• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Deep learning based curb detection with Lidar①

    2022-10-22 02:23:34WANGXiaohua王小華LIAOZhongheMAPinMIAOZhonghua
    High Technology Letters 2022年3期

    WANG Xiaohua (王小華), LIAO Zhonghe, MA Pin, MIAO Zhonghua

    (School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, P.R.China)

    Abstract Curb detection provides road boundary information and is important to road detection. However, curb detection is challenging due to the problems such as various curb shapes, colour, discontinuity. In this work, a novel learning-based method for curb detection is proposed using Lidar point clouds, considering that Lidars are not sensitive to illumination and are relatively stable to weather conditions. A deep neural network, named EdgeNet, is constructed and trained, which handles point clouds in an end-to-end way. After EdgeNet is properly trained, curb points are then segmented in the neural network output. In order to train,a curb point annotation algorithm is also designed to generate training dataset. The curb detection method works well with different road scenarios including intersections. The experimental results validate the effectiveness and robustness of this curb detection method.

    Key words: curb detection, EdgeNet, curb annotation algorithm

    0 Introduction

    Detecting road boundary is necessary for vehicles with full or partial autonomy. Without road boundary information, it would be difficult for vehicles to understand their surroundings and to generate behaviour plans. Curb detection is developing rapidly. Many curb detection methods have been proposed.

    Methods[1-2]of model curbs use parabolic curves and random sample consensus[3](RANSAC) algorithm to remove points that do not match the parabolic model. Ref.[1] employed three spatial cues to detect candidate curb points, i. e., elevation difference, gradient value, and normal orientation. A particle filter was also used to track curbs. Ref.[2] detected curb points by using integral laser points (ILP) features. In both methods, parameters are preset and manual adjustment is required.

    Ref.[4] used a Gaussian differential filter to process single line Lidar data. The method is simple and fast, which is implemented in Defense Advanced Research Projects Agency (DARPA) urban challenge vehicles. Kalman filters[5]are also used to detect curbs. Ref.[6] proposed curb detection and tracking method, based on an extended Kalman filter using 2D Lidar data. Other methods[7-9]use the probabilistic interacting multiple model (IMM) algorithm, which contains a finite number of Kalman filters, to determine the curb existence. Filter-based methods also require pre-selected thresholds and filter parameters.

    Considering that curbs are not always continuous,Ref.[10] proposed a sliding-beam model[11]to segment the road with intersections using Lidar data. This method uses a series of beams emitted from selected launching point, where beams are evenly spaced with a given angular resolution. The sliding-beam model is able to segment the current road and the road ahead by moving the launching point. A probabilistic beam model based on 3D point cloud[12]is proposed to segment the intersections. A machine learning method[13-14]is used to classify road shapes using beam models.

    Cameras and ultrasonic sensors are also used for curb detection. Ref.[15] used an on-board camera to detect curbs. Ref.[16] used multiple ultrasonic sensors to implement a low-cost curb detection system. In general, vision-based method would suffer from insufficient illumination and bad weather condition, while radar-based method has comparatively lower resolution.

    In recent years, deep learning has been applied to point cloud segmentation and classification, which brings new ideas for curb detection. One way of point cloud deep learning is to project a 3D point cloud onto a 2D plane, and then process the plane as a 2D image, for example, MV3D[17]and AVOD[18]. Curbs are detected by deep learning on a 2D bird-eye’s view of 3D Lidar point clouds[19-20].

    In 2017, Refs[21,22] started the pioneering work of PointNet and PointNet ++, which provide an endto-end way to classify and segment point clouds. A PointNet++ grasping approach[23]is proposed, which can directly predict the poses, categories, and scores(qualities) of all the grasps. Dynamic graph convolutional neural network[24](DGCNN) is proposed, which learns to semantically group points by dynamically updating a graphic relation from layer to layer.

    In this work, an end-to-end neural network (EdgeNet) is proposed for curb detection, which avoids manual parameter adjustments and provides good segmentation of curb points and non-curb points. The rest of the paper is organized as follows. Section 1 introduces training dataset preparation and the EdgeNet structure. Section 2 performs contrast experiments using PointNet, DGCNN and EdgeNet. Section 3 draws the conclusions.

    1 Materials and methods

    Since no open-source point cloud dataset with curb labels is available, a curb annotation algorithm is designed to annotate curb points for training EdgeNet.In this dataset, data are obtained from the roads on Baoshan campus of Shanghai University. The details of the algorithm are illustrated in subsection 1.1 -1.3.The structure of EdgeNet is then introduced in subsection 1.4.

