• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy efficiency optimization of relay-assisted D2D two-way communications with SWIPT①

    2022-10-22 02:23:16HEJiai何繼愛CHENYanjiaoWANGTong
    High Technology Letters 2022年3期

    HE Jiai(何繼愛), CHEN Yanjiao, WANG Tong

    (School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, P.R.China)

    Abstract Aiming at the energy consumption of long-distance device-to-device (D2D) devices for two-way communications in a cellular network, this paper proposes a strategy that combines two-way relay technology (TWRT) and simultaneous wireless information and power transfer (SWIPT) technology to achieve high energy efficiency (EE) communication. The scheme first establishes a fractional programming problem to maximize EE of D2D, and transforms it into a non-fractional optimization problem that can be solved easily. Then the problem is divided into three sub-problems: power control, power splitting ratios optimization, and relay selection. In order to maximize EE of the D2D pair, the Dinkelbach iterative algorithm is used to optimize the transmitted power of two D2D devices simultaneously; the one-dimensional search algorithm is proposed to optimize power splitting ratios;an improved optimal relay selection scheme based on EE is proposed to select relay. Finally,experiments are carried out on the Matlab simulation platform. The simulation results show that the proposed algorithm has faster convergence. Compared with the one-way relay transmission and fixed relay algorithms, the proposed scheme has higher EE.

    Key words: device-to-device(D2D), energy efficiency (EE), simultaneous wireless information and power transfer (SWIPT), two-way communications, power control, relay selection

    0 Introduction

    With the significant growth of wireless cellular equipment and its traffic demand, resource consumption and environmental pollution have also increased,cellular network is facing the challenge of spectrum resource shortage and high energy consumption[1].Therefore, it is of great significance to study green communication with high energy efficiency (EE). Device-to-device (D2D) communication technology that uses the cellular spectrum can effectively alleviates the problems existing in cellular networks, such as insufficient capacity, shortage of spectrum resources, poor communication quality of marginal users,and excessive energy consumption[2-4], but it brings various interference to cellular network. Simultaneous wireless information and power transfer (SWIPT) technology[5]can convert the harmful interference in the cellular network into beneficial energy source, thereby reducing system energy consumption and realizing green communication.

    Relay technology,including one-way relay technology (OWRT) and two-way relay technology (TWRT)[6],effectively solves the communication problem when the distance between users is long or the link quality is poor. Research shows that, compared with one-way relay communication, two-way relay-assisted D2D communication can significantly improve the system performance (for example, spectrum efficiency (SE) and outage probability)[7]. However, due to the selfishness of the relay, it is unwilling to consume its energy to help other users. Thus, this paper combines the advantages of SWIPT and TWRT, and designs an optimization scheme that balances information and energy at the same time for energy-constrained relay nodes.

    In recent years, scholars at home and abroad have conducted extensive researches on D2D relay-assisted communication based on SWIPT. Ref.[8] proposed a resource allocation and power control scheme for underlying D2D networks with SWIPT. Ref.[9] studied the SWIPT mode selection for energy-saving in D2D communication. Ref.[10] investigated the power allocation problem of D2D communication in cellular networks with SWIPT, and established a new game theory model to maximize utility. Ref. [11] optimized EE of D2D relay-assisted communication with power control,relay selection, and channel allocation algorithm.Ref.[12] studied on EE,SE of one-way and two-way D2D communication in a cellular network. It is a pity that the relay does not have an energy harvesting function. The above literatures used SWIPT or TWRT independently, not simultaneously. Ref.[13] deduced the outage probability of two-way D2D communication by using the spectrum sharing model of cooperative cognitive radio network, but the research on EE was not sufficient. In summary, although scholars have begun to study D2D communication based on SWIPT or TWRT,they have not done enough work on EE of D2D using SWIPT-TWRT at the same time. Moreover, the literatures lack research on joint consideration of power control, power splitting (PS) ratios, and relay selection.

    To solve the above problems, this article aims at green communication, SWIPT-TWRT protocol for two D2D users exchanging information is proposed firstly,

    where the idle D2D devices act as relays to scavenge energy from the radio frequency signals transmitted by both the users. According to the proposed strategy, an optimization problem is formulated to maximize the system EE by optimizing transmitted power and PS ratios.However, due to the coupling of transmitted power and PS ratios, it is hard to be solved. Therefore, the problem is decomposed into two subproblems: power control and PS ratios optimization. To reduce the complexity of relay selection, an improved optimal relay selection scheme based on EE is proposed, which considers not only EE of the system but also the distance. Experimental results show that this scheme can effectively improve EE of D2D links.

