• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Deep learning based curb detection with Lidar①

    2022-10-22 02:23:34WANGXiaohua王小華LIAOZhongheMAPinMIAOZhonghua
    High Technology Letters 2022年3期

    WANG Xiaohua (王小華), LIAO Zhonghe, MA Pin, MIAO Zhonghua

    (School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, P.R.China)

    Abstract Curb detection provides road boundary information and is important to road detection. However, curb detection is challenging due to the problems such as various curb shapes, colour, discontinuity. In this work, a novel learning-based method for curb detection is proposed using Lidar point clouds, considering that Lidars are not sensitive to illumination and are relatively stable to weather conditions. A deep neural network, named EdgeNet, is constructed and trained, which handles point clouds in an end-to-end way. After EdgeNet is properly trained, curb points are then segmented in the neural network output. In order to train,a curb point annotation algorithm is also designed to generate training dataset. The curb detection method works well with different road scenarios including intersections. The experimental results validate the effectiveness and robustness of this curb detection method.

    Key words: curb detection, EdgeNet, curb annotation algorithm

    0 Introduction

    Detecting road boundary is necessary for vehicles with full or partial autonomy. Without road boundary information, it would be difficult for vehicles to understand their surroundings and to generate behaviour plans. Curb detection is developing rapidly. Many curb detection methods have been proposed.

    Methods[1-2]of model curbs use parabolic curves and random sample consensus[3](RANSAC) algorithm to remove points that do not match the parabolic model. Ref.[1] employed three spatial cues to detect candidate curb points, i. e., elevation difference, gradient value, and normal orientation. A particle filter was also used to track curbs. Ref.[2] detected curb points by using integral laser points (ILP) features. In both methods, parameters are preset and manual adjustment is required.

    Ref.[4] used a Gaussian differential filter to process single line Lidar data. The method is simple and fast, which is implemented in Defense Advanced Research Projects Agency (DARPA) urban challenge vehicles. Kalman filters[5]are also used to detect curbs. Ref.[6] proposed curb detection and tracking method, based on an extended Kalman filter using 2D Lidar data. Other methods[7-9]use the probabilistic interacting multiple model (IMM) algorithm, which contains a finite number of Kalman filters, to determine the curb existence. Filter-based methods also require pre-selected thresholds and filter parameters.

    Considering that curbs are not always continuous,Ref.[10] proposed a sliding-beam model[11]to segment the road with intersections using Lidar data. This method uses a series of beams emitted from selected launching point, where beams are evenly spaced with a given angular resolution. The sliding-beam model is able to segment the current road and the road ahead by moving the launching point. A probabilistic beam model based on 3D point cloud[12]is proposed to segment the intersections. A machine learning method[13-14]is used to classify road shapes using beam models.

    Cameras and ultrasonic sensors are also used for curb detection. Ref.[15] used an on-board camera to detect curbs. Ref.[16] used multiple ultrasonic sensors to implement a low-cost curb detection system. In general, vision-based method would suffer from insufficient illumination and bad weather condition, while radar-based method has comparatively lower resolution.

    In recent years, deep learning has been applied to point cloud segmentation and classification, which brings new ideas for curb detection. One way of point cloud deep learning is to project a 3D point cloud onto a 2D plane, and then process the plane as a 2D image, for example, MV3D[17]and AVOD[18]. Curbs are detected by deep learning on a 2D bird-eye’s view of 3D Lidar point clouds[19-20].

    In 2017, Refs[21,22] started the pioneering work of PointNet and PointNet ++, which provide an endto-end way to classify and segment point clouds. A PointNet++ grasping approach[23]is proposed, which can directly predict the poses, categories, and scores(qualities) of all the grasps. Dynamic graph convolutional neural network[24](DGCNN) is proposed, which learns to semantically group points by dynamically updating a graphic relation from layer to layer.

    In this work, an end-to-end neural network (EdgeNet) is proposed for curb detection, which avoids manual parameter adjustments and provides good segmentation of curb points and non-curb points. The rest of the paper is organized as follows. Section 1 introduces training dataset preparation and the EdgeNet structure. Section 2 performs contrast experiments using PointNet, DGCNN and EdgeNet. Section 3 draws the conclusions.

    1 Materials and methods

    Since no open-source point cloud dataset with curb labels is available, a curb annotation algorithm is designed to annotate curb points for training EdgeNet.In this dataset, data are obtained from the roads on Baoshan campus of Shanghai University. The details of the algorithm are illustrated in subsection 1.1 -1.3.The structure of EdgeNet is then introduced in subsection 1.4.

