• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A tripole winter precipitation change pattern around the Tibetan Plateau in the late 1990s

    2022-10-14 14:06:16YaliZhu

    Yali Zhu

    a Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    b Key Laboratory of Meteorological Disaster/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University for Information Science and Technology, Nanjing, China

    Keywords:Winter precipitation Tibetan plateau Interdecadal change East asian westerly jet stream Westerly—monsoon interaction

    ABsTRACT Classical monsoon dynamics considers the winter/spring snow amount on the Tibetan Plateau (TP) as a major factor driving the East Asian summer monsoon (EASM) for its direct influence on the land—sea thermal contrast.Actually,the TP snow increased and decreased after the late 1970s and 1990s,respectively,accompanying the two major interdecadal changes in the EASM.Although studies have explored the possible mechanisms of the EASM interdecadal variations,and change in TP snow is considered as one of the major drivers,few studies have illustrated the underlying mechanisms of the interdecadal changes in the winter TP snow.This study reveals a tripole pattern of change,with decreased winter precipitation over the TP and an increase to its north and south after the late 1990s.Further analyses through numerical experiments demonstrate that the tropical Pacific SST changes in the late 1990s can robustly affect the winter TP precipitation through regulating the Walker and regional Hadley circulation.The cooling over the tropical central-eastern Pacific can enhance the Walker circulation cell over the Pacific and induce ascending motion anomalies over the Indo-Pacific region.These anomalies further drive descending motion anomalies over the TP and ascending motion anomalies to the north through regulating the regional Hadley circulation.Therefore,the positive—negative—positive winter precipitation anomalies around the TP are formed.This study improves the previously poor understanding of TP climate variation at interdecadal timescales.

    1.Introduction

    The Tibetan Plateau (TP) is often referred to as the “Third Pole ”due to it having the highest elevation in the world.It also has abundant glaciers,snow,lakes,and rivers,meaning it is also referred to as the“water tower ”of Asia for being home to the headwaters of many major rivers in Asia (Xu et al.,2008),including the Yangtze,Yellow,Ganges,and Indus.Therefore,the TP is critical for the supply of water resources in Asia.

    The TP is one of the most sensitive regions to global change.Under global warming,its climate and phenology have undergone robust changes.Specifically,the TP has become warmer during the past few decades,at a rate of 0.46°C/10 yr during 1984—2009,which is obviously higher than the rate in the Northern Hemisphere (0.38°C/10 yr)and globally (0.32°C/10 yr) (Zhang et al.,2013 ;Kuang and Jiao,2016).Meanwhile,precipitation has increased over the TP in general,but with high spatial heterogeneity (Gao et al.,2014,2015 ;Yang et al.,2014 ;Han et al.,2017 ;Tang et al.,2020).There have also been significant changes in plant phenology over the TP.For instance,the start time of the growing season advanced during the 1980s and 1990s;whereas,during 2000—2011,it delayed over the southwest TP but advanced continuously over the northeast TP (Shen et al.,2015 ;Han et al.,2019).

    The TP can modulate the climate in the Northern Hemisphere robustly through dynamic and thermal effects (Trenberth and Chen,1988 ;Manabe and Broccoli,1990 ;Xie et al.,2005 ;Zhou et al.,2009 ;Lu et al.,2016 ;Wang et al.,2020).Specifically,many previous studies have found that TP snow is closely linked with Asian summer climate at interannual and interdecadal time scales (Zhao and Moore,2004 ;Zhu et al.,2007 ;Xu and Li,2010 ;Ren et al.,2016 ;Wang et al.,2017 ;Li et al.,2019 ;Liu et al.,2020).Accompanying the two interdecadal changes in the East Asian summer monsoon (EASM) system in the late 1970s and 1990s,the TP snow amount exhibited an abrupt increase and decrease,respectively (Ding et al.,2009 ;Hu and Liang,2013 ;Han et al.,2017).After the late 1970s,winter/spring TP snow increased,surface albedo and the hydrological effect of snowmelt weakened the TP heat source,and the air temperature over the TP decreased.Meanwhile,the tropical centraleastern Pacific got warmer,the land—sea thermal contrast decreased,the EASM weakened,and the “northern flood and southern drought ”rainfall pattern established over East China (Wang,2001 ;Wu and Qian,2003 ;Zhang et al.,2004 ;Zhu et al.,2007 ;Ding et al.,2009).In the past decade,new evidence has revealed another interdecadal change during the late 1990s —in the summer precipitation pattern in East China,with increased/decreased rainfall over the Huang-Huai/Yangtze River valley(Zhu et al.,2011,2015a,2015b,2016 ;Si and Ding,2013 ;Ding et al.,2018).Meanwhile,the East Asian westerly jet stream (EAWJS) weakened and moved northwards.The tropical central-eastern Pacific cooling and TP warming due to decreased snow are prominent driving factors for this interdecadal change.

