• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Research on will-dimension SIFT algorithms for multi-attitude face recognition①

    2022-10-22 02:23:34SHENGWenshun圣文順SUNYanwenXULiujing
    High Technology Letters 2022年3期

    SHENG Wenshun (圣文順), SUN Yanwen, XU Liujing

    (*Pujiang Institute, Nanjing Tech University, Nanjing 211200, P.R.China)

    (**School of Information Engineering, Nanjing Audit University, Nanjing 211815, P.R.China)

    Abstract The results of face recognition are often inaccurate due to factors such as illumination, noise intensity, and affine/projection transformation.In response to these problems, the scale invariant feature transformation (SIFT) is proposed, but its computational complexity and complication seriously affect the efficiency of the algorithm. In order to solve this problem, SIFT algorithm is proposed based on principal component analysis (PCA) dimensionality reduction. The algorithm first uses PCA algorithm, which has the function of screening feature points, to filter the feature points extracted in advance by the SIFT algorithm; then the high-dimensional data is projected into the low-dimensional space to remove the redundant feature points, thereby changing the way of generating feature descriptors and finally achieving the effect of dimensionality reduction. In this paper, through experiments on the public ORL face database, the dimension of SIFT is reduced to 20 dimensions,which improves the efficiency of face extraction;the comparison of several experimental results is completed and analyzed to verify the superiority of the improved algorithm.

    Key words: face recognition, scale invariant feature transformation (SIFT), dimensionality reduction, principal component analysis-scale invariant feature transformation (PCA-SIFT)

    0 Introduction

    Face recognition is an important branch of computer vision research. It is a subject that belongs to both the field of biometric recognition and artificial intelligence, and also one of the most successful applications of image analysis and understanding, involving computer graphics,pattern recognition,artificial intelligence,image processing and other related technologies[1-3]. The feasibility technology of face recognition has been studied for more than 30 years, and has been widely used in business, security, identity authentication, law enforcement and so on. This technology has attracted more and more attention, and has gradually become a dynamic research field.

    Face recognition can be divided into frontal face recognition and multipose face recognition according to whether the pose changes or not[4]. The former has high requirements for frontal face posture and is very sensitive to posture changes, the robustness[5]of the system is often difficult to guarantee; the latter uses multiple face images of multiple vision to build a multisample and multi-posetraining set[6], and adds a feature fusion process after feature extraction[7], so the recognition rate is high and more universal. However,further in-depth researches and improvements are needed for dynamic face recognition and detection as well as for faces under complex multi background.Face recognition is an important research field in biometric recognition technology. Due to the changes of emotion and environment in the process of facial image acquisition,such as multi pose expressions, changes in light intensity, change in noise intensity, rotation, scaling scale,occlusions on the face[8-9](glasses, sunglasses, hats,wound dressings, etc.), age change, accurate and powerful face recognition system is facing great challenges. The scale invariant feature transformation (SIFT)algorithm[10-12]is based on the potential of the image on the scale space to be invariant to the scale and selection points of interest, which is independent of image size, scale scaling and rotation[13]. The algorithm solves the above problem by using Gaussian differential function to find extreme points. SIFT feature is based on some local appearance interest points on the object.The processed image can detect the face under the changes of illumination intensity, noise intensity and microscopic angle of view, with high stability. In addition, the detection rate of partial object masking described by SIFT features is also quite high, and even more than three sift object features are enough to calculate the position and direction.However, although SIFT algorithm can deal with face clearly,it has high dimensionality, high computational complexity and cumbersome computational process, which seriously affects the realtime performance of face recognition[14]. The classical SIFT algorithm has a large amount of computation, and each feature point contains 4 ×4 ×8 =128 feature description vectors. Extracting too many feature points in areas with complex details is prone to produce false matching. For the realtime performance of target tracking, the efficiency of SIFT algorithm is extremely low.In this paper, a SIFT feature extraction and dimensionality reduction algorithm based on principal component analysis (PCA)[15]is proposed. On the original basis of the SIFT algorithm in face recognition,the dimensionality reduction algorithm is used to reduce the dimensionality, simplify the tedious calculation process and reduce the calculation complexity, and improve the efficiency of face recognition. The improved SIFT algorithm has obvious advantages over the original SIFT algorithm in that it can speed up the processing of massive data while maintaining the illumination invariance, rotation invariance, scale invariance and occlusion invariance of the original algorithm.