    1.1 Curb annotation algorithm

    Fig.1 shows that how Lidar lines intersect a curb.Note that, when a Lidar line scans across a curb, the distance from Lidar center to the curb is shorter compared with that to the ground, i.e., the point distance L2(on the curb) is shorter than L1(on the ground) on one scan line, as shown in Fig.1(b) and Fig.1(c).In Fig.1(b) and Fig.1(c),‘a(chǎn)’ and ‘b’ are the two intersecting end points. L1 and L2 denote the distance from ‘a(chǎn)’ and ‘b’ to the coordinate origin, respectively. The coordinate origin is the Lidar center (xdirection points to the front;yandzaxis are set up according to the right-hand rule).

    Fig.1 Diagrams of Lidar lines intersect a curb

    According to the analysis above, a curb annotation algorithm is designed based on the distance difference of point clouds. This algorithm detects the curb points by looking for curb endpoints.

    Fig.2 shows the flowchart of the curb annotation algorithm. The algorithm considers Lidar lines one by one. First of all, cloud points of one Lidar line is projected ontoXOYplane. For each point on the Lidar line, the distance to the origin is calculated as shown in Eq.(1). More important, distance variance of each point is calculated as shown in Eq.(2). The maximum and minimum of the distance variance are then selected as two curb endpoints, where the points in between are marked as curb points and the rest ones are non-curb points.

    Let(xi,yi) represent theith point coordinate inXOYplane, wheredirepresents theith point distance to the origin, andkrepresents the number of neighbourhood points participating the distance variance calculation.

    Fig.2 Flow chart of the curb annotation algorithm

    Fig.3 is an example of the curb annotation algorithm. Fig.3(a) is one Lidar scan line. The points in the black box are roughly curb points. Fig.3(b) shows the distance variance of each point on the line according to Eq.(2). The maximum and the minimum are marked out in Fig.3(c) and they are selected as curb end points, which are consistent with those in the black box in Fig.3(a). After curb ends are found, all the curb points are marked. For this example, the indexes marked are 685 and 659, andkis selected as 30.

    Fig.3 An example of the curb annotation algorithm

    1.2 Algorithm applications in different scenarios

    The algorithm performances are verified in different scenarios. The road scenarios include straight roads,curve roads,and intersections. Each scenario is considered with and without obstacles.

    Fig.4 illustrates the curb annotation results.Fig.4(a) depicts results for a straight road. It is seen that curb points have been detected correctly.Fig.4(b) shows results on a curved road. The results validate algorithm robustness to different road shapes.Fig.4(c) shows the curb detection on intersections.Lidar points are sparser in this case compared with straight or curved roads. The algorithm still detects the curb points well. Fig.4(d) shows results for a road with obstacles. It is seen that some points from the obstacle are identified as curb points. The distance jump from the ground to the obstacle is captured by the algorithm while the real curb distance jump is missed.

    Fig.4 The curb annotation results

    In order to investigate the problem in Fig.4(d),Fig.5(a) shows theXOYprojection of a scan line point cloud with obstacles, where obstacle points and the curb points are in boxes. Fig.5(b) is the distance variance of each point calculated using Eq.(2). The maximum and the minimum variance points are marked out in circles in Fig.5(b). Two circles on the left are the maximum and the minimum variance curb points,and two circles on the right are the maximum and the minimum variance of this scan. According to the selection criteria, those two circles on the left are selected instead of the right ones. This explains why the obstacle points are mistaken as curb points.

    Fig.5 The curb annotation results

    Once the reason is disclosed, distance variance thresholds are set to avoid the influence of the variance change from obstacles. Namely, variances beyond the thresholds are disabled. Fig.6(b) is the detection result according to this modification. It shows that the curb points are properly selected in the presence of obstacles. If the size of obstacles is large and curb points are completely blocked by obstacles, a possible curb portion may be left out.

    Fig.6 Detection results of curb points

    This algorithm is used for labelling. Besides this,careful manual inspection is also applied. As a result,a reliable training dataset is then built for neural network training. The details on this dataset are explained in the next section.