    Although numerous studies have revealed the critical impact of TP snow on Asian climate (Ma et al.,2014 ;Wang et al.,2017),only a handful of studies have focused on how the TP snow is affected and modulated.At the interannual time scale,the Arctic Oscillation,North Atlantic Oscillation,Indian Ocean Dipole,Southern Annular Mode,Asian westerly jet stream,and ENSO can all influence TP winter snow accumulation (Lü et al.,2008 ;Xin et al.,2010 ;Yuan et al.,2012 ;Dou and Wu,2018 ;Jiang et al.,2019).However,at interdecadal time scales,our understanding of the driving factors and dynamic processes of TP snow variation is still very limited.

    Previous studies have found decreased TP winter snowfall after the late 1990s,which dominantly contributed to the decreased winter snow accumulation (Hu and Liang,2013,2014).The present study explores the possible linkage between the winter TP precipitation and regional SST,and the physical processes related with the change in the late 1990s.Researching this issue will help to elucidate the underlying physical mechanisms of the interdecadal variation in the TP climate.Section 2 describes the data and gives the details of the model experiment.Section 3 illustrates the features of winter precipitation and circulation changes in the late 1990s.The contributions of the regional(tropical) and global SST are presented in section 4.And finally,a summary and some further discussion are given in section 5.

    2.Data and model experiment

    Three sets of precipitation data are used to examine the winter precipitation change in the late 1990s over Asia: CRU TS (Harris et al.,2020),APHRODITE (Yatagai et al.,2012),and GPCP (Adler et al.,2003),provided by NOAA/OAR/ESRL PSL from their website at https://psl.noaa.gov/.The reanalysis data are from ERA-Interim,available from https://www.ecmwf.int/.SST data from the Met Office Hadley Centre are also used (Kennedy et al.,2011).

    Several sets of experiments were carried out using an atmospheric general circulation model (AGCM) —namely,the Community Atmospheric Model,version 4 (CAM4).CAM4 has been proven to have reasonable capability in simulating Asian circulation,albeit with systematic errors (Neale et al.,2013),and has been widely used in recent Asian climate research (e.g.,Zhu et al.,2015a ;Ma et al.,2022).The control simulation was forced by the climatological mean global SST during 1979—2017.Five sensitivity simulations were performed,driven by the global (EXPG),tropical (EXPT,30°S—30°N),tropical Indian Ocean(EXP TIO,30°S—30°N,30°—110°E),tropical Pacific (EXP TP,30°S—30°N,110°E—70°W),and tropical Atlantic (EXPTA,30°S—30°N,70°W—30°E) SST difference between 2000—2017 and 1979—1998,added to the climatological mean global SST,respectively.Each experiment was integrated for 30 model years,and the last 20 years of data were analyzed.

    Fig.1.(a) The winter precipitation difference percentage (relative to 1979—2017,units: %) between 2000—2017 and 1979—1998 in GPCP.(b—d) Time series of the winter precipitation (units: mm d —1) in the three bands covering 80°—120°E in 35°—45°N (NR),20°—35°N (CR),and 0°—20°N (SR).The values significant at the 0.1 level are shown as dotted areas.The three regions are denoted as blue boxes in (a).

    3.Winter precipitation and circulation changes in the late 1990s

    Previous studies have revealed a decreased winter snow amount and snowfall after the late 1990s (Hu and Liang,2013,2014).Our study presents a sandwich-like/tripole pattern of changes in the winter precipitation around the TP covering about 80°—120°E (Fig.1).Three bands,with positive—negative—positive values,appear over 0°—20°N,20°—35°N,and 35°—45°N,respectively.The three regions are thus named as the southern (SR),central (CR),and northern region (NR),correspondingly.SR includes southeastern Asia and the adjacent ocean.CR locates over the southern TP,India,and southern China.NR covers northwestern China and the northern edge of the TP.The increase/decrease in precipitation can reach more than 50% of the climatological mean value.The time series of the three regional means of winter precipitation also exhibit obvious changes after the late 1990s (Fig.1 (b—d)).A movingt-test (through a window width of 11 years) was applied to test the point of shift in the three precipitation indices (Fig.S1).The points of shift in the SR,CR,and NR precipitation indices were found to be 1996—1998,1998,and 2000—2002,respectively.Therefore,the two periods of 1979—1998 and 2000—2017 were selected as a reasonable compromise among the three regions.The two centers over CR and NR of this tripole pattern partly resemble the moisture dipole over the northern and southern TP,as revealed by five-century tree-ring chronologies (Zhang et al.,2015).Results using other precipitation data such as CRU (Fig.S2) and APHRODITE (not shown) present a similar pattern and magnitude as those from GPCP.

    Fig.2.Difference in the Walker circulation averaged over 20°S—20°N (a) between 2000—2017 and 1979—1998 in the reanalysis data and (b—f) between the sensitivity and control experiments.The values significant at the 0.1 level are shown as green dotted areas.The contours are the zonal wind difference,with a contour interval of 1 m s -1.Blue,black,and red contours denote negative,zero,and positive values,respectively.Arrows denote the zonal—vertical wind difference.The maximum vertical velocity in (a—f) is 22.1,8.6,7.1,13.1,12.2,and 6.9 ×10 -3 Pa s -1,respectively.

