• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Idealized numerical simulation experiment of ice seeding in convective clouds using a bin microphysics scheme

    2022-10-14 14:06:20JiefanYangHengchiLei

    Jiefan Yang ,Hengchi Lei

    Key Laboratory of Cloud Physics and Severe Storms, Institute of Atmospheric Physics, Beijing, China

    Keywords:Cloud seeding Bin model Idealized numerical simulation

    ABsTRACT A 2D axisymmetric bin model is used to conduct idealized numerical experiments of cloud seeding.The simulations are performed for two clouds that differ in their initial wind shear.Results show that,although cloud seeding with an ice concentration of 1000 L-1 in a regime that has relatively high supercooled liquid water can obtain a positive effect,the rainfall enhancement seems more pronounced when the cloud develops in a wind shear environment.In no-shear environment,the change in the microphysical thermodynamic field after seeding shows that,although more graupel is produced via riming and this can increase the surface rainfall intensity,the larger drag force and cooling of melting graupel is unfavorable for the development of cloud.On the contrary,when the cloud develops in a wind shear environment,since the main downdraft is behind the direction of movement of the cloud,its negative effect on precipitation is much weaker.

    1.Introduction

    The distribution of water resources in China is extremely uneven,and fresh water is one of the most in-demand natural resources given the huge human population.Besides,over 42% of China’s land area is arid or semi-arid,including northwestern,central and western North China,amongst other regions,where there is less precipitation and therefore water shortages.Thus,in recent decades,many operational cloudseeding programs and field campaigns have been carried out (Zeng et al.,1991 ;Hong and Zhou,2006),which is a method being pursued to enhance precipitation in many locations.

    Although high-resolution cloud models with bulk microphysics schemes can and have been utilized to manipulate cloud seeding progress under the same meteorological conditions to assess the method’s potential effect,considerable uncertainties in the results remain.It is believed that the seeding parameterization implemented in bulk microphysics schemes has inherent limitations (Xue et al.,2013)owing to the use of assumed hydrometeor size distributions and particle evolution only being tracked in bulk.In contrast,the bin microphysical model is able to simulate this evolution explicitly by tracking individual size categories of particles,and provides explicit simulation of the evolution of individual hydrometeor species.By using this advanced type of microphysical scheme,researchers can examine the interactions between aerosol or silver iodide particles and convective clouds.For instance,Cui et al.(2011) used a 2D axisymmetric,bin-resolved cloud model to examine the impact of aerosol changes on the development of mixed-phase convective clouds and concluded that the accumulated precipitation responds very differently to changing aerosol in marine and continental environments.Xue et al.(2013) evaluated the possible impact of aerosol solubility and regeneration on warm-phase orographic clouds and precipitation using a detailed bin microphysical scheme coupled with a mesoscale model.Recently,the University of Pecs and NCAR bin microphysical scheme was implemented into the mesoscale Weather Research and Forecasting model to study the impact of silver iodide on precipitation formation in winter orographic clouds.

    To analyze in depth the dynamic and microphysical effects produced by cloud seeding,this paper adopts a 2D axisymmetric convective cloud model with a detailed bin microphysical scheme (Cui and Carslaw,2006 ;Cui et al.,2006).In this scheme,all particle spectra change completely according to the stochastic collision equation.Moreover,during the simulation,ice crystals and liquid droplets with different masses (or sizes)grow independently.The sounding profile and warm bubble disturbance technology are used to drive the development of the convective cloud model.The main purpose of this paper is to analyze the impact of cloud seeding on a typical convective cloud under conditions with and without wind shear through an idealized numerical sensitivity test.We hope this paper will be helpful in evaluating the effects of cloud seeding.

    Fig.1.The initial profile and the cloud microphysical properties at 40 min: (a) initial profile,in which the red and green solid lines represent the dew point and temperature,respectively;(b) wind speed at different levels;(c) microphysical properties without vertical wind shear;(d) microphysical properties with wind shear.The blue line in (c,d) represents the specific content of liquid water (units: g m -3);the red line is the water content of ice crystals and snow (units: g m -3);and the black line represents the water content of graupel.For the area surrounded by the thick blue line,the inner ring represents the area with LWC > 0.5 g m -3,and the outer ring represents the area with LWC > 0.1 g m -3.

    2.Model configuration

    The microphysical processes and the dynamic structure of the 2D slab-symmetric non-hydrostatic cumulus cloud model used in this study were first described in Reisin et al.(1996a) and Yin et al.(2000).Four hydrometeor types —liquid-phase droplets,pristine ice particles,graupel,and snowflakes (aggregates) —are divided into 34 size (mass) bins.Meanwhile,the evolution of size (mass) distributions during numerical simulation is carried out by solving the stochastic function using an efficient two-moment algorithm as proposed in Tzivion et al.(1987).The grid size of the model is set to 300 m in both the horizontal and vertical direction,while the width and height of the domain are 30 and 12 km,respectively.