    1.3 Dataset preparation

    The curb annotation algorithm is used to classify the curb points and non-curb points to generate data samples. Letg= (g1,g2, …,gn) denote a set of detected points, wheregi= (p,n,l),i= 1,2,…,n.p= (px,py,pz) represents 3D coordinates of the detected point.n=(nx,ny,nz) is the normal vector of the detected point.lis the label of the detected point,where ‘0’ represents non-curb points and ‘1’ represents curb points. Fig.7 shows a few lines of the data samples.

    All the data are stored in H5 file format that is compact for data storage and is commonly used for point cloud datasets . The curb dataset built consists of 25 ×200 ×4040 points,10% of which are curb points and the rest are non-curb points.

    Fig.7 Data samples

    1.4 EdgeNet model

    The purpose of EdgeNet is to discriminate curb points from non-curb points. The backbone of the PointNet model is adopted for EdgeNet, using shared multi-layer perceptron (MLP) and max pooling to accommodate the permutation of cloud points. Fig.8 is the EdgeNet architecture. Ann×6 point cloud is input to the neural network, which containsnnumber of points and each point contains 6 features, as explained in subsection 2.3.

    Fig.8 EdgeNet model structure

    Firstly,n× 6 input points are passed through shared MLPs with neurons numbers for each layer defined as (64,64), which outputs ann×64 feature matrix. Next, thisn× 64 matrix is furtherly passed through shared MLP with layer neurons numbers as(64,128, 1024), and generates ann×1024 feature matrix, which is considered as expanded local features. Max pooling and average pooling are executed afterwards, which generates two 1024-dimensional global features. The next part is the fully connected layer and outputs two 128-dimensional vectors. The two 128-dimensional global features are concatenated and a 256-dimensional global feature is obtained.

    For the final segmentation part, the 256-dimensional global feature is attached to each of then×1024 local feature, which generates a feature matrix with a dimension ofn×1280. Thisn×1280 matrix is then passed through another shared MLPs. Finally, two segmentations are generated for curb points and non-curb points.

    2 Experiments and results

    Comparison experiments are implemented in this section. Results from PointNet and DGCNN are compared with EdgeNet. All three networks are trained under the same conditions.

    2.1 Training configuration

    LetPoveralldenote the model overall detection accuracy as shown in Eq.(3). And curb detection accuracyPedgeis to evaluate the curb detection efficiency of the networks, which is defined in Eq.(4).

    In most of the cases, curb points are the minority among all the points. For example, in the dataset,curb points are about 10% whereas non-curb points are about 90%. Curb detection accuracyPedgeis used to depict how many curb points are correctly identified among all the curb points instead of all the points.

    2.2 Training results

    EdgeNet training results are shown in Fig.9 and Fig.10. And the training epoch is set as 50. Fig.9 shows overall training accuracyPoveralland training loss.It is seen that EdgeNet’s final overall accuracyPoverallis around 98.4% and training loss is around 0.0417.

    Fig.9 EdgeNet training results

    The curb detection accuracyPedgeof each training cycle is shown in Fig.10. It is seen that EdgeNet curb detection accuracy is about 89.4%.

    Fig.10 EdgeNet curb detection accuracy Pedge

    2.3 Comparison experiments

    In this section, PointNet and DGCNN are trained for comparison. Both PointNet and DGCNN are end-toend networks. DGCNN considers point segmentation from the graph point of view. Training and testing are performed under the same conditions for all three networks.

    Table 1 shows the comparison training results.The comparison results include the training cycle number,the training time in hours, the model overall accuracyPoveralland the curb detection accuracyPedge.

    Table 1 Comparison results for EdgeNet, PointNet and DGCNN

    It is seen from Table 1 and Fig.11 that EdgeNet is better in the curb detection accuracy, which is about 5% higher than PointNet and about 1% higher than DGCNN. Subsection 2.4 compares the curb detection results in different scenarios.

    Fig.11 Curb detection accuracy Pedge

    2.4 Test results in different scenarios

    Fig.12 Comparisons of curb detection results in a straight road

    Fig.13 Comparisons of curb detection results in a curve road

    Fig.14 Comparisons of curb detection results in an intersection

    Fig.15 Comparisons of curb detection results in a road with obstacles

    Figs12 -15 show the comparisons results for four different road scenarios, including straight roads,curve roads, intersections and roads with obstacles.Three methods (EdgeNet, PointNet and DGCNN), are tested. Table 2 summarizes the detection accuracies of these three methods in four scenarios, includingPoverallandPedge.It is seen that all the methods can effectively detect the curb points, and theirPoverallaccuracies are above 95%. And EdgeNetPedgeaccuracies are the highest, which means its ability to detect curbs is the best among them.