    1 System model

    Assume that there is a pair of D2D users (DU1and DU2) andnrelays for two-way communication in a cellular network, for example, the terminal uploads pictures while waiting to download the video,where the set of relays is denoted as {r1,r2, …,rn}.Because the distance is too long or the shadow fading is severe,there is no direct transmission link between DU1and DU2, it is necessary to use an idle D2D device as a relay node, and use decode-and-forward (DF) for auxiliary transmission. The system model is shown in Fig.1, which considers that a pair of D2D users reuse the uplink spectrum resources with less interference from cellular users in underlay mode, and limit a pair of D2D users to share the spectrum resources of only one cellular user at most. Each node in the system is equipped with an antenna and works in half-duplex mode.All channels obey the Rayleigh distribution, and the channel is flat block fading. That is, the channel coefficient remains unchanged within the timeTof completing a two-way transmission, and the channel has reciprocity. All devices have no power supply but can use the PS protocol in SWIPT technology for energy harvesting. It is assumed that the data buffer and battery capacity of the relay are infinite, so the overflow of data and energy is not considered.

    Fig.1 System model

    Table 1 PS time slot allocation table

    2 Problem analysis

    2.1 Signal model

    According to the time slot allocation in Table 1, it can be analyzed that DUisends information torin time sloti(i=1,2).After processing by the receiver ofr,the signal received by the base station (BS) at the end of time slotiis written as

    2.2 Energy efficiency model

    Due to the fact that the transmission rate of the link depends on the transmission link with a low rate,at the end of the entire time slot, the transmission rate at DU1can be defined as

    EE is defined as the ratio of transmission rate to power consumption, and its unit is bit/J. It means the number of bits that can be transmitted per unit of energy in a mobile communication system, which can be formulated as

    In order to maximize the EE of the D2D pair and meet its transmission rate threshold, the power of each node needs to be solved when EE is maximum, the mathematical model is shown in the following formula.

    s.t.

    whereC1 presents the value range of the PS ratios,C2~C3 represent the minimum transmission rate threshold required by D2D users, and C4 represents the value range of transmitting power of D2D users.

    3 Energy efficiency optimization

    Since EE is a function of four variables ofP1,P2,α1,α2, it is difficult to solve Eq.(12). To simplify the solution of this problem, an iterative optimization algorithm can be used to obtain the maximum value of EE. The specific steps are as follows. In step 1,α1andα2are taken as fixed values.P1andP2are treated as optimization variables to optimize the objective function. In step 2,P1andP2obtained by optimization are regarded as fixed values.α1andα2are identified as optimization variables to optimize the objective function. In step 3, this iterative optimization is repeated,and optimization is completed until the final optimization result tends to convergence.

    3.1 Transmitted power optimization

    Whenα1andα2are fixed values, the optimization problem becomes

    The objective function is a non-linear fractional function ofP1andP2.To facilitate the judgment of concavity or convexity, this formula is transformed into a non-fractional problem. Letq*denotes the maximum EE that can be achieved byQ1, and the function is defined as

    It can be proved by Heisen matrix[15]thatQ2 is a convex optimization problem, and CVX toolbox[16]can be used in Matlab for optimization. Therefore, this paper uses an iterative algorithm based on Dinkelbach,and the specific process is shown in Algorithm 1.

    Algorithm 1 The iterative algorithm based on Dinkelbach to maximize EE 1: Initialize the maximum iterations Lmax and the maximum error tolerance ε.2: Set the maximum EE q =0 and iteration index l =1.3: repeat 4: Solve Q2 with a given q by using CVX and obtain the optimal solution P′1 and P′2 5: if R′21 + R′12 - q × [(P′1 + P′2)/ξ +3Pcir] <ε, then 6: Set P*1 = P′1,P*2 = P′2,q* = R′21 + R′12(P′1 + P′2)/ξ +3Pcir,, l = l +1,Flag=0.Flag=1 and return 7: else 8: Set q = R′21 + R′12(P′1 + P′2)/ξ +3Pcir 9: end if 10: until Flag=1 or l =Lmax.