    The initial thermodynamic profile based on observations from Xingtai City,Hebei Province at 0800 Beijing Time (BT,UTC+8) 29 June 2020 is used (Fig.1 (a)).A series of model runs are conducted to examine the impact of cloud seeding on the development of convective clouds in two distinct environments —with and without wind shear.For the cloud without wind shear,we artificially set the vertical wind field shear to zero to manipulate the no-shear condition.The second type of vertical wind shear field refers to the measured sounding data (Fig.1 (b)),but due to the limitation of the model area,the vertical wind shear is reduced in a certain proportion to maintain the wind field characteristics and the computational stability of the model simultaneously.For each set of numerical experiments,a control (Ctl) case without seeding and a seeding case are simulated for 100 min.To examine the sensitivity to seeding amount,simulations with different seeding ice number concentrations (100—2000 L-1) are conducted.

    The existence of supercooled liquid drops is crucial for efficient cloud seeding.Both numerical results and observations show that seeding can increase the number concentrations of ice crystals and aggregates,but this enhancement does not necessarily increase surface precipitation because of the complexity of microphysical processes (Tessendorf et al.,2019).Thus,specific regimes (-4°C and -15°C) with high and low liquid water content (LWC) are seeded to assess the potential effects of LWC on surface precipitation.Besides,the seeding time is also a critical parameter for obtaining positive effects (Reisin et al.,1996b).In this work,40 min after model initiation is considered to be suitable for cloud seeding,since at this time the supercooled LWC reaches its maximum and begins to be consumed by natural ice.The cloud seeding experiments are carried out in this study using a relatively simple method —that is,a specific number of ice crystals are directly added to the supercooled regime.All the diameters of seeding ice crystals are assumed to be the initial diameter of ice particles produced by nucleation,and the corresponding masses and concentrations are added to the first size bin.

    3.Results

    3.1.Microphysical and dynamic features of clouds

    Fig.2.Comparison of changes in microphysical properties between seeding and no-seeding cases: (a,b) 45 min and 50 min profiles of microphysical quantities(units: g m -3) without seeding;(c,d) profiles of microphysical properties at 45 min and 50 min using 1000 L -1 of seeding;(e,f) profiles of microphysical properties at 45 min and 50 min after 2000 L -1 of seeding.The physical meaning is the same as in Fig.1.

    Fig.1 (c) is a cross-section of microphysical properties in convective clouds after 40 min of simulation under no-shear conditions.It demonstrates that the peak value of LWC is located in the center region with the most intense vertical velocity,where the maximum LWC can exceed 1.5 g m-3.The supercooled water content above 3500 m shown in Fig.1 (c)is also relatively abundant (see the area surrounded by the thick blue line in the figure).In this area,the thickness of the regime with LWC>0.5 g m-3extends to 2 km.It can also be seen from the figure that ice and snow crystals are mainly distributed in the middle and upper layers of the cloud,indicating that the phase transformation in the cloud is not sufficient at this time.A part of the raindrops below the 0°C isotherm layer begin to reach the ground,but the value is relatively small (~0.001 g m-3).

    The cloud under the wind shear condition has an obvious trend of inclined development (Fig.1 (d)),while the regime of high supercooled water content is mainly on the back side of the cloud’s direction of movement.Compared to the middle of the cloud with abundant LWC,the cloud top may be inappropriate for cloud seeding because it is mainly composed of natural ice-phase particles.It also indicates that the regime with abundant LWC in this cloud is generally larger than that in the no-shear environment (Fig.1 (d)).For example,in the no-shear environment,the maximum horizontal width of LWC>0.5 g m-3is about 2 km (Fig.1 (c)),while in the wind shear environment it can reach 4 km(Fig.1 (d)) and the height of LWC>0.5 g m-3can reach 7 km,which is about 1 km higher than in the no-shear environment.

    Several comparative experiments (as shown in Table 1) are conducted to assess the seeding effect of convective clouds.For a large number of the simulations carried out in this study,generally,cloud seeding at the central axis of the cloud in the early stage of precipitation formation (40 min after model initiation),with ice crystals of more than 1000 L-1 in the -4°C area (horizontal range: 1 km;vertical height:300 m) and lasting for 4 min,is able to achieve an evident seeding effect(Table 1).For the unseeded case,the area of LWC>0.5 g m-3(Fig.2 (a,b)) can maintain for about 10 min,indicating it takes time to consume the supercooled water through riming and deposition of natural ice particles.It also demonstrates that the regime with high supercooled liquid water (>0.5 g m-3) is still located in the middle of the cloud after 45 min of simulation (Fig.2).Even after 50 min of simulation,although a considerable part of the supercooled water in the middle of the cloud is consumed,there are still areas with LWC>0.1 g m-3,and the LWC in a small part of the area is still greater than 0.5 g m-3.This shows that,although the natural cloud process can also consume supercooled water in the cloud,the speed is relatively slow.

