• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Negligible Obstructions and Turán Exponents

    2022-10-10 07:12:20TaoJiangZilinJiangandJieMa
    Annals of Applied Mathematics 2022年3期

    Tao Jiang ,Zilin Jiang and Jie Ma

    1 Department of Mathematics,Miami Univeristy,Oxford,OH 45056,USA

    2 School of Mathematical and Statistical Sciences,and School of Computing and Augmented Intelligence,Arizona State University,Tempe,AZ 85281,USA

    3 School of Mathematical Sciences,University of Science and Technology of China,Hefei,Anhui 230026,China

    Abstract.We show that for every rational number r(1,2)of the form 2-a/b,where a,bN+ satisfythere exists a graph Fr such that the Turán number ex(n,Fr)Θ(nr).Our result in particular generates infinitely many new Turán exponents.As a byproduct,we formulate a framework that is taking shape in recent work on the Bukh–Conlon conjecture.

    Key words: Extremal graph theory,turán exponents,bipartite graphs.

    1 Introduction

    Given a familyFof graphs,the Turán number ex(n,F)is defined to be the maximum number of edges in a graph onnvertices that contains no graph from the familyFas a subgraph.The classical Erds–Stone–Simonovits theorem shows that arguably the most interesting problems about Turán numbers,known as the degenerate extremal graph problems,are to determine the order of magnitude of ex(n,F)whenFcontains a bipartite graph.The following conjecture attributed to Erds and Simonovits is central to Degenerate Extremal Graph Theory (see [16,Conjecture 1.6]).

    Conjecture 1.1(Rational Exponents Conjecture).For every finite familyFof graphs,ifFcontains a bipartite graph,then there exists a rational[1,2) and a positive constantcsuch that ex(n,F)cnr+o(nr).

    Recently Bukh and Conlon made a breakthrough on the inverse problem [16,Conjecture 2.37].

    Theorem 1.1(Bukh and Conlon [3]).For every rational number r(1,2),there exists a finite family of graphs Fr such thatex(n,Fr)Θ(nr).

    Motivated by another outstanding problem of Erds and Simonovits (see [10,Section III]and[11,Problem 8]),subsequent work has been focused on the following conjecture,which aims to narrow the familyFrin Theorem 1.1 down to a single graph.

    Conjecture 1.2(Realizability of Rational Exponents).For every rational number(1,2),there exists a bipartite graphFrsuch that ex(n,Fr)Θ(nr).?Erds and Simonovits asked a much stronger question: for every rational number r(1,2),find a bipartite graph Fr such that ex(n,Fr)cnr+o(nr) for some positive constant c.

    It is believed that the graphFrin Conjecture 1.2 could be taken from a specific yet rich family of graphs,for which we give the following definitions.

    Definition 1.1.A rooted graph is a graph F equipped with a subset R(F)of vertices,which we refer to as roots.We define the pth power of F,denoted Fp,by taking the disjoint union of p copies of F,and then identifying each root in R(F),reducing multiple edges (if any) between the roots.

    Definition 1.2.Given a rooted graph F,we define the density ρF of F to be e(F)/(v(F)-|R(F)|),where v(F)and e(F)denote the number of vertices and respectively edges of F.We say that a rooted graph F is balanced if ρF >1,and for every subset S of V(F)R(F),the number of edges in F with at least one endpoint in S is at least ρF|S|.

    Indeed the next result on Turán numbers,which follows immediately from [3,Lemma 1.2],establishes the lower bound in Conjecture 1.2 for some power of a balanced rooted tree.?A rooted tree is a rooted graph that is also a tree,not to be confused with a tree having a designated vertex.

    Figure 1: Ts,t,s′ with roots in black.

    Lemma 1.1(Bukh and Conlon [3]).For every balanced rooted tree F,there exists pN+such thatex(n,Fp)Ω(n2-1/ρF).

    It is conjectured in [3] that the lower bound in Lemma 1.1 can be matched up to a constant factor.

    Conjecture 1.3(The Bukh–Conlon Conjecture).For every balanced rooted treeFand everyN+,ex(n,Fp)O(n2-1/ρF).

    Given the fact that every rational number bigger than one indeed appears as the density of some balanced rooted tree (see [3,Lemma 1.3]),Lemma 1.1 and Conjecture 1.3 would imply Conjecture 1.2.Our main result establishes Conjecture 1.3 for certain balanced rooted treesTs,t,s′defined in Fig.1.

    Theorem 1.2.N+and s′N,when s-s′≥2assume in addition that t ≥s3-1.If the rooted tree F:Ts,t,s′ is balanced,then for every pN+,ex(n,Fp)O(n2-1/ρF),where ρF(st+t+s′)/(t+1).

    It is not hard to characterize the parameterss,t,s′for whichTs,t,s′is balanced.

    Proposition 1.1.N+and s′N,the rooted tree FTs,t,s′ is balanced if and only if ρF ≥max(s,s′)and ρF >1,or equivalently s′-1≤s≤t+s′ and(t,s′)(1,0).

    Prior to our work,Conjecture 1.3 has been verified for the balanced rooted trees in Fig.2: theandPtcases are classical results due to Kvári,Sós and Turán[23],and respectively Faudree and Simonovits [13];Qs,1andS2,1,0are due to Jiang,Ma and Yepremyan[18];Qs,tandT4,7are due to Kang,Kim and Liu[22];andSs,t,0are due to Conlon,Janzer and Lee [6];andK(3)sare due to Jiang and Qiu [20];is due to Janzer[17];andSs,t,t′for allt′≤tis very recently settled by Jiang and Qiu [19].

    Figure 2: Balanced rooted trees,where s,t,t′ refer to vertices,except t in Qs,t.

