• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dominant patterns of winter surface air temperature over Central Asia and their connection with atmospheric circulation

    2022-10-14 14:06:12HaishanLiKeFan

    Haishan Li ,Ke Fan

    a Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

    b School of Atmospheric Science, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

    c University of the Chinese Academy of Sciences, Beijing, China

    Keywords:Central asia Surface air temperature anomaly Arctic oscillation North atlantic oscillation Ural blocking

    ABsTRACT The dominant patterns of the winter (December—February) surface air temperature anomalies (SATAs) over Central Asia (CA) are investigated in this study.The first two leading modes revealed by empirical orthogonal function(EOF) analysis represent the patterns by explaining 74% of the total variance.The positive phase of EOF1 is characterized by a monopole pattern,corresponding to cold SATAs over CA,while the positive phase of EOF2 shows a meridional dipole pattern with warm and cold SATAs over northern and southern CA.EOF1 is mainly modulated by the negative phase of the Arctic Oscillation (AO) in the troposphere,and the negative AO phase may be caused by the downward propagation of the precursory anomalies of the stratospheric polar vortex.EOF2 is mainly influenced by the Ural blocking pattern and the winter North Atlantic Oscillation (NAO).The SATAs associated with EOF2 can be attributed to a dipole-like pattern of geopotential height anomalies over CA.The dipole-like pattern is mainly caused by the Ural blocking pattern,and the NAO can also contribute to the northern part of the dipole.

    1.Introduction

    Central Asia (35°—65°N,50°—100°E;CA) is one of the largest semiarid areas in the world and is characterized by a typical continental climate (Lioubimtseva and Henebry,2009 ;Mirzabaev,2013 ;Li et al.,2015).The surface air temperature (SAT) over CA during the winter months (December—February;DJF) reaches its minimum,and the low winter SAT may cause severe socioeconomic impacts.For example,as CA is well-known as a region of nomadic cattle breeding,low winter SAT in this region may cause high risks for agricultural employees and livestock in the open air (Begzsuren et al.,2004 ;Kerven et al.,2004 ;Nyssanbayeva et al.,2019).Thus,the winter SAT over CA and its variability are worthy of further study.

    As part of the Eurasian continent,previous studies have revealed that the winter SAT over CA can be modulated by the large-scale atmospheric circulations and teleconnections over the whole continent.For example,the positive (negative) phase of the Arctic Oscillation (AO)/North Atlantic Oscillation (NAO) is associated with warm (cold) winter SAT(Thompson and Wallace,2000 ;Cattiaux et al.,2010);the strengthening of the winter Ural blocking pattern can lead to warming over the Ural Mountain region,and the outbreak of the blocking pattern can lead to strong cooling over downstream East Asia (Wang et al.,2010;Cheung et al.,2013 ;Luo et al.,2016);and a strengthened Siberian high is associated with cooling over most of the Eurasian continent(Cohen et al.,2001 ;Gong and Ho,2002).

    Despite much research on the climatic systems that may influence the winter SAT over CA,studies focusing on the main features of the winter SAT over CA itself are relatively scarce.Thus,this study explores this issue by investigating the leading modes of the winter SAT and corresponding mechanisms.

    Fig.1.(a,b) Spatial distributions of the first two leading modes for the winter SATAs over CA during 1979—2019,with the proportions of the explained variance given in the top-right corner,and (c,d) the associated normalized time series of the standardized PCs.

    2.Data and methods

    The atmospheric reanalysis data from the National Centers for Environmental Prediction/National Center for Atmosphere Research(Kalnay et al.,1996),with a 2.5° horizonal resolution from 1000 to 10 hPa comprising 17 pressure levels,including the daily and monthly mean SAT,geopotential height,and zonal and meridional winds in the winters of 1979—2019,are used in this study.The monthly AO and NAO indices of the Climate Prediction Center in the same period are also adopted.A two-dimensional blocking index developed by Scherrer et al.(2006),which can represent the blocking frequency in wintertime in the region 35°—65°N,is employed.The empirical orthogonal function (EOF) analysis method is used to distinguish the leading modes of the DJF surface air temperature anomalies (SATAs)over CA during 1979—2019.To illustrate the propagation of Rossby waves,the stationary wave activity flux defined by Takaya and Nakamura (2001),referred to as TN flux,is used.Other statistical methods employed include regression,composite analysis,and the Student’st-test.

