obtain ak-dimensional eigenvector.

    3 Discussion

    In this paper, Python is used as the experimental test language, and the ORL face database[23]is selected for experimental comparison. The ORL face database contains 40 people,each of whom has 10 gray images with different expressions, gestures or occlusion to varying degrees. The number of the pictures is 92 112.This is currently one of the most used face databases for research on face recognition. Fig.5 shows some of the images in the ORL face database.

    Fig.5 Partial face images in ORL face database

    3. 1 Determination of the optimal dimension k value

    Before image processing, PCA algorithm is selected to reduce the dimensionality of the image, and the accuracy rates when the dimensionality is reduced to 40,30,20, and 10 respectively are shown in Fig.6.

    In summary, the recognition rates of different dimensions are shown in Fig.7.

    In this article,k=20 is set,which means that the 128-dimensional feature descriptor of SIFT will be reduced to the 20-dimensional PCA-SIFT feature descriptor, and then the experimental results are analyzed and compared.

    Fig.6 Comparison of recognition accuracy of different reduced dimensions

    Fig.7 Synthetic graph of recognition accuracy of different dimensions

    3.2 Algorithm test and algorithm comparison

    In view of the influence of different expressions,posture changes, obstructions, scaling and other factors, the following four sets of experiments show the effects of the algorithm, as shown in Fig.8.

    The algorithm was tested on the ORL face library by selectingi(i=1, 2,…, 8, 9) images from each person as training samples, training the support vector machine (SVM) under the optimal parameters to obtain the SVM model, and the remainingj(j=10 -i)images as test samples, labelled in turn asi+ 1 images,i+ 2 images,…,10 images. The test results are shown in Table 1.

    Fig.8 Generating rendering of feature descriptor under multiple factor interference

    Table 1 Test results (the recognition rate/%)

    It can be seen from Table 1 that when the number of training samples exceeds 6 pieces/person, the recognition rate is 100%; when the number of training samples is only 1 piece/person, the recognition rate can reach 85%, and the average recognition rate of the algorithm is 97%. The average recognition rate is better than the face recognition rate in Refs[24-27]. It can be seen that the algorithm has a higher recognition rate than the general SVM algorithm and PCA algorithm. The comparison of different face recognition algorithms is shown in Table 2.

    Table 3 shows the comparison of the advantages and disadvantages of the SIFT algorithm and the PCASIFT algorithm.

    The comparison of the operation time of the two algorithms is shown in Table 4. The comprehensive time-consuming of the PCA-SIFT algorithm is significantly lower than that of the SIFT algorithm.

    Table 2 Comparison of different face recognition algorithms

    4 Conclusions

    By comparing the PCA-SIFT algorithm with the traditional SIFT algorithm, the descriptors obtained by the PCA-SIFT algorithm under the conditions of rotation, scale transformation, perspective transformation,and feature recognition and matching, the time consumed to generate feature descriptors is almost the same as that of traditional SIFT algorithms. However,the time consumed in image matching is much less than that of traditional SIFT algorithms. It can be seen that the descriptors generated by PCA-SIFT are of higher quality and faster.

    Table 3 Comparison of advantages and disadvantages between SIFT algorithm and PCA-SIFT algorithm

    Table 4 Time consuming comparison between SIFT algorithm and PCA-SIFT algorithm

    PCA is used to reduce the dimension of the SIFT algorithm, which greatly improves the efficiency and speed of face recognition. Face recognition can be applied to security systems such as surveillance to improve the real-time as well as timeliness of the system.