    These recent attacks on the Bukh–Conlon conjecture are full of interesting and promising techniques.In this paper,inspired by these previous attempts,we formulate an underlying framework that centers around a notion which we call negligible obstructions (Definitions 2.4 and 2.5).In this context,we develop a lemma(Lemma 2.1),which we call the negligibility lemma,to connect negligible obstructions with the Bukh–Conlon conjecture.To our best knowledge,ideas in our formulation of the framework can be traced back to the work of Conlon and Lee [7],and can be spotted throughout later work by various authors.

    To establish an instance of the Bukh–Conlon conjecture,the negligibility lemma naturally leads to a two-step strategy: the identification of obstructions and the certification of their negligibility.By no means we claim that this strategy reduces the difficulty of Conjecture 1.3.Nevertheless we propose this strategy in hopes that it will bring us one step closer to pinning down a handful of essentially different techniques in this area,akin to the theory of flag algebras [24].

    We illustrate the above two steps with the proof of Theorem 1.2.In contrast with all the previous work which has the inductive flavor of certifying negligibility of larger obstructions by that of the smaller,our implementation of the second step has a distinctive inductive pattern,which is elaborated at the end of Section 2.We point out that although Theorem 1.2 can be seen as an extension of [22,Section 3]which dealt withQs,t,our approach is quite different.

    Turning to realizability of rational exponents,our main result Theorem 1.2 gives realizability of the following rational exponents.

    Corollary 1.1.For every rational number r(1,2)of the form2N+,if

    then there exists a bipartite graph Fr such that

    Proof.In casea1,Eq.(1.1) forcesb1,which contradicts with the assumption thatr >1.Hereafter we assume thata ≥2.Now takes,ta-1 ands′b-(a-1)(+1).SetTTs,t,s′.One can easily check thatN+,ρT(st+t+s′)/(t+1)b/aand soρT >1,ρT ≥sands′≤b-(a-1)b/aρT.Observe that Eq.(1.1) is equivalent tot≥s3-1 ands′≥0.In view of Proposition 1.1,Tis balanced.The corollary follows from Lemma 1.1 and Theorem 1.2 immediately.

    As far as we know,all the rationals in (1,2) for which Conjecture 1.2 has been verified can be derived from Lemma 1.1 and the existing instances of Conjecture 1.3.For convenience,we say a fractionb/ais a Bukh–Conlon density if there exists a balanced rooted treeFsuch thatρFb/aand ex(n,Fp)O(n2-1/ρF) for everyN+.Kang,Kim and Liu observed in [22,Lemma 4.3] that a graph densification operation due to Erds and Simonovits [12] can be used to generate more Bukh–Conlon densities: wheneverb/ais a Bukh–Conlon density,so ism+b/afor everyN.

    It appears reasonable to restrict our attention to the fractionsb/aof the formm+s/awhereN+,for fixedN withs<a.The results listed in Fig.2 yield Bukh–Conlon densitiesm+s/afor everyN+whenevers「(a-1)/(s+1)1.§Combining [22,Lemma 4.3] with the results listed in Fig.2 (essentially with the one on Ss,t,t′),we know that m+s/(st+t′+1) is a Bukh–Conlon density for m,sN+ and t,t′N with t′≤t.For m+s/a to be a fraction of such form,one needs st+1≤a≤st+t+1 for some tN,or equivalently s「(a-1)/(s+1)≤a-1.For many choices of (s,a),for example (4,7),(5,8) or (7,10),it was not known whetherm+s/ais a Bukh–Conlon density for anyN+.For comparison,the family of fractionsb/agiven by Eq.(1.1)generates the Bukh–Conlon densitiesm+s/afor allm≥a-s-1 whenevera-1-In particular,our result gives new Bukh–Conlon densities of the formm+5/8 andm+7/10 as long asm≥2.Unfortunately our result does not give any Bukh–Conlon densities of the formm+4/7.The above discussion leads us to the following conjecture on Bukh–Conlon densities.

    Conjecture 1.4.For everyN withs<a,there existsN+such thatm+s/ais a Bukh–Conlon density.

    We point out that one would settle Conjecture 1.4 if one could remove the technical conditiont≥s3-1 from Theorem 1.2.

    Remark 1.1.After this work is completed,Conlon and Janzer [5],partly building on our ideas,improved Theorem 1.2 by removing the technical conditiont≥s3-1,and they hence resolved Conjecture 1.4.

    The rest of the paper is organized as follows.In Section 2,we flesh out the aforementioned framework,and use it to prove Theorem 1.2.In Section 3,we prove the negligibility lemma.In Sections 4 and 5,we certify the negligibility of two different obstructions needed for the proof of Theorem 1.2.

    2 Negligible obstruction family

    Throughout the rest of the paper,when we view a treeFas a rooted tree,by default the root setR(F) ofFconsists exactly of the leaves ofF.We useV(G) andE(G)to denote the vertex set and the edge set ofGrespectively.

    To motivate the relevant concepts,it is instructive to think about finding a copy ofFpin ann-vertexd-regular graphG,whereFis a tree and

    We mostly talk about embeddings rather than subgraphs.

    Definition 2.1(Embedding).Given a tree F and a graph G,denoteInj(F,G)the set of embeddings from F to G,that is,the set of injections η:V(F)→V(G)such that η(e)(G)(F).For a subset U of R(F)and an injection σ:U →V(G),denote the set of embeddings from F to G relativized to σ by

    When we write these operators (and the ones coming later) in lowercase,we refer to their cardinalities,for example,

    Remark 2.1.We encourage the readers who are accustomed to counting subgraphs to think of the embedding counting inj(F,G)as the corresponding subgraph counting ofFinG,because they merely differ by a multiplicative factor depending only onF.We choose embeddings over subgraphs based on the pragmatic reason that it is more succinct to write in the language of embeddings when counting relativized to some injectionσ.