    3.Results

    3.1.Leading modes of DJF SATAs over CA

    Fig.1 shows the spatial patterns of the leading two modes (EOF1 and EOF2) and their corresponding time series (PC1 and PC2).These two EOFs are both well separated (North et al.,1982) and account for 54.9% and 18.9% of the total variance,respectively (Fig.1 (a,b)).EOF1 is characterized by a monopole pattern,with the largest loading over northeastern CA,while EOF2 shows a meridional dipole pattern with opposite signs over northern and southern CA.The SATAs and atmospheric circulation anomalies corresponding to EOF1 and EOF2 are obtained by regressions upon PC1 and PC2 (Fig.2).For EOF1,significant cold SATAs appear over CA and correspond well to the significant northeasterlies at 850 hPa over northern CA (Fig.2 (a,c));while at 200 hPa,significant geopotential height anomalies over the mid-to-high latitudes(35°—90°N) display a negative AO-like pattern (Fig.2 (e)).For EOF2,the SATAs display a south—north dipole pattern over CA,with a warm center over the north side of CA and a cold center over the middle and south side of CA (Fig.2 (b)).Corresponding to the dipole SATA pattern,significant positive geopotential height anomalies at 850 hPa appear in the Urals region,accompanied by significant northeasterlies (southwesterlies) around the southern (northern) side of the anomalies (Fig.2 (d)).At 200 hPa,the geopotential height anomalies over CA display a distinct meridional dipole pattern,accompanied by a dipole structure over the North Atlantic but with opposite polarity (Fig.2 (f)).

    3.2.Possible connection between the AO and EOF1

    As mentioned above,the geopotential height anomalies at 200 hPa corresponding to EOF1 resemble a negative AO phase (Fig.2 (e)).The correlation coefficient between the winter AO index and PC1 is -0.67,and is statistically significant at the 99% confidence level.Considering that the winter AO and NAO are highly correlated,the correlation between the winter NAO index and PC1 should be further checked.The correlation coefficient between the winter AO index and PC1 is -0.65(significant at the 99% confidence level).However,the partial correlation between PC1 and the NAO index,in which the variability of the AO index is excluded,is insignificant at the 95% confidence level(-0.27),while the partial correlation between the AO index is still significant at the 99% confidence level (-0.42).Thus,it is reasonable to conclude that EOF1 may be linked to the negative phase of the AO rather than the NAO.The negative-AO-related SATAs and geopotential height anomalies over CA are analyzed (Fig.3).In Fig.3 (a),significant cold SATAs appear over northern Eurasia,which may be caused by the northeasterlies at 850 hPa over northern CA (Fig.3 (b)).The northeasterlies are caused by the positive geopotential height anomalies over Iceland,which comprise the northern part of a meridional dipole structure over the Atlantic-European sector,and are similar to the anomalies corresponding to EOF1.The geopotential height anomalies at 200 hPa resemble those at 850 hPa,but the intensity is stronger.Thus,the EOF1 mode may be largely influenced by the quasi-barotropic geopotential height anomalies corresponding to the negative phase of the AO.

    Fig.2.Regressions of winter (a) SAT (shading;units: °C),(c) 850-hPa geopotential height (shading;units: m) and winds (vectors;units: m s -1),and (e) 200-hPa geopotential height (shading;units: m) onto the PC1 for the period 1979 -2019.(b,d,f) As in (a,c,e) but for PC2.The black dashed boxes show the region of CA;anomalies significant at the 95% confidence level are denoted by dots and purple contour lines,and vectors represent the anomalous winds significant at the 95%confidence level,as estimated by the Student’s t -test.

    Baldwin and Dunkerton (1999) indicated that a strengthening (weakening) of the stratospheric polar vortex can propagate to the troposphere and cause a positive (negative) AO phase.Thus,the relationships between EOF1 and the precursory stratospheric anomalies is studied.The PC1-related polar vortex anomalies (represented by the area-averaged daily geopotential height anomalies over the polar cap (north of 60°N))are presented in Fig.4.It can be seen that significantly positive anomalies first appear in late November and early December at 10 hPa.The significantly positive anomalies from the stratosphere can propagate downwards and reach 1000 hPa in mid-December and result in a negative phase of the AO.Following Li and Gu (2010),a polar vortex index (PVI)is defined as the averaged geopotential height over the region north of 75°N to measure the intensity of the polar vortex.The correlation coefficient between the November PVI and PC1 is 0.35,and is statistically significant at the 95% confidence level.Thus,we conclude that the downward propagation of the positive signal from the stratosphere in November may cause the negative AO phase in the troposphere in the following winter,and consequently modulate the EOF1 mode.

    3.3.Possible connection between the blocking pattern, NAO, and EOF2

    To investigate the atmospheric anomalies associated with the EOF2 mode,the PC2-related geopotential height anomalies at 200 hPa,as well as the associated TN wave activity flux,are shown in Fig.5 (a).Significant geopotential height anomalies with a meridional dipole structure appear over CA,which closely resembles the Ural blocking pattern.Besides,significant anomalies also exist over the North Atlantic with an AO/NAO-like dipole pattern.The northern part of the dipole can excite an eastward-propagating Rossby wave,which can further contribute to the positive geopotential height anomalies over northern CA.The results indicate that the EOF2 mode may be associated with the Ural blocking and AO/NAO patterns.