    校园人妻丝袜中文字幕| 亚洲国产中文字幕在线视频| 大香蕉久久网| 亚洲欧美色中文字幕在线| 亚洲一区中文字幕在线| 色视频在线一区二区三区| 女人精品久久久久毛片| 亚洲av电影在线进入| 老司机靠b影院| 国语对白做爰xxxⅹ性视频网站| 国产成人啪精品午夜网站| 极品人妻少妇av视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲一区二区三区欧美精品| 亚洲精品美女久久久久99蜜臀 | 男人添女人高潮全过程视频| 国产亚洲一区二区精品| 久久久久网色| 99国产精品99久久久久| 人人妻人人添人人爽欧美一区卜| 麻豆乱淫一区二区| 国产免费又黄又爽又色| 国产免费现黄频在线看| 嫁个100分男人电影在线观看 | 久久精品熟女亚洲av麻豆精品| 国产高清不卡午夜福利| 后天国语完整版免费观看| www.精华液| 最近手机中文字幕大全| 自线自在国产av| 国产成人一区二区在线| 日韩一本色道免费dvd| 国产成人欧美在线观看 | 国产亚洲欧美在线一区二区| 中文字幕人妻熟女乱码| 多毛熟女@视频| 亚洲自偷自拍图片 自拍| 男人舔女人的私密视频| 男女床上黄色一级片免费看| 久9热在线精品视频| 亚洲精品国产色婷婷电影| 国产老妇伦熟女老妇高清| 人人妻,人人澡人人爽秒播 | 亚洲欧美日韩高清在线视频 | 国产精品熟女久久久久浪| 亚洲国产精品国产精品| 五月开心婷婷网| 成年人黄色毛片网站| av一本久久久久| 五月天丁香电影| 新久久久久国产一级毛片| 五月开心婷婷网| 亚洲一卡2卡3卡4卡5卡精品中文| 高清不卡的av网站| 欧美亚洲日本最大视频资源| 熟女av电影| 亚洲国产欧美一区二区综合| 免费久久久久久久精品成人欧美视频| 国产精品免费视频内射| 午夜福利乱码中文字幕| 久久人妻熟女aⅴ| 日韩制服骚丝袜av| 91精品伊人久久大香线蕉| 国产一级毛片在线| 在线精品无人区一区二区三| 欧美日韩一级在线毛片| 日本av手机在线免费观看| 一边摸一边做爽爽视频免费| 欧美激情 高清一区二区三区| 伊人亚洲综合成人网| 又粗又硬又长又爽又黄的视频| 婷婷色综合www| 亚洲国产精品国产精品| 黑丝袜美女国产一区| 国产黄色免费在线视频| 免费久久久久久久精品成人欧美视频| netflix在线观看网站| 少妇 在线观看| 日韩一区二区三区影片| 老汉色∧v一级毛片| 欧美日韩黄片免| 午夜视频精品福利| videos熟女内射| 80岁老熟妇乱子伦牲交| 一二三四社区在线视频社区8| 午夜福利免费观看在线| 在线看a的网站| 亚洲精品日韩在线中文字幕| 亚洲一卡2卡3卡4卡5卡精品中文| 国产麻豆69| 亚洲成国产人片在线观看| 在线观看国产h片| 亚洲精品久久午夜乱码| 国产成人免费无遮挡视频| a级毛片黄视频| 国产日韩欧美视频二区| 婷婷色av中文字幕| 精品福利观看| 一级毛片女人18水好多 | 国产一区二区在线观看av| 午夜福利,免费看| 午夜福利一区二区在线看| 中文乱码字字幕精品一区二区三区| 国产伦人伦偷精品视频| 中文字幕人妻丝袜一区二区| 成年动漫av网址| 91字幕亚洲| 热re99久久国产66热| 国产成人av激情在线播放| 国产精品亚洲av一区麻豆| 男女下面插进去视频免费观看| 欧美变态另类bdsm刘玥| 亚洲熟女毛片儿| 丰满少妇做爰视频| bbb黄色大片| 女警被强在线播放| 香蕉丝袜av| 午夜福利在线免费观看网站| 少妇精品久久久久久久| 午夜视频精品福利| 