    1.1 Curb annotation algorithm

    Fig.1 shows that how Lidar lines intersect a curb.Note that, when a Lidar line scans across a curb, the distance from Lidar center to the curb is shorter compared with that to the ground, i.e., the point distance L2(on the curb) is shorter than L1(on the ground) on one scan line, as shown in Fig.1(b) and Fig.1(c).In Fig.1(b) and Fig.1(c),‘a(chǎn)’ and ‘b’ are the two intersecting end points. L1 and L2 denote the distance from ‘a(chǎn)’ and ‘b’ to the coordinate origin, respectively. The coordinate origin is the Lidar center (xdirection points to the front;yandzaxis are set up according to the right-hand rule).

    Fig.1 Diagrams of Lidar lines intersect a curb

    According to the analysis above, a curb annotation algorithm is designed based on the distance difference of point clouds. This algorithm detects the curb points by looking for curb endpoints.

    Fig.2 shows the flowchart of the curb annotation algorithm. The algorithm considers Lidar lines one by one. First of all, cloud points of one Lidar line is projected ontoXOYplane. For each point on the Lidar line, the distance to the origin is calculated as shown in Eq.(1). More important, distance variance of each point is calculated as shown in Eq.(2). The maximum and minimum of the distance variance are then selected as two curb endpoints, where the points in between are marked as curb points and the rest ones are non-curb points.

    Let(xi,yi) represent theith point coordinate inXOYplane, wheredirepresents theith point distance to the origin, andkrepresents the number of neighbourhood points participating the distance variance calculation.

    Fig.2 Flow chart of the curb annotation algorithm

    Fig.3 is an example of the curb annotation algorithm. Fig.3(a) is one Lidar scan line. The points in the black box are roughly curb points. Fig.3(b) shows the distance variance of each point on the line according to Eq.(2). The maximum and the minimum are marked out in Fig.3(c) and they are selected as curb end points, which are consistent with those in the black box in Fig.3(a). After curb ends are found, all the curb points are marked. For this example, the indexes marked are 685 and 659, andkis selected as 30.

    Fig.3 An example of the curb annotation algorithm

    1.2 Algorithm applications in different scenarios

    The algorithm performances are verified in different scenarios. The road scenarios include straight roads,curve roads,and intersections. Each scenario is considered with and without obstacles.

    Fig.4 illustrates the curb annotation results.Fig.4(a) depicts results for a straight road. It is seen that curb points have been detected correctly.Fig.4(b) shows results on a curved road. The results validate algorithm robustness to different road shapes.Fig.4(c) shows the curb detection on intersections.Lidar points are sparser in this case compared with straight or curved roads. The algorithm still detects the curb points well. Fig.4(d) shows results for a road with obstacles. It is seen that some points from the obstacle are identified as curb points. The distance jump from the ground to the obstacle is captured by the algorithm while the real curb distance jump is missed.

    Fig.4 The curb annotation results

    In order to investigate the problem in Fig.4(d),Fig.5(a) shows theXOYprojection of a scan line point cloud with obstacles, where obstacle points and the curb points are in boxes. Fig.5(b) is the distance variance of each point calculated using Eq.(2). The maximum and the minimum variance points are marked out in circles in Fig.5(b). Two circles on the left are the maximum and the minimum variance curb points,and two circles on the right are the maximum and the minimum variance of this scan. According to the selection criteria, those two circles on the left are selected instead of the right ones. This explains why the obstacle points are mistaken as curb points.

    Fig.5 The curb annotation results

    Once the reason is disclosed, distance variance thresholds are set to avoid the influence of the variance change from obstacles. Namely, variances beyond the thresholds are disabled. Fig.6(b) is the detection result according to this modification. It shows that the curb points are properly selected in the presence of obstacles. If the size of obstacles is large and curb points are completely blocked by obstacles, a possible curb portion may be left out.

    Fig.6 Detection results of curb points

    This algorithm is used for labelling. Besides this,careful manual inspection is also applied. As a result,a reliable training dataset is then built for neural network training. The details on this dataset are explained in the next section.

    1.3 Dataset preparation

    The curb annotation algorithm is used to classify the curb points and non-curb points to generate data samples. Letg= (g1,g2, …,gn) denote a set of detected points, wheregi= (p,n,l),i= 1,2,…,n.p= (px,py,pz) represents 3D coordinates of the detected point.n=(nx,ny,nz) is the normal vector of the detected point.lis the label of the detected point,where ‘0’ represents non-curb points and ‘1’ represents curb points. Fig.7 shows a few lines of the data samples.