    Note that

    as one can embedFintoGone vertex at a time.Because

    by the pigeonhole principle,there existsσ:R(F)→V(G) such that inj(F,G;σ)ω(1).Ideally the images ofV(F)R(F)under somepembeddings in Inj(F,G;σ)are pairwise (vertex) disjoint,and thus suchpembeddings would give us a copy ofFpinG.To that end,we define the following notion.

    Figure 3: After adding U to the root set of T3,4,2,the resulting rooted graph contains K1,4 as a rooted subgraph.

    Definition 2.2(Ample embedding).Given a tree F and a graph G,for ηInj(F,G),we say η is C-ample if there exist η1,···,ηCInj(F,G)such that ηi and η are identical on R(F),and the images of V(F)R(F)under η1,···,ηC are pairwise disjoint.Given CN,denoteAmpC(F,G)the set of C-ample embeddings from F to G.For a subset U of R(F)and an injection σ:U →V(G),the relativized version ofAmpC(F,G),denoted byAmpC(F,G;σ),is justAmpC(F,G)∩Inj(F,G;σ).

    However it could happen that many embeddings in Inj(F,G;σ)map a nonempty subset ofV(F)R(F) in the same way,thus preventing us from finding ap-ample embedding in Inj(F,G;σ).These possible obstructions are encapsulated in the following definitions.

    Definition 2.3(Rooted subgraph).Given two rooted graphs F1and F2,we say that F2contains F1as a rooted subgraph if there exists an embedding η from F1to F2such that for every vV(F1),η(v)(F2)if and only if vR(F1).

    Definition 2.4(Obstruction family).Given a tree F,a family F0of trees is an obstruction family for F if every member of F0is isomorphic to a subtree of F that is not a single edge,and moreover for every nonempty proper subset U of V(F)R(F),after adding U to the root set of F,the resulting rooted graph contains a member of F0as a rooted subgraph (see Fig.3,Proposition2.1for a concrete example of an obstruction family).

    The following definition quantifies the conditions on the obstruction family forFthat ensure the existence of ap-ample embedding fromFtoG.

    Definition 2.5(Negligible obstruction).Given two trees F0and F,we say that F0is negligible for F if for every pN+and ε >0there exist c0>0and C0Nsuch that the following holds.For every c>c0and every n-vertex graph G with n≥n0(c),if every vertex in G has degree between d and Kd,where dcnα,K54/α and α1-1/ρF,and moreoverampp(F,G)0,then

    An obstruction family for F is negligible if every member of the family is negligible for F.

    Remark 2.2.As we shall see later in Sections 4 and 5,when certifying the negligibility of an obstruction family,the concrete form ofKis unimportant as long as it depends only onF.However,since we only need that specificKfor Lemma 2.1 to work,we state it explicitly to avoid introducing an additional universal quantifier in Definition 2.5.

    We wrap up the above discussion in the following lemma,and we postpone its proof to Section 3.

    Lemma 2.1(Negligibility lemma).Given a tree F,if there exists a negligible obstruction family F0for F,thenex(n,Fp)O(n2-1/ρF)N+.

    The negligibility lemma provides us a two-step strategy to establish Conjecture 1.3 for a balanced rooted treeF: first identifying an obstruction familyF0forF,and second certifying the negligibility ofF0.Although in the first step there might be multiple obstruction families forF,heuristically speaking it makes more sense to chooseF0that is minimal under inclusion,because all the heavy lifting happens in the second step that certifies the negligibility of each member ofF0.

    Coming back to the treeTs,t,s′defined in Fig.1,we choose the following obstruction family which is indeed minimal under inclusion.

    Proposition 2.1.N+and s′N,if(t,s′)(1,0),then the family{K1,s+1}∪{Ts,t-i,s′+i: 1≤i≤s-s′} is an obstruction family for Ts,t,s′.

    Proof.LetFTs,t,s′,and letUbe a nonempty proper subset ofP ∪Q,wherePandQare vertex subsets ofV(F) defined in Fig.4.LetF+be the rooted graph after addingUto the root setR(F) ofF.IfUcontains the vertex inP,thenF+containsK1,s+1as a rooted subgraph.OtherwiseU ?Q.In this case,F+containsTs,t-i,s′+ias a rooted subgraph,wherei|U|.Finally notice that whens′+i≥s+1,Ts,t-i,s′+icontainsK1,s+1as a rooted subgraph,and so doesF+(see Fig.3 for an example).

    Theorem 1.2 follows immediately from the next theorem which certifies the negligibility of the obstruction family defined in Proposition 2.1.

    Theorem 2.1.N+and s′N,when s-s′≥2,assume in addition that

    Figure 4: Vertex partition of Ts,t,s′.

    If T:Ts,t,s′ is balanced,then for every pN+and ε >0,there exists c0>0such that the following holds.For every c>c0and every n-vertex graph G with n≥n0(c),if every vertex in G has degree between d and Kd,where dcnα,K54/α and α1-1/ρT,and moreoverampp(T,G)0,then

    Proof of Theorem1.2. Suppose thatT:Ts,t,s′is balanced.Whens≤s′,the obstruction family forTconsists of a singleK1,s+1,which by Theorem 2.1(a) is negligible forT.Whens-s′1,in view of Theorem 2.1,the obstruction familyF0defined in Proposition 2.1 is also negligible.Whens-s′≥2,F0is negligible provided Eq.(2.1).Observe thatt ≥s3-1 ensures Eq.(2.1).Indeed,the right hand side of Eq.(2.1)is at mostk2(s+2-k)+1/s,which,by the inequality of arithmetic and geometric means,is at most (2(s+2)/3)3/2+1/s,which is at mosts3-1 fors ≥3.One can check directly in cases2 that the right hand side of Eq.(2.1)is less than 7.In any case,it then follows from Lemma 2.1 that ex(n,Tp)O(n2-1/ρF) for allN+.

