• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Energy efficiency optimization of relay-assisted D2D two-way communications with SWIPT①

    2022-10-22 02:23:16HEJiai何繼愛CHENYanjiaoWANGTong
    High Technology Letters 2022年3期

    HE Jiai(何繼愛), CHEN Yanjiao, WANG Tong

    (School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, P.R.China)

    Abstract Aiming at the energy consumption of long-distance device-to-device (D2D) devices for two-way communications in a cellular network, this paper proposes a strategy that combines two-way relay technology (TWRT) and simultaneous wireless information and power transfer (SWIPT) technology to achieve high energy efficiency (EE) communication. The scheme first establishes a fractional programming problem to maximize EE of D2D, and transforms it into a non-fractional optimization problem that can be solved easily. Then the problem is divided into three sub-problems: power control, power splitting ratios optimization, and relay selection. In order to maximize EE of the D2D pair, the Dinkelbach iterative algorithm is used to optimize the transmitted power of two D2D devices simultaneously; the one-dimensional search algorithm is proposed to optimize power splitting ratios;an improved optimal relay selection scheme based on EE is proposed to select relay. Finally,experiments are carried out on the Matlab simulation platform. The simulation results show that the proposed algorithm has faster convergence. Compared with the one-way relay transmission and fixed relay algorithms, the proposed scheme has higher EE.

    Key words: device-to-device(D2D), energy efficiency (EE), simultaneous wireless information and power transfer (SWIPT), two-way communications, power control, relay selection

    0 Introduction

    With the significant growth of wireless cellular equipment and its traffic demand, resource consumption and environmental pollution have also increased,cellular network is facing the challenge of spectrum resource shortage and high energy consumption[1].Therefore, it is of great significance to study green communication with high energy efficiency (EE). Device-to-device (D2D) communication technology that uses the cellular spectrum can effectively alleviates the problems existing in cellular networks, such as insufficient capacity, shortage of spectrum resources, poor communication quality of marginal users,and excessive energy consumption[2-4], but it brings various interference to cellular network. Simultaneous wireless information and power transfer (SWIPT) technology[5]can convert the harmful interference in the cellular network into beneficial energy source, thereby reducing system energy consumption and realizing green communication.

    Relay technology,including one-way relay technology (OWRT) and two-way relay technology (TWRT)[6],effectively solves the communication problem when the distance between users is long or the link quality is poor. Research shows that, compared with one-way relay communication, two-way relay-assisted D2D communication can significantly improve the system performance (for example, spectrum efficiency (SE) and outage probability)[7]. However, due to the selfishness of the relay, it is unwilling to consume its energy to help other users. Thus, this paper combines the advantages of SWIPT and TWRT, and designs an optimization scheme that balances information and energy at the same time for energy-constrained relay nodes.

    In recent years, scholars at home and abroad have conducted extensive researches on D2D relay-assisted communication based on SWIPT. Ref.[8] proposed a resource allocation and power control scheme for underlying D2D networks with SWIPT. Ref.[9] studied the SWIPT mode selection for energy-saving in D2D communication. Ref.[10] investigated the power allocation problem of D2D communication in cellular networks with SWIPT, and established a new game theory model to maximize utility. Ref. [11] optimized EE of D2D relay-assisted communication with power control,relay selection, and channel allocation algorithm.Ref.[12] studied on EE,SE of one-way and two-way D2D communication in a cellular network. It is a pity that the relay does not have an energy harvesting function. The above literatures used SWIPT or TWRT independently, not simultaneously. Ref.[13] deduced the outage probability of two-way D2D communication by using the spectrum sharing model of cooperative cognitive radio network, but the research on EE was not sufficient. In summary, although scholars have begun to study D2D communication based on SWIPT or TWRT,they have not done enough work on EE of D2D using SWIPT-TWRT at the same time. Moreover, the literatures lack research on joint consideration of power control, power splitting (PS) ratios, and relay selection.

    To solve the above problems, this article aims at green communication, SWIPT-TWRT protocol for two D2D users exchanging information is proposed firstly,

    where the idle D2D devices act as relays to scavenge energy from the radio frequency signals transmitted by both the users. According to the proposed strategy, an optimization problem is formulated to maximize the system EE by optimizing transmitted power and PS ratios.However, due to the coupling of transmitted power and PS ratios, it is hard to be solved. Therefore, the problem is decomposed into two subproblems: power control and PS ratios optimization. To reduce the complexity of relay selection, an improved optimal relay selection scheme based on EE is proposed, which considers not only EE of the system but also the distance. Experimental results show that this scheme can effectively improve EE of D2D links.