    Fig.3.Impact of seeding on the microphysical processes playing a role in graupel formation and vertical wind evolution in the no-shear environment.The plots represent the difference between the seeding and Ctl cases: (a) maximum downdraft;(b) domain-integrated melting of graupel;(c) domain-integrated riming of ice particles;(d) maximum updraft.

    Table 1 Seeding parameters and the difference in total rain with respect to the unseeded cloud for IN (Ice Nuclei) seeding under shear and no-shear conditions.Ctl and Ctl_shear denote control cases (without cloud seeding) for no-shear and wind shear conditions,respectively.

    Fig.2 (c—f) shows the distribution of microphysical properties after 5 and 10 min of simulation when seeded with 1000 L-1and 2000 L-1of ice crystals at -4°C.After the cloud seeding with 1000 L-1of ice crystals(Fig.2 (c—d)),the supercooled liquid water in the cloud is rapidly consumed,which results in the LWC in the middle of the cloud decreasing to less than 0.1 g m-3within 5 min.Meanwhile,the riming process is significantly enhanced because of the interaction between supercooled droplets and seeded ice crystals (Fig.3 (c)).Compared to the Ctl case,the domain-integrated melting mass of graupel increases by 83% and 140% in cases ST2 and ST3,respectively,5 min after cloud seeding.A vigorous downdraft forms owing to the drag force of strong precipitation and the cooling caused by the melting of graupel.As is shown in Fig.3,in cases ST2 and ST3,the cloud seeding increases the maximum downdraft by about 2 and 1.5 times,respectively,compared to the Ctl case (without seeding) within 3 min after cloud seeding,which in turn results in the formation of low-level warm clouds on both sides of the cumulus (Fig.2 (c—f)).Although this part of the cloud also enhances precipitation via the warm-cloud process,the stronger downdraft hinders the further development of the cloud.

    Fig.4.Comparison of microphysical properties between seeding and no seeding cases: (a,b) microphysical quantities (units: g m -3) without seeding after 45 and 50 min of simulation;(c,d) profiles of microphysical properties with 1000 L -1 of seeding after 45 and 50 min of simulation;(e,f) microphysical properties with 2000 L -1 of ice crystal seeding after 45 and 50 min of simulation.The physical meaning is the same as in Fig.1.

    The potential influence of seeding on the surface precipitation of no-shear convective clouds takes place mainly via the following mechanisms: (1) the deposition growth (Bergeron process) of seeding ice crystals consumes the water vapor and cloud droplets;(2) the interaction between the cloud and the large supercooled cloud results in the increasing number concentration of graupel in the middle of the cloud(Fig.3 (b));and (3) the drag force,produced by melted graupel particles and the evaporative cooling process (Fig.3 (d)) lifts on both sides of the cumulus to form a low-level warm cloud.

    3.2.Convective cloud seeding simulation in a strong wind shear environment

    For the convective cloud developed under strong wind shear conditions (Fig.4),the regime with high LWC (the area surrounded by the thick blue line) has a wider range (Fig.4 (a,b)) compared to the no-shear case.After seeding in the initial stage of precipitation (40 min),supercooled liquid water is rapidly consumed (Fig.4 (c—e)).Whether seeding with an ice concentration of 1000 L-1or 2000 L-1,the areas with LWC>0.1 g m-3are rapidly reduced after seeding,and a large amount of LWC is consumed at the middle and high altitudes through the processes of deposition and riming.Compared with the no-seeding case (Ctl_shear),the seeded clouds form a relatively strong downdraft at a height of lower than 4000 m (Fig.4 (a) vs Fig.4 (c,e)).

    The same as in the no-shear environment,cloud seeding enhances the riming process in the wind shear environment,and thus it also leads to an increase in the melting mass of graupel before 50 min of simulation(Fig.5).Fig.5 also illustrates that,due to the horizontal advection of ice crystals in the wind shear environment,a portion of supercooled LWC is not depleted.The difference (ST_shear minus Ctl_shear) in the processes of riming and melting between seeding cases and the Ctl case is smaller than that in the no-shear environment.

    Fig.5.Impact of seeding on the microphysical processes plays in a role in graupel formation and vertical wind evolution in the wind shear environment.The plots represent the difference between seeding and Ctl cases: (a) maximum downdraft;(b) domain-integrated melting of graupel;(c) domain-integrated riming of the particles;(d) maximum updraft.

    As shown in Fig.6,regardless of the amount of seeding,the maximum downdraft is significantly increased owing to the melting of graupel compared with the Ctl_shear case in the wind shear environment.However,in extreme cases (such as ST3_shear with 2000 L-1of ice crystals),the effect of cloud seeding on the maximum downdraft is slightly weaker than that in the no-shear environment (Fig.6 (a)).Besides,the response of the maximum updraft in wind shear conditions is significantly different compared with that in the no-shear environment.For example,in the ST2_ shear and ST3_ shear cases,it seems that cloud seeding does not hurt the maximum updraft compared to the Ctl_shear case.After seeding with 2000 L-1(ST3_shear),the maximum updraft is increased by 5 m s-1in 5 min.This difference may be attributable to the misalignment between the main downdraft and the updraft in the wind shear conditions (Fig.4).That is,although the cloud seeding enhances the downdraft behind the cloud’s direction of movement,it also promotes the updraft ahead.