    Our proof of Theorem 2.1 is inductive in nature.In Section 4 we first establish the negligibility ofK1,s+1in Theorem 2.1(a).In Section 5 we deduce the negligibility ofFkin Theorem 2.1(b)from that ofK1,s+1andF1,···,Fk-1.The inductive pattern here is counterintuitive in the sense that the negligibility ofFk,which is a subgraph ofFk-1,comes after that ofFk-1.

    3 Proof of the negligibility lemma

    In Section 2,we have analyzed the special case where the graphGis regular.In the context of degenerate extremal graph theory,it is indeed standard to assume thatGis almost regular.This idea due to Erds and Simonovits first appeared in [12].We shall use the following variant (see also [21,Proposition 2.7] for a similar result).

    We now formalize the discussion in Section 2 on finding a copy ofFpinG.

    Definition 3.1(Extension).Given two trees F1,F2and a graph G,for η1Inj(F1,G)and η2Inj(F2,G),we say η2extends η1if η1η2?η12for some embedding η12Inj(F1,F2)N,denote

    We can estimate the cardinality ofIby

    and so

    if we had chosenn0(c) large enough.

    By the pigeonhole principle,the cardinality ofIσ:I∩Inj(F,G;σ) is at leastce(F)/2 for someσ:R(F)→V(G).For everyU ?V(F)R(F) and every injectionτ:U →V(G),set

    Claim.For everyU ?V(F)R(F) andτ:U →V(G),

    Proof of Claim.We prove by backward induction on|U|.Clearly|Iσ(τ)|≤1 when the domainUofτequalsV(F)R(F).SupposeUis a proper subset ofV(F)R(F).Recall from Definition 2.4 that after addingUto the root set ofF,the resulting rooted graph containsF0as a rooted subgraph that is isomorphic to a member ofF0.Notice thatU0:V(F0)R(F0) is nonempty becauseF0is not a single edge.

    Let(τ) be a maximal subset ofIσ(τ) such that the images ofU0under the embeddings in(τ) are pairwise disjoint,and letV0be the union of these images.SinceIσ(τ)?IandIdefined by Eq.(3.1) contains no extension of anyC0-ample embedding fromF0toG,we bound(τ)|<C0,which implies that|V0|<C0|U0|.For each0and0,by the inductive hypothesis

    whereτuv:U ∪{u}→V(G) extendsτby mappingutovadditionally.The maximality of(τ)means that for every(τ)there is0such thatη(u)0,and so(τuv) for some0.Therefore

    which implies the inductive step as|U0|<v(F) and|V0|<C0|U0|.

    The same argument works for the last inductive step whereU?because there is nop-ample embedding fromFtoG,andC0≥p.

    In particular,IσIσ(τ) when the domain ofτis an empty set,and so

    which would yield a contradiction if we had chosen

    This completes the proof.

    4 Ample embeddings of stars

    The negligibility ofK1,s+1forTs,t,s′is established directly through the following technical lemma.

    Lemma 4.1.N+and s′N,set s0max(s′,1),F0,F1K1,s+1and TTs,t,s′.For every pN+and ε >0,there exists c0>0such that for every n-vertex graph G,ifampp(T,G)0andinj(F0,G)≥c0ns0,then(F1,G)≤εinj(F1,G),where C1

    Our proof of Lemma 4.1 follows the outline of [6,Lemma 5.3].Over there the conclusion,in our language,is that for everyε>0 there existsC1N such that

    One can work out the quantitative dependencyC1Ω(ε-1/(s-1)) from their argument.Although this dependency alone is enough for the negligibility ofK1,s+1,it becomes inadequate when we iteratively apply this bound later in Section 5.To decoupleC1fromεin Lemma 4.1,we need the following classical result in degenerate extremal hypergraph theory.

    Theorem 4.1(Erds [9]).For every r-partite r-uniform hypergraph H there exists ε>0so thatex(n,H)O(nr-ε).?Given an r-uniform hypergraph H,the Turán number ex(n,H) is the maximum number of hyperedges in an r-uniform hypergraph on n vertices that contains no H as a subhypergraph.

    Proof of Lemma4.1. Suppose thatGis ann-vertex graph such that ampp(T,G)0 and inj(F0,G)≥c0ns0,wherec0is to be chosen.As we only deal with embeddings toGin the following proof,we omitGin Inj(·,G),Amp·(·,G) and their relativized versions.

    Recalls0max(s′,1).ClearlyGcontains noFpas a subgraph,whereFLetU0denote an arbitrary vertex subset of sizes0inG,and denoteNG(U0) the common neighborhood ofU0inG.LetHbe the (s+1)-uniform hypergraph onV(G) given by

    Claim 4.1.There existsn0n0(s,t,p,C1)N such that for everyU0with|NG(U0)|≥n0,

    Observe thatH[NG(U0)]never containsH0as a subhypergraph.Suppose on the contrary that there exists an embeddingηfromH0toH[NG(U0)],‖Given two hypergraphs H1 and H2 of the same uniformity,an embedding from H1 to H2 is just an injection η: V(H1)→V(H2) such that η(e)H2 for every eH1.then we can embedFpinGby mappingS′(F)toU0,mappingP(Fp)∪S(F)according toη,and embedding the vertices inQ(Fp)greedily.The last step of the embedding is possible because for every hyperedge0,η(e)η′(R(F1)) for someη′(F1),and more importantlyC1≥v(Fp).