    1 Face recognition and SIFT algorithm principle

    1.1 Face recognition

    The face recognition system can be roughly divided into the following four stages, namely, face image acquisition and detection, face image preprocessing,face image feature extraction, face image matching and recognition[16]. Firstly, the basic process is to collect images containing facial information through cameras,scanners, video streams, etc., and use face detection technology to detect or track the faces in the images,judge the location of the faces in the images,determine and complete accurate positioning of faces. Secondly,the face image preprocessing technology is used to denoise the image obtained in the previous stage of positioning and normalize the illumination to improve the face quality, so as to facilitate the extraction of face features in the next stage. Thirdly, the face image feature extraction technology is used to extract features of the face image after the second stage of correction preprocessing, that is, to extract the features of the main parts of the face image such as eyes, ears, mouth, and nose, and perform classification and recognition. Finally, using the face image matching and recognition technology, the feature data of the face image extracted in the previous stage and the feature data collected and extracted from the face database image are searched,recognized and matched, so as to distinguish, judge and recognize the human identity. The specific process is shown in Fig.1.

    Fig.1 The process of face recognition

    As an important biological feature, human face has the following advantages in the fields of electronic information security, security protection, human trace tracking, human-computer interaction and so on.

    (1) Universality: a biological characteristic possessed by all.

    (2) Directness and operability:it is convenient to obtain the face exposed, and the cost of acquisition equipment is low. The face image can be obtained by only the camera, and the operation is simple.

    (3) Concealment: undetectable to the identifier at the time of authentication.

    (4) Non-contact: it is obtained in a non-contact manner through shooting equipment, which is easy to be accepted and promoted.

    (5) Security and reliability: in addition to medical factors, facial features are stable, not easy to lose and difficult to forge.

    1.2 Classical SIFT algorithm

    1.2.1 Basic principle of algorithm

    Based on the image in scale space, SIFT algorithm uses Gaussian differential function to identify potential points of interest that are invariant to scale and selection. It is a very stable local feature descriptor algorithm. The local feature descriptor extracted by SIFT algorithm has strong tolerance for many factors such as the change of illumination intensity, noise intensity,rotation, scaling scale, change of micro vision angle and so on[17].

    1.2.2 SIFT algorithm steps

    (1) Establish scale space through Gaussian convolution.

    (2) Construct a Gaussian difference pyramid to detect extreme points, and verify the extreme points by traversal.

    (3) Delete extreme points of edge response and low contrast.

    (4) Determine the direction of the feature point through the gradient histogram.

    (5) Create feature descriptors.

    The basic flow of SIFT algorithm implementation is shown in Fig.2.

    Fig.2 Basic flow of SIFT algorithm

    2 Dimension reduction algorithm and improved SIFT algorithm based on dimension reduction algorithm

    2.1 Dimensionality reduction algorithm

    When processing an image,a large number of feature points or some more complex feature points are extracted to improve accuracy, but each feature point will generate 128-dimensional feature descriptor. Assuming that the database needs to store an image, SIFT algorithm will decompose it into 400 feature points when processing the image,which will occupy a lot of memory and slow down the retrieval speed, which will seriously affect the efficiency. In order to improve this characteristic of SIFT algorithm, it is necessary to introduce dimensionality reduction technology to reduce the dimension of 120-dimensional feature vector to 64 dimensions, or even 32 dimensions. The commonly used dimensionality reduction techniques are principal component analysis (PCA) algorithm and linear discriminant analysis (LDA) algorithm. In this study,the PCA algorithm is more appropriate.

    PCA is one of the most commonly used linear dimensionality reduction techniques[18], which takes many samples of relevant input features as inputs and outputs orthogonal features as linear combinations of input features. It is an effective method for information processing, compression and extraction, and has high efficiency in dimensionality reduction and feature extraction. In essence the PCA method is based on the K-L transformation principle[19], which extracts the features of the data to form the feature space, and then projects the test set to the feature space to obtain the projection coefficient[20]. In other words, the high-dimensional original image is mapped to the low-dimensional space through the projection method, retaining as many pixels of the original image as possible and removing the pixels with a small amount of information.The larger the variance of the mapped data, the more feature points of the original image are retained. Studies have proved that PCA is a linear dimensionality reduction technique that has the least number of pixels lost in the original image. Therefore, PCA algorithm is used to reduce the dimensionality of the image.

    The main idea of PCA is to construct a series of linear combinations of original features to form low dimensional features. In this way, it can not only remove the correlation of the data, but also keep the variance information of the original data to the greatest extentafter dimensionality reduction.

    The core of the algorithm is to find the maximum variance. Suppose thatWis the projection matrix,then the projection of the imagexin the new coordinates isWTx,the variance isWTxxTW,and the objective function is

    Among them-λis the eigenvalue ofXXT,to reduce the image fromn-dimension tok-dimension, the eigenvectors corresponding tokeigenvalues and the matrixWcomposed ofkeigenvectors are needed.