热re99久久精品国产66热6| 欧美日韩精品网址| 9191精品国产免费久久| 亚洲国产欧美网| 国产成人啪精品午夜网站| 亚洲国产av新网站| 国产精品国产三级专区第一集| 亚洲欧美一区二区三区黑人| 日韩熟女老妇一区二区性免费视频| 国产亚洲欧美在线一区二区| 18禁观看日本| 精品福利观看| 国产亚洲午夜精品一区二区久久| 只有这里有精品99| 欧美人与善性xxx| 18禁国产床啪视频网站| 日韩熟女老妇一区二区性免费视频| 国产精品国产av在线观看| 在线精品无人区一区二区三| 亚洲国产日韩一区二区| 国产91精品成人一区二区三区 | 蜜桃在线观看..| 激情视频va一区二区三区| 少妇粗大呻吟视频| 国产深夜福利视频在线观看| 丁香六月天网| av在线app专区| 午夜影院在线不卡| 亚洲成人国产一区在线观看 | 一级毛片电影观看| 丁香六月欧美| 2021少妇久久久久久久久久久| 欧美日韩精品网址| 亚洲欧美一区二区三区国产| a 毛片基地| 亚洲欧美精品综合一区二区三区| 一本综合久久免费| 午夜福利影视在线免费观看| 国产视频首页在线观看| 少妇的丰满在线观看| 欧美大码av| 亚洲成人手机| 免费在线观看视频国产中文字幕亚洲 | 不卡av一区二区三区| 夜夜骑夜夜射夜夜干| 91九色精品人成在线观看| 一本久久精品| 建设人人有责人人尽责人人享有的| 亚洲精品在线美女| 婷婷色av中文字幕| 18禁观看日本| 伊人久久大香线蕉亚洲五| 一区福利在线观看| 欧美激情极品国产一区二区三区| 一区福利在线观看| 日韩欧美一区视频在线观看| 在线观看人妻少妇| 欧美精品亚洲一区二区| 热re99久久国产66热| 亚洲精品久久午夜乱码| 色视频在线一区二区三区| 日韩av免费高清视频| 亚洲国产av影院在线观看| 最黄视频免费看| 在线天堂中文资源库| 波多野结衣av一区二区av| 久久精品久久久久久久性| 亚洲国产欧美网| 久久久久久久精品精品| 日韩av免费高清视频| 汤姆久久久久久久影院中文字幕| 国产熟女欧美一区二区| a级片在线免费高清观看视频| 亚洲精品国产区一区二| 亚洲精品av麻豆狂野| av又黄又爽大尺度在线免费看| 久久精品成人免费网站| 天天添夜夜摸| 国产男女超爽视频在线观看| www.999成人在线观看| 国产xxxxx性猛交| 亚洲av成人不卡在线观看播放网 | 婷婷色麻豆天堂久久| 日本a在线网址| 五月开心婷婷网| 日韩视频在线欧美| 黑人巨大精品欧美一区二区蜜桃| 美女国产高潮福利片在线看| 丝袜美足系列| 黑人猛操日本美女一级片| 最新在线观看一区二区三区 | 国产伦理片在线播放av一区| 午夜福利一区二区在线看| 国产在线视频一区二区| 男女床上黄色一级片免费看| 国产一区二区三区综合在线观看| av视频免费观看在线观看| 欧美激情极品国产一区二区三区| 亚洲av日韩精品久久久久久密 | 免费看av在线观看网站| 手机成人av网站| 亚洲国产欧美网| 黄色毛片三级朝国网站| 免费在线观看视频国产中文字幕亚洲 | 亚洲成av片中文字幕在线观看| 亚洲成av片中文字幕在线观看| 高清视频免费观看一区二区| 国产精品久久久av美女十八| 国产亚洲精品第一综合不卡| 天天躁夜夜躁狠狠躁躁| 老司机靠b影院| 亚洲欧美一区二区三区国产| a级毛片黄视频| 国语对白做爰xxxⅹ性视频网站| 午夜日韩欧美国产| av国产精品久久久久影院| 老司机午夜十八禁免费视频| av福利片在线| 免费观看a级毛片全部| 国产精品国产三级专区第一集| 精品福利永久在线观看| 