    In wind shear conditions,the stronger downdraft formed by the cloud seeding divides into two branches near the ground,one of which forms a vertical circulation at the back of the direction of movement of the cumulus cloud,resulting in the formation of a low-level warm cloud in the layer of 1—3 km behind the convective cloud.The uplift of another branch in front of the cumulus cloud also promotes the development of low-level warm cloud in the cumulus cloud itself again,which is also significant in promoting the enhancement of precipitation (Fig.4 (b) vs Fig.4 (d,f)).

    Due to the interaction between the thermal and dynamic effects generated by the environmental wind field and microphysics,the change in surface precipitation after seeding in the shear environment is more complex than that in the no-shear environment,but in general the peak value of precipitation after seeding is shifted to an earlier time (Fig.6).At the same time,due to the drag force and evaporative cooling,lowlevel warm clouds are formed behind the direction of movement of the cumulus clouds,resulting in the expansion of the precipitation range after seeding (Fig.5 (c,d)).Fig.6 shows the change in surface rainfall intensity with time.Under the condition of a 1000—2000 L-1ice crystal seeding amount,the surface precipitation increases to a certain extent,while the impact of high-level seeding on surface precipitation is quite limited.

    4.Conclusion

    This paper reports on numerical simulations conducted to evaluate the potential effects of cloud seeding in environments with and without wind shear.Although the experiments are very limited,some interesting conclusions can be summarized from the results,which we hope will be helpful for some field operations:

    (1) Whether in the environment with or without wind shear,ice seeding at -4°C with moderate concentrations (1000 L-1) in the developing stage of the cloud,and in a high supercooled liquid water regime,can have a significant impact on the distribution of surface rainfall.This finding is similar to previous studies,such as Geresdi et al.(2020),who concluded that the seeding efficiency depends on the amount of liquid water.However,our study further shows that the efficiency of seeding also strongly depends on the environmental conditions.It seems that the efficiency of seeding is more pronounced in the wind shear environment,especially for seeding ice concentrations smaller than 1000 L-1.

    (2) In the environment without wind shear,a large number of graupel particles are produced by cloud seeding via the processes of deposition and riming.Although melted graupel tends to enhance the rainfall intensity in the early stage of the precipitation,it also increases the downdraft in the center regime of the cloud,which in turn decreases the ice phase processes,such as the riming of ice particles.

    Fig.6.Rainfall rate on the ground as a function of time: (a) no seeding;(b) -4°C seeding ice concentration=2000 L -1 ;(c) -4°C seeding ice concentration=1000 L -1 ;(d) ice core concentration=2000 L -1,but at -15°C.

    (3) When seeding convective clouds in a wind shear environment,the change in microphysical and thermodynamic fields is more complex compared in a no-shear environment.In this case,an updraft is provoked by the main downdraft along the direction of movement of the cloud.Since the updraft is misaligned with the main downdraft,a continuous supply of water vapor is allowed to maintain the development of the cloud.

    Funding

    This study was jointly supported by the National Key Research and Development Program of China [grant number 2018YFC1507900]and the National Natural Science Foundation of China [grant numbers 41875172 and 42075192].

    Acknowledgments

    The authors would like to thank Professor Yan Yin at the Nanjing University of Information Sciences and Technology for his kindness in sharing the 2D slab bin model.