    SinceH0is an (s+1)-partite hypergraph,the claim follows from Theorem 4.1 immediately.

    We choose suchn0N in Claim 4.1 and require in addition thatn0≥s+1.For convenience,set

    Claim 4.2.The number ofC1-ample embeddings fromF1toGsatisfies

    Proof of Claim4.2. Letσdenote an arbitrary injection fromR(F1) toV(G),and denote for shorta(σ)(F1;σ).Note thata(σ) has the dichotomy that eithera(σ)0 ora(σ)≥C1≥s0,which implies that

    in either case.Through counting in two ways the disjoint union of the edge sets ofH[NG(U0)] for all vertex subsetsU0of sizes0inG,one can show that

    which implies the desired inequality in the claim.

    Claim 4.3.The number of embeddings fromF1toGsatisfies

    On the one hand,for a fixedU0with|NG(U0)|≥n0,every subset ofNG(U0) of sizes+1 that is not a hyperedge ofH[NG(U0)] gives rise to at leasts0(s+1)! many(U0),and it follows from Claim 4.1 that

    Thus we get

    which implies the desired inequality in the claim.

    A simple double counting argument shows that

    Recall the assumption that inj(F0)≥c0ns0.Thus the average ˉNof|NG(U0)|satisfies

    We can choosec0>0 large enough so that

    By Jensen’s inequality,we have

    which implies that

    Applying Claim 4.2 and then Claim 4.1,we get

    which implies

    Comparing it with Claim 4.3,we get the desired inequality in Lemma 4.1.

    Proof of Theorem2.1(a). ForN+ands′N,sets0max(s′,1),andTTs,t,s′.SinceTis balanced,by Proposition 1.1,s0≤s+1 andρT ≥s0,the latter of which implies that 1+s0α≥s0,whereα1-1/ρT.

    Since 1+s0α≥s0,we have

    5 Ample embeddings of subtrees

    5.1 Preliminary propositions

    For the proof of Theorem 2.1(b),we need the following variation of the classical sunflower lemma for sequences(see[2]for the recent breakthrough on the sunflower conjecture of Erds and Rado [8] and related background).

    Proof.Consider the systemFof subsets ofVdefined by

    Clearly|W|≤k!|F|.We claim thatFcontains no sunflower of sizek!C.Recall that a sunflower is a collection of sets whose pairwise intersection is constant.Assuming the claim,the classical sunflower lemma precisely states that|F|<k!(k!C-1)k,which implies the desired inequality.Suppose on the contrary thatE ?Fis a sunflower of sizek!Cwith kernelK.Consider the subsystem of sequencesW0{(s1,···,sk):{s1,···,sk}E}.Clearly|W0|≥k!C.By the pigeonhole principle,there exist a setW1?W0of sizeCandI[k] such that for every1,{si:Kand(si)iIis a constant subsequence.AsEis a sunflower,one can check thatW1is a sequential sunflower of sizeC,which is a contradiction.

    We also need the following classical theorem due to Kvári,Sós and Turán [23]on the Zarankiewicz problem.

    Proposition 5.2.N+.Suppose that H is a bipartite graph with two parts U and W such that every vertex in W has degree at least s.If H contains no complete bipartite subgraph with s vertices in U and t vertices in W,then

    The following result is a generalization of a result due to F¨uredi [15].Our proof of the generalization follows the proof of F¨uredi’s result by Alon,Krivelevich,and Sudakov [1] using dependent random choice (see [14] for a survey on dependent random choice).We denotedG(v) the degree of a vertexvinG.

    Proposition 5.3.N+such that k<r.Suppose that F is a bipartite graph with two parts U0and W0such that every vertex in W0has degree at most r.For every bipartite graph G with two parts U and W,if there is no embedding η from F to G such that η(U0)?U and η(W0)?W,then

    where

    Proof.Assume for the sake of contradiction that

    Pick a subsetW1?Wof sizeruniformly at random with replacement.SetU(W1)?Uto be the common neighborhood ofW1inG,and letXdenote the cardinality ofU(W1).By linearity of expectation and H¨older’s inequality,

    LetYdenote the random variable counting the number of subsetsS?U(W1)of sizerwith fewer than|W0|common neighbors inG.For a given suchS,the probability that it is a subset ofU(W1) is less than (|W0|/|W|)r.Since there are at mostsubsetsSof sizer,it follows that

    By linearity of expectation,

    Hence there exists a choice ofW1for whichX-Y ≥|U0|.Delete one vertex from each subsetSofU(W1)of sizerwith fewer thanmcommon neighbors.We letU′be the remaining subset ofU(W1).The setU′?Uhas at least|U0|vertices,and every subset ofU′of sizerhas at least|W0|common neighbors.One can then greedily find an embeddingηfromFtoGsuch thatη(U0)?U′andη(W0)?W.

    5.2 Proof of Theorem 2.1(b)

    We inductively deduce the negligibility ofFkby that ofF1,···,Fk-1,whereFkTs,t-k,s′+k.In each inductive step,we also need to set aside the embeddings fromFktoGthat extend the ample embeddings fromK1,s+1toGwhich were already dealt with in Lemma 4.1.Recall ExtC(F1,F2,G) from Definition 3.1,and that extC(F1,F2,G) denotes its cardinality.

    In the rest of the section,s,t,pare fixed parameters andnis a parameter that goes offto infinity.For two quantitiesa,bwithb>0 that possibly depend onn,we writea?bif there existCC(s,t,p)>0 andn0N such thata≤Cbfor alln≥n0.