    2. 2 Reduced dimensional improvement of the SIFT algorithm

    2.2.1 Principle of PCA-SIFT algorithm

    Although SIFT algorithm is applied to face recognition to solve the problems of image rotation, scale scaling, illumination changes, noise interference and so on, due to the existence of high-dimensional (128-dimensional) feature vectors, the computational complexity is high, the recognition process takes a long time and the realtime performance is not high. In order to solve this problem, a SIFT algorithm based on PCA dimensionality reduction is proposed. Using the PCA algorithm with the function of filtering feature points,the feature points extracted in advance by SIFT algorithm are filtered, and the high-dimensional data are projected into the low-dimensional space to remove redundant feature points, thereby changing the way of generating feature descriptors and achieving the effect of dimensionality reduction, as shown in Fig.3.

    Fig.3 Projection target of PCA algorithm

    2.2.2 Calculate the projection matrix

    The calculation of the PCA-SIFT projection matrix mainly involves the following steps.

    (1) Use the SIFT algorithm to extract the feature points in the training set, and the number is recorded asn.

    (2) Divide a 41 ×41 neighborhood window and rotate the coordinate axis to the main direction of each feature point when generating a feature descriptor for each feature point. Remove the edge pixels of the four corners, calculate the gradient of each remaining pixel in the horizontal and vertical directions, and obtain a description vector of 39 ×39 ×2 =3042.

    (3) Calculate the average vector of the 3042-dimensional description vector of thenfeature points,and subtract the average vector from the 3042-dimensional vector of thenfeature points, and put the resulting difference into then×3042 matrixW.

    (4) Calculate the covariance matrix CovWof the matrixW, and calculate the eigenvalues and eigenvectors of the covariance matrix CovW[21].

    (5) Sort the obtained eigenvalues from large to small, and select the eigenvectors corresponding to the firstkeigenvalues as the principal component directions to form ak×3042 projection matrix, wherekis the dimension of the PCA-SIFT feature descriptor[22].

    The above steps(3) - (5) are pre-calculated,that is, the projection matrix is calculated in advance through the same type of image set using the PCA principle. After the feature points in the image are calculated to obtain the 3042-dimensional feature descriptor,it only needs to be multiplied by the projection matrix to achieve the effect of dimensionality reduction. Regarding the selection ofnof the projection matrix, the value ofncan be fixed as needed, or the size ofncan be automatically determined according to the percentage of the eigenvalue energy value of the covariance matrix. The flow chart for its generation of PCA-SIFT descriptors is shown in Fig.4.

    Fig.4 Flow chart for generating PCA-SIFT descriptors

    2.2.3 Generate PCA-SIFT feature descriptor

    The steps to generate the PCA-SIFT feature descriptor are as follows.

    (1) Rotate the coordinate axis to the main direction of the feature point, divide a 41 ×41 neighborhood window, and calculate the horizontal and vertical gradient of each pixel after removing the edge corner pixels, that is, a 39 ×39 ×2 =3042 dimensional description vector.

    (2) Multiply the vector by the projection matrix obtained in the previous section to obtain ak-dimensional eigenvector.

    3 Discussion

    In this paper, Python is used as the experimental test language, and the ORL face database[23]is selected for experimental comparison. The ORL face database contains 40 people,each of whom has 10 gray images with different expressions, gestures or occlusion to varying degrees. The number of the pictures is 92 112.This is currently one of the most used face databases for research on face recognition. Fig.5 shows some of the images in the ORL face database.

    Fig.5 Partial face images in ORL face database

    3. 1 Determination of the optimal dimension k value

    Before image processing, PCA algorithm is selected to reduce the dimensionality of the image, and the accuracy rates when the dimensionality is reduced to 40,30,20, and 10 respectively are shown in Fig.6.

    In summary, the recognition rates of different dimensions are shown in Fig.7.

    In this article,k=20 is set,which means that the 128-dimensional feature descriptor of SIFT will be reduced to the 20-dimensional PCA-SIFT feature descriptor, and then the experimental results are analyzed and compared.

    Fig.6 Comparison of recognition accuracy of different reduced dimensions

    Fig.7 Synthetic graph of recognition accuracy of different dimensions

    3.2 Algorithm test and algorithm comparison

    In view of the influence of different expressions,posture changes, obstructions, scaling and other factors, the following four sets of experiments show the effects of the algorithm, as shown in Fig.8.