    In addition,a large-scale rainfall deficit occurs over the eastern tropical Pacific (ETP).Such negative rainfall anomalies correspond to a cooler SST,trade wind acceleration,and anomalous descending motion there (England et al.,2014).The global SST difference also exhibits robust changes in the late 1990s (Fig.S3),as revealed by previous studies(Zhu et al.,2011,2015a).The Pacific SST changes show a La Ni?a-like pattern,with cooler SST over the ETP and warmer SST over the western tropical Pacific (WTP).Besides,the Indian Ocean gets warmer and the North Atlantic much warmer.

    The cooler/warmer SST over the ETP/WTP accompanies strengthened Walker circulation in the Pacific Ocean (Fig.2 (a)).In the Walker circulation averaged over 20°S—20°N,descending motion anomalies happen over the ETP (120°—180°W),and ascending motion anomalies over the Indo-Pacific region (80°—150°E).The significant anomalies over the Indo-Pacific region can further affect the regional Hadley circulation.In the regional Hadley circulation averaged over 80°—120°E,ascending,descending,and ascending motion anomalies are observed from south to north,covering three zonal bands at about 0°—15°N,20°—35°N,and 35°—45°N,respectively (Fig.3 (a)).These ascending—descending—ascending motion anomalies in the vertical direction present signals consistent with the positive—negative—positive precipitation changes in Fig.1.

    On the other hand,the EAWJS,a major climate system controlling winter climate in Asia,also shows robust changes (Fig.4 (a)).The core of the EAWJS usually locates over (30°—35°N,120°—160°E) in winter.After the late 1990s,in the upper-level wind,a northward wave train pattern exists from the ETP to the North Pacific (Fig.4 (a)).A dipole pattern appears to the north and south of 30°N over East Asia in the zonal wind difference at the 200 hPa level (Fig.4 (a)),which consists of an anomalous anticyclone over Asia.The westerly and easterly anomalies to the north and south of 30°N indicate a northwestward shift of the EAWJS.Changes in the intensity and location of the EAWJS can exert significant influence on Asian climate (Huang et al.,2015 ;Wu and Sun,2017).

    Significant changes also happened in the horizontal wind and moisture flux (Fig.S4).In the upper level (Fig.S4(a)),robust large-scale anticyclonic anomalies appear over southern Asia,with westerly anomalies over the northern TP and NR,indicating a weakened EAWJS.Significant westerlies and easterlies happen over the tropical Pacific and Indian Ocean,representing converging and diverging anomalous flow over the central-eastern tropical Pacific and Indo-Pacific region,respectively.The upper-level anomalous convergence and divergence correspond to the descending and ascending motion anomalies over the ETP and Indo-Pacific region (Fig.S4(a) and Fig.2 (a)).The difference in horizontal wind at 500 hPa is shown considering the topography of the TP (Fig.S4(b)),which resembles the upper-level wind but with much weaker amplitude.The low-level wind difference resembles the vertically integrated water vapor flux difference (Fig.S4(c,d)),with the largest water vapor flux anomalies converging over SR,which has the largest rainfall changes among the three regions.

    4.Regional (tropical) and global SST contributions

    As mentioned above,the global SST has shown obvious changes since the late 1990s.But could these SST anomalies have influenced the winter precipitation and circulation change pattern over Asia in the late 1990s? To answer this question,we compare the control and sensitivity experiment.

    Fig.3.Difference in the regional Hadley circulation averaged over 80°—120°E (a) between 2000—2017 and 1979—1998 in the reanalysis data and (b—f) between the sensitivity and control experiments.The values significant at the 0.1 level are shown as green dotted areas.The magenta lines denote the profile of TP.The contours are the zonal wind difference,with a contour interval of 1 m s -1.Blue,black,and red contours denote negative,zero,and positive values,respectively.Arrows denote the zonal—vertical wind difference.The maximum vertical velocity in (a—f) is 15.6,1.37,1.26,1.87,2.2,and 1.21 ×10 -3 Pa s -1,respectively.

    The respective ascending and descending motion anomalies over the Indo-Pacific and ETP,which represents strengthened Walker circulation,can be reproduced in EXP TP (Fig.2 (e)),rather than EXP G and EXP T.Anomalous descending motion over the ETP also appears in EXPTA(Fig.2 (f)).However,both EXP TA and EXP TIO cannot capture the anomalous ascending motion over the Indo-Pacific region (Fig.2 (d,f)).In the regional Hadley circulation,the respective ascending and descending anomalies over SR and CR can be seen in EXPTP(Fig.3 (e)),while neither signal emerges in the other experiments (Fig.3 (b,c,d,f)).The failure of the experiments other than EXPTPprobably suggests a robust influence of the tropical Pacific SST,rather than SST forcing in other regions.It should also be noted that although EXPTPcan reproduce the vertical motion changes over SR and CR,the ascending motion anomalies over NR are not shown in EXP TP.One possible reason is that the winter precipitation anomalies over NR are probably more affected by factors from middle and high latitudes (e.g.,sea ice) rather than the SST anomalies.