    Table 2 Comparison results for different scenarios (%)

    3 Conclusions

    In this work,an end-to-end deep learning network(EdgeNet) is proposed for curb detection, which handles Lidar cloud points directly. EdgeNet marks out curb points in the output. A curb annotation algorithm is also designed to generate dataset for training EdgeNet. Overall, this neural network method avoids tedious manual parameter adjustments and provides good segmentation of curb points and non-curb points under different road scenarios. The comparison results of Edgenet, PointNet and DGCNN are also provided. Comparatively, EdgeNet learns curb features for curb segmentation better, which has been validated in the experiments.

    中文字幕制服av| 免费看日本二区| 久久精品夜色国产| 自线自在国产av| 高清毛片免费看| 老熟女久久久| 精品少妇内射三级| 亚洲va在线va天堂va国产| 女人精品久久久久毛片| 黄片无遮挡物在线观看| 国产白丝娇喘喷水9色精品| 看免费成人av毛片| 欧美丝袜亚洲另类| 在线 av 中文字幕| 日本av手机在线免费观看| 久久人人爽人人爽人人片va| 国产午夜精品久久久久久一区二区三区| 全区人妻精品视频| 久热这里只有精品99| 成年av动漫网址| 水蜜桃什么品种好| 一区二区三区免费毛片| 寂寞人妻少妇视频99o| 久久久久国产网址| 中文字幕人妻丝袜制服| 永久免费av网站大全| 国产精品福利在线免费观看| xxx大片免费视频| 一级毛片久久久久久久久女| 欧美精品亚洲一区二区| 建设人人有责人人尽责人人享有的| 国产中年淑女户外野战色| 国产高清有码在线观看视频| 免费黄网站久久成人精品| 成年人午夜在线观看视频| 91精品国产国语对白视频| 91精品伊人久久大香线蕉| 国产免费一区二区三区四区乱码| 日日爽夜夜爽网站| 欧美精品国产亚洲| 国产一区二区在线观看av| 国产极品粉嫩免费观看在线 | 99热这里只有是精品50| 一级av片app| 国产精品久久久久久精品电影小说| 美女内射精品一级片tv| 涩涩av久久男人的天堂| 人妻 亚洲 视频| 高清在线视频一区二区三区| 看非洲黑人一级黄片| 永久网站在线| 一级,二级,三级黄色视频| 亚洲欧美精品专区久久| 欧美精品国产亚洲| 菩萨蛮人人尽说江南好唐韦庄| 国产熟女欧美一区二区| 尾随美女入室| 人妻 亚洲 视频| 在线亚洲精品国产二区图片欧美 | 日产精品乱码卡一卡2卡三| 久久av网站| 久久久欧美国产精品| 亚洲精品乱码久久久v下载方式| a级毛色黄片| 亚洲精品国产av蜜桃| 全区人妻精品视频| 精品酒店卫生间| 岛国毛片在线播放| 两个人免费观看高清视频 | 精品一区二区免费观看| 精品国产露脸久久av麻豆| 秋霞伦理黄片| 精品一区二区三卡| 十八禁高潮呻吟视频 | 久久女婷五月综合色啪小说| 国产精品不卡视频一区二区| 在线观看免费视频网站a站| 亚洲精品乱码久久久v下载方式| 丝瓜视频免费看黄片| 