    The algorithm was tested on the ORL face library by selectingi(i=1, 2,…, 8, 9) images from each person as training samples, training the support vector machine (SVM) under the optimal parameters to obtain the SVM model, and the remainingj(j=10 -i)images as test samples, labelled in turn asi+ 1 images,i+ 2 images,…,10 images. The test results are shown in Table 1.

    Fig.8 Generating rendering of feature descriptor under multiple factor interference

    Table 1 Test results (the recognition rate/%)

    It can be seen from Table 1 that when the number of training samples exceeds 6 pieces/person, the recognition rate is 100%; when the number of training samples is only 1 piece/person, the recognition rate can reach 85%, and the average recognition rate of the algorithm is 97%. The average recognition rate is better than the face recognition rate in Refs[24-27]. It can be seen that the algorithm has a higher recognition rate than the general SVM algorithm and PCA algorithm. The comparison of different face recognition algorithms is shown in Table 2.

    Table 3 shows the comparison of the advantages and disadvantages of the SIFT algorithm and the PCASIFT algorithm.

    The comparison of the operation time of the two algorithms is shown in Table 4. The comprehensive time-consuming of the PCA-SIFT algorithm is significantly lower than that of the SIFT algorithm.

    Table 2 Comparison of different face recognition algorithms

    4 Conclusions

    By comparing the PCA-SIFT algorithm with the traditional SIFT algorithm, the descriptors obtained by the PCA-SIFT algorithm under the conditions of rotation, scale transformation, perspective transformation,and feature recognition and matching, the time consumed to generate feature descriptors is almost the same as that of traditional SIFT algorithms. However,the time consumed in image matching is much less than that of traditional SIFT algorithms. It can be seen that the descriptors generated by PCA-SIFT are of higher quality and faster.

    Table 3 Comparison of advantages and disadvantages between SIFT algorithm and PCA-SIFT algorithm

    Table 4 Time consuming comparison between SIFT algorithm and PCA-SIFT algorithm

    PCA is used to reduce the dimension of the SIFT algorithm, which greatly improves the efficiency and speed of face recognition. Face recognition can be applied to security systems such as surveillance to improve the real-time as well as timeliness of the system.