    1 System model

    Assume that there is a pair of D2D users (DU1and DU2) andnrelays for two-way communication in a cellular network, for example, the terminal uploads pictures while waiting to download the video,where the set of relays is denoted as {r1,r2, …,rn}.Because the distance is too long or the shadow fading is severe,there is no direct transmission link between DU1and DU2, it is necessary to use an idle D2D device as a relay node, and use decode-and-forward (DF) for auxiliary transmission. The system model is shown in Fig.1, which considers that a pair of D2D users reuse the uplink spectrum resources with less interference from cellular users in underlay mode, and limit a pair of D2D users to share the spectrum resources of only one cellular user at most. Each node in the system is equipped with an antenna and works in half-duplex mode.All channels obey the Rayleigh distribution, and the channel is flat block fading. That is, the channel coefficient remains unchanged within the timeTof completing a two-way transmission, and the channel has reciprocity. All devices have no power supply but can use the PS protocol in SWIPT technology for energy harvesting. It is assumed that the data buffer and battery capacity of the relay are infinite, so the overflow of data and energy is not considered.

    Fig.1 System model

    Table 1 PS time slot allocation table

    2 Problem analysis

    2.1 Signal model

    According to the time slot allocation in Table 1, it can be analyzed that DUisends information torin time sloti(i=1,2).After processing by the receiver ofr,the signal received by the base station (BS) at the end of time slotiis written as

    2.2 Energy efficiency model

    Due to the fact that the transmission rate of the link depends on the transmission link with a low rate,at the end of the entire time slot, the transmission rate at DU1can be defined as

    EE is defined as the ratio of transmission rate to power consumption, and its unit is bit/J. It means the number of bits that can be transmitted per unit of energy in a mobile communication system, which can be formulated as

    In order to maximize the EE of the D2D pair and meet its transmission rate threshold, the power of each node needs to be solved when EE is maximum, the mathematical model is shown in the following formula.

    s.t.

    whereC1 presents the value range of the PS ratios,C2~C3 represent the minimum transmission rate threshold required by D2D users, and C4 represents the value range of transmitting power of D2D users.

    3 Energy efficiency optimization

    Since EE is a function of four variables ofP1,P2,α1,α2, it is difficult to solve Eq.(12). To simplify the solution of this problem, an iterative optimization algorithm can be used to obtain the maximum value of EE. The specific steps are as follows. In step 1,α1andα2are taken as fixed values.P1andP2are treated as optimization variables to optimize the objective function. In step 2,P1andP2obtained by optimization are regarded as fixed values.α1andα2are identified as optimization variables to optimize the objective function. In step 3, this iterative optimization is repeated,and optimization is completed until the final optimization result tends to convergence.

    3.1 Transmitted power optimization

    Whenα1andα2are fixed values, the optimization problem becomes

    The objective function is a non-linear fractional function ofP1andP2.To facilitate the judgment of concavity or convexity, this formula is transformed into a non-fractional problem. Letq*denotes the maximum EE that can be achieved byQ1, and the function is defined as

    It can be proved by Heisen matrix[15]thatQ2 is a convex optimization problem, and CVX toolbox[16]can be used in Matlab for optimization. Therefore, this paper uses an iterative algorithm based on Dinkelbach,and the specific process is shown in Algorithm 1.

    Algorithm 1 The iterative algorithm based on Dinkelbach to maximize EE 1: Initialize the maximum iterations Lmax and the maximum error tolerance ε.2: Set the maximum EE q =0 and iteration index l =1.3: repeat 4: Solve Q2 with a given q by using CVX and obtain the optimal solution P′1 and P′2 5: if R′21 + R′12 - q × [(P′1 + P′2)/ξ +3Pcir] <ε, then 6: Set P*1 = P′1,P*2 = P′2,q* = R′21 + R′12(P′1 + P′2)/ξ +3Pcir,, l = l +1,Flag=0.Flag=1 and return 7: else 8: Set q = R′21 + R′12(P′1 + P′2)/ξ +3Pcir 9: end if 10: until Flag=1 or l =Lmax.