超碰97精品在线观看| 天堂俺去俺来也www色官网| 在线免费观看不下载黄p国产| 18禁在线播放成人免费| 亚洲自偷自拍三级| 亚洲av电影在线观看一区二区三区| 久久99热这里只频精品6学生| 日韩成人av中文字幕在线观看| 人人妻人人添人人爽欧美一区卜| 一区二区三区免费毛片| 高清在线视频一区二区三区| 色94色欧美一区二区| 街头女战士在线观看网站| 成人国产av品久久久| 黄色毛片三级朝国网站 | 欧美亚洲 丝袜 人妻 在线| 桃花免费在线播放| 少妇 在线观看| 亚洲人成网站在线观看播放| 高清午夜精品一区二区三区| 国产一区二区在线观看日韩| 少妇裸体淫交视频免费看高清| 大香蕉97超碰在线| 性色av一级| 亚洲国产毛片av蜜桃av| 日韩一本色道免费dvd| 少妇人妻 视频| 亚洲婷婷狠狠爱综合网| 美女中出高潮动态图| 欧美精品人与动牲交sv欧美| 欧美日韩视频高清一区二区三区二| 免费看av在线观看网站| 国产高清不卡午夜福利| 各种免费的搞黄视频| 午夜福利视频精品| 亚洲图色成人| 国产在线免费精品| 精品午夜福利在线看| 夫妻午夜视频| 女的被弄到高潮叫床怎么办| 成人免费观看视频高清| 国产精品秋霞免费鲁丝片| 一级毛片久久久久久久久女| 国产视频内射| 99热这里只有是精品50| 22中文网久久字幕| 亚洲欧美成人综合另类久久久| 在线观看av片永久免费下载| 免费在线观看成人毛片| 99热6这里只有精品| 国产淫片久久久久久久久| 久久国产亚洲av麻豆专区| 亚洲av日韩在线播放| 97超碰精品成人国产| 国产有黄有色有爽视频| 欧美人与善性xxx| 亚洲无线观看免费| 久久毛片免费看一区二区三区| 蜜桃在线观看..| 成人综合一区亚洲| 偷拍熟女少妇极品色| 久久久久视频综合| 日本wwww免费看| 最黄视频免费看| 69精品国产乱码久久久| 亚洲美女黄色视频免费看| 午夜av观看不卡| 自拍偷自拍亚洲精品老妇| 亚洲激情五月婷婷啪啪| 99热这里只有是精品在线观看| 国内精品宾馆在线| 成人国产av品久久久| 久久99精品国语久久久| 亚洲久久久国产精品| 丁香六月天网| 日本91视频免费播放| 亚洲欧美日韩另类电影网站| 久久精品久久久久久久性| 国产日韩欧美视频二区| 亚洲成人一二三区av| 国内精品宾馆在线| 国产精品嫩草影院av在线观看| 中国国产av一级| 欧美另类一区| 久久99热这里只频精品6学生| 高清不卡的av网站| 五月玫瑰六月丁香| 国产亚洲最大av| 国产综合精华液| 天堂俺去俺来也www色官网| 少妇被粗大的猛进出69影院 | 国产 一区精品| 国产永久视频网站| 久久6这里有精品| 蜜臀久久99精品久久宅男| 国产成人精品福利久久| 亚洲欧美成人精品一区二区| 国产成人午夜福利电影在线观看| 新久久久久国产一级毛片| 国产精品久久久久久av不卡| 丰满少妇做爰视频| 91久久精品国产一区二区成人| 欧美少妇被猛烈插入视频| 777米奇影视久久| 精品午夜福利在线看| 日韩制服骚丝袜av| 五月伊人婷婷丁香| 国产欧美日韩综合在线一区二区 | 日本免费在线观看一区| 肉色欧美久久久久久久蜜桃| 国产成人免费观看mmmm| 最近手机中文字幕大全| av黄色大香蕉| 日本黄大片高清| 女人精品久久久久毛片| 啦啦啦中文免费视频观看日本| 爱豆传媒免费全集在线观看| 国产又色又爽无遮挡免| 午夜免费观看性视频| 久久婷婷青草| 免费看不卡的av| 欧美老熟妇乱子伦牲交| 国产伦理片在线播放av一区| 欧美日本中文国产一区发布| 全区人妻精品视频| 大香蕉久久网| 亚洲第一区二区三区不卡| 国产精品一区二区在线观看99| 亚洲人成网站在线观看播放| 成人免费观看视频高清| 亚洲成人av在线免费| av在线app专区| 亚洲丝袜综合中文字幕| 日本与韩国留学比较| av一本久久久久| 久久综合国产亚洲精品| 天堂中文最新版在线下载| 