    3.2 Power splitting ratios optimization

    WhenP1andP2are fixed, EE is a concave function ofαi, the optimization problem can be rewritten as

    The specific process is as follows. The transmitting powerP1andP2have corresponding PS ratiosα1andα2respectively. To solve the optimal EE,α1andα2are optimized one by one. First, the obtained optimal transmitting power of one D2D device and its PS are taken as fixed values, and optimize the value of EE under the PS of the other D2D device. Repeat the above steps, optimize the value of EE under the first PS ratios until its value is all traversed.

    3.3 Relay selection

    Due to the fact that the power and storage space of the device are limited,the design of the relay algorithm must be simple enough. Before selecting an appropriate relay for the D2D pair, to reduce the computational complexity, the candidate relay sets are divided for the D2D pair firstly. The optional relay deployment area division for DU1and DU2is shown in Fig.2. The area where the candidate relay is located is the overlapping area of two circles whose diameter is the distance between DU1and DU2and whose center is DU1and DU2.The relay nodes are randomly generated in this area on average, so the set of candidate relays for D2D users is expressed as

    whered12is the distance between DU1to DU2,d1randd2rare the distance from DU1torand from DU2torrespectively.

    Fig.2 Alternative relay area

    After dividing the candidate relay area for the D2D pair, |EEn| is used to represent EE of the D2D relay auxiliary link, and compare EE of each candidate relay to DU1and DU2. Under the condition of ensuring that the link reaches minimum transmission rate, this paper sorts in ascending order by the value of |EEn|and selects the relay node that can maximize EE of the D2D link. This relay node is the best one.

    4 Complexity analysis

    5 Simulation experiments and result analysis

    The numerical results are shown to prove the superiority of EE with the proposed scheme. Matlab software is used to simulate the algorithm, the Monte Carlo experiment is repeated 1000 times, and then the results are averaged. To verify the advantages of the proposed scheme, EE of two communication modes and two relay modes are simulated respectively, and the influence of transmitted power, distance, and PS ratios on the performance of the algorithm is analyzed. To simplify the simulation, the relay node position is selected at the midpoint of the D2D pair in the fixed relay scheme. The main simulation parameters are shown in Table 2.relay selection schemes are adopted. The following conclusions can be drawn from Fig.3: (1) After 3 iterations, the algorithm has basically converged, so the proposed algorithm has faster convergence. (2) Comparing EE of one-way and two-way communication(same line) under the fixed relay and relay selection schemes, the results show that the two-way relay communication has higher EE than that of the one-way relay. (3) Comparing EE of fixed relay and relay selection (same symbol) in two-way communication and one-way communication, it can be concluded that EE has been further improved after adopting the scheme.

    Table 2 Experimental simulation parameters

    Fig.3 The relationship between the number of iterations and EE

    In order to maximize EE of D2D communication,the optimal transmitted powerP1andP2of DU1and DU2are optimized simultaneously. Therefore, the optimal transmitted power of DU1and DU2in two-way communication and the transmitted power in one-way communication are simulated respectively when the relay is selected by the proposed scheme, as shown in Fig.4.In two-way communication, the relationship betweenP2and EE is plotted when the optimal value ofP1is fixed, and the relationship betweenP1and EE is also drawn when the optimal value ofP2is fixed. The following conclusions can be drawn from Fig. 4: (1)When the D2D transmitted power increases, after EE reaches the peak value for the first time, it decreases as the D2D transmitted power further increases. Thus,there is an optimal D2D transmitted power to maximize EE. (2) Compared with one-way communication,twoway communication can achieve greater EE with less transmitted power.

    The distance of the D2D pair is set to 70 m,80 m,and 90 m respectively. Fig.5 shows the relationship between the distance and EE of the two-way relay selection scheme. It can be concluded from the figure that the closer the transmission distance between D2D users is, the greater EE will be. The main reason is that the longer the communication distance,the smaller the channel gain and the lower EE.

    Fig.4 The relationship between transmitted power and EE

    Fig.5 The relationship between distance and EE

    Fig.6 The relationship between PS ratios α1 and EE

    Fig.7 The relationship between PS ratios α2 and EE

    Fig.6 and Fig.7 respectively represent the relationship between the PS ratios (α1andα2) and EE using two-way relay selection scheme. The optimal transmitted power of DU1and DU2isP1=25 mW andP2=26 mW respectively. Comparing EE under conditions of two different transmitted power values, which the one is larger than the optimal transmitted power and the other is smaller than the optimal transmitted power. The following conclusions can be drawn: (1) the largerαis,the lower EE is. That is, the greater the proportion of information decoding, the greater EE of D2D. (2)With the change of PS ratios, the value of EE is affected, which does not always maintain the optimal under the optimal transmitted power.