    For the upper-level zonal wind,EXP TIO and EXP TA (Fig.4 (d,f)) can cause a dipole pattern to the southwest of TP,which locates mainly west of 80°E and south of 40°N.Although this dipole pattern somewhat resembles the observed one (Fig.4 (a)),its location is much more to the west than observed,and the zero line has moved southwards to about 20°N compared to the observed one at 30°N.The wave-train pattern over the Pacific Ocean cannot be correctly reproduced in EXPTIOor EXP TA (Fig.4 (d,f)) either.EXP TP induces a more eastward dipole pattern over Asia and a wave-train pattern over the Pacific with similar location but weaker magnitude (Fig.4 (e)) compared to the observation.The combined effect of the tropical Pacific,Indian,and Atlantic SST (EXPT;Fig.4 (c)) induces a pattern more similar to the observation(Fig.4 (a)).However,the global SST only results in a less consistent pattern (EXP G ;Fig.4 (b)),which may suggest a secondary forcing effect of the extratropical SST on the circulation pattern in the late 1990s’ interdecadal change.

    It should be noted that the SST anomaly—forced responses are much weaker than in the reanalysis data,which is a common failing of AGCMs due to the lack of air—sea interaction processes (Mcgregor et al.,2014).

    5.Summary and discussion

    The recent strengthening of the Walker circulation has been shown to be directly linked with tropical central-eastern Pacific cooling and amplified by Atlantic warming (Mcgregor et al.,2014).However,no previous study has explored the possible linkage between the Pacific SST/Walker circulation and the winter precipitation over the TP.This study found a tripole winter precipitation change pattern around the TP during the late 1990s.The tripole pattern is suggested to result from the cooperation of the Walker and regional Hadley circulation changes.After the late 1990s,the equatorial Pacific exhibits cooling over the central-eastern part,and warming over the western part.The related Walker circulation shows descending motion anomalies over the ETP and ascending motion over the Indo-Pacific region.The ascending motion anomalies over the Indo-Pacific region can regulate the regional Hadley circulation over the zonal band of 80°—120°E and induce descending motion anomalies over the southern TP and northern India(Fig.5).

    Fig.4.Difference in the 200 hPa zonal wind (a) between 2000—2017 and 1979—1998 in the observation and (b—f) between the sensitivity and control experiments.The red and blue lines denote the main body of the EAWJS before and after the late 1990s.The solid and dashed lines represent the westerly and easterly anomalies,respectively.The shading shows significant values at the 0.1 level.

    Fig.5.Schematic diagram illustrating the possible mechanism linking the tropical Pacific SST and Asian winter precipitation in the late 1990s.The two arrows forming an oval represent the upper-level westerly and easterly anomalies to the north and south of the EAWJS.

    The ascending motion anomalies over the north of the TP seem to relate more closely with the EAWJS.Zhang et al.(2015) suggested that the moisture dipole over the TP is very likely to arise from stochastic,unforced interaction between the westerlies and monsoon system rather than from a steady dominant mechanism.However,the detailed processes involved in this interaction and the underlying mechanisms remain unclear and still need more in-depth exploration.Besides,the dipole zonal wind anomalies to the north and south of the TP imply a northwestward shifting of the EAWJS in the late 1990s.This change in the EAWJS is associated with the increased/decreased precipitation over NR/CR,which can induce a strengthened/weakened meridional temperature gradient and westerly/easterly anomalies over NR/CR.Highlatitude climate systems,such as the Arctic sea ice and related atmospheric circulation,may also influence the EAWJS and the precipitation over NR/CR (e.g.,Wu et al.,2016).

    The connection between the tropical Pacific SST and winter Asian precipitation changes in the late 1990s are unlikely to have been “oneway ”.The precipitation change could also have stimulated circulation anomalies and feedback to the SST.Positive feedback may exist between the equatorial Pacific SST and winter Asian precipitation to help sustain such decadal climate phases.In addition,the late 1990s’ interdecadal change of the East Asian summer rainfall (e.g.,Zhu et al.,2011,2015a)seems to appear as just a small part of the large-scale rainfall change pattern,which requires more in-depth investigation for the summer season.Besides,the impact of anthropogenic forcing,including greenhouse gases and aerosols,on the TP precipitation change needs further exploration (Qiu,2008).

    Funding

    This study was jointly supported by the Second Tibetan Plateau Scientific Expedition and Research (STEP) program [grant number 2019QZKK0102] and the National Natural Science Foundation of China[grant numbers 41675083 and 41991281].

    Declaration of Competing Interest

    The author declares no conflict of interest.

    Acknowledgements

    The author would like to thank Dr.Jun Wang and Dr.Jiehua Ma for their help in tuning the AGCM.

    Supplementary materials

    Supplementary material associated with this article can be found,in the online version,at doi: 10.1016/j.aosl.2022.100223.