    All the data are stored in H5 file format that is compact for data storage and is commonly used for point cloud datasets . The curb dataset built consists of 25 ×200 ×4040 points,10% of which are curb points and the rest are non-curb points.

    Fig.7 Data samples

    1.4 EdgeNet model

    The purpose of EdgeNet is to discriminate curb points from non-curb points. The backbone of the PointNet model is adopted for EdgeNet, using shared multi-layer perceptron (MLP) and max pooling to accommodate the permutation of cloud points. Fig.8 is the EdgeNet architecture. Ann×6 point cloud is input to the neural network, which containsnnumber of points and each point contains 6 features, as explained in subsection 2.3.

    Fig.8 EdgeNet model structure

    Firstly,n× 6 input points are passed through shared MLPs with neurons numbers for each layer defined as (64,64), which outputs ann×64 feature matrix. Next, thisn× 64 matrix is furtherly passed through shared MLP with layer neurons numbers as(64,128, 1024), and generates ann×1024 feature matrix, which is considered as expanded local features. Max pooling and average pooling are executed afterwards, which generates two 1024-dimensional global features. The next part is the fully connected layer and outputs two 128-dimensional vectors. The two 128-dimensional global features are concatenated and a 256-dimensional global feature is obtained.

    For the final segmentation part, the 256-dimensional global feature is attached to each of then×1024 local feature, which generates a feature matrix with a dimension ofn×1280. Thisn×1280 matrix is then passed through another shared MLPs. Finally, two segmentations are generated for curb points and non-curb points.

    2 Experiments and results

    Comparison experiments are implemented in this section. Results from PointNet and DGCNN are compared with EdgeNet. All three networks are trained under the same conditions.

    2.1 Training configuration

    LetPoveralldenote the model overall detection accuracy as shown in Eq.(3). And curb detection accuracyPedgeis to evaluate the curb detection efficiency of the networks, which is defined in Eq.(4).

    In most of the cases, curb points are the minority among all the points. For example, in the dataset,curb points are about 10% whereas non-curb points are about 90%. Curb detection accuracyPedgeis used to depict how many curb points are correctly identified among all the curb points instead of all the points.

    2.2 Training results

    EdgeNet training results are shown in Fig.9 and Fig.10. And the training epoch is set as 50. Fig.9 shows overall training accuracyPoveralland training loss.It is seen that EdgeNet’s final overall accuracyPoverallis around 98.4% and training loss is around 0.0417.

    Fig.9 EdgeNet training results

    The curb detection accuracyPedgeof each training cycle is shown in Fig.10. It is seen that EdgeNet curb detection accuracy is about 89.4%.

    Fig.10 EdgeNet curb detection accuracy Pedge

    2.3 Comparison experiments

    In this section, PointNet and DGCNN are trained for comparison. Both PointNet and DGCNN are end-toend networks. DGCNN considers point segmentation from the graph point of view. Training and testing are performed under the same conditions for all three networks.

    Table 1 shows the comparison training results.The comparison results include the training cycle number,the training time in hours, the model overall accuracyPoveralland the curb detection accuracyPedge.

    Table 1 Comparison results for EdgeNet, PointNet and DGCNN

    It is seen from Table 1 and Fig.11 that EdgeNet is better in the curb detection accuracy, which is about 5% higher than PointNet and about 1% higher than DGCNN. Subsection 2.4 compares the curb detection results in different scenarios.

    Fig.11 Curb detection accuracy Pedge

    2.4 Test results in different scenarios

    Fig.12 Comparisons of curb detection results in a straight road

    Fig.13 Comparisons of curb detection results in a curve road

    Fig.14 Comparisons of curb detection results in an intersection

    Fig.15 Comparisons of curb detection results in a road with obstacles

    Figs12 -15 show the comparisons results for four different road scenarios, including straight roads,curve roads, intersections and roads with obstacles.Three methods (EdgeNet, PointNet and DGCNN), are tested. Table 2 summarizes the detection accuracies of these three methods in four scenarios, includingPoverallandPedge.It is seen that all the methods can effectively detect the curb points, and theirPoverallaccuracies are above 95%. And EdgeNetPedgeaccuracies are the highest, which means its ability to detect curbs is the best among them.