    91精品伊人久久大香线蕉| 午夜精品国产一区二区电影 | 一边亲一边摸免费视频| 国产淫片久久久久久久久| 精品久久久久久久久久久久久| 亚洲欧美成人精品一区二区| 九九在线视频观看精品| 国产成人免费观看mmmm| 国内精品宾馆在线| 国产成人a区在线观看| 亚洲av二区三区四区| 国产真实伦视频高清在线观看| 床上黄色一级片| 亚洲高清免费不卡视频| 国产在视频线在精品| 看黄色毛片网站| 国产成人精品久久久久久| 日本色播在线视频| 搡老妇女老女人老熟妇| 一级黄片播放器| 国产乱人偷精品视频| 九草在线视频观看| 婷婷六月久久综合丁香| 国产高清国产精品国产三级 | 一个人看的www免费观看视频| 国产一区二区在线观看日韩| av在线播放精品| 又爽又黄无遮挡网站| 日韩在线高清观看一区二区三区| 日本五十路高清| 九九热线精品视视频播放| 精品欧美国产一区二区三| 乱码一卡2卡4卡精品| 人妻制服诱惑在线中文字幕| 少妇被粗大猛烈的视频| 99久久无色码亚洲精品果冻| 99热6这里只有精品| 啦啦啦观看免费观看视频高清| 国产精品久久久久久久电影| 免费不卡的大黄色大毛片视频在线观看 | 观看免费一级毛片| 熟妇人妻久久中文字幕3abv| 亚洲欧美精品专区久久| av视频在线观看入口| 久久精品国产99精品国产亚洲性色| 国产精品人妻久久久久久| 中文天堂在线官网| 久久久久久久久久黄片| 国产黄色视频一区二区在线观看 | 激情 狠狠 欧美| 成人性生交大片免费视频hd| 可以在线观看毛片的网站| 亚洲国产高清在线一区二区三| 我的女老师完整版在线观看| 午夜免费激情av| 午夜福利成人在线免费观看| 久久久久久久久中文| 人体艺术视频欧美日本| 亚洲av男天堂| av女优亚洲男人天堂| 国产色婷婷99| 日日啪夜夜撸| 偷拍熟女少妇极品色| 在线免费观看不下载黄p国产| 免费一级毛片在线播放高清视频| 国产精品一区二区在线观看99 | 亚洲国产精品专区欧美| 综合色丁香网| 在线播放国产精品三级| 日本-黄色视频高清免费观看| 高清日韩中文字幕在线| 亚洲四区av| 国产精品麻豆人妻色哟哟久久 | 搡女人真爽免费视频火全软件| 69人妻影院| 如何舔出高潮| 在线a可以看的网站| 亚洲欧美成人综合另类久久久 | 三级国产精品欧美在线观看| av免费在线看不卡| 免费观看的影片在线观看| 日韩欧美国产在线观看| 亚洲av日韩在线播放| 国产黄a三级三级三级人| 亚洲欧美日韩高清专用| kizo精华| 欧美bdsm另类| 六月丁香七月| 成人一区二区视频在线观看| 久久99精品国语久久久| 一夜夜www| 亚洲精品456在线播放app| 国产精品乱码一区二三区的特点| 亚洲国产精品sss在线观看| 日日摸夜夜添夜夜爱| 啦啦啦啦在线视频资源| 在线观看66精品国产| 久久久久久久久大av| 毛片女人毛片| 国产大屁股一区二区在线视频| 国产高清不卡午夜福利| 亚洲18禁久久av| 国产片特级美女逼逼视频| 成人欧美大片| 国产午夜精品久久久久久一区二区三区| 狂野欧美激情性xxxx在线观看| 国产成人aa在线观看| 国产精品人妻久久久久久| 91aial.com中文字幕在线观看| 免费看美女性在线毛片视频| 别揉我奶头 嗯啊视频| 九九在线视频观看精品| 激情 狠狠 欧美| 极品教师在线视频| 黄色一级大片看看| 国产欧美另类精品又又久久亚洲欧美| 欧美色视频一区免费| 成人午夜精彩视频在线观看| 亚洲欧美日韩无卡精品| 国产成人a∨麻豆精品| 蜜桃久久精品国产亚洲av| 人体艺术视频欧美日本| 中国国产av一级| 中文字幕亚洲精品专区| 天天一区二区日本电影三级| 精品人妻视频免费看| 噜噜噜噜噜久久久久久91| 久久精品久久久久久久性| 日本熟妇午夜| 亚洲综合色惰| av女优亚洲男人天堂| 久久久久免费精品人妻一区二区| 久久精品夜夜夜夜夜久久蜜豆| 日韩高清综合在线| 91狼人影院| 看非洲黑人一级黄片| 性插视频无遮挡在线免费观看| 日韩欧美国产在线观看| 亚洲真实伦在线观看| 91久久精品国产一区二区成人| 精品久久久久久久久久久久久| 国产女主播在线喷水免费视频网站 | 国产成人91sexporn| 最后的刺客免费高清国语| 欧美97在线视频| 男人舔奶头视频| 日韩成人av中文字幕在线观看| 一卡2卡三卡四卡精品乱码亚洲| 日韩视频在线欧美| 亚洲精品久久久久久婷婷小说 | 麻豆一二三区av精品| 国产精品福利在线免费观看| 男人的好看免费观看在线视频| av线在线观看网站| 国内少妇人妻偷人精品xxx网站| 