    6 Conclusion

    This paper investigates EE of two-way transmission of D2D user pair in a cellular network, and proposes TWRT-SWIPT protocols to reduce devices energy consumption. Simulation experiments verify the effectiveness of the two-way relay selection mode compared with other three modes: one-way fixed relay, one-way relay selection and two-way fixed relay. Thus, using TWRT-SWIPT protocols to the D2D communication can improve EE of the system. At the same time, this paper also analyzes the influence of transmitted power,distance, and PS ratios on the performance of the algorithm. In the next step, multiple D2D pairs of EE under the nonlinear energy harvesting model will be investigated to make the system model more valuable.

    久热久热在线精品观看| 国语对白做爰xxxⅹ性视频网站| 26uuu在线亚洲综合色| 免费高清在线观看视频在线观看| 国产在线视频一区二区| 欧美成人午夜精品| 好男人视频免费观看在线| 中文精品一卡2卡3卡4更新| 久久免费观看电影| 国产av码专区亚洲av| 国产在线免费精品| 精品人妻熟女毛片av久久网站| 蜜桃在线观看..| 国产亚洲精品第一综合不卡 | 超碰97精品在线观看| 看免费av毛片| 伦理电影免费视频| 日本午夜av视频| 国产熟女欧美一区二区| 亚洲国产日韩一区二区| 久久亚洲国产成人精品v| 久久久a久久爽久久v久久| 久久人人97超碰香蕉20202| 纯流量卡能插随身wifi吗| 激情视频va一区二区三区| 国内精品宾馆在线| 精品卡一卡二卡四卡免费| 高清不卡的av网站| 国产精品女同一区二区软件| 男女高潮啪啪啪动态图| 黑人高潮一二区| 99久久中文字幕三级久久日本| 人人妻人人澡人人看| 日本午夜av视频| 99热国产这里只有精品6| 香蕉国产在线看| 日韩av在线免费看完整版不卡| 男女下面插进去视频免费观看 | 青春草亚洲视频在线观看| 男女边吃奶边做爰视频| av又黄又爽大尺度在线免费看| www.熟女人妻精品国产 | 亚洲欧美色中文字幕在线| 欧美精品高潮呻吟av久久| 国产深夜福利视频在线观看| 久久精品国产a三级三级三级| 亚洲图色成人| 中文字幕制服av| 晚上一个人看的免费电影| 纯流量卡能插随身wifi吗| 丝瓜视频免费看黄片| 久久人人97超碰香蕉20202| 9色porny在线观看| 欧美日韩视频精品一区| 丝袜人妻中文字幕| a级毛片在线看网站| 亚洲精品aⅴ在线观看| 久久亚洲国产成人精品v| 久久国产精品男人的天堂亚洲 | 久久久久久伊人网av| 日日撸夜夜添| 十分钟在线观看高清视频www| 一本色道久久久久久精品综合| 国产av精品麻豆| 国产亚洲精品第一综合不卡 | 久久热在线av| 黑丝袜美女国产一区| 久久精品国产亚洲av天美| 久久久久久久精品精品| 亚洲精品aⅴ在线观看| av在线老鸭窝| 精品少妇久久久久久888优播| 