    Table 2 Comparison results for different scenarios (%)

    3 Conclusions

    In this work,an end-to-end deep learning network(EdgeNet) is proposed for curb detection, which handles Lidar cloud points directly. EdgeNet marks out curb points in the output. A curb annotation algorithm is also designed to generate dataset for training EdgeNet. Overall, this neural network method avoids tedious manual parameter adjustments and provides good segmentation of curb points and non-curb points under different road scenarios. The comparison results of Edgenet, PointNet and DGCNN are also provided. Comparatively, EdgeNet learns curb features for curb segmentation better, which has been validated in the experiments.

    日本黄色日本黄色录像| 日本欧美视频一区| 中文字幕最新亚洲高清| 国产一区二区三区av在线| videosex国产| 国产精品影院久久| 在线 av 中文字幕| 老司机福利观看| 精品福利永久在线观看| 人人妻人人爽人人添夜夜欢视频| 一级片免费观看大全| 考比视频在线观看| 人人妻,人人澡人人爽秒播| 免费在线观看视频国产中文字幕亚洲 | 国产在线一区二区三区精| 91精品国产国语对白视频| 色综合欧美亚洲国产小说| 人人妻人人澡人人爽人人夜夜| 精品一区二区三卡| 国产亚洲精品一区二区www | 亚洲欧洲精品一区二区精品久久久| av片东京热男人的天堂| 国产麻豆69| 久久这里只有精品19| 国产精品秋霞免费鲁丝片| 中文字幕人妻熟女乱码| 久久这里只有精品19| av片东京热男人的天堂| 精品久久蜜臀av无| 色婷婷av一区二区三区视频| 性少妇av在线| 在线观看免费午夜福利视频| 视频区欧美日本亚洲| 18禁观看日本| 狂野欧美激情性xxxx| 久久精品亚洲av国产电影网| 日韩精品免费视频一区二区三区| 秋霞在线观看毛片| 老司机福利观看| 久9热在线精品视频| 亚洲精品国产精品久久久不卡| 日日夜夜操网爽| 国产麻豆69| 一级,二级,三级黄色视频| 国产又色又爽无遮挡免| 欧美国产精品va在线观看不卡| 欧美中文综合在线视频| 嫁个100分男人电影在线观看| 日韩三级视频一区二区三区| 嫩草影视91久久| 免费一级毛片在线播放高清视频 | 国产精品国产av在线观看| 国产成人免费无遮挡视频| 成人国语在线视频| 免费高清在线观看日韩| avwww免费| 日韩中文字幕欧美一区二区| 99九九在线精品视频| www.