综合色丁香网| 大又大粗又爽又黄少妇毛片口| 2022亚洲国产成人精品| 六月丁香七月| 秋霞伦理黄片| 少妇被粗大猛烈的视频| 最近2019中文字幕mv第一页| 中国美白少妇内射xxxbb| 男女下面进入的视频免费午夜| 国内精品宾馆在线| 中文字幕av在线有码专区| 麻豆久久精品国产亚洲av| 国产精品一区二区在线观看99 | 最近中文字幕2019免费版| 午夜福利在线观看免费完整高清在| 最新中文字幕久久久久| 校园人妻丝袜中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 欧美区成人在线视频| 日本wwww免费看| 最近中文字幕高清免费大全6| 国产精品蜜桃在线观看| 国内精品美女久久久久久| 国产精品爽爽va在线观看网站| 成年av动漫网址| 国内精品美女久久久久久| 偷拍熟女少妇极品色| av黄色大香蕉| 久久99蜜桃精品久久| 日韩欧美精品免费久久| 欧美激情国产日韩精品一区| 日韩欧美三级三区| 久久久久久久国产电影| 亚洲第一区二区三区不卡| 乱人视频在线观看| 免费观看精品视频网站| av免费观看日本| 一本一本综合久久| 国产精品1区2区在线观看.| 男女边吃奶边做爰视频| 极品教师在线视频| 亚洲精品日韩在线中文字幕| 亚洲国产最新在线播放| 亚洲国产日韩欧美精品在线观看| 99久久中文字幕三级久久日本| 99热6这里只有精品| av福利片在线观看| 国产黄片视频在线免费观看| 看片在线看免费视频| 少妇丰满av| 国产精品嫩草影院av在线观看| 亚洲在久久综合| www日本黄色视频网| 亚洲欧美日韩高清专用| 亚洲成人av在线免费| 我要看日韩黄色一级片| 啦啦啦韩国在线观看视频| 美女大奶头视频| 国产精品精品国产色婷婷| 人妻系列 视频| 亚洲人成网站在线播| 天美传媒精品一区二区| 大香蕉97超碰在线| 99久久成人亚洲精品观看| 不卡视频在线观看欧美| 久久久成人免费电影| 男女视频在线观看网站免费| 国产精品美女特级片免费视频播放器| 国产久久久一区二区三区| 国产成人freesex在线| 久久欧美精品欧美久久欧美| 精品久久久久久久久av| 在现免费观看毛片| 国产 一区 欧美 日韩| 精品国产一区二区三区久久久樱花 | 国产精品伦人一区二区| 人妻制服诱惑在线中文字幕| 精品国产三级普通话版| 女人十人毛片免费观看3o分钟| 精品无人区乱码1区二区| 看黄色毛片网站| 亚洲自拍偷在线| 91在线精品国自产拍蜜月| 国产精品蜜桃在线观看| 国产老妇女一区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美日韩国产亚洲二区| 国产亚洲91精品色在线| 99久久成人亚洲精品观看| 只有这里有精品99| 1024手机看黄色片| 久久这里有精品视频免费| 我的老师免费观看完整版| 麻豆成人av视频| 久久久久久九九精品二区国产| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久久精品电影小说 | 一区二区三区高清视频在线| 国产成人91sexporn| 午夜激情欧美在线| 色5月婷婷丁香| 国产一区二区在线观看日韩| 在线免费十八禁| 国产伦理片在线播放av一区| 最新中文字幕久久久久| 国产成人aa在线观看| 久久鲁丝午夜福利片| 国产精品国产三级国产av玫瑰| 久久精品夜色国产| 搞女人的毛片| 久久婷婷人人爽人人干人人爱| 久久精品夜色国产| 亚洲成人av在线免费| 国产精品精品国产色婷婷| 蜜桃久久精品国产亚洲av| 天天躁夜夜躁狠狠久久av| 精品免费久久久久久久清纯| 老女人水多毛片| 天堂中文最新版在线下载 | 国产高清三级在线| 看免费成人av毛片| 久久久久久久久大av| 最近的中文字幕免费完整| 久久久久免费精品人妻一区二区| 美女大奶头视频| 少妇人妻一区二区三区视频| 高清av免费在线| 免费看av在线观看网站| 免费大片18禁| 欧美成人免费av一区二区三区| av.