日本a在线网址| 欧美精品人与动牲交sv欧美| 亚洲欧美一区二区三区黑人| 成人免费观看视频高清| 看十八女毛片水多多多| 黑丝袜美女国产一区| 国产在线视频一区二区| 国产精品二区激情视频| 人人妻人人爽人人添夜夜欢视频| 欧美黑人欧美精品刺激| 1024香蕉在线观看| 99精国产麻豆久久婷婷| 日韩一本色道免费dvd| 免费看十八禁软件| 后天国语完整版免费观看| 高清黄色对白视频在线免费看| 免费人妻精品一区二区三区视频| 国产一区二区在线观看av| 精品久久蜜臀av无| 在线观看国产h片| 黑人欧美特级aaaaaa片| 人人妻人人添人人爽欧美一区卜| 久久精品久久精品一区二区三区| 高潮久久久久久久久久久不卡| 久久精品久久精品一区二区三区| 一区二区三区乱码不卡18| 一区二区三区激情视频| 伊人久久大香线蕉亚洲五| h视频一区二区三区| 99国产精品免费福利视频| 十八禁人妻一区二区| 2018国产大陆天天弄谢| 欧美国产精品va在线观看不卡| 亚洲伊人色综图| 久久久国产精品麻豆| 国产极品粉嫩免费观看在线| 亚洲国产精品一区三区| 国产黄色视频一区二区在线观看| 日本欧美视频一区| 亚洲国产精品一区二区三区在线| 女人精品久久久久毛片| 啦啦啦在线免费观看视频4| 午夜免费成人在线视频| www.av在线官网国产| 视频区图区小说| 2021少妇久久久久久久久久久| 国产亚洲欧美在线一区二区| 久久ye,这里只有精品| 国产亚洲精品第一综合不卡| 久久免费观看电影| 久久精品国产综合久久久| 美女午夜性视频免费| 青春草亚洲视频在线观看| 国产亚洲av高清不卡| 男女床上黄色一级片免费看| √禁漫天堂资源中文www| 亚洲 国产 在线| 精品免费久久久久久久清纯 | 性色av一级| 肉色欧美久久久久久久蜜桃| 国产精品一区二区在线不卡| 久久久国产欧美日韩av| 国产色视频综合| 午夜福利影视在线免费观看| 久久av网站| 日本wwww免费看| 女性被躁到高潮视频| 一本一本久久a久久精品综合妖精| 精品一区二区三区四区五区乱码 | 91麻豆精品激情在线观看国产 | 又大又爽又粗| 午夜91福利影院| 黄片小视频在线播放| 两人在一起打扑克的视频| 激情视频va一区二区三区| 欧美xxⅹ黑人| 色视频在线一区二区三区| 久久久久久久国产电影| 成人亚洲精品一区在线观看| 最黄视频免费看| 777米奇影视久久| 午夜91福利影院| 伊人久久大香线蕉亚洲五| 精品人妻熟女毛片av久久网站| 久久精品国产亚洲av高清一级| 别揉我奶头~嗯~啊~动态视频 | 黄色一级大片看看| 午夜av观看不卡| 欧美日韩亚洲国产一区二区在线观看 | 国产av精品麻豆| 又大又爽又粗| 国产精品人妻久久久影院| 久久精品国产综合久久久| 91字幕亚洲| 视频区欧美日本亚洲| 国产精品 国内视频| 一本色道久久久久久精品综合| 国产av国产精品国产| 欧美成人午夜精品| 日本五十路高清| 免费看不卡的av| 人妻一区二区av| 国产福利在线免费观看视频| 七月丁香在线播放| 国产在视频线精品| 丝瓜视频免费看黄片| 90打野战视频偷拍视频| 国产一区二区在线观看av| 丰满少妇做爰视频| 成人国产一区最新在线观看 | av视频免费观看在线观看| 亚洲av日韩在线播放| 日本猛色少妇xxxxx猛交久久| 不卡av一区二区三区| 国产真人三级小视频在线观看| 日韩大码丰满熟妇| 2018国产大陆天天弄谢| 午夜91福利影院| 国产亚洲精品第一综合不卡| 中文字幕人妻丝袜一区二区| 日本午夜av视频| 