精华液| 亚洲国产欧美在线一区| 一级片免费观看大全| 久久亚洲精品不卡| 亚洲精品中文字幕在线视频| 最近最新免费中文字幕在线| av线在线观看网站| 免费日韩欧美在线观看| 美女主播在线视频| 最近中文字幕2019免费版| 欧美精品高潮呻吟av久久| 丝袜在线中文字幕| 精品卡一卡二卡四卡免费| 久久久久久亚洲精品国产蜜桃av| 国产成人影院久久av| 欧美激情高清一区二区三区| 久热这里只有精品99| 波多野结衣av一区二区av| 天堂俺去俺来也www色官网| 久久人人爽av亚洲精品天堂| 久久久久国产一级毛片高清牌| 久久九九热精品免费| 久久99一区二区三区| 亚洲中文av在线| 久热爱精品视频在线9| 亚洲成人手机| 一区在线观看完整版| 精品免费久久久久久久清纯 | 国产精品1区2区在线观看. | 成年av动漫网址| 亚洲欧美日韩另类电影网站| av电影中文网址| 精品国产一区二区久久| 中国美女看黄片| 免费在线观看完整版高清| 国产真人三级小视频在线观看| 免费在线观看影片大全网站| 国产精品一二三区在线看| 在线观看舔阴道视频| 亚洲国产欧美在线一区| 国产国语露脸激情在线看| 亚洲七黄色美女视频| 丝袜在线中文字幕| 一二三四在线观看免费中文在| 精品卡一卡二卡四卡免费| 高清在线国产一区| 老司机午夜十八禁免费视频| 欧美精品人与动牲交sv欧美| 人妻一区二区av| 欧美在线黄色| 国产精品久久久久久精品古装| 青春草亚洲视频在线观看| 永久免费av网站大全| videosex国产| 国产不卡av网站在线观看| 天天躁日日躁夜夜躁夜夜| 夫妻午夜视频| 色婷婷av一区二区三区视频| 麻豆国产av国片精品| 啪啪无遮挡十八禁网站| 精品久久久久久久毛片微露脸 | 国产日韩一区二区三区精品不卡| 亚洲人成电影免费在线| 18在线观看网站| 久久精品人人爽人人爽视色| 久久久久精品人妻al黑| 午夜视频精品福利| 大香蕉久久成人网| 欧美午夜高清在线| 一级黄色大片毛片| 天天躁日日躁夜夜躁夜夜| 女人精品久久久久毛片| 亚洲av国产av综合av卡| 日本黄色日本黄色录像| 国产精品麻豆人妻色哟哟久久| 欧美日韩黄片免| 亚洲国产精品成人久久小说| 免费av中文字幕在线| 亚洲av男天堂| 国产国语露脸激情在线看| 国产黄频视频在线观看| 宅男免费午夜| 极品少妇高潮喷水抽搐| 下体分泌物呈黄色| 大片免费播放器 马上看| 亚洲欧洲日产国产| 一本—道久久a久久精品蜜桃钙片| 丝袜人妻中文字幕| a级毛片在线看网站| 性色av乱码一区二区三区2| 91麻豆精品激情在线观看国产 | 国产欧美日韩一区二区精品| 国产在视频线精品| 亚洲avbb在线观看| 精品一区在线观看国产| 国产99久久九九免费精品| 丰满迷人的少妇在线观看| 久久久久久久精品精品| 免费在线观看视频国产中文字幕亚洲 | 丁香六月欧美| 99国产精品一区二区三区| 久热爱精品视频在线9| 黑人巨大精品欧美一区二区蜜桃| 久热这里只有精品99| 久久精品人人爽人人爽视色| 男女免费视频国产| 交换朋友夫妻互换小说| 国产欧美日韩一区二区精品| 亚洲综合色网址| 啦啦啦在线免费观看视频4| 一区二区三区乱码不卡18| 亚洲精品成人av观看孕妇| 精品亚洲乱码少妇综合久久| 国产精品麻豆人妻色哟哟久久| 国产伦理片在线播放av一区| 国产男女超爽视频在线观看| 男女边摸边吃奶| 最黄视频免费看| 成年女人毛片免费观看观看9 | a 毛片基地| 亚洲精品在线美女| 日本91视频免费播放| 1024香蕉在线观看| 免费女性裸体啪啪无遮挡网站| 亚洲人成电影观看| 精品国产一区二区久久| 少妇的丰满在线观看| 成人18禁高潮啪啪吃奶动态图| 国产成人精品久久二区二区免费| 色老头精品视频在线观看| 老司机靠b影院| 午夜两性在线视频| 国产色视频综合| 啦啦啦视频在线资源免费观看| 下体分泌物呈黄色| 12—13女人毛片做爰片一| 亚洲国产精品成人久久小说| 欧美 日韩 精品 国产| 成年动漫av网址| 在线观看一区二区三区激情| 美女中出高潮动态图| 国产一区二区三区在线臀色熟女 | 久久中文字幕一级| 麻豆av在线久日| 精品一区二区三区四区五区乱码| 欧美另类一区| 久久国产亚洲av麻豆专区| 亚洲欧美日韩另类电影网站| 亚洲 国产 在线| 日韩欧美一区视频在线观看| 一个人免费在线观看的高清视频 | 女警被强在线播放| 高清av免费在线| 99久久99久久久精品蜜桃| 国产亚洲av高清不卡| av天堂在线播放| 99精品欧美一区二区三区四区| 成在线人永久免费视频| 