    Figure 5: F0, F1 and F2.

    For every c>1and n-vertex graph G,if every vertex in G has degree between d and Kd,where dcnα and K54/α,and moreover(F0,G)0,then

    Proof.As we mostly deal with embeddings toG,we omitGin Inj(·,G),Amp(·,G),Ext(·,·,G) and their relativized versions.

    Letv0,v1,···,vkbe defined forF0,···,Fkas in Fig.5,and letSibe the set of roots which are adjacent tovifor[k].We viewFias a subtree ofFi-1induced onV(Fi-1)Si.Letσdenote an arbitrary injection fromR(Fk){v1,···,vk}toV(G),and set

    whose edge set is given by

    andBσhas the distinctness property in the sense that

    Without loss of generality,we may assume thatI[k][k-i]for some0,···,k-1}.Clearly

    Because the total number ofσ′:R(F0)→V(G) such thatσ′?σis at mostnsk,summing the last inequality over allσ′,together with Eq.(5.2),yields

    which implies the desired inequality in view of Eq.(5.4) and the assumption that(F0)0.

    Claim 5.3.For everyσ,the number of edges insatisfies

    Now we treat thek1 case and thek≥2 case separately.

    For convenience,denoteN(U0)the vertex set of thek-uniform hypergraphW(U0).AsW(U0) contains no matching of sizep,clearly we have

    and so

    which implies the desired inequality in Claim 5.3.

    The base casei1 is evident as the maximum degree ofGis at mostKd.For the inductive step,consider an arbitraryU ?Uσof sizei-1 and denoteuan arbitrary vertex inUσU.Clearly

    LetU′denote an arbitrary subset ofUσof sizei.Summing the above inequality over allU ?Uσof sizei-1,we obtain from the inductive hypothesis that

    Before we assemble Claims 5.1 to 5.3 together,we observe that

    Using the assumption 1-1/s≤α,we estimate that

    Therefore,in view of Eq.(5.7),we have

    Summing over all injectionsσ:R(Fk){v1,···,vk}→V(G) yields

    Case 2:k≥2.We take

    Ass′<s,one can check that+1,and soα<s/(s+1),which impliess-(s+1)α>0.Hencem0ω(1).We claim that the condition Eq.(5.1) ontimplies that

    Indeed,usingα1-1/ρF0(st+s′-1)/(st+t+s′),one can check that Eq.(5.1) is equivalent to

    which implies the first inequality in Eq.(5.8).To see that the second inequality follows from the first inequality in Eq.(5.8),in view of the fact thatnαdk-1≥nkαasdcnαandc>1,it suffices to check that

    which is equivalent tosk(k-1)(s-k+1)+(k-1)2≥0,which clearly holds.

    Using Eq.(5.8),we can simplify Claim 5.3 to

    Combining this with Claim 5.2,we obtain for everyσthat

    Summing over all injectionsσ:R(Fk){v1,···,vk}→V(G) yields that

    This completes the proof of Lemma 5.1.

    Case 1:k1.Letc0be at least the constant already obtained from Theorem 2.1(a).By the choice ofc0,we know that

    which implies the desired inequality in Theorem 2.1(b).

    Case 2:2≤k≤s-s′.By induction,there existsc0≥1/εsuch that(Fi,G)≤εnde(Fi) for every 1≤i <k.Note that the assumption Eq.(2.1) in Theorem 2.1 ensures the condition Eq.(5.1) in Lemma 5.1.By Lemma 5.1 and the assumption 1/c<ε,we similarly obtain that(Fk,G)?εnde(Fk).

    Acknowledgements

    We are grateful to Boris Bukh and Ryan Alweiss for comments on the earlier versions of this paper.We are thankful to the anonymous referees for their astute and useful comments.

    T.Jiang is supported in part by U.S.taxpayers through the National Science Foundation (NSF) grant DMS-1855542.The work was done when Z.Jiang was an Applied Mathematics Instructor at Massachusetts Institute of Technology,and was supported in part by an AMS Simons Travel Grant,and by U.S.taxpayers through NSF grant DMS-1953946.J.Ma is supported in part by the National Key R&D Program of China 2020YFA0713100,National Natural Science Foundation of China grants 11622110 and 12125106,and Anhui Initiative in Quantum Information Technologies grant AHY150200.