    丰满人妻一区二区三区视频av| 97超碰精品成人国产| 美女国产视频在线观看| 亚洲人成网站高清观看| 变态另类丝袜制服| 久久人人爽人人爽人人片va| 国产av不卡久久| 欧美日韩一区二区视频在线观看视频在线 | 国产淫片久久久久久久久| 三级经典国产精品| 一夜夜www| 欧美日本视频| 国产在视频线在精品| 亚洲天堂国产精品一区在线| 美女高潮的动态| 午夜爱爱视频在线播放| 插阴视频在线观看视频| 国产黄a三级三级三级人| 国产精品av视频在线免费观看| 国产精品不卡视频一区二区| 亚洲精品国产成人久久av| av福利片在线观看| 国产精品一二三区在线看| 菩萨蛮人人尽说江南好唐韦庄 | 久久精品久久精品一区二区三区| 日韩高清综合在线| 国产精品日韩av在线免费观看| 成年版毛片免费区| 久久久精品94久久精品| 久久久a久久爽久久v久久| 午夜福利在线观看免费完整高清在| 男女边吃奶边做爰视频| 亚洲av中文字字幕乱码综合| 观看免费一级毛片| 真实男女啪啪啪动态图| 九九爱精品视频在线观看| 男人和女人高潮做爰伦理| 久久久久久大精品| 少妇熟女aⅴ在线视频| 亚洲综合精品二区| 日韩人妻高清精品专区| 一区二区三区高清视频在线| 自拍偷自拍亚洲精品老妇| 国产成人91sexporn| 亚洲精品乱码久久久久久按摩| 国产大屁股一区二区在线视频| av又黄又爽大尺度在线免费看 | av.在线天堂| 久久久久网色| 精品一区二区三区人妻视频| 乱码一卡2卡4卡精品| 人妻系列 视频| 热99re8久久精品国产| 国产老妇伦熟女老妇高清| 在线免费十八禁| 免费在线观看成人毛片| 最近的中文字幕免费完整| 午夜老司机福利剧场| 亚洲av福利一区| 免费看光身美女| 欧美成人免费av一区二区三区| 九色成人免费人妻av| 日本五十路高清| www.色视频.com| 一级二级三级毛片免费看| 欧美成人一区二区免费高清观看| 色哟哟·www| 亚洲国产高清在线一区二区三| 国产v大片淫在线免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产白丝娇喘喷水9色精品| 久久精品久久精品一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 午夜福利在线观看吧| 国产爱豆传媒在线观看| 国产一区有黄有色的免费视频 | 我的老师免费观看完整版| 亚洲精品久久久久久婷婷小说 | 一级毛片电影观看 | 亚洲精品久久久久久婷婷小说 | 亚洲人成网站高清观看| 亚洲欧美日韩东京热| 亚洲av免费高清在线观看| 日韩中字成人| 成人高潮视频无遮挡免费网站| 尾随美女入室| 免费看光身美女| 91狼人影院| 亚洲av中文字字幕乱码综合| 赤兔流量卡办理| 嫩草影院入口| 亚洲精品乱久久久久久| 人体艺术视频欧美日本| 欧美变态另类bdsm刘玥| 插逼视频在线观看| 美女大奶头视频| 99久久精品热视频| 插逼视频在线观看| 国产真实乱freesex| 国产精品人妻久久久影院| 看黄色毛片网站| 岛国在线免费视频观看| 永久网站在线| 亚洲美女搞黄在线观看| 在线免费观看不下载黄p国产| 午夜福利成人在线免费观看| 日韩欧美在线乱码| 看十八女毛片水多多多| 最近中文字幕2019免费版| 1000部很黄的大片| 欧美激情国产日韩精品一区| 亚洲最大成人手机在线| 久久久久久伊人网av| 色综合色国产| 男人狂女人下面高潮的视频| 国产综合懂色| www.av在线官网国产| 亚洲av中文av极速乱| 久久久久久久久久黄片| 国产欧美另类精品又又久久亚洲欧美| 高清午夜精品一区二区三区| 欧美高清性xxxxhd video| 国产成人a∨麻豆精品| 日本午夜av视频| 国产亚洲精品av在线| 男人的好看免费观看在线视频| 久久99热这里只有精品18| 国产亚洲5aaaaa淫片| 精品午夜福利在线看| 一区二区三区免费毛片| 欧美成人精品欧美一级黄| 午夜精品一区二区三区免费看| 亚洲丝袜综合中文字幕| 日韩在线高清观看一区二区三区| 国产伦精品一区二区三区四那| 毛片女人毛片| 噜噜噜噜噜久久久久久91| 91av网一区二区| 麻豆久久精品国产亚洲av| eeuss影院久久| 青青草视频在线视频观看| 91精品伊人久久大香线蕉| 日本猛色少妇xxxxx猛交久久| 三级男女做爰猛烈吃奶摸视频| 国产精品久久久久久久久免| 天美传媒精品一区二区| 边亲边吃奶的免费视频| 国产精品永久免费网站| 插阴视频在线观看视频| 能在线免费看毛片的网站| 免费黄色在线免费观看| 