在线天堂| 激情 狠狠 欧美| 亚洲精品乱码久久久v下载方式| 国产午夜福利久久久久久| 日韩强制内射视频| 亚洲欧美一区二区三区国产| 亚洲欧美日韩东京热| 亚洲怡红院男人天堂| 久99久视频精品免费| 91狼人影院| 国产精品,欧美在线| 国产精品美女特级片免费视频播放器| 日韩,欧美,国产一区二区三区 | 欧美成人免费av一区二区三区| 永久网站在线| 两个人视频免费观看高清| av专区在线播放| 99久久精品热视频| 日本黄色片子视频| 精品国产露脸久久av麻豆 | 男人舔奶头视频| 国产黄a三级三级三级人| 成人二区视频| 中国美白少妇内射xxxbb| 久久国产乱子免费精品| 99久国产av精品国产电影| 99久久精品一区二区三区| 国产 一区精品| 性色avwww在线观看| 在线播放无遮挡| 美女国产视频在线观看| 国产美女午夜福利| 免费无遮挡裸体视频| 久久久久久大精品| 天堂影院成人在线观看| 精品国产一区二区三区久久久樱花 | 丰满少妇做爰视频| 成年免费大片在线观看| 成人美女网站在线观看视频| 一个人看的www免费观看视频| 亚洲乱码一区二区免费版| 九色成人免费人妻av| 日韩欧美精品免费久久| 午夜精品国产一区二区电影 | 日产精品乱码卡一卡2卡三| 长腿黑丝高跟| 日韩高清综合在线| 成年av动漫网址| 国产探花极品一区二区| 亚洲精品亚洲一区二区| 免费不卡的大黄色大毛片视频在线观看 | 永久网站在线| 日本wwww免费看| 两个人视频免费观看高清| 99热全是精品| 日韩视频在线欧美| 日本免费在线观看一区| 搡女人真爽免费视频火全软件| 天美传媒精品一区二区| 免费在线观看成人毛片| 亚洲丝袜综合中文字幕| 国产在线一区二区三区精 | 亚洲av中文av极速乱| 久久精品影院6| 99久久精品国产国产毛片| 尤物成人国产欧美一区二区三区| 天天一区二区日本电影三级| 自拍偷自拍亚洲精品老妇| 日本猛色少妇xxxxx猛交久久| 毛片女人毛片| 中文在线观看免费www的网站| 岛国毛片在线播放| 美女大奶头视频| 视频中文字幕在线观看| 韩国av在线不卡| 国产欧美日韩精品一区二区| 麻豆久久精品国产亚洲av| 美女国产视频在线观看| 欧美xxxx黑人xx丫x性爽| 99热这里只有精品一区| 亚洲国产精品合色在线| 日本午夜av视频| 午夜亚洲福利在线播放| 免费看av在线观看网站| 日日摸夜夜添夜夜添av毛片| 波多野结衣高清无吗| 国产一区二区在线av高清观看| 久久精品久久久久久久性| 国产免费福利视频在线观看| 亚洲精品国产成人久久av| 最近的中文字幕免费完整| 欧美日韩国产亚洲二区| 亚洲国产欧美在线一区| 午夜福利成人在线免费观看| 我的老师免费观看完整版| 嫩草影院新地址| 天堂av国产一区二区熟女人妻| 国产一区二区在线观看日韩| 人妻系列 视频| 三级国产精品欧美在线观看| 久久韩国三级中文字幕| 国产亚洲精品av在线| 中文精品一卡2卡3卡4更新| 久久精品国产亚洲av天美| 国产亚洲5aaaaa淫片| 日韩高清综合在线| 欧美日韩国产亚洲二区| 国产国拍精品亚洲av在线观看| 久久精品国产鲁丝片午夜精品| 黄片无遮挡物在线观看| 国内精品宾馆在线| 网址你懂的国产日韩在线| 国产高清国产精品国产三级 | 日韩欧美 国产精品| 毛片一级片免费看久久久久| 亚洲国产日韩欧美精品在线观看| 国产成人精品婷婷| 99久久人妻综合| 亚洲精品日韩av片在线观看| a级毛片免费高清观看在线播放| 女人被狂操c到高潮| 三级男女做爰猛烈吃奶摸视频| 亚州av有码| 一级黄片播放器| 白带黄色成豆腐渣| 久久久久久国产a免费观看| 中文字幕制服av| 国产极品天堂在线| 最近2019中文字幕mv第一页| 一级黄色大片毛片| 六月丁香七月| 欧美激情久久久久久爽电影| 综合色丁香网| 久久久久免费精品人妻一区二区| 久久久精品94久久精品| 国产成人a区在线观看| 国产极品天堂在线| 免费搜索国产男女视频| 精品久久久噜噜| 国产av在哪里看| 性插视频无遮挡在线免费观看| 亚洲在线观看片| 日产精品乱码卡一卡2卡三| 一个人观看的视频www高清免费观看| 国产 一区 欧美 日韩| 亚洲真实伦在线观看| 亚洲五月天丁香| 久久久久国产网址| 色综合亚洲欧美另类图片| 蜜桃久久精品国产亚洲av| 最近中文字幕高清免费大全6| 成人鲁丝片一二三区免费| 久久久久九九精品影院| 99热这里只有是精品50| 永久免费av网站大全| 亚洲欧美清纯卡通| 久久这里只有精品中国| 中文字幕制服av| 欧美bdsm另类| 国产久久久一区二区三区| 深夜a级毛片| 色视频www国产| av播播在线观看一区| 亚洲欧美日韩高清专用| 日本免费在线观看一区| 18禁在线无遮挡免费观看视频| 伦精品一区二区三区| 我要看日韩黄色一级片| 小蜜桃在线观看免费完整版高清| 国产成人福利小说| 亚洲av成人精品一区久久| 国产成人免费观看mmmm| 九九爱精品视频在线观看| 成人毛片a级毛片在线播放| 亚洲综合精品二区| 国产老妇女一区| videossex国产| 