女性生殖器流出的白浆| 国产av码专区亚洲av| 亚洲电影在线观看av| 老司机影院毛片| 久热久热在线精品观看| 在线观看三级黄色| 日韩av免费高清视频| 国产精品人妻久久久影院| 成人影院久久| 99久久精品国产国产毛片| 亚洲国产精品国产精品| 久久亚洲国产成人精品v| 久久久亚洲精品成人影院| 精品午夜福利在线看| 能在线免费看毛片的网站| 国产精品久久久久久精品电影小说| 99热全是精品| 少妇 在线观看| 中文字幕亚洲精品专区| 十八禁高潮呻吟视频 | 国产精品秋霞免费鲁丝片| 一区二区三区免费毛片| 男女无遮挡免费网站观看| 五月伊人婷婷丁香| 国产精品人妻久久久久久| av福利片在线观看| 国产精品秋霞免费鲁丝片| 高清欧美精品videossex| 日韩视频在线欧美| 最近中文字幕2019免费版| 91午夜精品亚洲一区二区三区| 午夜日本视频在线| 欧美日韩一区二区视频在线观看视频在线| 中文在线观看免费www的网站| 国产69精品久久久久777片| 人妻少妇偷人精品九色| 久久精品久久精品一区二区三区| 久久免费观看电影| 亚洲成色77777| 少妇被粗大的猛进出69影院 | av在线播放精品| 日韩 亚洲 欧美在线| 精品人妻一区二区三区麻豆| 精品酒店卫生间| 久久久国产精品麻豆| 精品人妻偷拍中文字幕| 亚洲熟女精品中文字幕| 色吧在线观看| 边亲边吃奶的免费视频| 久久狼人影院| 香蕉精品网在线| 国产无遮挡羞羞视频在线观看| av在线播放精品| 51国产日韩欧美| 欧美成人精品欧美一级黄| 免费看光身美女| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品,欧美精品| 国内揄拍国产精品人妻在线| 老司机影院毛片| 免费人妻精品一区二区三区视频| 午夜免费鲁丝| 九九爱精品视频在线观看| 成人毛片60女人毛片免费| 国产熟女午夜一区二区三区 | 亚洲一区二区三区欧美精品| 国产av国产精品国产| 国产亚洲av片在线观看秒播厂| 一级毛片黄色毛片免费观看视频| 欧美日韩一区二区视频在线观看视频在线| 亚洲av日韩在线播放| 一区二区三区精品91| 国产欧美另类精品又又久久亚洲欧美| 精品一区二区免费观看| 日本av免费视频播放| 日韩大片免费观看网站| 女人精品久久久久毛片| 亚洲综合色惰| 亚洲精品色激情综合| 高清av免费在线| 久久久久人妻精品一区果冻| 偷拍熟女少妇极品色| 一二三四中文在线观看免费高清| 91久久精品国产一区二区成人| 各种免费的搞黄视频| 久久影院123| av国产久精品久网站免费入址| 国产伦精品一区二区三区视频9| 亚洲精品久久午夜乱码| 亚洲精品久久午夜乱码| 天堂俺去俺来也www色官网| 乱人伦中国视频| 97超碰精品成人国产| 日本免费在线观看一区| 26uuu在线亚洲综合色| 欧美精品国产亚洲| 在线观看美女被高潮喷水网站| 啦啦啦视频在线资源免费观看| 最近手机中文字幕大全| 一级黄片播放器| 极品少妇高潮喷水抽搐| 久久精品熟女亚洲av麻豆精品| 国产精品一区二区三区四区免费观看| 欧美xxⅹ黑人| 久久久久精品久久久久真实原创| 久久久国产一区二区| 嫩草影院入口| 久热久热在线精品观看| 欧美一级a爱片免费观看看| 欧美xxxx性猛交bbbb| 王馨瑶露胸无遮挡在线观看| 国产精品99久久99久久久不卡 | 国产极品粉嫩免费观看在线 | 在线观看一区二区三区激情| 老司机影院毛片| 日本色播在线视频| 777米奇影视久久| 美女内射精品一级片tv| 亚洲无线观看免费| 我的女老师完整版在线观看| 人妻人人澡人人爽人人| 日韩免费高清中文字幕av| 少妇 在线观看| 亚洲三级黄色毛片| 色94色欧美一区二区| a级毛片在线看网站| 精品久久国产蜜桃| 丰满少妇做爰视频| 最近2019中文字幕mv第一页| 丝袜喷水一区| 久久毛片免费看一区二区三区| 成人亚洲欧美一区二区av| 