    Fig.3.Regressions of December (a) SAT (shading;units: °C) and (b) 850-hPa and (c) 200-hPa geopotential height (shading;units: m) and winds (vectors;units:m s -1) onto the negative AO index for the period 1979 -2019.The black dashed boxes show the region of CA;anomalies significant at the 95% confidence level are denoted by dots and purple contour lines,and vectors represent the anomalous winds significant at the 95% confidence level,as estimated by the Student’s t -test.

    Fig.4.Regression of the daily geopotential height anomalies area-averaged over the polar cap poleward of 60°N (shading;units: m) onto PC1 for the period 1979—2019.Anomalies significant at the 95% confidence level are denoted by dots,as estimated by the Student’s t -test.

    First,to investigate the relationship between EOF2 and the Ural blocking pattern,the PC2-related anomalous blocking frequency and 500-hPa geopotential height anomalies are given in Fig.5 (b).Significant high-frequency anomalies can be seen over the Urals region and corresponding to the local positive geopotential height anomalies.Following Wang et al.(2021),a Ural blocking index (UBI) is defined as the averaged blocking frequency over the region of (55°—65°N,40°—80°E).The correlation coefficient between UBI and PC2 is 0.72,and is statistically significant at the 99% confidence level.The UBI-related geopotential height anomalies are given in Fig.5 (c).Significant dipole-like anomalies can be seen over CA.The results imply that the Ural blocking can be a contributor to the dipole-like geopotential height anomalies associated with EOF2 over the CA region.However,only weak anomalies can be seen over the North Atlantic.Second,the connection between the EOF2 mode and the AO/NAO has also been studied.The correlation coefficients between PC2 with the AO and NAO are 0.29 (insignificant at the 95% level) and 0.44 (significant at the 99% level),respectively.Thus,EOF2 is mainly associated with the winter NAO.The NAO-related geopotential height anomalies are given in Fig.5 (d).Significant anomalies with a meridional dipole structure can be seen over the North Atlantic.The wave activity flux,emanating from the northern part of the dipole,can reach northern CA and cause significant positive geopotential height anomalies (Fig.5 (d)).Furthermore,the correlation coeffi-cient between the winter UBI and the NAO during 1979—2018 is 0.07,which implies that the combined effect of the Ural blocking pattern and the NAO may be treated as the linear combination of their own effects.Thus,we conclude that the dipole-like geopotential height anomalies over CA can be mainly related to the Ural blocking pattern;and the positive geopotential height anomalies over northern CA can be strengthened by the influence of NAO+(positive phase of the NAO).

    To further investigate the combined influence of the Ural blocking pattern and the NAO on the atmospheric circulation over CA,four separate composites are constructed based on the winter UBI and NAO index.A year is taken to be an NAO+(NAO -) year if the NAO index is greater (less) than 0.6 (-0.6) standard deviations (where NAO -denotes the negative phase of the NAO).The NAO+(NAO -) years are furtherclassified as high-UBI (UBI +) years and low-UB (UBI -) years by ± 0.6 standard deviations.Table 1 lists the years selected for the four composites.For NAO+years,the numbers of UBI+and UBI -years are both 6;however,in NAO -years,the numbers of both UBI+and UBI -years are small —in particular,there is only one year for the NAO -/UBI -situation.Thus,three composites of 200-hPa geopotential height are constructed for NAO +/UBI +,NAO +/UBI -,and NAO -/UBI+years,and the corresponding wave activity fluxes are also analyzed (Fig.6).In the composite field for NAO +/UBI +,the geopotential height anomalies resemble those corresponding to EOF2 (Figs.2 (f) and 5(b)),with significant height anomalies over the Urals region and a positive NAO-like dipole pattern over the North Atlantic;and the wave train emanating from the northern part of the NAO-like dipole pattern over Greenland can propagate eastward into CA (Fig.6 (a)).The wave train may contribute directly to the positive geopotential height anomalies over northern CA.For NAO +/UBI -years,a strong positive-NAO-like dipole pattern appears over the North Atlantic,with negative anomalies over the region(50°—75°N,90°—0°W) and positive anomalies over the region (30°—45°N,90°—0°W);the anomalies over the North Atlantic can extend eastward and cause a weak meridional dipole pattern over CA,but with negative geopotential height anomalies over northern CA,which is unfavorable for the Ural blocking pattern (Fig.6 (b)).For NAO -/UBI +,a negative-NAO-like pattern exists over the North Atlantic,with significant positive geopotential height anomalies over the Scandinavian Peninsula and negative anomalies over eastern Europe;the wave activity flux emanating from the positive geopotential height anomalies can cause negative anomalies over nearly all of CA,which are also unfavorable for the Ural blocking pattern (Fig.6 (c)).Thus,the combined effect of the positive NAO phase and Ural blocking pattern can lead to the positive phase of the EOF2 mode.