久久久精品大字幕| 欧美日韩综合久久久久久| 在线观看av片永久免费下载| 精品久久久久久久久亚洲| 两个人的视频大全免费| av在线老鸭窝| 性色avwww在线观看| 色哟哟·www| 汤姆久久久久久久影院中文字幕 | 亚洲第一区二区三区不卡| 欧美日韩综合久久久久久| 亚洲人成网站在线观看播放| 免费黄色在线免费观看| 国产黄片视频在线免费观看| 村上凉子中文字幕在线| www.av在线官网国产| 国产又黄又爽又无遮挡在线| 毛片女人毛片| 淫秽高清视频在线观看| 好男人视频免费观看在线| 少妇裸体淫交视频免费看高清| 国产人妻一区二区三区在| videos熟女内射| 十八禁国产超污无遮挡网站| 午夜免费男女啪啪视频观看| 伦精品一区二区三区| 亚洲精品456在线播放app| 美女cb高潮喷水在线观看| 国产黄片视频在线免费观看| 国产一区亚洲一区在线观看| 丰满乱子伦码专区| 亚洲国产精品成人久久小说| 99热精品在线国产| 国产成人freesex在线| 看片在线看免费视频| 女人被狂操c到高潮| 午夜福利视频1000在线观看| 国产私拍福利视频在线观看| 99视频精品全部免费 在线| 可以在线观看毛片的网站| 国产精品一二三区在线看| 亚洲av熟女| 久久精品夜色国产| 亚洲av中文字字幕乱码综合| 国产精品国产三级专区第一集| 欧美性猛交╳xxx乱大交人| 亚洲最大成人手机在线| 啦啦啦啦在线视频资源| 欧美高清性xxxxhd video| 嘟嘟电影网在线观看| 简卡轻食公司| 中文乱码字字幕精品一区二区三区 | 国产老妇女一区| 日本午夜av视频| 日韩av在线大香蕉| 精品久久久久久久末码| 少妇裸体淫交视频免费看高清| 国产黄a三级三级三级人| 亚洲伊人久久精品综合 | 亚洲自拍偷在线| 国产免费男女视频| 中文字幕久久专区| 欧美3d第一页| 午夜爱爱视频在线播放| 麻豆精品久久久久久蜜桃| 中国美白少妇内射xxxbb| 亚洲精品久久久久久婷婷小说 | 一级毛片电影观看 | 听说在线观看完整版免费高清| 日本色播在线视频| 日韩欧美精品v在线| 国产精品福利在线免费观看| 色网站视频免费| 色噜噜av男人的天堂激情| 卡戴珊不雅视频在线播放| 国产视频内射| 亚洲一区高清亚洲精品| 99久国产av精品国产电影| 亚洲va在线va天堂va国产| 亚洲精品国产成人久久av| 一边亲一边摸免费视频| 国产精品一区二区性色av| 免费观看精品视频网站| 高清在线视频一区二区三区 | 久久久久久九九精品二区国产| 亚洲精品色激情综合| 亚洲四区av| 免费观看精品视频网站| 日本五十路高清| 激情 狠狠 欧美| 99久久精品国产国产毛片| 乱码一卡2卡4卡精品| 国产高清不卡午夜福利| 伦理电影大哥的女人| 不卡视频在线观看欧美| 黄色一级大片看看| 免费av不卡在线播放| www.av在线官网国产| 尾随美女入室| 免费观看精品视频网站| 国产欧美日韩精品一区二区| 小说图片视频综合网站| 国产精品综合久久久久久久免费| 亚洲精品成人久久久久久| 国产精品爽爽va在线观看网站| 内地一区二区视频在线| 精品人妻视频免费看| 亚洲欧美日韩高清专用| 欧美日韩综合久久久久久| 日本免费a在线| 中文字幕久久专区| 国产伦精品一区二区三区视频9| 国产精品一二三区在线看| 精品一区二区三区人妻视频| 午夜免费激情av| 搞女人的毛片| 久久久精品欧美日韩精品| 亚洲在线观看片| 久久亚洲精品不卡| 欧美3d第一页| 又粗又爽又猛毛片免费看| 男人的好看免费观看在线视频| 久久鲁丝午夜福利片| 国产一区二区亚洲精品在线观看| 亚洲在线自拍视频| 久久久久久久久大av| 国产v大片淫在线免费观看| 又粗又爽又猛毛片免费看| 国产真实伦视频高清在线观看| 日本一二三区视频观看| 黄色配什么色好看| 日日干狠狠操夜夜爽| 国产又色又爽无遮挡免| 日本猛色少妇xxxxx猛交久久| 中文字幕人妻熟人妻熟丝袜美| 欧美日韩精品成人综合77777| 欧美xxxx性猛交bbbb| 亚洲第一区二区三区不卡| 99久久无色码亚洲精品果冻| av在线亚洲专区| 国产成人福利小说| 亚洲在线观看片| 99久久精品热视频| 久久精品国产亚洲av天美| 亚洲国产精品sss在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲av日韩在线播放| 国模一区二区三区四区视频| 免费av不卡在线播放| 69人妻影院| 久久久欧美国产精品| 黑人高潮一二区| 国产在线一区二区三区精 | 99在线视频只有这里精品首页| 在线a可以看的网站| 