    国产亚洲一区二区精品| 一区二区三区精品91| 18禁裸乳无遮挡动漫免费视频| 天堂8中文在线网| av不卡在线播放| 国产高清视频在线播放一区 | 国产精品一区二区免费欧美 | 久久久欧美国产精品| 少妇被粗大的猛进出69影院| 少妇裸体淫交视频免费看高清 | 精品少妇一区二区三区视频日本电影| 久久久欧美国产精品| 交换朋友夫妻互换小说| 亚洲第一欧美日韩一区二区三区 | 老司机亚洲免费影院| 十八禁高潮呻吟视频| 日本黄色日本黄色录像| 成人黄色视频免费在线看| 搡老乐熟女国产| 我要看黄色一级片免费的| 亚洲伊人色综图| 亚洲中文av在线| 两性夫妻黄色片| 久久国产精品人妻蜜桃| 亚洲精品国产区一区二| 欧美日本中文国产一区发布| 亚洲人成电影免费在线| 国产av国产精品国产| 亚洲精品在线美女| 免费在线观看完整版高清| 亚洲精华国产精华精| 久久久国产一区二区| 欧美精品啪啪一区二区三区 | 国产欧美日韩综合在线一区二区| 一级毛片精品| 18禁观看日本| 天天添夜夜摸| 少妇的丰满在线观看| av电影中文网址| 丁香六月天网| 满18在线观看网站| www.熟女人妻精品国产| 一级黄色大片毛片| 欧美黄色片欧美黄色片| 黄片大片在线免费观看| 国产高清国产精品国产三级| 久久人人爽人人片av| 欧美变态另类bdsm刘玥| 桃红色精品国产亚洲av| 国产精品一区二区免费欧美 | 免费不卡黄色视频| 天天躁日日躁夜夜躁夜夜| 亚洲精品一区蜜桃| 俄罗斯特黄特色一大片| 一区二区av电影网| 又黄又粗又硬又大视频| 精品人妻1区二区| 一个人免费在线观看的高清视频 | 另类精品久久| 国产精品久久久人人做人人爽| 亚洲精华国产精华精| 国产精品 欧美亚洲| 黄色视频在线播放观看不卡| 久久精品aⅴ一区二区三区四区| 69av精品久久久久久 | 在线十欧美十亚洲十日本专区| 丁香六月天网| 成年美女黄网站色视频大全免费| 精品欧美一区二区三区在线| 国产视频一区二区在线看| av视频免费观看在线观看| 久久免费观看电影| 搡老乐熟女国产| 一区二区三区激情视频| 性高湖久久久久久久久免费观看| 日韩大片免费观看网站| 一本大道久久a久久精品| 国产精品麻豆人妻色哟哟久久| 99国产综合亚洲精品| e午夜精品久久久久久久| 少妇猛男粗大的猛烈进出视频| 国产欧美日韩一区二区三区在线| 免费女性裸体啪啪无遮挡网站| 狂野欧美激情性xxxx| 久久久久网色| 国产主播在线观看一区二区| 丝袜人妻中文字幕| 中文字幕av电影在线播放| 18禁观看日本| 高清黄色对白视频在线免费看| 一级片'在线观看视频| 一边摸一边抽搐一进一出视频| h视频一区二区三区| 亚洲一区二区三区欧美精品| 久久久久久久精品精品| 欧美 日韩 精品 国产| 国产免费现黄频在线看| 91麻豆av在线| 另类精品久久| 亚洲人成77777在线视频| av片东京热男人的天堂| 亚洲精品一卡2卡三卡4卡5卡 | 狂野欧美激情性xxxx| 一边摸一边抽搐一进一出视频| 80岁老熟妇乱子伦牲交| 国产精品成人在线| 王馨瑶露胸无遮挡在线观看| 精品视频人人做人人爽| tocl精华| 一本综合久久免费| 在线观看免费视频网站a站| a级毛片在线看网站| 两个人看的免费小视频| 乱人伦中国视频| 丝袜美腿诱惑在线| 久久久久精品国产欧美久久久 | 99国产精品一区二区蜜桃av | 狂野欧美激情性xxxx| 国产精品久久久久久精品电影小说| 久热这里只有精品99| a级毛片在线看网站| www.熟女人妻精品国产| 三上悠亚av全集在线观看| 黄色视频不卡| 日韩人妻精品一区2区三区| 成人国语在线视频| 国产精品1区2区在线观看. | 少妇 在线观看| 人妻一区二区av| bbb黄色大片| 91九色精品人成在线观看| 日韩视频在线欧美| 色精品久久人妻99蜜桃| 久久国产精品人妻蜜桃| 午夜福利视频在线观看免费| 嫁个100分男人电影在线观看| 日本av手机在线免费观看| 成年av动漫网址| 性色av乱码一区二区三区2| 免费久久久久久久精品成人欧美视频| 久久久久久人人人人人| 满18在线观看网站| 免费一级毛片在线播放高清视频 | 亚洲精品中文字幕一二三四区 | 久久人人爽人人片av| 久久久水蜜桃国产精品网| 桃花免费在线播放| 一边摸一边抽搐一进一出视频| 欧美激情 高清一区二区三区| 日韩有码中文字幕| av免费在线观看网站| 久久中文看片网| 国产成人一区二区三区免费视频网站| 亚洲精品第二区| 