日本色播在线视频| 免费久久久久久久精品成人欧美视频 | 一区二区av电影网| 下体分泌物呈黄色| 国产白丝娇喘喷水9色精品| av又黄又爽大尺度在线免费看| 色视频www国产| 国产白丝娇喘喷水9色精品| 精品久久国产蜜桃| 十八禁高潮呻吟视频 | 国产亚洲精品久久久com| 久久久久久久久久人人人人人人| 国产精品三级大全| 中文乱码字字幕精品一区二区三区| 亚洲在久久综合| 18禁裸乳无遮挡动漫免费视频| 免费看日本二区| 肉色欧美久久久久久久蜜桃| 国产精品久久久久久久久免| 天堂中文最新版在线下载| 一二三四中文在线观看免费高清| 九草在线视频观看| 美女福利国产在线| 欧美最新免费一区二区三区| 王馨瑶露胸无遮挡在线观看| 国产高清不卡午夜福利| 日韩免费高清中文字幕av| 国产熟女欧美一区二区| 一本一本综合久久| 天天操日日干夜夜撸| 日韩亚洲欧美综合| 久久久久久久久久久久大奶| 狂野欧美激情性bbbbbb| 国产精品偷伦视频观看了| 国产69精品久久久久777片| 街头女战士在线观看网站| 久久精品国产亚洲网站| 午夜av观看不卡| 香蕉精品网在线| 哪个播放器可以免费观看大片| 亚洲av综合色区一区| 亚洲真实伦在线观看| 欧美丝袜亚洲另类| 深夜a级毛片| 免费在线观看成人毛片| 哪个播放器可以免费观看大片| 国产精品蜜桃在线观看| 国产一区二区在线观看av| 九九爱精品视频在线观看| 极品人妻少妇av视频| 精品亚洲成a人片在线观看| 一本—道久久a久久精品蜜桃钙片| 中文在线观看免费www的网站| 成人国产av品久久久| 一级黄片播放器| 亚洲精品亚洲一区二区| 国产69精品久久久久777片| 午夜av观看不卡| 亚洲精品国产av蜜桃| 国产精品秋霞免费鲁丝片| 十八禁高潮呻吟视频 | 欧美变态另类bdsm刘玥| 久久午夜综合久久蜜桃| 久久久久国产网址| 一区二区三区乱码不卡18| 亚洲欧美精品自产自拍| av不卡在线播放| 国产免费福利视频在线观看| 人妻少妇偷人精品九色| 日本与韩国留学比较| 国产精品久久久久久久久免| 视频区图区小说| 十八禁高潮呻吟视频 | 亚洲国产精品999| 亚洲情色 制服丝袜| 欧美日本中文国产一区发布| 精品少妇内射三级| 国产免费福利视频在线观看| 欧美精品亚洲一区二区| 黄片无遮挡物在线观看| 国产深夜福利视频在线观看| 一本—道久久a久久精品蜜桃钙片| 欧美一级a爱片免费观看看| 国产亚洲午夜精品一区二区久久| 免费看不卡的av| 人人妻人人添人人爽欧美一区卜| 女性生殖器流出的白浆| 婷婷色综合www| 91久久精品电影网| 另类精品久久| 亚洲伊人久久精品综合| 国产免费又黄又爽又色| 成人影院久久| 少妇高潮的动态图| 国产亚洲精品久久久com| 久久久久久久久久久久大奶| 99久国产av精品国产电影| 日韩在线高清观看一区二区三区| 国产色爽女视频免费观看| 亚洲真实伦在线观看| 精品少妇内射三级| 久久精品久久精品一区二区三区| 精品一品国产午夜福利视频| 精品久久久久久久久亚洲| 国产精品久久久久成人av| 欧美一级a爱片免费观看看| 精品一品国产午夜福利视频| 在线观看免费日韩欧美大片 | 少妇裸体淫交视频免费看高清| 精品一区二区三卡| 搡女人真爽免费视频火全软件| 国产精品久久久久久久久免| 亚洲欧美精品专区久久| 简卡轻食公司| 免费观看av网站的网址| 啦啦啦视频在线资源免费观看| 秋霞伦理黄片| 777米奇影视久久| 免费黄频网站在线观看国产| 日韩精品有码人妻一区| 亚洲精品中文字幕在线视频 | 久久精品久久精品一区二区三区| 国产毛片在线视频| 国国产精品蜜臀av免费| 秋霞在线观看毛片| 纵有疾风起免费观看全集完整版| 午夜福利影视在线免费观看| av天堂中文字幕网| 久久国产亚洲av麻豆专区| 亚洲国产日韩一区二区| 在线观看美女被高潮喷水网站| 蜜桃在线观看..