最新的欧美精品一区二区| 精品久久蜜臀av无| 日日摸夜夜添夜夜添小说| 亚洲三区欧美一区| 成年av动漫网址| 十八禁网站免费在线| 欧美精品一区二区大全| 久久精品久久久久久噜噜老黄| 久久久久视频综合| 我的亚洲天堂| 97人妻天天添夜夜摸| 亚洲国产毛片av蜜桃av| 欧美日韩中文字幕国产精品一区二区三区 | 美女高潮喷水抽搐中文字幕| 国产亚洲精品久久久久5区| 久久久精品国产亚洲av高清涩受| 国产av国产精品国产| 激情视频va一区二区三区| 男女午夜视频在线观看| av有码第一页| 99精品久久久久人妻精品| 欧美精品av麻豆av| 国产成+人综合+亚洲专区| 亚洲全国av大片| 亚洲久久久国产精品| 亚洲精华国产精华精| 各种免费的搞黄视频| 99久久99久久久精品蜜桃| 久久久久久久大尺度免费视频| 欧美黄色片欧美黄色片| 色精品久久人妻99蜜桃| 十分钟在线观看高清视频www| 在线观看免费高清a一片| 久久久精品区二区三区| 他把我摸到了高潮在线观看 | 国产成人精品久久二区二区91| 亚洲伊人久久精品综合| xxxhd国产人妻xxx| 水蜜桃什么品种好| 精品一品国产午夜福利视频| 日本a在线网址| 久久久精品国产亚洲av高清涩受| 精品国产乱子伦一区二区三区 | 国产精品久久久久久人妻精品电影 | 精品人妻熟女毛片av久久网站| 嫁个100分男人电影在线观看| 美女扒开内裤让男人捅视频| 中文字幕精品免费在线观看视频| 极品少妇高潮喷水抽搐| 美女高潮到喷水免费观看| 免费高清在线观看视频在线观看| 久久久久精品国产欧美久久久 | 免费黄频网站在线观看国产| 视频区欧美日本亚洲| 精品熟女少妇八av免费久了| 黄色a级毛片大全视频| 一级黄色大片毛片| 在线永久观看黄色视频| 久久精品国产亚洲av高清一级| 各种免费的搞黄视频| 91九色精品人成在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲精品美女久久久久99蜜臀| 最黄视频免费看| 国产成人免费无遮挡视频| 成人av一区二区三区在线看 | 免费av中文字幕在线| 亚洲精品成人av观看孕妇| 啦啦啦免费观看视频1| 性色av乱码一区二区三区2| 18禁裸乳无遮挡动漫免费视频| 人妻人人澡人人爽人人| 国产日韩欧美亚洲二区| 视频区欧美日本亚洲| 日韩大码丰满熟妇| 国产片内射在线| 天堂俺去俺来也www色官网| 男女床上黄色一级片免费看| 久久久久国内视频| 搡老乐熟女国产| 一边摸一边做爽爽视频免费| 久久亚洲精品不卡| 亚洲激情五月婷婷啪啪| 两个人看的免费小视频| 下体分泌物呈黄色| 日韩欧美一区二区三区在线观看 | 91精品国产国语对白视频| 久久精品国产a三级三级三级| 亚洲精品国产精品久久久不卡| 久久精品久久久久久噜噜老黄| 中文字幕高清在线视频| 99久久综合免费| 天堂俺去俺来也www色官网| 久久亚洲国产成人精品v| 中文欧美无线码| 亚洲 欧美一区二区三区| 久久久久久久国产电影| 亚洲人成77777在线视频| 国产精品亚洲av一区麻豆| 色老头精品视频在线观看| 国产精品久久久人人做人人爽| 国产成人影院久久av| 国产日韩一区二区三区精品不卡| 国产亚洲一区二区精品| 久久av网站| 一区在线观看完整版| 啦啦啦在线免费观看视频4| 伊人久久大香线蕉亚洲五| 成人亚洲精品一区在线观看| 99久久精品国产亚洲精品| 无限看片的www在线观看| 亚洲成人免费av在线播放| 69av精品久久久久久 | 日韩中文字幕视频在线看片| 超碰成人久久| 两个人免费观看高清视频| 两性夫妻黄色片| 9191精品国产免费久久| 日本五十路高清| 欧美xxⅹ黑人| 亚洲欧洲日产国产| 黑人巨大精品欧美一区二区mp4| 一区二区日韩欧美中文字幕| 视频在线观看一区二区三区| 两个人看的免费小视频| 国产成人欧美| 国产亚洲欧美在线一区二区| 18禁黄网站禁片午夜丰满| 日日夜夜操网爽| 