亚洲精品美女久久久久99蜜臀| 热99re8久久精品国产| 亚洲va日本ⅴa欧美va伊人久久 | 欧美一级毛片孕妇| 亚洲精品成人av观看孕妇| 在线精品无人区一区二区三| 狂野欧美激情性xxxx| 日韩一区二区三区影片| 19禁男女啪啪无遮挡网站| 亚洲av男天堂| 激情视频va一区二区三区| 91成年电影在线观看| 老司机福利观看| 亚洲欧美激情在线| 丝袜美腿诱惑在线| 久久青草综合色| 在线观看人妻少妇| av网站免费在线观看视频| 久久久久精品国产欧美久久久 | 99精国产麻豆久久婷婷| 黄片播放在线免费| 日韩 欧美 亚洲 中文字幕| 欧美亚洲 丝袜 人妻 在线| 中文字幕高清在线视频| 搡老乐熟女国产| 亚洲全国av大片| 男女下面插进去视频免费观看| 黄片播放在线免费| 成人av一区二区三区在线看 | 欧美 亚洲 国产 日韩一| 国产免费av片在线观看野外av| 国产色视频综合| 色播在线永久视频| 国产淫语在线视频| 久久这里只有精品19| 国产成+人综合+亚洲专区| 欧美97在线视频| 午夜福利在线观看吧| av国产精品久久久久影院| 免费少妇av软件| 十八禁人妻一区二区| 9191精品国产免费久久| 18禁国产床啪视频网站| 免费不卡黄色视频| 一边摸一边做爽爽视频免费| 性色av一级| 成在线人永久免费视频| 国产精品一区二区免费欧美 | 美女扒开内裤让男人捅视频| 成人国产一区最新在线观看| 亚洲一区二区三区欧美精品| 精品久久久精品久久久| 高清视频免费观看一区二区| 少妇人妻久久综合中文| 午夜两性在线视频| 人成视频在线观看免费观看| 美女福利国产在线| 18禁国产床啪视频网站| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲精品在线美女| 日韩人妻精品一区2区三区| 淫妇啪啪啪对白视频 | 亚洲色图 男人天堂 中文字幕| 国产精品久久久久成人av| 久久毛片免费看一区二区三区| 久久这里只有精品19| 精品少妇一区二区三区视频日本电影| 男女免费视频国产| 黑人操中国人逼视频| 国产又色又爽无遮挡免| 大片电影免费在线观看免费| 亚洲 国产 在线| 久久免费观看电影| 久久精品亚洲熟妇少妇任你| 精品少妇黑人巨大在线播放| 亚洲精品国产色婷婷电影| av天堂在线播放| 黄片大片在线免费观看| 欧美精品亚洲一区二区| 天堂中文最新版在线下载| 看免费av毛片| 欧美午夜高清在线| 大片电影免费在线观看免费| 久久人人97超碰香蕉20202| 精品福利永久在线观看| 丰满少妇做爰视频| 欧美激情极品国产一区二区三区| 国产高清国产精品国产三级| h视频一区二区三区| 亚洲国产av影院在线观看| 精品少妇一区二区三区视频日本电影| 永久免费av网站大全| 91精品国产国语对白视频| 国产精品国产av在线观看| av片东京热男人的天堂| 蜜桃国产av成人99| 嫁个100分男人电影在线观看| 老司机深夜福利视频在线观看 | 热99国产精品久久久久久7| 岛国毛片在线播放| 高清在线国产一区| 国产成人系列免费观看| bbb黄色大片| 午夜两性在线视频| 中亚洲国语对白在线视频| 人妻人人澡人人爽人人| 90打野战视频偷拍视频| 亚洲精品av麻豆狂野| 热99久久久久精品小说推荐| 国产男女内射视频| 啦啦啦免费观看视频1| 国产极品粉嫩免费观看在线| 亚洲国产欧美日韩在线播放| 十八禁人妻一区二区| 色播在线永久视频| 女人久久www免费人成看片| 男女高潮啪啪啪动态图| 亚洲精品久久成人aⅴ小说| 亚洲国产av新网站| 伊人久久大香线蕉亚洲五| 日韩人妻精品一区2区三区| 一区二区三区乱码不卡18| 18禁国产床啪视频网站| 国产亚洲午夜精品一区二区久久| 国产亚洲精品第一综合不卡| 日本vs欧美在线观看视频| 老汉色∧v一级毛片| 母亲3免费完整高清在线观看| 人妻人人澡人人爽人人| 成在线人永久免费视频| 亚洲av成人一区二区三| 久久久水蜜桃国产精品网| 中文字幕最新亚洲高清| 日韩 欧美 亚洲 中文字幕| 国产精品秋霞免费鲁丝片| 超碰97精品在线观看| 一进一出抽搐动态| 午夜两性在线视频| 国产成人影院久久av| 老司机亚洲免费影院| 大陆偷拍与自拍| 黑人欧美特级aaaaaa片| 久久久欧美国产精品| 午夜激情久久久久久久| 欧美av亚洲av综合av国产av| 视频区图区小说| 999精品在线视频| 18在线观看网站| 欧美精品啪啪一区二区三区 | 亚洲精品av麻豆狂野| 国产伦理片在线播放av一区| 欧美另类亚洲清纯唯美| 亚洲第一av免费看| 首页视频小说图片口味搜索| 一个人免费看片子| 亚洲精品乱久久久久久| 国产亚洲精品第一综合不卡| 视频区图区小说| 老司机靠b影院| 久久天躁狠狠躁夜夜2o2o| 色婷婷久久久亚洲欧美| 成年美女黄网站色视频大全免费| 两性午夜刺激爽爽歪歪视频在线观看 | www.