    成人国产av品久久久| 日日摸夜夜添夜夜添av毛片| 涩涩av久久男人的天堂| 国产深夜福利视频在线观看| 欧美 日韩 精品 国产| 国产日韩欧美亚洲二区| 美女视频免费永久观看网站| 久久久久久久国产电影| 欧美丝袜亚洲另类| 久久久久久久国产电影| 免费黄频网站在线观看国产| 免费黄频网站在线观看国产| 日本欧美视频一区| 一级毛片aaaaaa免费看小| 久久狼人影院| 人人妻人人爽人人添夜夜欢视频| 免费看光身美女| 欧美最新免费一区二区三区| 欧美xxⅹ黑人| 最新的欧美精品一区二区| 日韩伦理黄色片| 亚洲综合色网址| 亚洲一区二区三区欧美精品| 考比视频在线观看| 尾随美女入室| 考比视频在线观看| 欧美精品高潮呻吟av久久| 中文字幕免费在线视频6| 久久久久久人妻| videos熟女内射| 免费人成在线观看视频色| 久久精品人人爽人人爽视色| 男女啪啪激烈高潮av片| 欧美精品一区二区免费开放| 哪个播放器可以免费观看大片| 九九久久精品国产亚洲av麻豆| 欧美少妇被猛烈插入视频| 在线观看美女被高潮喷水网站| 亚洲高清免费不卡视频| 老司机影院成人| 中文字幕亚洲精品专区| 亚洲精品一区蜜桃| 免费观看在线日韩| 国产男女内射视频| 精品人妻熟女av久视频| 18+在线观看网站| 日韩一本色道免费dvd| 夫妻午夜视频| 韩国高清视频一区二区三区| 亚洲国产日韩一区二区| 视频区图区小说| 国产成人免费无遮挡视频| 特大巨黑吊av在线直播| 久久久久久久久久人人人人人人| 亚洲伊人久久精品综合| 中文字幕精品免费在线观看视频 | 久热这里只有精品99| 高清黄色对白视频在线免费看| 日韩中文字幕视频在线看片| 美女国产高潮福利片在线看| 热99久久久久精品小说推荐| 在线观看免费日韩欧美大片 | 看十八女毛片水多多多| 国产一区二区在线观看av| 丝袜美足系列| 欧美一级a爱片免费观看看| 欧美三级亚洲精品| 日韩中文字幕视频在线看片| 97精品久久久久久久久久精品| 亚洲综合色网址| av黄色大香蕉| 最近的中文字幕免费完整| 99久国产av精品国产电影| 欧美 亚洲 国产 日韩一| 最近手机中文字幕大全| av电影中文网址| 一本大道久久a久久精品| 夜夜骑夜夜射夜夜干| 美女cb高潮喷水在线观看| 最近手机中文字幕大全| 国内精品宾馆在线| 中文乱码字字幕精品一区二区三区| 中文乱码字字幕精品一区二区三区| 在线 av 中文字幕| 熟女人妻精品中文字幕| 97精品久久久久久久久久精品| 国产黄色视频一区二区在线观看| 亚洲五月色婷婷综合| 青春草国产在线视频| 久久久精品区二区三区| 亚洲精品成人av观看孕妇| 亚洲精品av麻豆狂野| 日韩成人av中文字幕在线观看| 久久青草综合色| 国产免费视频播放在线视频| 大片免费播放器 马上看| 日韩欧美精品免费久久| 18禁在线无遮挡免费观看视频| 十八禁网站网址无遮挡| 午夜影院在线不卡| 久久国产精品男人的天堂亚洲 | 老司机影院成人| 久久 成人 亚洲| 午夜91福利影院| 九色亚洲精品在线播放| 麻豆精品久久久久久蜜桃| 春色校园在线视频观看| 人妻人人澡人人爽人人| 春色校园在线视频观看| 久久ye,这里只有精品| 久久久久久久久久久久大奶| 国产亚洲av片在线观看秒播厂| 乱码一卡2卡4卡精品| tube8黄色片| 青春草视频在线免费观看| 赤兔流量卡办理| 欧美+日韩+精品| 久久精品人人爽人人爽视色| 欧美日韩一区二区视频在线观看视频在线| 欧美xxⅹ黑人| 午夜日本视频在线| 最黄视频免费看| 色婷婷av一区二区三区视频| 国产成人精品婷婷| 中国国产av一级| 在线观看免费高清a一片| 最近手机中文字幕大全| 久久久久国产精品人妻一区二区| 妹子高潮喷水视频| 亚洲av在线观看美女高潮| 免费少妇av软件| 考比视频在线观看| 人妻制服诱惑在线中文字幕| 99视频精品全部免费 在线| 在线天堂最新版资源| 久久热精品热| 欧美日韩视频精品一区| www.色视频.com| 久久人人爽人人爽人人片va| 亚洲国产精品一区三区| 大片免费播放器 马上看| 中文乱码字字幕精品一区二区三区| 秋霞在线观看毛片| 高清毛片免费看| 高清在线视频一区二区三区| 中文字幕久久专区| 伦精品一区二区三区| 看免费成人av毛片| 日本黄大片高清| 一区二区三区精品91| 国产精品秋霞免费鲁丝片| 精品午夜福利在线看| 免费大片18禁| av电影中文网址| 国产精品99久久99久久久不卡 | 亚洲精品自拍成人| .国产精品久久| 精品人妻偷拍中文字幕| 草草在线视频免费看| 亚洲欧洲精品一区二区精品久久久 | 老熟女久久久| 中国美白少妇内射xxxbb| 欧美三级亚洲精品| 欧美日韩精品成人综合77777| 国产男人的电影天堂91| 精品卡一卡二卡四卡免费| 99热6这里只有精品| 特大巨黑吊av在线直播| 热99久久久久精品小说推荐| 精品国产一区二区久久| 欧美精品亚洲一区二区| 欧美激情极品国产一区二区三区 | 最后的刺客免费高清国语| videos熟女内射| 丰满饥渴人妻一区二区三| www.