    3.2 Power splitting ratios optimization

    WhenP1andP2are fixed, EE is a concave function ofαi, the optimization problem can be rewritten as

    The specific process is as follows. The transmitting powerP1andP2have corresponding PS ratiosα1andα2respectively. To solve the optimal EE,α1andα2are optimized one by one. First, the obtained optimal transmitting power of one D2D device and its PS are taken as fixed values, and optimize the value of EE under the PS of the other D2D device. Repeat the above steps, optimize the value of EE under the first PS ratios until its value is all traversed.

    3.3 Relay selection

    Due to the fact that the power and storage space of the device are limited,the design of the relay algorithm must be simple enough. Before selecting an appropriate relay for the D2D pair, to reduce the computational complexity, the candidate relay sets are divided for the D2D pair firstly. The optional relay deployment area division for DU1and DU2is shown in Fig.2. The area where the candidate relay is located is the overlapping area of two circles whose diameter is the distance between DU1and DU2and whose center is DU1and DU2.The relay nodes are randomly generated in this area on average, so the set of candidate relays for D2D users is expressed as

    whered12is the distance between DU1to DU2,d1randd2rare the distance from DU1torand from DU2torrespectively.

    Fig.2 Alternative relay area

    After dividing the candidate relay area for the D2D pair, |EEn| is used to represent EE of the D2D relay auxiliary link, and compare EE of each candidate relay to DU1and DU2. Under the condition of ensuring that the link reaches minimum transmission rate, this paper sorts in ascending order by the value of |EEn|and selects the relay node that can maximize EE of the D2D link. This relay node is the best one.

    4 Complexity analysis

    5 Simulation experiments and result analysis

    The numerical results are shown to prove the superiority of EE with the proposed scheme. Matlab software is used to simulate the algorithm, the Monte Carlo experiment is repeated 1000 times, and then the results are averaged. To verify the advantages of the proposed scheme, EE of two communication modes and two relay modes are simulated respectively, and the influence of transmitted power, distance, and PS ratios on the performance of the algorithm is analyzed. To simplify the simulation, the relay node position is selected at the midpoint of the D2D pair in the fixed relay scheme. The main simulation parameters are shown in Table 2.relay selection schemes are adopted. The following conclusions can be drawn from Fig.3: (1) After 3 iterations, the algorithm has basically converged, so the proposed algorithm has faster convergence. (2) Comparing EE of one-way and two-way communication(same line) under the fixed relay and relay selection schemes, the results show that the two-way relay communication has higher EE than that of the one-way relay. (3) Comparing EE of fixed relay and relay selection (same symbol) in two-way communication and one-way communication, it can be concluded that EE has been further improved after adopting the scheme.

    Table 2 Experimental simulation parameters

    Fig.3 The relationship between the number of iterations and EE

    In order to maximize EE of D2D communication,the optimal transmitted powerP1andP2of DU1and DU2are optimized simultaneously. Therefore, the optimal transmitted power of DU1and DU2in two-way communication and the transmitted power in one-way communication are simulated respectively when the relay is selected by the proposed scheme, as shown in Fig.4.In two-way communication, the relationship betweenP2and EE is plotted when the optimal value ofP1is fixed, and the relationship betweenP1and EE is also drawn when the optimal value ofP2is fixed. The following conclusions can be drawn from Fig. 4: (1)When the D2D transmitted power increases, after EE reaches the peak value for the first time, it decreases as the D2D transmitted power further increases. Thus,there is an optimal D2D transmitted power to maximize EE. (2) Compared with one-way communication,twoway communication can achieve greater EE with less transmitted power.

    The distance of the D2D pair is set to 70 m,80 m,and 90 m respectively. Fig.5 shows the relationship between the distance and EE of the two-way relay selection scheme. It can be concluded from the figure that the closer the transmission distance between D2D users is, the greater EE will be. The main reason is that the longer the communication distance,the smaller the channel gain and the lower EE.

    Fig.4 The relationship between transmitted power and EE

    Fig.5 The relationship between distance and EE

    Fig.6 The relationship between PS ratios α1 and EE

    Fig.7 The relationship between PS ratios α2 and EE

    Fig.6 and Fig.7 respectively represent the relationship between the PS ratios (α1andα2) and EE using two-way relay selection scheme. The optimal transmitted power of DU1and DU2isP1=25 mW andP2=26 mW respectively. Comparing EE under conditions of two different transmitted power values, which the one is larger than the optimal transmitted power and the other is smaller than the optimal transmitted power. The following conclusions can be drawn: (1) the largerαis,the lower EE is. That is, the greater the proportion of information decoding, the greater EE of D2D. (2)With the change of PS ratios, the value of EE is affected, which does not always maintain the optimal under the optimal transmitted power.