| 亚洲欧洲精品一区二区精品久久久 | 欧美日韩精品成人综合77777| 午夜福利影视在线免费观看| 免费在线观看成人毛片| 一级,二级,三级黄色视频| 欧美精品亚洲一区二区| 亚洲av中文av极速乱| 亚洲精品第二区| 一级,二级,三级黄色视频| 一区二区三区免费毛片| 国产精品一区二区三区四区免费观看| 国产免费视频播放在线视频| 内射极品少妇av片p| 久久午夜综合久久蜜桃| 久久久精品免费免费高清| 亚洲精品色激情综合| 纯流量卡能插随身wifi吗| 免费播放大片免费观看视频在线观看| videos熟女内射| 久久久国产一区二区| 观看免费一级毛片| 美女国产视频在线观看| 涩涩av久久男人的天堂| 成人国产麻豆网| 极品教师在线视频| 久久99蜜桃精品久久| 国产中年淑女户外野战色| 91午夜精品亚洲一区二区三区| 亚洲国产色片| 男女免费视频国产| 男人和女人高潮做爰伦理| 久久人妻熟女aⅴ| 午夜老司机福利剧场| 大陆偷拍与自拍| 最后的刺客免费高清国语| 欧美最新免费一区二区三区| 嫩草影院入口| 成人亚洲欧美一区二区av| 午夜91福利影院| 99视频精品全部免费 在线| 黄色毛片三级朝国网站 | 精品午夜福利在线看| 欧美一级a爱片免费观看看| 大片电影免费在线观看免费| 亚洲第一av免费看| 又粗又硬又长又爽又黄的视频| 国产免费又黄又爽又色| 一边亲一边摸免费视频| 秋霞伦理黄片| 男女国产视频网站| 赤兔流量卡办理| 成人特级av手机在线观看| 一级毛片aaaaaa免费看小| 欧美日韩视频高清一区二区三区二| 熟女电影av网| 99热这里只有是精品在线观看| av免费在线看不卡| 男女无遮挡免费网站观看| 欧美少妇被猛烈插入视频| 国产伦理片在线播放av一区| 黄色怎么调成土黄色| 日韩视频在线欧美| 日日撸夜夜添| 久久精品国产鲁丝片午夜精品| 精品国产一区二区久久| 亚洲精品一区蜜桃| 少妇人妻久久综合中文| 久久精品国产a三级三级三级| 草草在线视频免费看| av在线app专区| 日韩中文字幕视频在线看片| 精品一区二区三卡| 免费久久久久久久精品成人欧美视频 | 国产精品国产av在线观看| 国产精品欧美亚洲77777| 午夜免费男女啪啪视频观看| 亚洲av电影在线观看一区二区三区| 91精品一卡2卡3卡4卡| 一级毛片久久久久久久久女| 免费大片黄手机在线观看| 毛片一级片免费看久久久久| av天堂中文字幕网| 久久国内精品自在自线图片| 欧美精品人与动牲交sv欧美| 中文乱码字字幕精品一区二区三区| .国产精品久久| 久久97久久精品| 成人亚洲欧美一区二区av| 欧美 亚洲 国产 日韩一| 久久国产乱子免费精品| 成人综合一区亚洲| 一区二区三区四区激情视频| 夫妻性生交免费视频一级片| 亚洲av免费高清在线观看| 2022亚洲国产成人精品| 又黄又爽又刺激的免费视频.| 国产高清国产精品国产三级| 久久久久国产网址| 亚洲精品国产av成人精品| 日日啪夜夜撸| 在线观看一区二区三区激情| 国产av国产精品国产| 男女啪啪激烈高潮av片| 97在线人人人人妻| 青青草视频在线视频观看| 制服丝袜香蕉在线| 香蕉精品网在线| 97在线视频观看| 欧美日韩综合久久久久久| 国产69精品久久久久777片| 午夜激情久久久久久久| 亚洲av二区三区四区| 国产亚洲一区二区精品| 午夜激情久久久久久久| 人人妻人人澡人人爽人人夜夜| 麻豆乱淫一区二区| 精品午夜福利在线看| 日韩熟女老妇一区二区性免费视频| 韩国av在线不卡| 丰满人妻一区二区三区视频av| 一个人看视频在线观看www免费| 人妻少妇偷人精品九色| 99热网站在线观看| 不卡视频在线观看欧美| 简卡轻食公司| 女人精品久久久久毛片| 久久鲁丝午夜福利片| 精品人妻熟女av久视频| 精品久久久久久电影网| 日日摸夜夜添夜夜添av毛片| 亚洲四区av| 搡女人真爽免费视频火全软件| 亚洲性久久影院| 国产精品一区www在线观看| 一级毛片 在线播放|