伊人久久大香线蕉亚洲五| 免费观看人在逋| 自拍欧美九色日韩亚洲蝌蚪91| 在线 av 中文字幕| 午夜福利一区二区在线看| 超色免费av| 久久国产亚洲av麻豆专区| 午夜福利视频在线观看免费| 欧美精品人与动牲交sv欧美| 午夜免费鲁丝| 极品少妇高潮喷水抽搐| 中亚洲国语对白在线视频| 亚洲国产欧美在线一区| 国产精品一二三区在线看| 欧美午夜高清在线| 日本av免费视频播放| 9色porny在线观看| 亚洲精品一区蜜桃| 欧美在线一区亚洲| 91大片在线观看| 国产无遮挡羞羞视频在线观看| 男女床上黄色一级片免费看| 可以免费在线观看a视频的电影网站| 亚洲一区中文字幕在线| 精品一品国产午夜福利视频| 制服诱惑二区| 女人爽到高潮嗷嗷叫在线视频| 国产在线一区二区三区精| 免费观看av网站的网址| 国产精品 欧美亚洲| 亚洲三区欧美一区| 色94色欧美一区二区| 亚洲精品国产一区二区精华液| 婷婷色av中文字幕| 国产亚洲精品久久久久5区| 国产片内射在线| 国产深夜福利视频在线观看| 亚洲欧美一区二区三区黑人| 两个人看的免费小视频| 国产亚洲精品第一综合不卡| 亚洲欧美一区二区三区黑人| 久久久久精品国产欧美久久久 | 欧美黑人欧美精品刺激| 两人在一起打扑克的视频| 亚洲午夜精品一区,二区,三区| 中文字幕人妻丝袜一区二区| av福利片在线| 亚洲午夜精品一区,二区,三区| 精品乱码久久久久久99久播| 欧美成狂野欧美在线观看| 黄色a级毛片大全视频| 搡老岳熟女国产| 香蕉国产在线看| 国精品久久久久久国模美| 动漫黄色视频在线观看| 亚洲性夜色夜夜综合| 制服人妻中文乱码| 极品少妇高潮喷水抽搐| 亚洲精品日韩在线中文字幕| 亚洲 欧美一区二区三区| 亚洲欧美色中文字幕在线| 亚洲av日韩在线播放| 久久影院123| videos熟女内射| 91国产中文字幕| 丁香六月欧美| 亚洲欧美色中文字幕在线| tocl精华| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产av新网站| 日韩免费高清中文字幕av| 美女高潮喷水抽搐中文字幕| 最新在线观看一区二区三区| 一边摸一边做爽爽视频免费| 丝袜美腿诱惑在线| 欧美另类一区| 99久久人妻综合| 69av精品久久久久久 | 精品少妇久久久久久888优播| 欧美av亚洲av综合av国产av| 纵有疾风起免费观看全集完整版| 欧美精品av麻豆av| 成年av动漫网址| 亚洲av欧美aⅴ国产| 国产1区2区3区精品| 高清视频免费观看一区二区| 亚洲欧洲日产国产| 国产在线一区二区三区精| av超薄肉色丝袜交足视频| 国产1区2区3区精品| 久久久精品免费免费高清| 亚洲免费av在线视频| 国产精品久久久久久精品古装| 亚洲一码二码三码区别大吗| 一级毛片精品| 日韩精品免费视频一区二区三区| 欧美日韩一级在线毛片| 国产一卡二卡三卡精品| 男人添女人高潮全过程视频| 满18在线观看网站| 久久 成人 亚洲| 久久中文看片网| 精品久久蜜臀av无| 狠狠精品人妻久久久久久综合| 亚洲精华国产精华精| netflix在线观看网站| 亚洲精品一二三| 一本—道久久a久久精品蜜桃钙片| 亚洲精品在线美女| 亚洲欧美一区二区三区黑人| 国精品久久久久久国模美| 国产真人三级小视频在线观看| 欧美日韩视频精品一区| 热re99久久国产66热| 亚洲视频免费观看视频| 亚洲国产av新网站| 午夜两性在线视频| 狠狠狠狠99中文字幕| 黄色毛片三级朝国网站| 国产成人系列免费观看| tocl精华| 国产亚洲av高清不卡| 日韩欧美免费精品| 窝窝影院91人妻| 欧美黑人精品巨大| 亚洲第一欧美日韩一区二区三区 | 一级毛片女人18水好多| 国产在线观看jvid| 久久九九热精品免费| 国产精品久久久久久精品电影小说| 久久久国产精品麻豆| 久久久久久久久免费视频了| tube8黄色片| 在线av久久热| 日韩一区二区三区影片| 人成视频在线观看免费观看| 