自偷自拍.com| 日韩有码中文字幕| 成年av动漫网址| 麻豆国产av国片精品| 一二三四在线观看免费中文在| 免费高清在线观看日韩| 精品高清国产在线一区| 国产一区二区激情短视频 | 国产有黄有色有爽视频| 99九九在线精品视频| 女性生殖器流出的白浆| 精品国产乱子伦一区二区三区 | 王馨瑶露胸无遮挡在线观看| 国产精品自产拍在线观看55亚洲 | 久久影院123| 两个人免费观看高清视频| 久久久国产一区二区| 国产日韩欧美在线精品| 亚洲精品乱久久久久久| 啦啦啦免费观看视频1| 国产成人欧美在线观看 | 国产高清视频在线播放一区 | 少妇精品久久久久久久| 精品欧美一区二区三区在线| 久久久国产欧美日韩av| av又黄又爽大尺度在线免费看| 久久久国产欧美日韩av| 中文字幕色久视频| 少妇精品久久久久久久| 成人三级做爰电影| 一区二区日韩欧美中文字幕| 亚洲精品国产色婷婷电影| 午夜福利一区二区在线看| 亚洲国产中文字幕在线视频| 在线观看免费视频网站a站| av网站在线播放免费| 国产xxxxx性猛交| 精品久久蜜臀av无| 久久国产精品男人的天堂亚洲| 久久久久久亚洲精品国产蜜桃av| 一个人免费看片子| 一级片'在线观看视频| 精品国产一区二区三区四区第35| 国产亚洲欧美精品永久| av视频免费观看在线观看| 免费av中文字幕在线| 在线观看免费视频网站a站| 欧美另类亚洲清纯唯美| 久久毛片免费看一区二区三区| 久久久精品94久久精品| 80岁老熟妇乱子伦牲交| 久久影院123| 精品乱码久久久久久99久播| 久久99热这里只频精品6学生| 男女床上黄色一级片免费看| 亚洲精品av麻豆狂野| 亚洲精品国产精品久久久不卡| 国精品久久久久久国模美| 岛国毛片在线播放| 亚洲欧美一区二区三区久久| 肉色欧美久久久久久久蜜桃| 久久精品亚洲熟妇少妇任你| 亚洲av日韩在线播放| 欧美激情久久久久久爽电影 | 欧美另类一区| 亚洲视频免费观看视频| 黄色怎么调成土黄色| 精品少妇黑人巨大在线播放| 一级毛片精品| 大陆偷拍与自拍| 午夜福利影视在线免费观看| 永久免费av网站大全| 老司机在亚洲福利影院| 亚洲一区二区三区欧美精品| 天堂俺去俺来也www色官网| 欧美日韩成人在线一区二区| 成人av一区二区三区在线看 | 精品视频人人做人人爽| 亚洲欧洲精品一区二区精品久久久| 欧美av亚洲av综合av国产av| 国产成人啪精品午夜网站| 久久亚洲精品不卡| 久久综合国产亚洲精品| 欧美黑人欧美精品刺激| 在线观看免费高清a一片| 黄色视频不卡| 一区二区三区乱码不卡18| 久久人妻熟女aⅴ| 99国产精品免费福利视频| 一级毛片电影观看| 久久av网站| 精品国内亚洲2022精品成人 | 好男人电影高清在线观看| 亚洲国产av影院在线观看| 欧美日韩亚洲高清精品| 精品国产一区二区久久| av天堂在线播放| 中文字幕色久视频| 他把我摸到了高潮在线观看 | 国产一级毛片在线| 极品人妻少妇av视频| 少妇精品久久久久久久| 欧美另类一区| 十八禁网站网址无遮挡| 丰满少妇做爰视频| 亚洲黑人精品在线| 另类精品久久| bbb黄色大片| 在线观看人妻少妇| 午夜成年电影在线免费观看| 亚洲,欧美精品.| 人人妻人人添人人爽欧美一区卜| 国产成人精品在线电影| 欧美精品啪啪一区二区三区 | 亚洲va日本ⅴa欧美va伊人久久 | 国产老妇伦熟女老妇高清| 美女大奶头黄色视频| 亚洲三区欧美一区| 国产成人av教育| tube8黄色片| 午夜成年电影在线免费观看| 午夜激情av网站| 亚洲激情五月婷婷啪啪| 婷婷色av中文字幕| 操美女的视频在线观看| avwww免费| 成人18禁高潮啪啪吃奶动态图| 日韩,欧美,国产一区二区三区| 色播在线永久视频| 天天操日日干夜夜撸| 9热在线视频观看99| 超色免费av| 婷婷成人精品国产| 亚洲色图 男人天堂 中文字幕| 黑人巨大精品欧美一区二区蜜桃| av网站在线播放免费| 18禁国产床啪视频网站| 男男h啪啪无遮挡| 精品免费久久久久久久清纯 | 成人18禁高潮啪啪吃奶动态图| 人人妻人人爽人人添夜夜欢视频| 亚洲国产欧美网| 久久99一区二区三区| 国产日韩欧美视频二区| 午夜老司机福利片| avwww免费| 国产成人av激情在线播放| 国产精品一区二区在线观看99| 免费日韩欧美在线观看| 国产精品成人在线| 涩涩av久久男人的天堂| 久久久久精品国产欧美久久久 | 久久影院123| 国产精品.