日本av手机在线免费观看| 亚洲成av人片在线播放无| 少妇的逼好多水| 国产乱人偷精品视频| 永久网站在线| 免费搜索国产男女视频| 天天一区二区日本电影三级| 亚洲av成人av| 中文字幕亚洲精品专区| 只有这里有精品99| 久久久国产成人免费| 亚洲电影在线观看av| videossex国产| 日韩,欧美,国产一区二区三区 | 国产免费男女视频| 97在线视频观看| 国产色爽女视频免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 国产精品一区二区性色av| 18禁在线无遮挡免费观看视频| 国产免费男女视频| 欧美性感艳星| 搞女人的毛片| 少妇裸体淫交视频免费看高清| 麻豆一二三区av精品| 长腿黑丝高跟| 国产一区有黄有色的免费视频 | 国产男人的电影天堂91| 中文字幕人妻熟人妻熟丝袜美| 搡女人真爽免费视频火全软件| 亚洲欧美精品综合久久99| 亚洲自拍偷在线| 少妇熟女欧美另类| 日本与韩国留学比较| 在线免费观看不下载黄p国产| 亚洲精品aⅴ在线观看| 男人和女人高潮做爰伦理| 九九在线视频观看精品| 亚洲欧美清纯卡通| 国产精品久久久久久久电影| 久久国内精品自在自线图片| 精品一区二区三区人妻视频| 精品一区二区三区视频在线| 成人毛片60女人毛片免费| 午夜精品在线福利| 1000部很黄的大片| 国产真实乱freesex| 永久免费av网站大全| 美女cb高潮喷水在线观看| 欧美区成人在线视频| 成人无遮挡网站| 少妇熟女aⅴ在线视频| 99九九线精品视频在线观看视频| 精品少妇黑人巨大在线播放 | 国产老妇女一区| 亚洲五月天丁香| 网址你懂的国产日韩在线| 91久久精品国产一区二区成人| 一个人看视频在线观看www免费| or卡值多少钱| 欧美日韩国产亚洲二区| 久久精品久久精品一区二区三区| 国产精品乱码一区二三区的特点| 欧美激情在线99| 国产毛片a区久久久久| 岛国在线免费视频观看| 欧美激情久久久久久爽电影| 卡戴珊不雅视频在线播放| 免费看光身美女| 国产黄色小视频在线观看| 尾随美女入室| 亚洲av一区综合| 亚洲,欧美,日韩| 国产黄色小视频在线观看| 色5月婷婷丁香| 中文字幕熟女人妻在线| 久久精品国产亚洲av涩爱| av在线天堂中文字幕| av在线亚洲专区| 一个人免费在线观看电影| 18+在线观看网站| 日本猛色少妇xxxxx猛交久久| 成人欧美大片| 激情 狠狠 欧美| 看黄色毛片网站| 听说在线观看完整版免费高清| 欧美高清成人免费视频www| 色综合站精品国产| 91精品一卡2卡3卡4卡| 中国国产av一级| 日韩欧美在线乱码| 国产黄色小视频在线观看| 日韩,欧美,国产一区二区三区 | 欧美三级亚洲精品| 男人的好看免费观看在线视频| 欧美日韩一区二区视频在线观看视频在线 | 中文亚洲av片在线观看爽| 最后的刺客免费高清国语| 一级黄色大片毛片| 欧美色视频一区免费| ponron亚洲| 成人性生交大片免费视频hd| 人人妻人人澡欧美一区二区| 久久精品国产99精品国产亚洲性色| 2021天堂中文幕一二区在线观| 久久精品国产99精品国产亚洲性色| 日韩欧美精品v在线| 如何舔出高潮| 亚洲怡红院男人天堂| 色尼玛亚洲综合影院| 亚洲一级一片aⅴ在线观看| 国产日韩欧美在线精品| 五月玫瑰六月丁香| 人人妻人人看人人澡| 国产亚洲最大av| 成人午夜精彩视频在线观看| 视频中文字幕在线观看| 国产毛片a区久久久久| 亚洲国产精品成人综合色| 老司机影院毛片| 能在线免费看毛片的网站| 九九在线视频观看精品| 人妻少妇偷人精品九色| 2021天堂中文幕一二区在线观| 亚洲精品456在线播放app| 免费播放大片免费观看视频在线观看 | 久久久久国产网址| 一二三四中文在线观看免费高清| 亚洲中文字幕日韩| 99在线视频只有这里精品首页| 久久精品人妻少妇| 国产精品久久久久久久久免| 久久这里只有精品中国| 亚洲在线自拍视频| 中文字幕熟女人妻在线| 两性午夜刺激爽爽歪歪视频在线观看| 好男人视频免费观看在线| 精品国产露脸久久av麻豆 | 少妇人妻精品综合一区二区| 中文欧美无线码| 如何舔出高潮| 我的女老师完整版在线观看| 日韩一区二区视频免费看| 欧美性猛交╳xxx乱大交人| 伦精品一区二区三区| 精品午夜福利在线看| 精品久久久噜噜| 国产亚洲午夜精品一区二区久久 | 国产在视频线在精品| 精品午夜福利在线看| 成人欧美大片| 深爱激情五月婷婷| 亚洲色图av天堂| 日韩欧美精品免费久久| 国产精品综合久久久久久久免费| 