天天操日日干夜夜撸| 亚洲伊人色综图| 日日爽夜夜爽网站| 日产精品乱码卡一卡2卡三| 日日啪夜夜爽| 午夜老司机福利剧场| 国产精品成人在线| 精品酒店卫生间| 香蕉精品网在线| 精品卡一卡二卡四卡免费| 草草在线视频免费看| 午夜福利在线观看免费完整高清在| 三上悠亚av全集在线观看| 久久精品久久精品一区二区三区| 五月伊人婷婷丁香| videosex国产| 新久久久久国产一级毛片| 麻豆乱淫一区二区| 婷婷色综合www| 久久精品久久精品一区二区三区| 久久人人爽人人爽人人片va| 国产成人免费观看mmmm| 欧美人与性动交α欧美精品济南到 | 边亲边吃奶的免费视频| 精品酒店卫生间| 大香蕉久久网| 亚洲国产精品999| 欧美日本中文国产一区发布| 亚洲国产精品999| 国产成人午夜福利电影在线观看| h视频一区二区三区| 在线观看一区二区三区激情| 新久久久久国产一级毛片| 内地一区二区视频在线| 婷婷色av中文字幕| 亚洲成人一二三区av| a级毛片黄视频| 99久国产av精品国产电影| 日韩欧美精品免费久久| av在线播放精品| 亚洲情色 制服丝袜| 国产激情久久老熟女| 亚洲精品乱久久久久久| 久久久久久伊人网av| 亚洲伊人久久精品综合| 欧美激情极品国产一区二区三区 | 伦理电影大哥的女人| 亚洲精华国产精华液的使用体验| 久热这里只有精品99| 久久狼人影院| 老熟女久久久| 国产日韩欧美亚洲二区| 一个人免费看片子| tube8黄色片| 天天躁夜夜躁狠狠躁躁| 一二三四在线观看免费中文在 | 啦啦啦啦在线视频资源| 9热在线视频观看99| 亚洲五月色婷婷综合| 精品一区二区三区视频在线| 9191精品国产免费久久| 王馨瑶露胸无遮挡在线观看| 久久精品夜色国产| av国产久精品久网站免费入址| 综合色丁香网| www.熟女人妻精品国产 | 亚洲精品成人av观看孕妇| 中文字幕精品免费在线观看视频 | 中文字幕亚洲精品专区| 三上悠亚av全集在线观看| 国产一级毛片在线| 99热这里只有是精品在线观看| 黄色视频在线播放观看不卡| 曰老女人黄片| 春色校园在线视频观看| av电影中文网址| 色婷婷久久久亚洲欧美| 一本大道久久a久久精品| 久久综合国产亚洲精品| 我的女老师完整版在线观看| 日本wwww免费看| 日本午夜av视频| 国产麻豆69| 少妇人妻久久综合中文| 国产极品粉嫩免费观看在线| 国产精品一国产av| 大香蕉久久成人网| 国产黄色免费在线视频| 中文天堂在线官网| 在线看a的网站| 亚洲精品久久久久久婷婷小说| 交换朋友夫妻互换小说| 亚洲欧美一区二区三区黑人 | 在线天堂最新版资源| 99视频精品全部免费 在线| 香蕉丝袜av| 美女脱内裤让男人舔精品视频| 国产av码专区亚洲av| 男女下面插进去视频免费观看 | 高清不卡的av网站| 在线观看美女被高潮喷水网站| 校园人妻丝袜中文字幕| xxxhd国产人妻xxx| 91精品国产国语对白视频| 国产精品久久久久久av不卡| 午夜福利影视在线免费观看| videossex国产| 亚洲精品国产av成人精品| 婷婷色综合www| 一本大道久久a久久精品| 曰老女人黄片| 秋霞在线观看毛片| 97精品久久久久久久久久精品| 在线免费观看不下载黄p国产| av女优亚洲男人天堂| 另类精品久久| 美女视频免费永久观看网站| 国产乱来视频区| 免费黄网站久久成人精品| 国产欧美日韩一区二区三区在线| 久久99热6这里只有精品| 97精品久久久久久久久久精品| 精品一区二区三区视频在线| 狂野欧美激情性bbbbbb| 三级国产精品片| 欧美日韩亚洲高清精品| 亚洲精品一区蜜桃| 男女午夜视频在线观看 | 久久久久精品久久久久真实原创| 观看av在线不卡| 美女国产视频在线观看| 大片电影免费在线观看免费| 精品午夜福利在线看| 2018国产大陆天天弄谢| 777米奇影视久久| 国产男女内射视频| 