    6 Conclusion

    This paper investigates EE of two-way transmission of D2D user pair in a cellular network, and proposes TWRT-SWIPT protocols to reduce devices energy consumption. Simulation experiments verify the effectiveness of the two-way relay selection mode compared with other three modes: one-way fixed relay, one-way relay selection and two-way fixed relay. Thus, using TWRT-SWIPT protocols to the D2D communication can improve EE of the system. At the same time, this paper also analyzes the influence of transmitted power,distance, and PS ratios on the performance of the algorithm. In the next step, multiple D2D pairs of EE under the nonlinear energy harvesting model will be investigated to make the system model more valuable.

    亚洲第一青青草原| 久久99热这里只频精品6学生| 少妇人妻久久综合中文| 成人国产麻豆网| 精品人妻一区二区三区麻豆| 国产日韩欧美在线精品| 久久久久国产网址| 亚洲精品,欧美精品| 亚洲精品国产一区二区精华液| 久久精品国产综合久久久| 超碰97精品在线观看| 赤兔流量卡办理| 国产男女超爽视频在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产麻豆69| 日本av免费视频播放| 精品少妇黑人巨大在线播放| 午夜日韩欧美国产| 好男人视频免费观看在线| av不卡在线播放| 精品久久久精品久久久| 久久久久久免费高清国产稀缺| 国产亚洲av片在线观看秒播厂| 午夜免费观看性视频| 精品视频人人做人人爽| 亚洲成av片中文字幕在线观看 | 成年动漫av网址| a 毛片基地| 亚洲精品av麻豆狂野| 国产人伦9x9x在线观看 | 亚洲av免费高清在线观看| 搡老乐熟女国产| 一边亲一边摸免费视频| 99久久中文字幕三级久久日本| 亚洲色图 男人天堂 中文字幕| 欧美亚洲 丝袜 人妻 在线| 国产欧美日韩综合在线一区二区| 美女主播在线视频| 五月伊人婷婷丁香| 观看美女的网站| 国产日韩欧美视频二区| 国产成人一区二区在线| 五月伊人婷婷丁香| 一区二区三区四区激情视频| 自线自在国产av| 国产成人精品福利久久| 菩萨蛮人人尽说江南好唐韦庄| 久久国产亚洲av麻豆专区| 丝袜在线中文字幕| 成人亚洲精品一区在线观看| 菩萨蛮人人尽说江南好唐韦庄| 嫩草影院入口| 国产精品麻豆人妻色哟哟久久| 国产av精品麻豆| 日韩一卡2卡3卡4卡2021年| 精品国产国语对白av| 日韩制服丝袜自拍偷拍| 免费观看av网站的网址| 成年女人毛片免费观看观看9 | av网站免费在线观看视频| 国产黄频视频在线观看| 只有这里有精品99| 成人亚洲欧美一区二区av| 激情视频va一区二区三区| 亚洲精品第二区| 国产欧美日韩一区二区三区在线| 女人被躁到高潮嗷嗷叫费观| 亚洲图色成人| 久久精品aⅴ一区二区三区四区 | 日本-黄色视频高清免费观看| 国产极品天堂在线| 久久久精品国产亚洲av高清涩受| 