色视频在线一区二区三区| 日本五十路高清| tocl精华| 亚洲午夜精品一区,二区,三区| 精品国产一区二区三区久久久樱花| 亚洲精品久久午夜乱码| 他把我摸到了高潮在线观看 | 国产精品欧美亚洲77777| videos熟女内射| 成人黄色视频免费在线看| 九色亚洲精品在线播放| 精品国产一区二区三区久久久樱花| 黄片播放在线免费| 一区福利在线观看| 女人精品久久久久毛片| 亚洲欧美日韩另类电影网站| 亚洲一码二码三码区别大吗| 美国免费a级毛片| 亚洲av电影在线进入| 亚洲欧美日韩高清在线视频 | 蜜桃在线观看..| 欧美另类亚洲清纯唯美| 无遮挡黄片免费观看| 黄色片一级片一级黄色片| 又紧又爽又黄一区二区| 亚洲精品中文字幕一二三四区 | 亚洲国产欧美网| 一二三四社区在线视频社区8| av天堂久久9| 人妻 亚洲 视频| 亚洲国产欧美在线一区| 狠狠精品人妻久久久久久综合| 国产精品成人在线| 一级a爱视频在线免费观看| 色94色欧美一区二区| 久久综合国产亚洲精品| 日韩电影二区| 亚洲免费av在线视频| 亚洲 国产 在线| 国产欧美日韩一区二区精品| 性色av一级| 最近最新中文字幕大全免费视频| 欧美乱码精品一区二区三区| 日韩,欧美,国产一区二区三区| 搡老乐熟女国产| 日韩欧美一区二区三区在线观看 | 性色av一级| 男女边摸边吃奶| 老司机亚洲免费影院| 一个人免费在线观看的高清视频 | 三上悠亚av全集在线观看| 中文欧美无线码| 天堂俺去俺来也www色官网| 十八禁人妻一区二区| 久久久久国产精品人妻一区二区| av网站免费在线观看视频| 夜夜骑夜夜射夜夜干| 午夜福利在线免费观看网站| 美女福利国产在线| 啦啦啦 在线观看视频| 两个人看的免费小视频| 久久久欧美国产精品| 国产高清videossex| 久久亚洲国产成人精品v| 高清在线国产一区| 欧美黑人精品巨大| 国产激情久久老熟女| 亚洲精品久久成人aⅴ小说| 多毛熟女@视频| 午夜福利一区二区在线看| 亚洲avbb在线观看| 欧美黑人精品巨大| 国产精品欧美亚洲77777| 欧美黑人精品巨大| www.熟女人妻精品国产| 91麻豆精品激情在线观看国产 | av国产精品久久久久影院| 啦啦啦 在线观看视频| 日日爽夜夜爽网站| 久久女婷五月综合色啪小说| 久久国产亚洲av麻豆专区| 国产精品一区二区在线观看99| 9191精品国产免费久久| 精品国产一区二区三区久久久樱花| 夜夜骑夜夜射夜夜干| 男女下面插进去视频免费观看| 老司机在亚洲福利影院| 久久精品国产亚洲av高清一级| 老司机在亚洲福利影院| 久久天躁狠狠躁夜夜2o2o| 又紧又爽又黄一区二区| 最新的欧美精品一区二区| 一边摸一边做爽爽视频免费| 国产黄频视频在线观看| 亚洲精品中文字幕在线视频| 精品国产乱码久久久久久小说| 国产在线一区二区三区精| 99久久精品国产亚洲精品| tube8黄色片| 欧美中文综合在线视频| a级片在线免费高清观看视频| 制服人妻中文乱码| 一二三四社区在线视频社区8| 国产免费视频播放在线视频| 国产精品一区二区在线观看99| 亚洲精品国产一区二区精华液| 精品视频人人做人人爽| 欧美另类一区| www.999成人在线观看| 久久国产亚洲av麻豆专区| 丝袜美腿诱惑在线| 岛国在线观看网站| 国产精品偷伦视频观看了| 女人被躁到高潮嗷嗷叫费观| 国产国语露脸激情在线看| 91成人精品电影| 欧美另类亚洲清纯唯美| 欧美变态另类bdsm刘玥| 国产人伦9x9x在线观看| 亚洲精品美女久久久久99蜜臀| 午夜福利视频精品| 狠狠婷婷综合久久久久久88av| 女性被躁到高潮视频| 亚洲精品日韩在线中文字幕| 欧美 日韩 精品 国产| 免费不卡黄色视频| 国产xxxxx性猛交| 久久ye,这里只有精品| www.av在线官网国产| 日韩免费高清中文字幕av| 国产福利在线免费观看视频| 亚洲专区国产一区二区| 亚洲熟女精品中文字幕| 亚洲专区中文字幕在线|