制服人妻中文乱码| av在线播放精品| 一级毛片我不卡| 成人影院久久| 天堂8中文在线网| 午夜福利视频精品| 精品卡一卡二卡四卡免费| 熟女人妻精品中文字幕| 啦啦啦啦在线视频资源| 亚洲国产欧美日韩在线播放| 日本91视频免费播放| 国产精品人妻久久久久久| 日韩,欧美,国产一区二区三区| 国产免费现黄频在线看| 国产福利在线免费观看视频| 日韩av不卡免费在线播放| 少妇的逼水好多| 精品视频人人做人人爽| 赤兔流量卡办理| 久久久久精品人妻al黑| 日本免费在线观看一区| 免费在线观看黄色视频的| 成人影院久久| 国产成人a∨麻豆精品| www日本在线高清视频| 天堂俺去俺来也www色官网| 天天躁夜夜躁狠狠躁躁| 国产乱人偷精品视频| 国产乱来视频区| 国产精品99久久99久久久不卡 | 色94色欧美一区二区| 伊人亚洲综合成人网| 日韩大片免费观看网站| 高清不卡的av网站| 欧美成人精品欧美一级黄| 99国产精品免费福利视频| 精品人妻偷拍中文字幕| 色吧在线观看| 热re99久久国产66热| 成年av动漫网址| 岛国毛片在线播放| 精品国产乱码久久久久久小说| 久久99热这里只频精品6学生| 另类精品久久| 国产成人午夜福利电影在线观看| 亚洲欧美精品自产自拍| 七月丁香在线播放| 好男人视频免费观看在线| 国产深夜福利视频在线观看| 国产白丝娇喘喷水9色精品| 美女主播在线视频| 91在线精品国自产拍蜜月| 国产精品久久久久久精品古装| 蜜桃在线观看..| 精品福利永久在线观看| 又粗又硬又长又爽又黄的视频| 免费大片18禁| 成人二区视频| 精品少妇黑人巨大在线播放| 欧美精品一区二区免费开放| 男女国产视频网站| 51国产日韩欧美| 80岁老熟妇乱子伦牲交| 永久网站在线| 亚洲av男天堂| 最近手机中文字幕大全| 国产日韩欧美亚洲二区| 精品熟女少妇av免费看| 成人国语在线视频| 王馨瑶露胸无遮挡在线观看| 精品亚洲乱码少妇综合久久| 插逼视频在线观看| 亚洲国产精品专区欧美| 久久97久久精品| 18禁观看日本| 成人免费观看视频高清| 草草在线视频免费看| 久久 成人 亚洲| 久久久久久人妻| 少妇高潮的动态图| 精品人妻偷拍中文字幕| 满18在线观看网站| 最近最新中文字幕大全免费视频 | 亚洲色图综合在线观看| 99热网站在线观看| 免费在线观看黄色视频的| 久久人人爽人人爽人人片va| 欧美人与性动交α欧美软件 | 中文欧美无线码| 国产精品一区二区在线不卡| 亚洲精品成人av观看孕妇| 精品人妻在线不人妻| 1024视频免费在线观看| 亚洲欧洲日产国产| 欧美日韩av久久| 日本欧美视频一区| av.在线天堂| 九色成人免费人妻av| 女性被躁到高潮视频| 国产精品久久久av美女十八| 全区人妻精品视频| 色吧在线观看| www日本在线高清视频| 成年女人在线观看亚洲视频| 久久久亚洲精品成人影院| 男女国产视频网站| 麻豆乱淫一区二区| 欧美激情国产日韩精品一区| 日韩伦理黄色片| 午夜老司机福利剧场| 国产精品麻豆人妻色哟哟久久| 国产高清不卡午夜福利| 女人精品久久久久毛片| 日本欧美国产在线视频| 又黄又爽又刺激的免费视频.| 成人毛片60女人毛片免费| 午夜久久久在线观看| 久久精品熟女亚洲av麻豆精品| 国产在线视频一区二区| 午夜av观看不卡| 91精品伊人久久大香线蕉| 高清在线视频一区二区三区| 日本免费在线观看一区| 国产国拍精品亚洲av在线观看| 97人妻天天添夜夜摸| 久热这里只有精品99| 91午夜精品亚洲一区二区三区| 成人漫画全彩无遮挡| 欧美亚洲日本最大视频资源| 免费大片黄手机在线观看| 极品人妻少妇av视频| 春色校园在线视频观看| 久久婷婷青草| 汤姆久久久久久久影院中文字幕| 制服人妻中文乱码| 女的被弄到高潮叫床怎么办| 久久精品人人爽人人爽视色| av又黄又爽大尺度在线免费看| 欧美xxxx性猛交bbbb| 国产一区二区三区综合在线观看 | 亚洲国产色片| 久久毛片免费看一区二区三区| 婷婷色麻豆天堂久久| 欧美日韩视频高清一区二区三区二| 精品99又大又爽又粗少妇毛片| 免费av不卡在线播放| 日韩三级伦理在线观看| 亚洲欧美日韩另类电影网站| 亚洲成av片中文字幕在线观看 | 国产一区二区三区综合在线观看 | 精品99又大又爽又粗少妇毛片| av.