色网站视频免费| 六月丁香七月| 人人妻人人澡人人爽人人夜夜 | 精华霜和精华液先用哪个| 国产亚洲av嫩草精品影院| 一个人看的www免费观看视频| 视频中文字幕在线观看| 天堂网av新在线| 久久久久久伊人网av| 99久久人妻综合| 日本色播在线视频| 国产精品一区www在线观看| 大话2 男鬼变身卡| 午夜福利视频1000在线观看| 亚洲av二区三区四区| 嫩草影院入口| h日本视频在线播放| 一二三四中文在线观看免费高清| 欧美激情久久久久久爽电影| 69av精品久久久久久| 大香蕉久久网| 亚洲av熟女| 九草在线视频观看| 日日干狠狠操夜夜爽| www.av在线官网国产| 国产视频首页在线观看| 午夜免费男女啪啪视频观看| 狂野欧美激情性xxxx在线观看| 国产精品人妻久久久久久| 乱人视频在线观看| 欧美人与善性xxx| 欧美一区二区国产精品久久精品| 美女被艹到高潮喷水动态| av又黄又爽大尺度在线免费看 | 欧美一区二区精品小视频在线| 亚洲成人久久爱视频| 日韩精品青青久久久久久| 欧美xxxx性猛交bbbb| 91午夜精品亚洲一区二区三区| 热99re8久久精品国产| 蜜臀久久99精品久久宅男| 国产乱来视频区| 人人妻人人澡欧美一区二区| 毛片女人毛片| 99久久九九国产精品国产免费| 校园人妻丝袜中文字幕| 国产精品不卡视频一区二区| 亚洲av成人av| 99久久成人亚洲精品观看| 色噜噜av男人的天堂激情| 超碰97精品在线观看| 午夜福利在线在线| 桃色一区二区三区在线观看| 亚洲欧美日韩无卡精品| 少妇丰满av| 99久久成人亚洲精品观看| 色吧在线观看| 国产一区有黄有色的免费视频 | 欧美bdsm另类| 色尼玛亚洲综合影院| 七月丁香在线播放| 亚洲人成网站高清观看| 国产成人福利小说| 国产成人午夜福利电影在线观看| 18禁在线播放成人免费| 亚洲国产精品合色在线| 国模一区二区三区四区视频| 国产极品精品免费视频能看的| 最近手机中文字幕大全| 麻豆久久精品国产亚洲av| 日韩 亚洲 欧美在线| 久久99精品国语久久久| 中文字幕制服av| 国产精品一及| 欧美潮喷喷水| av在线天堂中文字幕| 伊人久久精品亚洲午夜| 丝袜美腿在线中文| 黄色日韩在线| 日本欧美国产在线视频| 91午夜精品亚洲一区二区三区| 麻豆av噜噜一区二区三区| 久久精品久久久久久噜噜老黄 | 亚洲精品乱久久久久久| 成人一区二区视频在线观看| 欧美性猛交╳xxx乱大交人| 国内精品一区二区在线观看| 能在线免费看毛片的网站| 1000部很黄的大片| a级毛色黄片| 国内揄拍国产精品人妻在线| 丝袜喷水一区| 丰满乱子伦码专区| 久久久久免费精品人妻一区二区| 国产成人福利小说| 联通29元200g的流量卡| 国产欧美另类精品又又久久亚洲欧美| 99热网站在线观看| 亚洲精品一区蜜桃| АⅤ资源中文在线天堂| 97超碰精品成人国产| 欧美性猛交╳xxx乱大交人| 国产伦理片在线播放av一区| 国产黄色小视频在线观看| 欧美激情国产日韩精品一区| 国产黄片视频在线免费观看| 国产精品国产高清国产av| 搡老妇女老女人老熟妇| 成人高潮视频无遮挡免费网站| 亚洲aⅴ乱码一区二区在线播放| 免费无遮挡裸体视频| 岛国在线免费视频观看| 国内精品一区二区在线观看| 18禁在线无遮挡免费观看视频| 成年女人看的毛片在线观看| 国产真实乱freesex| 自拍偷自拍亚洲精品老妇| 欧美成人免费av一区二区三区| 日本wwww免费看| 成人美女网站在线观看视频| 97在线视频观看| 国产午夜精品论理片| 久久精品久久精品一区二区三区| 国语自产精品视频在线第100页| 免费观看的影片在线观看| 国内少妇人妻偷人精品xxx网站| 建设人人有责人人尽责人人享有的 | 久久6这里有精品| 一个人看视频在线观看www免费| 少妇猛男粗大的猛烈进出视频 | 欧美极品一区二区三区四区| av免费在线看不卡| 天堂av国产一区二区熟女人妻| 视频中文字幕在线观看| 免费av不卡在线播放| av女优亚洲男人天堂| 欧美日本亚洲视频在线播放| 国产精品麻豆人妻色哟哟久久 | 在线播放国产精品三级| 综合色丁香网| 久久久亚洲精品成人影院| 最近最新中文字幕大全电影3| av在线播放精品| 久久欧美精品欧美久久欧美| 国产成人a区在线观看| 男女视频在线观看网站免费| 亚洲乱码一区二区免费版| 一级毛片aaaaaa免费看小| 亚洲国产最新在线播放| 五月伊人婷婷丁香| 国产又色又爽无遮挡免| 亚洲欧美日韩高清专用| www.色视频.com|