    Table 1 Years during 1979—2019 selected by the winter NAO index and the UBI.

    Fig.5.(a) Regression of winter 200-hPa geopotential height (shading;units: m) onto the PC2 for the period 1979 -2019,and the associated horizonal components of the wave activity flux (vectors;units: m 2 s -2).(b) Regressions of winter blocking index (shading;units: %) and 500-hPa geopotential height (contours;units: m)onto the PC2 for the period 1979 -2019.Zero contours are omitted and negative values are dashed.(c,d) As in (a) but for the UBI and NAO,respectively.The black dashed boxes show the region of CA;anomalies significant at the 95% confidence level are denoted by dots and purple contour lines,as estimated by the Student’s t -test.

    Fig.6.(a) Composite 200-hPa geopotential height anomalies (shading;units: m) for the NAO +/UBI+years,and the associated horizonal components of the wave activity flux (vectors;units: m 2 s -2).(b,c) As in (a) but for NAO +/UBI -years and NAO -/UBI+years,respectively.Anomalies significant at the 95% confidence level are denoted by purple contour lines,as estimated by the Student’s t -test.

    4.Conclusion

    This study investigates the first two leading EOF modes of the DJF SATAs over CA during the period 1979—2019.The two EOFs explain 54.9% and 18.9% of the total variance in the SATAs,respectively.EOF1 is characterized by a monopole pattern,corresponding to cold SATAs over CA,while EOF2 shows a meridional dipole pattern with warm and cold SATAs over northern and southern CA.EOF1 may be mainly modulated by the negative phase of the AO in the troposphere.In the negative AO phase,the positive height anomalies at 850 hPa located over the northwest of CA can cause significant northeasterlies over CA and the subsequently cold SATAs.Furthermore,the negative AO phase may be caused by the downward propagation of the precursory anomalies of the stratospheric polar vortex.EOF2 is associated with a dipole-like pattern of geopotential height anomalies,with positive and negative anomalies over northern and southern CA.The dipole-like pattern is mainly caused by the Ural blocking pattern,and the NAO can also contribute to the northern part of the dipole structure.The northeasterlies (southwesterlies) at 850 hPa around the southern (northern) side of the positive geopotential height anomalies (the northern part of the dipole-like structure) can lead to a dipole SATA pattern.

    Funding

    This work was funded by the National Natural Science Foundation of China [grant numbers 42088101 and 41730964 ] and an Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) [grant number 311021001].

    Acknowledgements

    We thank the two anonymous reviewers for their helpful comments that improved this article.