在线天堂| 搡老乐熟女国产| 久久人人97超碰香蕉20202| 插逼视频在线观看| 一级毛片电影观看| 人妻系列 视频| 九九在线视频观看精品| 免费不卡的大黄色大毛片视频在线观看| 欧美 亚洲 国产 日韩一| 考比视频在线观看| 香蕉国产在线看| 国产免费视频播放在线视频| 男女午夜视频在线观看 | 黄片播放在线免费| 韩国精品一区二区三区 | 久久 成人 亚洲| av在线老鸭窝| 日韩人妻精品一区2区三区| 国产一区亚洲一区在线观看| 成年人午夜在线观看视频| 午夜免费观看性视频| 中文欧美无线码| 国语对白做爰xxxⅹ性视频网站| 久热这里只有精品99| 国产精品无大码| 春色校园在线视频观看| 亚洲国产看品久久| 日本色播在线视频| 卡戴珊不雅视频在线播放| 亚洲丝袜综合中文字幕| 91aial.com中文字幕在线观看| 久久 成人 亚洲| 亚洲少妇的诱惑av| 亚洲一码二码三码区别大吗| 9色porny在线观看| 三上悠亚av全集在线观看| 寂寞人妻少妇视频99o| 国产成人av激情在线播放| 精品人妻一区二区三区麻豆| 久久久亚洲精品成人影院| 啦啦啦视频在线资源免费观看| 一级爰片在线观看| 边亲边吃奶的免费视频| 久久精品久久精品一区二区三区| 国产色婷婷99| 亚洲色图 男人天堂 中文字幕 | 狠狠精品人妻久久久久久综合| 欧美xxⅹ黑人| 精品久久国产蜜桃| 欧美成人精品欧美一级黄| 寂寞人妻少妇视频99o| 午夜免费鲁丝| 新久久久久国产一级毛片| 亚洲精品aⅴ在线观看| 免费大片18禁| 国产一区有黄有色的免费视频| 婷婷色麻豆天堂久久| 精品国产国语对白av| 久热这里只有精品99| 少妇人妻 视频| 国产精品99久久99久久久不卡 | 久久国产亚洲av麻豆专区| 成年动漫av网址| 国产熟女午夜一区二区三区| 毛片一级片免费看久久久久| 少妇被粗大的猛进出69影院 | 亚洲色图综合在线观看| 涩涩av久久男人的天堂| 日韩人妻精品一区2区三区| 高清不卡的av网站| 久久精品aⅴ一区二区三区四区 | 捣出白浆h1v1| 搡女人真爽免费视频火全软件| 国产 精品1| 国产av精品麻豆| 狂野欧美激情性xxxx在线观看| 极品少妇高潮喷水抽搐| 高清黄色对白视频在线免费看| av国产精品久久久久影院| 亚洲国产看品久久| 亚洲欧洲国产日韩| 人妻系列 视频| 免费女性裸体啪啪无遮挡网站| 黄片播放在线免费| 夜夜爽夜夜爽视频| 久久精品国产自在天天线| 日韩 亚洲 欧美在线| 久久久国产精品麻豆| 中国国产av一级| 亚洲少妇的诱惑av| 国产一区二区在线观看日韩| 少妇人妻精品综合一区二区| 老司机影院毛片| 久久久精品94久久精品| 国产乱人偷精品视频| 国产黄频视频在线观看| 美女内射精品一级片tv| 伦精品一区二区三区| 国产男人的电影天堂91| 久久精品国产鲁丝片午夜精品| 日产精品乱码卡一卡2卡三| 国产精品熟女久久久久浪| 国产精品.