国产精品 欧美亚洲| 久久韩国三级中文字幕| 97人妻天天添夜夜摸| 18禁动态无遮挡网站| 国产又爽黄色视频| 欧美激情极品国产一区二区三区| 伊人亚洲综合成人网| 精品一区二区免费观看| 中文字幕精品免费在线观看视频| 午夜福利一区二区在线看| 一级,二级,三级黄色视频| 国产精品欧美亚洲77777| 国产 精品1| 成人午夜精彩视频在线观看| 在线观看免费日韩欧美大片| 亚洲 欧美一区二区三区| 久久久久久久大尺度免费视频| 欧美激情极品国产一区二区三区| 一本色道久久久久久精品综合| 我要看黄色一级片免费的| 免费黄频网站在线观看国产| 1024视频免费在线观看| 成人漫画全彩无遮挡| 国产无遮挡羞羞视频在线观看| 欧美黄色片欧美黄色片| 久久这里只有精品19| 丰满少妇做爰视频| 成年动漫av网址| 婷婷色麻豆天堂久久| 国产日韩一区二区三区精品不卡| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产精品一区二区三区在线| 色哟哟·www| 在线免费观看不下载黄p国产| 欧美黄色片欧美黄色片| 亚洲av.av天堂| 又黄又粗又硬又大视频| 亚洲精品一二三| 亚洲熟女精品中文字幕| 精品久久久精品久久久| 亚洲视频免费观看视频| 国产欧美日韩综合在线一区二区| 女性被躁到高潮视频| 另类亚洲欧美激情| 亚洲激情五月婷婷啪啪| 久久青草综合色| 狠狠精品人妻久久久久久综合| 国产男女超爽视频在线观看| √禁漫天堂资源中文www| 99热全是精品| 国产高清不卡午夜福利| 亚洲内射少妇av| 国产老妇伦熟女老妇高清| 男女无遮挡免费网站观看| 婷婷色麻豆天堂久久| 亚洲精品久久午夜乱码| 老熟女久久久| 国产女主播在线喷水免费视频网站| 高清av免费在线| 亚洲欧美日韩另类电影网站| 亚洲成色77777| 国产精品亚洲av一区麻豆 | 国产一区有黄有色的免费视频| 在线看a的网站| 丰满乱子伦码专区| 国产一级毛片在线| 满18在线观看网站| 久久人人爽av亚洲精品天堂| av线在线观看网站| 国产黄色免费在线视频| 国产成人a∨麻豆精品| 欧美av亚洲av综合av国产av | 欧美另类一区| 精品99又大又爽又粗少妇毛片| 久久久久久久久久人人人人人人| 久久久久国产一级毛片高清牌| av女优亚洲男人天堂| 国产伦理片在线播放av一区| 日本vs欧美在线观看视频| 国产精品熟女久久久久浪| 另类亚洲欧美激情| av片东京热男人的天堂| 麻豆乱淫一区二区| 大陆偷拍与自拍| 日韩av免费高清视频| 一本大道久久a久久精品| 一本久久精品| 国产一区亚洲一区在线观看| 日本色播在线视频| h视频一区二区三区| 欧美+日韩+精品| 色94色欧美一区二区| 免费播放大片免费观看视频在线观看| 亚洲成人手机| 成人二区视频| 在线精品无人区一区二区三| 亚洲精品日韩在线中文字幕| 一本色道久久久久久精品综合| 精品卡一卡二卡四卡免费| 亚洲精品第二区| 国产淫语在线视频| 黄色配什么色好看| 国产极品天堂在线| 久久影院123| 国产精品免费视频内射| h视频一区二区三区| 丝袜美腿诱惑在线| 青草久久国产| 男女边吃奶边做爰视频| 综合色丁香网| 黄色怎么调成土黄色| 亚洲国产最新在线播放| 亚洲,欧美精品.| 一区二区av电影网| 亚洲三区欧美一区| 国产av码专区亚洲av| 夫妻午夜视频| 97在线人人人人妻| 最近最新中文字幕大全免费视频 | 国产黄色免费在线视频| 精品国产国语对白av| 成年动漫av网址| 亚洲熟女精品中文字幕| 最近手机中文字幕大全| 亚洲国产精品999| 又大又黄又爽视频免费| 午夜老司机福利剧场| 亚洲精品一二三| 久久久久久伊人网av| 国产黄色视频一区二区在线观看| 色94色欧美一区二区| 色哟哟·www| 精品99又大又爽又粗少妇毛片| 永久免费av网站大全| 我的亚洲天堂| 在线观看一区二区三区激情| 日韩伦理黄色片| 