    久久久精品94久久精品| 欧美日韩视频高清一区二区三区二| 赤兔流量卡办理| 在线免费观看不下载黄p国产| 少妇的逼好多水| 国产又色又爽无遮挡免| 国产成人a∨麻豆精品| 免费av中文字幕在线| 免费高清在线观看日韩| 免费日韩欧美在线观看| av免费在线看不卡| 色94色欧美一区二区| 夜夜骑夜夜射夜夜干| 男人操女人黄网站| 久久女婷五月综合色啪小说| 亚洲欧美日韩另类电影网站| 久久影院123| 全区人妻精品视频| 亚洲国产精品国产精品| 国模一区二区三区四区视频| 男女边吃奶边做爰视频| 少妇丰满av| 亚洲激情五月婷婷啪啪| 久热这里只有精品99| 建设人人有责人人尽责人人享有的| 黑人高潮一二区| 精品熟女少妇av免费看| 国产成人精品一,二区| 亚洲四区av| 国产欧美日韩综合在线一区二区| 亚洲国产成人一精品久久久| 国产综合精华液| 久久久久久久久久人人人人人人| 日韩一区二区三区影片| a级毛片免费高清观看在线播放| 国产在线免费精品| 少妇人妻精品综合一区二区| 在线天堂最新版资源| 亚洲成人手机| 人人妻人人澡人人看| 国产一区有黄有色的免费视频| 久久人人爽人人片av| 视频区图区小说| 亚洲精华国产精华液的使用体验| 一区二区三区乱码不卡18| 国产精品无大码| 国产成人午夜福利电影在线观看| 日韩 亚洲 欧美在线| 色哟哟·www| 久久久久久久久久久久大奶| 香蕉精品网在线| 午夜激情久久久久久久| 九九在线视频观看精品| 伊人久久国产一区二区| 欧美亚洲日本最大视频资源| 秋霞在线观看毛片| 少妇 在线观看| a级毛色黄片| 午夜免费鲁丝| 成人18禁高潮啪啪吃奶动态图 | av在线播放精品| 日韩三级伦理在线观看| 人妻夜夜爽99麻豆av| 精品熟女少妇av免费看| 欧美精品一区二区大全| 热99久久久久精品小说推荐| 最近手机中文字幕大全| 一级a做视频免费观看| 男女边摸边吃奶| av视频免费观看在线观看| 少妇 在线观看| 最近手机中文字幕大全| 夫妻午夜视频| 男人操女人黄网站| 狠狠婷婷综合久久久久久88av| 亚洲av不卡在线观看| 天堂8中文在线网| 三级国产精品欧美在线观看| 高清在线视频一区二区三区| 亚洲精品av麻豆狂野| 欧美bdsm另类| 亚洲精华国产精华液的使用体验| 午夜91福利影院| 在线观看免费视频网站a站| 好男人视频免费观看在线| av卡一久久| 日韩强制内射视频| 亚洲av福利一区| 少妇丰满av| 制服人妻中文乱码| 看非洲黑人一级黄片| 国产片内射在线| 性色avwww在线观看| 国产精品久久久久久精品古装| 在线观看一区二区三区激情| 国产精品一区二区在线观看99| 免费人妻精品一区二区三区视频| 久久午夜综合久久蜜桃| 51国产日韩欧美| 黄色欧美视频在线观看| 国产成人精品在线电影| 美女国产视频在线观看| 最后的刺客免费高清国语| 18禁动态无遮挡网站| a级片在线免费高清观看视频| 三级国产精品欧美在线观看| 2018国产大陆天天弄谢| 国产黄色视频一区二区在线观看| 久久精品国产亚洲网站| 欧美变态另类bdsm刘玥| 边亲边吃奶的免费视频| 国产片内射在线| 日韩 亚洲 欧美在线| 亚洲三级黄色毛片| 永久网站在线| 国产男女内射视频| 亚洲精品第二区| 在线观看免费视频网站a站| 高清黄色对白视频在线免费看| 亚州av有码| videossex国产| 成年av动漫网址| 伊人久久精品亚洲午夜| 亚洲av成人精品一二三区| 一区二区三区四区激情视频| 亚洲图色成人| 99精国产麻豆久久婷婷| 少妇被粗大猛烈的视频| 免费观看性生交大片5| 另类精品久久| av有码第一页| 日韩制服骚丝袜av| 王馨瑶露胸无遮挡在线观看| 久久久国产欧美日韩av| 亚洲国产精品一区二区三区在线| 色哟哟·www| 成年人午夜在线观看视频| 香蕉精品网在线| 欧美人与善性xxx| 国产黄频视频在线观看| 免费观看无遮挡的男女| 中文字幕人妻熟人妻熟丝袜美| 成人免费观看视频高清| 精品久久久久久电影网| 亚洲婷婷狠狠爱综合网| 欧美一级a爱片免费观看看| 国产免费福利视频在线观看| 国产高清国产精品国产三级| 特大巨黑吊av在线直播| 大陆偷拍与自拍| 色婷婷av一区二区三区视频| 精品一区二区三区视频在线| 97超碰精品成人国产| 亚洲精品日韩在线中文字幕| 校园人妻丝袜中文字幕| 国产在线一区二区三区精| 波野结衣二区三区在线| 五月玫瑰六月丁香| 天堂俺去俺来也www色官网| 