久久久久国产一级毛片高清牌| 国产av国产精品国产| 蜜桃国产av成人99| 久久久精品免费免费高清| 午夜福利视频在线观看免费| 19禁男女啪啪无遮挡网站| 麻豆国产av国片精品| 亚洲精品乱久久久久久| 欧美日韩国产mv在线观看视频| 人人妻,人人澡人人爽秒播 | 亚洲三区欧美一区| 亚洲欧美色中文字幕在线| 免费观看人在逋| av网站在线播放免费| 色婷婷久久久亚洲欧美| 国产精品香港三级国产av潘金莲 | 黑人欧美特级aaaaaa片| 下体分泌物呈黄色| 日韩视频在线欧美| 美女脱内裤让男人舔精品视频| 国产精品一国产av| 男女高潮啪啪啪动态图| netflix在线观看网站| 亚洲国产精品国产精品| 日韩熟女老妇一区二区性免费视频| 婷婷色综合大香蕉| 真人做人爱边吃奶动态| 精品亚洲乱码少妇综合久久| 大型av网站在线播放| 美女扒开内裤让男人捅视频| 9191精品国产免费久久| 婷婷成人精品国产| 亚洲视频免费观看视频| 永久免费av网站大全| 性少妇av在线| 久久ye,这里只有精品| 91精品伊人久久大香线蕉| 人人妻人人添人人爽欧美一区卜| netflix在线观看网站| 日本91视频免费播放| 国产高清不卡午夜福利| 国产麻豆69| 咕卡用的链子| 自线自在国产av| 国产高清不卡午夜福利| 精品欧美一区二区三区在线| 国产男女内射视频| 久久久久久亚洲精品国产蜜桃av| 黑人欧美特级aaaaaa片| 黄色 视频免费看| 欧美人与善性xxx| 又大又爽又粗| 中国国产av一级| 亚洲五月色婷婷综合| www.999成人在线观看| 国产一区二区三区av在线| 久久综合国产亚洲精品| 老司机影院成人| 巨乳人妻的诱惑在线观看| 国产伦人伦偷精品视频| 菩萨蛮人人尽说江南好唐韦庄| av国产久精品久网站免费入址| 精品人妻1区二区| 天天添夜夜摸| 欧美另类一区| 国产视频一区二区在线看| 一二三四社区在线视频社区8| 最黄视频免费看| 精品高清国产在线一区| 纯流量卡能插随身wifi吗| 波野结衣二区三区在线| 亚洲精品国产一区二区精华液| 亚洲欧美激情在线| 五月开心婷婷网| 国产成人91sexporn| 国产老妇伦熟女老妇高清| 久热这里只有精品99| 欧美日韩视频精品一区| av电影中文网址| 亚洲第一青青草原| 国产成人啪精品午夜网站| 国产亚洲av片在线观看秒播厂| 又大又黄又爽视频免费| 欧美日韩黄片免| 免费看十八禁软件| 亚洲一区中文字幕在线| 国产熟女欧美一区二区| 亚洲中文日韩欧美视频| 男女床上黄色一级片免费看| 观看av在线不卡| 国产精品久久久久成人av| 久久亚洲国产成人精品v| 日本vs欧美在线观看视频| 免费女性裸体啪啪无遮挡网站| av国产精品久久久久影院| 国产成人一区二区在线| 天堂8中文在线网| 热99久久久久精品小说推荐| 色综合欧美亚洲国产小说| 国产成人系列免费观看| 操美女的视频在线观看| videos熟女内射| 日韩一卡2卡3卡4卡2021年| 丝瓜视频免费看黄片| 国产国语露脸激情在线看| 飞空精品影院首页| 在线观看免费午夜福利视频| 久久久久久久国产电影| 极品人妻少妇av视频| 老司机靠b影院| 亚洲美女黄色视频免费看| 热re99久久精品国产66热6| 亚洲美女黄色视频免费看| 老汉色∧v一级毛片| 最黄视频免费看| 好男人电影高清在线观看| 国产麻豆69| 久久国产精品男人的天堂亚洲| 亚洲成国产人片在线观看| 无遮挡黄片免费观看| 亚洲熟女精品中文字幕| 侵犯人妻中文字幕一二三四区| 久久99精品国语久久久| 