久久久久网色| 国产一区二区三区综合在线观看| 国产亚洲午夜精品一区二区久久| 久久精品国产亚洲av天美| 国产成人精品无人区| 亚洲情色 制服丝袜| 国产欧美日韩一区二区三区在线| 免费观看av网站的网址| 久久韩国三级中文字幕| 国产精品二区激情视频| 国产男女内射视频| 老熟女久久久| 国产精品国产三级专区第一集| 久久影院123| 亚洲图色成人| 观看av在线不卡| 9热在线视频观看99| 久久久久国产网址| 黑人猛操日本美女一级片| 成年av动漫网址| 美女大奶头黄色视频| 国产精品久久久久久av不卡| 欧美黄色片欧美黄色片| 97在线视频观看| 伊人久久国产一区二区| 最黄视频免费看| 777久久人妻少妇嫩草av网站| 国产成人精品福利久久| 精品第一国产精品| 一级爰片在线观看| 亚洲色图 男人天堂 中文字幕| 欧美国产精品va在线观看不卡| 亚洲,欧美,日韩| av又黄又爽大尺度在线免费看| 超碰97精品在线观看| 亚洲第一区二区三区不卡| 黑人欧美特级aaaaaa片| 国产免费又黄又爽又色| 亚洲国产av影院在线观看| 久久精品夜色国产| 你懂的网址亚洲精品在线观看| 黑人欧美特级aaaaaa片| 日韩一区二区视频免费看| 亚洲av成人精品一二三区| 99热全是精品| 男女免费视频国产| 国产在视频线精品| 久久久久久久久久久免费av| 精品少妇久久久久久888优播| 18+在线观看网站| 日韩不卡一区二区三区视频在线| 亚洲国产精品成人久久小说| videosex国产| 精品少妇久久久久久888优播| 久久婷婷青草| 可以免费在线观看a视频的电影网站 | 久久 成人 亚洲| 欧美变态另类bdsm刘玥| 亚洲精品国产一区二区精华液| av线在线观看网站| 日本午夜av视频| 最近2019中文字幕mv第一页| 亚洲精品aⅴ在线观看| 国产精品女同一区二区软件| 国产精品蜜桃在线观看| 国产在线视频一区二区| 如日韩欧美国产精品一区二区三区| av网站在线播放免费| 国产一区二区在线观看av| videossex国产| 精品人妻在线不人妻| 国产一区二区三区av在线| 国产精品久久久久久av不卡| 国产一区有黄有色的免费视频| 母亲3免费完整高清在线观看 | 色哟哟·www| 99热全是精品| 国产欧美亚洲国产| 亚洲伊人久久精品综合| 久久久久精品性色| 亚洲国产精品999| 日韩伦理黄色片| 亚洲欧美中文字幕日韩二区| 伦精品一区二区三区| 亚洲美女视频黄频| 欧美精品亚洲一区二区| 日韩在线高清观看一区二区三区| 亚洲精品久久久久久婷婷小说| 啦啦啦在线免费观看视频4| 一级a爱视频在线免费观看| 国产日韩欧美亚洲二区| 亚洲第一区二区三区不卡| 亚洲精品国产一区二区精华液| 国产精品一二三区在线看| 大陆偷拍与自拍| 国精品久久久久久国模美| 久久毛片免费看一区二区三区| 亚洲一级一片aⅴ在线观看| 在线亚洲精品国产二区图片欧美| av免费观看日本| 97精品久久久久久久久久精品| 久久精品国产亚洲av高清一级| 精品少妇内射三级| 亚洲经典国产精华液单| 亚洲成人手机| 午夜福利在线免费观看网站| 热re99久久国产66热| 精品人妻熟女毛片av久久网站| 伦理电影免费视频| kizo精华| 欧美精品av麻豆av| 日韩电影二区| 日本猛色少妇xxxxx猛交久久| 99久久人妻综合| 男女啪啪激烈高潮av片| 成人漫画全彩无遮挡| 999精品在线视频| 午夜福利乱码中文字幕| 久久免费观看电影| 人人妻人人添人人爽欧美一区卜| 91成人精品电影| 亚洲人成77777在线视频| 男女啪啪激烈高潮av片| 男女高潮啪啪啪动态图| 国产精品国产三级国产专区5o| 99国产精品免费福利视频| 国产欧美日韩综合在线一区二区| 亚洲四区av| 免费在线观看完整版高清| 亚洲国产av新网站| 最近的中文字幕免费完整| 国产成人精品福利久久| 777米奇影视久久| 999精品在线视频| 欧美日韩一区二区视频在线观看视频在线| 