中国美白少妇内射xxxbb| 国产精品成人在线| 一区二区三区四区激情视频| 免费黄频网站在线观看国产| 91午夜精品亚洲一区二区三区| 一级片'在线观看视频| 女性被躁到高潮视频| 青春草视频在线免费观看| 两个人的视频大全免费| 黄片播放在线免费| 黑人巨大精品欧美一区二区蜜桃 | 热re99久久精品国产66热6| 久久久欧美国产精品| 2022亚洲国产成人精品| 国精品久久久久久国模美| 99热这里只有精品一区| 99视频精品全部免费 在线| 一级毛片 在线播放| 美女cb高潮喷水在线观看| 欧美一级a爱片免费观看看| 欧美精品人与动牲交sv欧美| 国产亚洲最大av| 男男h啪啪无遮挡| 水蜜桃什么品种好| av在线app专区| 亚洲欧美成人精品一区二区| 国产免费一级a男人的天堂| 成人黄色视频免费在线看| 亚洲av福利一区| av在线播放精品| 国产精品嫩草影院av在线观看| 在线观看www视频免费| 十八禁高潮呻吟视频| 啦啦啦啦在线视频资源| 在线精品无人区一区二区三| 我的老师免费观看完整版| 99热6这里只有精品| 久久国产亚洲av麻豆专区| 青春草亚洲视频在线观看| 免费观看性生交大片5| 黑人欧美特级aaaaaa片| 久久久久久久精品精品| 97在线视频观看| 久久精品久久久久久噜噜老黄| 熟女人妻精品中文字幕| 久久人人爽人人片av| 纯流量卡能插随身wifi吗| av黄色大香蕉| 精品久久久噜噜| 国产在线免费精品| 国产永久视频网站| 亚洲av成人精品一二三区| 最近最新中文字幕免费大全7| 婷婷色麻豆天堂久久| 欧美精品人与动牲交sv欧美| 69精品国产乱码久久久| 制服诱惑二区| 各种免费的搞黄视频| 制服人妻中文乱码| 久久午夜福利片| 亚洲欧洲日产国产| 久久国产亚洲av麻豆专区| 久久久久国产精品人妻一区二区| 熟女人妻精品中文字幕| 观看美女的网站| 成人影院久久| 一级片'在线观看视频| 七月丁香在线播放| 中文字幕av电影在线播放| 老司机亚洲免费影院| 精品亚洲乱码少妇综合久久| 亚洲久久久国产精品| 视频在线观看一区二区三区| 国产永久视频网站| 国产成人免费观看mmmm| 成人无遮挡网站| 亚洲av综合色区一区| 青春草视频在线免费观看| 黄色一级大片看看| 亚洲精品美女久久av网站| 97在线人人人人妻| 丰满饥渴人妻一区二区三| 亚洲av免费高清在线观看| 免费av中文字幕在线| 一级毛片 在线播放| 亚洲熟女精品中文字幕| 人成视频在线观看免费观看| 老司机影院毛片| 欧美日韩综合久久久久久| 欧美人与善性xxx| 亚洲经典国产精华液单| 伦理电影大哥的女人| 男女免费视频国产| 亚洲国产av影院在线观看| 欧美少妇被猛烈插入视频| 9色porny在线观看| 亚洲国产精品成人久久小说| 亚洲欧美中文字幕日韩二区| 黄色毛片三级朝国网站| 91在线精品国自产拍蜜月| 亚洲国产精品一区三区| 亚洲欧美日韩卡通动漫| 成年人午夜在线观看视频| 欧美丝袜亚洲另类| 久久久久久久久久久丰满| 日韩精品免费视频一区二区三区 | 精品久久国产蜜桃| 国产视频内射| 中文字幕人妻丝袜制服| 精品少妇内射三级| 欧美+日韩+精品| xxx大片免费视频| 国产老妇伦熟女老妇高清| 人妻系列 视频| 久久狼人影院| 人体艺术视频欧美日本| 在线观看免费日韩欧美大片 | 精品亚洲成a人片在线观看| a级片在线免费高清观看视频| 99精国产麻豆久久婷婷| 视频在线观看一区二区三区| 免费日韩欧美在线观看| 看十八女毛片水多多多| 国产综合精华液| 91成人精品电影| 日本午夜av视频| 下体分泌物呈黄色| 欧美日韩一区二区视频在线观看视频在线| 国精品久久久久久国模美| 80岁老熟妇乱子伦牲交| 爱豆传媒免费全集在线观看| 97在线人人人人妻| 亚洲欧洲国产日韩| 亚洲色图 男人天堂 中文字幕 | 一边摸一边做爽爽视频免费| 欧美精品人与动牲交sv欧美| 精品一区二区三区视频在线| 亚洲av日韩在线播放| 精品卡一卡二卡四卡免费| 99re6热这里在线精品视频| 国产亚洲欧美精品永久| 又黄又爽又刺激的免费视频.