久久久| 久久ye,这里只有精品| 国产一区有黄有色的免费视频| 国产一区二区在线观看日韩| 天天躁夜夜躁狠狠躁躁| 寂寞人妻少妇视频99o| 嫩草影院入口| 免费看不卡的av| 我的女老师完整版在线观看| 香蕉精品网在线| 丝袜人妻中文字幕| 国产精品嫩草影院av在线观看| 日韩熟女老妇一区二区性免费视频| 成年人免费黄色播放视频| 国产在线视频一区二区| 亚洲情色 制服丝袜| 久久久精品免费免费高清| 一级片免费观看大全| 欧美人与性动交α欧美软件 | 黄片播放在线免费| 成人综合一区亚洲| 精品一区二区三区四区五区乱码 | 五月天丁香电影| 少妇高潮的动态图| 人人妻人人添人人爽欧美一区卜| 另类亚洲欧美激情| 国产男人的电影天堂91| 国产日韩欧美亚洲二区| 国产黄频视频在线观看| 9热在线视频观看99| 国产av精品麻豆| 大片免费播放器 马上看| 国产免费现黄频在线看| 啦啦啦中文免费视频观看日本| 亚洲欧美成人精品一区二区| 在线观看国产h片| 成人午夜精彩视频在线观看| 日本猛色少妇xxxxx猛交久久| 极品少妇高潮喷水抽搐| 成人国产麻豆网| 中文字幕制服av| 一区在线观看完整版| 侵犯人妻中文字幕一二三四区| 亚洲欧美精品自产自拍| av国产久精品久网站免费入址| 国产成人精品福利久久| 久久97久久精品| 久久久久精品人妻al黑| av天堂久久9| 少妇被粗大的猛进出69影院 | 色婷婷久久久亚洲欧美| 久久久久久久久久人人人人人人| 国产成人a∨麻豆精品| 99国产精品免费福利视频| 久久久精品94久久精品| 免费少妇av软件| 成人国产av品久久久| 亚洲精品一区蜜桃| 最新中文字幕久久久久| 欧美成人精品欧美一级黄| 日韩中字成人| 香蕉精品网在线| 日韩伦理黄色片| 九九爱精品视频在线观看| 99香蕉大伊视频| 青春草国产在线视频| 亚洲精品乱码久久久久久按摩| 99久国产av精品国产电影| 日本免费在线观看一区| 夜夜骑夜夜射夜夜干| 看十八女毛片水多多多| 久久精品久久精品一区二区三区| 亚洲精品美女久久久久99蜜臀 | 99九九在线精品视频| 亚洲人成77777在线视频| 国产1区2区3区精品| 日本黄色日本黄色录像| 青春草亚洲视频在线观看| 日韩在线高清观看一区二区三区| 国产亚洲午夜精品一区二区久久| 久久久久久久亚洲中文字幕| 日韩大片免费观看网站| av线在线观看网站| 美女主播在线视频| 久久久久久久国产电影| 69精品国产乱码久久久| 亚洲美女搞黄在线观看| 欧美人与性动交α欧美精品济南到 | 国产在线视频一区二区| 天堂8中文在线网| 国产伦理片在线播放av一区| 久久久久久久精品精品| 国产精品.久久久| 91精品伊人久久大香线蕉| 精品酒店卫生间| 精品国产国语对白av| 国产熟女欧美一区二区| 最后的刺客免费高清国语| 香蕉丝袜av| 国产精品嫩草影院av在线观看| 亚洲一码二码三码区别大吗| 日韩 亚洲 欧美在线| 日产精品乱码卡一卡2卡三| a级毛色黄片| 亚洲色图 男人天堂 中文字幕 | 国产一区二区三区综合在线观看 | 九草在线视频观看| 亚洲,一卡二卡三卡| 国产免费现黄频在线看| 一本久久精品| 你懂的网址亚洲精品在线观看| 99久久精品国产国产毛片| 午夜福利在线观看免费完整高清在| 欧美国产精品va在线观看不卡| 永久网站在线| 在线免费观看不下载黄p国产| 只有这里有精品99| 在线亚洲精品国产二区图片欧美| 国产一区二区在线观看日韩| 久久精品国产鲁丝片午夜精品| 草草在线视频免费看| 乱人伦中国视频| 自拍欧美九色日韩亚洲蝌蚪91| 秋霞伦理黄片| 97在线视频观看| 97超碰精品成人国产| 国产av国产精品国产| 中文字幕人妻丝袜制服| 黄色视频在线播放观看不卡| 国产极品天堂在线| 国产无遮挡羞羞视频在线观看| 欧美日韩精品成人综合77777| 18禁观看日本| 爱豆传媒免费全集在线观看| 青春草视频在线免费观看| av天堂久久9| 欧美激情极品国产一区二区三区 | 国产免费现黄频在线看| av电影中文网址| 一级片免费观看大全| 超碰97精品在线观看| 日韩伦理黄色片| 一个人免费看片子| √禁漫天堂资源中文www| 欧美+日韩+精品| 日日爽夜夜爽网站| 老司机影院毛片| 成年人午夜在线观看视频| 日韩人妻精品一区2区三区| 国产无遮挡羞羞视频在线观看| 欧美人与性动交α欧美精品济南到 | 熟妇人妻不卡中文字幕| av片东京热男人的天堂| 久热这里只有精品99|