国产精品欧美亚洲77777| 精品99又大又爽又粗少妇毛片| 久久99一区二区三区| 啦啦啦中文免费视频观看日本| tube8黄色片| 国产精品成人在线| 性色avwww在线观看| 国产不卡av网站在线观看| 精品国产一区二区久久| 久久精品夜色国产| 欧美日韩综合久久久久久| 国产视频首页在线观看| 亚洲国产精品国产精品| 制服诱惑二区| 午夜激情av网站| 精品国产一区二区三区久久久樱花| 中国国产av一级| av视频免费观看在线观看| 国产激情久久老熟女| 欧美精品高潮呻吟av久久| 色婷婷av一区二区三区视频| 秋霞在线观看毛片| 精品国产一区二区三区久久久樱花| 欧美日韩亚洲国产一区二区在线观看 | 亚洲成av片中文字幕在线观看 | 国产精品人妻久久久影院| 国产亚洲一区二区精品| 纵有疾风起免费观看全集完整版| 久久久久网色| 男女边摸边吃奶| 黄色视频在线播放观看不卡| 国产黄色免费在线视频| 韩国av在线不卡| 18在线观看网站| 国产日韩欧美视频二区| 午夜av观看不卡| 丝袜在线中文字幕| 搡女人真爽免费视频火全软件| 狠狠精品人妻久久久久久综合| 免费在线观看黄色视频的| 精品99又大又爽又粗少妇毛片| 又大又黄又爽视频免费| 新久久久久国产一级毛片| 日日撸夜夜添| 亚洲三级黄色毛片| 男女边吃奶边做爰视频| 1024香蕉在线观看| 天堂8中文在线网| 国产探花极品一区二区| 少妇猛男粗大的猛烈进出视频| 女性生殖器流出的白浆| 美国免费a级毛片| 黄频高清免费视频| 美女国产高潮福利片在线看| 一级,二级,三级黄色视频| 亚洲欧美日韩另类电影网站| 如日韩欧美国产精品一区二区三区| 婷婷成人精品国产| 99热国产这里只有精品6| 人妻系列 视频| 国产成人精品久久久久久| 久久97久久精品| 亚洲欧美成人精品一区二区| 国产一区二区在线观看av| 精品亚洲乱码少妇综合久久| 大码成人一级视频| 一区二区日韩欧美中文字幕| 黑人欧美特级aaaaaa片| 伦理电影大哥的女人| 精品卡一卡二卡四卡免费| 精品国产乱码久久久久久男人| 90打野战视频偷拍视频| 最近手机中文字幕大全| av网站免费在线观看视频| 亚洲五月色婷婷综合| 两性夫妻黄色片| 欧美 日韩 精品 国产| 一区二区av电影网| 国产日韩欧美在线精品| 亚洲精品国产色婷婷电影| 人妻一区二区av| xxxhd国产人妻xxx| videosex国产| 日本欧美国产在线视频| 久久免费观看电影| 蜜桃国产av成人99| 性少妇av在线| 一区福利在线观看| 国产精品女同一区二区软件| 女性生殖器流出的白浆| av不卡在线播放| 电影成人av| 一区二区三区激情视频| 日韩精品有码人妻一区| 欧美av亚洲av综合av国产av | 在现免费观看毛片| 电影成人av| 在线观看www视频免费| 久久精品国产自在天天线| 久久精品国产亚洲av天美| 亚洲精品乱久久久久久| 国产午夜精品一二区理论片| 亚洲 欧美一区二区三区| 久久国产精品大桥未久av| 不卡av一区二区三区| 精品人妻偷拍中文字幕| 丝袜在线中文字幕| 最近最新中文字幕免费大全7| 欧美国产精品一级二级三级| 亚洲,欧美精品.| 黄色毛片三级朝国网站| 免费女性裸体啪啪无遮挡网站| 国产 精品1| 国产黄频视频在线观看| 久久精品国产亚洲av天美| 国产一区亚洲一区在线观看| 18禁国产床啪视频网站| 男男h啪啪无遮挡| 熟女电影av网| 亚洲欧美日韩另类电影网站| 免费在线观看黄色视频的| 一个人免费看片子| 国产视频首页在线观看| 性高湖久久久久久久久免费观看| 在现免费观看毛片| 国产黄频视频在线观看| 日日啪夜夜爽| 97在线视频观看| 不卡视频在线观看欧美| 午夜老司机福利剧场| 久久久久久久久久久久大奶| 亚洲成人一二三区av| 国产一区二区在线观看av| 青春草视频在线免费观看| 美女xxoo啪啪120秒动态图| 黄色配什么色好看| 免费日韩欧美在线观看| 