| 成人国产麻豆网| 建设人人有责人人尽责人人享有的| 久久人妻熟女aⅴ| 精品少妇内射三级| 看十八女毛片水多多多| 国产免费视频播放在线视频| 大香蕉久久网| 中文字幕av电影在线播放| 久久av网站| 精品久久久久久久久av| 欧美97在线视频| 菩萨蛮人人尽说江南好唐韦庄| 妹子高潮喷水视频| 日韩人妻高清精品专区| 99久国产av精品国产电影| 看十八女毛片水多多多| 国产精品久久久久久av不卡| 国产精品一区二区三区四区免费观看| 久久久久久久精品精品| 十八禁网站网址无遮挡| 久久综合国产亚洲精品| 欧美激情 高清一区二区三区| 一级a做视频免费观看| 涩涩av久久男人的天堂| 少妇人妻久久综合中文| 国产精品久久久久久久久免| 日本午夜av视频| 性色av一级| 精品人妻偷拍中文字幕| 狂野欧美激情性bbbbbb| 91午夜精品亚洲一区二区三区| 在线 av 中文字幕| 日本黄大片高清| 91精品国产国语对白视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费高清在线观看日韩| 成人无遮挡网站| videosex国产| 制服人妻中文乱码| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲第一区二区三区不卡| av国产久精品久网站免费入址| 亚洲精品美女久久av网站| 久久综合国产亚洲精品| 久久av网站| 久久久久人妻精品一区果冻| 日韩在线高清观看一区二区三区| 亚洲国产精品一区三区| 99re6热这里在线精品视频| 99九九线精品视频在线观看视频| 欧美人与善性xxx| 欧美性感艳星| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产精品一区二区在线观看99| 亚洲精品av麻豆狂野| 亚洲精品美女久久av网站| 视频中文字幕在线观看| 99国产精品免费福利视频| 激情五月婷婷亚洲| 免费人成在线观看视频色| 国产成人精品婷婷| 久久狼人影院| 97在线视频观看| 一区二区日韩欧美中文字幕 | 美女xxoo啪啪120秒动态图| 一区二区日韩欧美中文字幕 | 啦啦啦中文免费视频观看日本| 午夜福利,免费看| 欧美国产精品一级二级三级| 蜜桃在线观看..| 欧美国产精品一级二级三级| 国产精品人妻久久久久久| 国产精品欧美亚洲77777| 男人添女人高潮全过程视频| 免费av中文字幕在线| 80岁老熟妇乱子伦牲交| 成人18禁高潮啪啪吃奶动态图 | 大片电影免费在线观看免费| 久久精品熟女亚洲av麻豆精品| 少妇的逼好多水| 中文字幕久久专区| 国产精品三级大全| 考比视频在线观看| 亚洲国产精品一区三区| 免费少妇av软件| 少妇被粗大猛烈的视频| 欧美少妇被猛烈插入视频| 中国三级夫妇交换| av电影中文网址| 免费少妇av软件| av福利片在线| 人妻系列 视频| 狠狠婷婷综合久久久久久88av| 搡老乐熟女国产| 国产色婷婷99| 久久精品国产自在天天线| 久久人人爽人人片av| 人成视频在线观看免费观看| 国语对白做爰xxxⅹ性视频网站| 亚洲中文av在线| 久久久国产一区二区| 欧美日韩av久久| 高清视频免费观看一区二区| 免费播放大片免费观看视频在线观看| 夜夜骑夜夜射夜夜干| 久久久久久久久久成人| 婷婷色综合大香蕉| 日韩亚洲欧美综合| 在线精品无人区一区二区三| 美女国产视频在线观看| 亚洲欧美日韩另类电影网站| 在线天堂最新版资源| 久久综合国产亚洲精品| 男女无遮挡免费网站观看| 最黄视频免费看| 国产成人aa在线观看| 美女脱内裤让男人舔精品视频| 午夜免费鲁丝| 日韩一区二区视频免费看| 我的女老师完整版在线观看| 国产69精品久久久久777片| 成人毛片60女人毛片免费| 18禁在线无遮挡免费观看视频| 日韩在线高清观看一区二区三区| 亚洲精品乱久久久久久| 久久精品国产a三级三级三级| 欧美亚洲 丝袜 人妻 在线| 色婷婷久久久亚洲欧美| 日韩,欧美,国产一区二区三区| 国产男女内射视频| 高清欧美精品videossex| 人人妻人人爽人人添夜夜欢视频| 久久99精品国语久久久| 日日摸夜夜添夜夜爱| 欧美成人精品欧美一级黄| 亚洲国产精品一区二区三区在线| 国产精品一区二区在线不卡| 老熟女久久久| 久久99蜜桃精品久久| 九色亚洲精品在线播放| 日本免费在线观看一区| 日日摸夜夜添夜夜爱| 麻豆成人av视频| 国产国拍精品亚洲av在线观看| 亚洲美女搞黄在线观看| 免费高清在线观看视频在线观看| 国产在视频线精品| 日本黄大片高清| 少妇 在线观看| 久久99蜜桃精品久久| 久久久久久久国产电影| 精品久久蜜臀av无| 另类亚洲欧美激情| 亚洲,一卡二卡三卡| 欧美日韩综合久久久久久| 国产片特级美女逼逼视频| 