久久精品国产99精品国产亚洲性色| av免费观看日本| 国产在视频线在精品| 亚洲国产欧美在线一区| 亚洲人成网站在线观看播放| 69人妻影院| 国产黄片美女视频| 大香蕉97超碰在线| 亚洲精品日韩在线中文字幕| 少妇熟女欧美另类| 亚洲av成人精品一二三区| 老师上课跳d突然被开到最大视频| 亚洲国产欧洲综合997久久,| 高清视频免费观看一区二区 | 亚洲国产成人一精品久久久| 亚洲精品乱久久久久久| 亚洲欧美成人精品一区二区| 日韩成人av中文字幕在线观看| 看黄色毛片网站| 亚洲av熟女| 美女脱内裤让男人舔精品视频| 乱系列少妇在线播放| 日韩欧美精品v在线| 免费黄网站久久成人精品| 在线免费观看的www视频| 美女被艹到高潮喷水动态| 丰满乱子伦码专区| 国产精品.久久久| av国产久精品久网站免费入址| 成人毛片60女人毛片免费| 啦啦啦啦在线视频资源| 村上凉子中文字幕在线| 免费黄网站久久成人精品| 国产成人精品婷婷| 亚洲无线观看免费| 国产精品久久视频播放| 永久免费av网站大全| 国产单亲对白刺激| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久国产成人免费| 日本与韩国留学比较| 精品久久久久久成人av| 国产成年人精品一区二区| 国产又色又爽无遮挡免| 日韩av在线大香蕉| 成人毛片a级毛片在线播放| 韩国高清视频一区二区三区| 高清日韩中文字幕在线| 国产精品人妻久久久久久| 99国产精品一区二区蜜桃av| 国产精品一区二区在线观看99 | 亚洲人与动物交配视频| 久久精品久久久久久噜噜老黄 | 最近视频中文字幕2019在线8| 欧美不卡视频在线免费观看| 国产真实乱freesex| 91av网一区二区| 亚洲av成人精品一区久久| 综合色av麻豆| 亚洲经典国产精华液单| 国产美女午夜福利| 久久亚洲精品不卡| 天堂av国产一区二区熟女人妻| 日韩av在线大香蕉| 国产精品综合久久久久久久免费| 一卡2卡三卡四卡精品乱码亚洲| 国产男人的电影天堂91| 日韩,欧美,国产一区二区三区 | 亚洲欧美精品专区久久| 国产综合懂色| 超碰av人人做人人爽久久| av福利片在线观看| 韩国av在线不卡| 久久99热这里只有精品18| 午夜免费男女啪啪视频观看| 午夜福利在线观看吧| 久久欧美精品欧美久久欧美| 在线播放国产精品三级| 最近视频中文字幕2019在线8| 一级黄色大片毛片| 国产精品国产三级国产专区5o | 看黄色毛片网站| 精品久久久久久久末码| 国产三级中文精品| 久久精品国产鲁丝片午夜精品| 色综合站精品国产| 在线a可以看的网站| 99热全是精品| 国产精品国产三级国产av玫瑰| 色5月婷婷丁香| 国产亚洲精品久久久com| 亚洲成人精品中文字幕电影| 国产色爽女视频免费观看| 少妇裸体淫交视频免费看高清| 成年女人看的毛片在线观看| 蜜桃亚洲精品一区二区三区| 高清av免费在线| 免费无遮挡裸体视频| 亚洲欧美一区二区三区国产| 精品一区二区免费观看| 亚洲欧美成人精品一区二区| 最近手机中文字幕大全| 97人妻精品一区二区三区麻豆| 夜夜爽夜夜爽视频| 国产免费视频播放在线视频 | or卡值多少钱| 精品国产露脸久久av麻豆 | 最近最新中文字幕大全电影3| 欧美性感艳星| 午夜福利在线观看免费完整高清在| 亚洲人与动物交配视频| 久久久成人免费电影| 国产又色又爽无遮挡免| 亚洲va在线va天堂va国产| 精品人妻视频免费看| 日韩视频在线欧美| 男女视频在线观看网站免费| 精品不卡国产一区二区三区| 性插视频无遮挡在线免费观看| 国产精品一区二区三区四区免费观看| 搡老妇女老女人老熟妇| 亚洲国产高清在线一区二区三| 婷婷色av中文字幕| 国产黄a三级三级三级人| 国语自产精品视频在线第100页| 韩国av在线不卡| 亚洲精品乱久久久久久| 九草在线视频观看| 国产亚洲av嫩草精品影院| 日韩精品青青久久久久久| 最近最新中文字幕大全电影3| 一个人免费在线观看电影| 国产精品综合久久久久久久免费| 色尼玛亚洲综合影院| 一级二级三级毛片免费看| 三级国产精品欧美在线观看| 99热这里只有精品一区| 我要看日韩黄色一级片| 身体一侧抽搐| 午夜精品国产一区二区电影 | 亚洲精品aⅴ在线观看| 老司机福利观看| 欧美性猛交黑人性爽| 欧美三级亚洲精品| 久久久久久久国产电影| 嫩草影院精品99| 国内精品美女久久久久久| 日本三级黄在线观看| 欧美性感艳星| 欧美精品一区二区大全| 99久久成人亚洲精品观看| 我要搜黄色片| 22中文网久久字幕| 久久久a久久爽久久v久久|