街头女战士在线观看网站| 日韩制服丝袜自拍偷拍| 国产精品免费大片| 99re6热这里在线精品视频| 毛片一级片免费看久久久久| 永久免费av网站大全| 精品国产超薄肉色丝袜足j| 又大又黄又爽视频免费| 美女中出高潮动态图| 天堂8中文在线网| 欧美日韩综合久久久久久| 水蜜桃什么品种好| 精品国产乱码久久久久久小说| 久久久久久久亚洲中文字幕| 亚洲情色 制服丝袜| 午夜福利在线免费观看网站| 亚洲欧美一区二区三区国产| 久久精品久久久久久噜噜老黄| 天天影视国产精品| 在线观看美女被高潮喷水网站| 国产成人精品在线电影| 国产精品久久久久久精品电影小说| 欧美精品一区二区免费开放| 在线观看人妻少妇| 久久热在线av| 一级毛片黄色毛片免费观看视频| 国产精品国产三级国产专区5o| 搡女人真爽免费视频火全软件| 精品视频人人做人人爽| 亚洲,一卡二卡三卡| 亚洲欧美一区二区三区黑人 | 少妇人妻久久综合中文| 少妇被粗大的猛进出69影院| 日日爽夜夜爽网站| 亚洲精品aⅴ在线观看| 老汉色∧v一级毛片| 亚洲成国产人片在线观看| kizo精华| 精品久久久精品久久久| 亚洲人成电影观看| 国产野战对白在线观看| 伦理电影免费视频| 黑丝袜美女国产一区| 国产精品免费视频内射| 国产麻豆69| 考比视频在线观看| 毛片一级片免费看久久久久| 男女啪啪激烈高潮av片| 久久精品国产亚洲av天美| 国产精品欧美亚洲77777| 亚洲中文av在线| 人妻少妇偷人精品九色| 中文字幕人妻熟女乱码| 精品视频人人做人人爽| 久久国产亚洲av麻豆专区| 中文天堂在线官网| 伊人久久大香线蕉亚洲五| 2018国产大陆天天弄谢| 国产伦理片在线播放av一区| 婷婷色综合www| 欧美精品一区二区免费开放| 国产成人精品一,二区| 久久综合国产亚洲精品| 亚洲欧美一区二区三区黑人 | 一本色道久久久久久精品综合| 亚洲国产精品999| 亚洲欧美清纯卡通| 制服诱惑二区| 亚洲国产看品久久| 国产成人免费无遮挡视频| av网站免费在线观看视频| 久久人人97超碰香蕉20202| 午夜久久久在线观看| 日韩熟女老妇一区二区性免费视频| 亚洲国产色片| 亚洲欧洲国产日韩| 18+在线观看网站| 一区二区三区乱码不卡18| 在线观看免费日韩欧美大片| 亚洲国产毛片av蜜桃av| 最近中文字幕高清免费大全6| 国产成人精品久久二区二区91 | 欧美av亚洲av综合av国产av | 黄色 视频免费看| 一级片'在线观看视频| 国产成人精品福利久久| 97精品久久久久久久久久精品| 精品一区二区免费观看| 久久av网站| 国产精品嫩草影院av在线观看| 午夜av观看不卡| 精品视频人人做人人爽| 嫩草影院入口| 只有这里有精品99| 久久国产精品男人的天堂亚洲| 国产av国产精品国产| 精品人妻偷拍中文字幕| 亚洲少妇的诱惑av| 中国国产av一级| 制服丝袜香蕉在线| 精品99又大又爽又粗少妇毛片| 久久久精品94久久精品| 最近中文字幕2019免费版| 婷婷色av中文字幕| 欧美中文综合在线视频| 国产精品一区二区在线观看99| 麻豆精品久久久久久蜜桃| 最近最新中文字幕免费大全7| 老汉色av国产亚洲站长工具| 黄色视频在线播放观看不卡| 色婷婷av一区二区三区视频| 亚洲成av片中文字幕在线观看 | 亚洲成人av在线免费| 妹子高潮喷水视频| av网站在线播放免费| 国产成人精品在线电影| 激情视频va一区二区三区| 国产亚洲欧美精品永久| 国产精品一区二区在线观看99| 韩国高清视频一区二区三区| 国产男人的电影天堂91| 成人亚洲精品一区在线观看| 国产精品一二三区在线看| 国产成人精品婷婷| 欧美最新免费一区二区三区| 另类精品久久| 2018国产大陆天天弄谢| 黑丝袜美女国产一区| 久热久热在线精品观看| 男女高潮啪啪啪动态图| 肉色欧美久久久久久久蜜桃| 18禁观看日本| 国产一区二区 视频在线| 天天操日日干夜夜撸|