亚洲激情五月婷婷啪啪| 亚洲av不卡在线观看| 日韩制服骚丝袜av| 精品一品国产午夜福利视频| 一级二级三级毛片免费看| 看免费成人av毛片| 国产在视频线精品| 亚洲精品视频女| 如何舔出高潮| 亚洲av.av天堂| 日韩视频在线欧美| 久久综合国产亚洲精品| 成人亚洲欧美一区二区av| 2021少妇久久久久久久久久久| 亚洲激情五月婷婷啪啪| 三上悠亚av全集在线观看| 一本—道久久a久久精品蜜桃钙片| 亚洲三级黄色毛片| 欧美日韩视频高清一区二区三区二| 亚洲成色77777| 久久久久网色| 成人黄色视频免费在线看| 97在线人人人人妻| 久久久精品94久久精品| 日本黄色日本黄色录像| 我要看黄色一级片免费的| 亚洲精品乱码久久久久久按摩| 欧美 日韩 精品 国产| 亚洲av.av天堂| 成人午夜精彩视频在线观看| 国产黄片视频在线免费观看| 99视频精品全部免费 在线| 日韩 亚洲 欧美在线| 哪个播放器可以免费观看大片| 丁香六月天网| 搡老乐熟女国产| 看十八女毛片水多多多| 亚洲欧美中文字幕日韩二区| 观看av在线不卡| 老女人水多毛片| 夫妻午夜视频| 日韩,欧美,国产一区二区三区| 美女cb高潮喷水在线观看| 18在线观看网站| 在线亚洲精品国产二区图片欧美 | 国产69精品久久久久777片| 国产一区二区在线观看av| 男女无遮挡免费网站观看| 色视频在线一区二区三区| 国产有黄有色有爽视频| 狂野欧美白嫩少妇大欣赏| 日韩伦理黄色片| 国产亚洲精品第一综合不卡 | 亚洲欧美日韩另类电影网站| 少妇人妻 视频| av在线app专区| 菩萨蛮人人尽说江南好唐韦庄| 在线免费观看不下载黄p国产| 人妻系列 视频| 久久免费观看电影| 成年人午夜在线观看视频| 人妻夜夜爽99麻豆av| 国产精品99久久99久久久不卡 | 午夜激情久久久久久久| 午夜激情av网站| 精品熟女少妇av免费看| 一区二区三区四区激情视频| 国产精品99久久久久久久久| 狂野欧美激情性xxxx在线观看| 少妇的逼水好多| 久久久久视频综合| 伊人久久国产一区二区| 又大又黄又爽视频免费| 欧美成人精品欧美一级黄| 日本与韩国留学比较| 麻豆精品久久久久久蜜桃| freevideosex欧美| 国产黄色视频一区二区在线观看| 男女边摸边吃奶| 99热全是精品| 国产 一区精品| 99热这里只有精品一区| 人人妻人人澡人人看| 国产在线一区二区三区精| 亚洲av.av天堂| 国产色婷婷99| 日韩强制内射视频| 精品酒店卫生间| av女优亚洲男人天堂| 日本午夜av视频| 男女无遮挡免费网站观看| 国产高清有码在线观看视频| 欧美精品一区二区大全| 在线亚洲精品国产二区图片欧美 | 亚洲,欧美,日韩| 亚洲四区av| 午夜av观看不卡| 国产色婷婷99| 91久久精品国产一区二区成人| 午夜福利网站1000一区二区三区| 狠狠精品人妻久久久久久综合| 大片电影免费在线观看免费| 五月开心婷婷网| 少妇 在线观看| 久久久久久久久大av| 蜜桃在线观看..| 最近手机中文字幕大全| 91国产中文字幕| 一级爰片在线观看| 黄色怎么调成土黄色| 日本黄大片高清| 久久久久久久国产电影| √禁漫天堂资源中文www| 免费av不卡在线播放| 99热全是精品| 国产欧美另类精品又又久久亚洲欧美| 成年人免费黄色播放视频| av不卡在线播放| 日本色播在线视频| 亚洲国产精品国产精品| 亚洲精品色激情综合| 国产成人精品一,二区| 国产欧美另类精品又又久久亚洲欧美| 欧美日韩国产mv在线观看视频| 国产一级毛片在线| 亚洲一级一片aⅴ在线观看| 蜜桃在线观看..| 一区二区三区四区激情视频| 你懂的网址亚洲精品在线观看| 曰老女人黄片| 亚洲美女黄色视频免费看| 亚洲av在线观看美女高潮| 日韩中文字幕视频在线看片| 在线观看免费视频网站a站| 国产亚洲欧美精品永久| 久久久精品免费免费高清| 亚洲精品久久午夜乱码| 国产高清不卡午夜福利| 久久久久国产精品人妻一区二区| 国产一区二区在线观看日韩| 精品久久久噜噜| 欧美日韩视频高清一区二区三区二| 五月开心婷婷网| 丰满少妇做爰视频| 亚洲欧美精品自产自拍| 熟女人妻精品中文字幕| 亚洲美女黄色视频免费看| 丝袜喷水一区| 成人影院久久| 大陆偷拍与自拍| 秋霞在线观看毛片| 成人国产麻豆网| av专区在线播放| 免费观看无遮挡的男女| 精品熟女少妇av免费看| 性色av一级| 18禁裸乳无遮挡动漫免费视频| 欧美97在线视频|