久久久| 亚洲精品国产av成人精品| 中亚洲国语对白在线视频| 丝袜在线中文字幕| 久久久久视频综合| 精品乱码久久久久久99久播| 国产免费一区二区三区四区乱码| 老鸭窝网址在线观看| 老汉色∧v一级毛片| 夜夜夜夜夜久久久久| av欧美777| 亚洲精品久久午夜乱码| 美女脱内裤让男人舔精品视频| 欧美精品亚洲一区二区| 最黄视频免费看| 国产精品久久久av美女十八| 9色porny在线观看| 久久中文字幕一级| 日韩一区二区三区影片| 亚洲伊人久久精品综合| av视频免费观看在线观看| 中文字幕av电影在线播放| 久久人妻熟女aⅴ| 麻豆乱淫一区二区| 日本vs欧美在线观看视频| 精品人妻在线不人妻| 黄色怎么调成土黄色| 欧美激情高清一区二区三区| 国产亚洲av高清不卡| 一区二区av电影网| 久久精品国产亚洲av香蕉五月 | 9色porny在线观看| 丝袜美腿诱惑在线| 一区二区三区激情视频| 国产97色在线日韩免费| 久久亚洲国产成人精品v| 真人做人爱边吃奶动态| 一级片免费观看大全| 亚洲国产欧美日韩在线播放| 亚洲国产欧美在线一区| 欧美黑人欧美精品刺激| 一本大道久久a久久精品| 欧美日韩成人在线一区二区| 国产亚洲精品第一综合不卡| 丰满迷人的少妇在线观看| 国产成人精品在线电影| 少妇 在线观看| 久久这里只有精品19| 国产av一区二区精品久久| av在线播放精品| 最近最新中文字幕大全免费视频| 不卡一级毛片| 精品欧美一区二区三区在线| 国产欧美日韩精品亚洲av| 又黄又粗又硬又大视频| 香蕉国产在线看| 亚洲国产欧美网| 欧美精品人与动牲交sv欧美| 亚洲 国产 在线| 国产成人啪精品午夜网站| 亚洲中文av在线| 水蜜桃什么品种好| 日本wwww免费看| 美女午夜性视频免费| 丰满迷人的少妇在线观看| 久久中文字幕一级| 妹子高潮喷水视频| 18禁裸乳无遮挡动漫免费视频| 午夜福利,免费看| 夜夜骑夜夜射夜夜干| 久久九九热精品免费| 国产精品麻豆人妻色哟哟久久| 淫妇啪啪啪对白视频 | 色播在线永久视频| 丝袜人妻中文字幕| 精品亚洲成国产av| 久久国产精品人妻蜜桃| 久久人妻熟女aⅴ| 国产成人欧美| 亚洲国产中文字幕在线视频| videosex国产| 一边摸一边做爽爽视频免费| 日本vs欧美在线观看视频| a级片在线免费高清观看视频| 久久精品国产综合久久久| 丝袜人妻中文字幕| 波多野结衣av一区二区av| 高潮久久久久久久久久久不卡| 天堂中文最新版在线下载| 悠悠久久av| 午夜成年电影在线免费观看| 精品久久久久久久毛片微露脸 | 欧美在线一区亚洲| 嫩草影视91久久| 成人影院久久| 免费女性裸体啪啪无遮挡网站| 欧美亚洲日本最大视频资源| 欧美另类亚洲清纯唯美| 久久女婷五月综合色啪小说| 亚洲熟女毛片儿| 亚洲精品乱久久久久久| 老汉色av国产亚洲站长工具| 色老头精品视频在线观看| 人人妻人人澡人人看| 国产不卡av网站在线观看| 丰满少妇做爰视频| 制服诱惑二区| 国产主播在线观看一区二区| 午夜91福利影院| 久久精品亚洲av国产电影网| 久久久久久久国产电影| 婷婷丁香在线五月| 日韩熟女老妇一区二区性免费视频| 亚洲欧美日韩另类电影网站| 夜夜夜夜夜久久久久| 一二三四社区在线视频社区8| 五月天丁香电影| 热99re8久久精品国产| 亚洲成人国产一区在线观看| 久久精品亚洲熟妇少妇任你| 一进一出抽搐动态| 黄片小视频在线播放| 老司机亚洲免费影院| 热99re8久久精品国产| 国产伦理片在线播放av一区| 国产老妇伦熟女老妇高清| 一区二区av电影网| 亚洲男人天堂网一区| 手机成人av网站| 免费不卡黄色视频| 日本黄色日本黄色录像| 久热爱精品视频在线9| 欧美黄色淫秽网站| 欧美激情极品国产一区二区三区| 亚洲自偷自拍图片 自拍| 又大又爽又粗| 日韩制服丝袜自拍偷拍| 国产精品一区二区在线不卡| 亚洲七黄色美女视频| 国产无遮挡羞羞视频在线观看| 久久这里只有精品19| 欧美黑人精品巨大| 精品卡一卡二卡四卡免费| 亚洲色图 男人天堂 中文字幕| 久久精品国产亚洲av香蕉五月 |