欧美成人精品欧美一级黄| 视频区图区小说| 午夜精品国产一区二区电影| 婷婷色综合大香蕉| 一边摸一边做爽爽视频免费| 视频区图区小说| 午夜免费成人在线视频| 国产麻豆69| 久久狼人影院| 成人18禁高潮啪啪吃奶动态图| 亚洲久久久国产精品| 两个人看的免费小视频| a级片在线免费高清观看视频| 天堂8中文在线网| 亚洲第一青青草原| 亚洲精品久久午夜乱码| 亚洲中文av在线| 丰满少妇做爰视频| 国产一区二区激情短视频 | 成人影院久久| 欧美黄色片欧美黄色片| 亚洲欧美日韩高清在线视频 | 国产日韩欧美视频二区| 亚洲五月婷婷丁香| 欧美成人精品欧美一级黄| 免费在线观看黄色视频的| 成年av动漫网址| 国产国语露脸激情在线看| 国产在线一区二区三区精| 精品一区二区三区四区五区乱码 | 国产日韩欧美视频二区| 尾随美女入室| 老司机午夜十八禁免费视频| 日韩 亚洲 欧美在线| 天天添夜夜摸| 我的亚洲天堂| 青春草视频在线免费观看| 人人妻人人澡人人看| 秋霞在线观看毛片| 香蕉丝袜av| 午夜免费鲁丝| 久久亚洲精品不卡| 69精品国产乱码久久久| 水蜜桃什么品种好| 国产亚洲精品久久久久5区| 美女福利国产在线| 丁香六月天网| 美女主播在线视频| 久久久久国产精品人妻一区二区| 永久免费av网站大全| 在现免费观看毛片| 国产成人影院久久av| 免费看av在线观看网站| 国产极品粉嫩免费观看在线| 一个人免费看片子| 国产成人啪精品午夜网站| 午夜福利,免费看| 亚洲,一卡二卡三卡| 老司机影院毛片| 欧美性长视频在线观看| 天天躁夜夜躁狠狠久久av| 黄网站色视频无遮挡免费观看| 一区在线观看完整版| 欧美+亚洲+日韩+国产| 欧美日韩视频精品一区| 成年av动漫网址| 少妇的丰满在线观看| 一区福利在线观看| 丁香六月欧美| 国产免费福利视频在线观看| 国产精品99久久99久久久不卡| 日本av免费视频播放| 伊人久久大香线蕉亚洲五| 日本vs欧美在线观看视频| 男人添女人高潮全过程视频| 国产视频首页在线观看| 精品人妻在线不人妻| 又粗又硬又长又爽又黄的视频| 国产又色又爽无遮挡免| 久久影院123| 国产又色又爽无遮挡免| 国产高清videossex| 亚洲av美国av| 啦啦啦在线免费观看视频4| 久久中文字幕一级| 亚洲色图综合在线观看| 久久国产精品大桥未久av| 女性被躁到高潮视频| 18在线观看网站| 中文字幕制服av| 操美女的视频在线观看| 久久久精品免费免费高清| 人人妻人人添人人爽欧美一区卜| 90打野战视频偷拍视频| 五月天丁香电影| 成年人黄色毛片网站| 日本91视频免费播放| 桃花免费在线播放| 美女中出高潮动态图| 亚洲欧洲精品一区二区精品久久久| 欧美黑人欧美精品刺激| 少妇猛男粗大的猛烈进出视频| 天堂中文最新版在线下载| 又紧又爽又黄一区二区| 精品国产乱码久久久久久小说| 无遮挡黄片免费观看| 国产成人91sexporn| 自线自在国产av| 国产极品粉嫩免费观看在线| 性色av一级| 日本a在线网址| 午夜福利视频精品| 精品少妇黑人巨大在线播放| 亚洲欧洲日产国产| videos熟女内射| 国产精品成人在线| 下体分泌物呈黄色| 波野结衣二区三区在线| 在线观看国产h片| 久久久国产欧美日韩av| av福利片在线| 少妇 在线观看| 少妇裸体淫交视频免费看高清 | 99精品久久久久人妻精品| 热99国产精品久久久久久7| 成年动漫av网址| 国产男女内射视频| 在线观看免费视频网站a站| 日韩av免费高清视频| 国产淫语在线视频|