色视频.com| 日本wwww免费看| 久久国产亚洲av麻豆专区| 热re99久久精品国产66热6| 精品一区二区三卡| 国产熟女欧美一区二区| 精品国产乱码久久久久久小说| 日韩大片免费观看网站| 国产精品一区二区在线不卡| 2021少妇久久久久久久久久久| 亚洲av在线观看美女高潮| 日本黄色日本黄色录像| 三级国产精品欧美在线观看| 国产极品粉嫩免费观看在线 | 黑人猛操日本美女一级片| 成人影院久久| 亚洲色图综合在线观看| 日韩免费高清中文字幕av| 国产一级毛片在线| 久久久国产欧美日韩av| 久久鲁丝午夜福利片| 男女啪啪激烈高潮av片| 亚洲人成网站在线播| 少妇被粗大的猛进出69影院 | 一区二区三区乱码不卡18| 国产片特级美女逼逼视频| 丝瓜视频免费看黄片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲av成人精品一二三区| 成人漫画全彩无遮挡| 五月天丁香电影| 十八禁高潮呻吟视频| a级片在线免费高清观看视频| 在线天堂最新版资源| 观看av在线不卡| √禁漫天堂资源中文www| 好男人视频免费观看在线| 亚洲精品久久成人aⅴ小说 | 欧美 日韩 精品 国产| 狠狠婷婷综合久久久久久88av| 欧美性感艳星| 黄色欧美视频在线观看| 人人妻人人澡人人看| 国产精品一区www在线观看| 久久久久国产网址| 国产高清国产精品国产三级| 国产一区有黄有色的免费视频| 超色免费av| 能在线免费看毛片的网站| 91精品一卡2卡3卡4卡| 亚洲伊人久久精品综合| 久热久热在线精品观看| 婷婷色麻豆天堂久久| 国产免费一区二区三区四区乱码| 亚洲国产精品999| 日韩大片免费观看网站| 熟妇人妻不卡中文字幕| av播播在线观看一区| 一本久久精品| 国产白丝娇喘喷水9色精品| 国产亚洲午夜精品一区二区久久| 久久久a久久爽久久v久久| 中文欧美无线码| 高清欧美精品videossex| 黄色欧美视频在线观看| 肉色欧美久久久久久久蜜桃| 最新中文字幕久久久久| 亚洲av电影在线观看一区二区三区| a 毛片基地| 亚洲国产毛片av蜜桃av| 久久久欧美国产精品| 国产有黄有色有爽视频| 国产伦精品一区二区三区视频9| 91久久精品国产一区二区成人| 亚洲精品中文字幕在线视频| 国产精品国产av在线观看| 大话2 男鬼变身卡| 一级毛片 在线播放| 久久久久久久精品精品| 建设人人有责人人尽责人人享有的| 日韩精品免费视频一区二区三区 | 日日摸夜夜添夜夜添av毛片| 欧美亚洲 丝袜 人妻 在线| 丰满迷人的少妇在线观看| 亚洲欧美一区二区三区国产| 在线播放无遮挡| 亚洲精品,欧美精品| 观看美女的网站| 婷婷色av中文字幕| 不卡视频在线观看欧美| 少妇被粗大猛烈的视频| 精品少妇内射三级| 十八禁高潮呻吟视频| av.在线天堂| 男女高潮啪啪啪动态图| 在线观看www视频免费| 国产国拍精品亚洲av在线观看| 国产精品嫩草影院av在线观看| 国产午夜精品一二区理论片| 我的老师免费观看完整版| 午夜久久久在线观看| 中文精品一卡2卡3卡4更新| 一级片'在线观看视频| 国产乱来视频区| av有码第一页| 国产精品国产三级国产av玫瑰| 人妻少妇偷人精品九色| 亚洲无线观看免费| 草草在线视频免费看| 国产成人aa在线观看| 色5月婷婷丁香| 国产极品粉嫩免费观看在线 | 少妇 在线观看| 国产不卡av网站在线观看| 日产精品乱码卡一卡2卡三| 国产综合精华液| 高清在线视频一区二区三区| av网站免费在线观看视频| 亚洲情色 制服丝袜| 国产精品久久久久久精品古装| 精品国产露脸久久av麻豆| 国产视频首页在线观看| 亚洲美女搞黄在线观看| 国产免费一级a男人的天堂| 久久久久人妻精品一区果冻| 成人国产麻豆网| 男男h啪啪无遮挡| 精品人妻一区二区三区麻豆| 在线看a的网站| 久久影院123| 国产精品久久久久久精品古装| .国产精品久久| 国产精品国产三级国产av玫瑰| 日韩亚洲欧美综合| 一级毛片aaaaaa免费看小| 国产精品国产三级专区第一集| 18禁在线播放成人免费| 亚洲av不卡在线观看| 夜夜看夜夜爽夜夜摸| 日韩强制内射视频| 亚洲国产成人一精品久久久| 欧美日韩综合久久久久久| 夫妻午夜视频| 久热久热在线精品观看| 国产精品.久久久| 女人精品久久久久毛片| 99久国产av精品国产电影| 国产伦理片在线播放av一区| 99热国产这里只有精品6| 久久国内精品自在自线图片| 91精品三级在线观看| 在线观看三级黄色| 国产精品国产三级国产专区5o| 夜夜看夜夜爽夜夜摸| 精品少妇内射三级| 岛国毛片在线播放| 青青草视频在线视频观看| 精品亚洲成a人片在线观看| videos熟女内射| 精品99又大又爽又粗少妇毛片| 国产在线免费精品| 亚洲综合色惰| 亚洲欧美日韩另类电影网站| 波野结衣二区三区在线| 精品久久国产蜜桃| 超碰97精品在线观看| 色94色欧美一区二区| 国国产精品蜜臀av免费| 99热这里只有精品一区| 22中文网久久字幕| 一本色道久久久久久精品综合| 午夜激情福利司机影院| 岛国毛片在线播放| 黑人猛操日本美女一级片| 中文字幕制服av| 久久女婷五月综合色啪小说| 99热网站在线观看| 最近的中文字幕免费完整| 九草在线视频观看| 又粗又硬又长又爽又黄的视频| 国产精品久久久久久精品电影小说| 91精品三级在线观看| 国产亚洲欧美精品永久| 国产无遮挡羞羞视频在线观看| 我的老师免费观看完整版| 色视频在线一区二区三区| 在线免费观看不下载黄p国产| 激情五月婷婷亚洲| 国产乱人偷精品视频| 亚洲欧美一区二区三区黑人 | 国产在线视频一区二区| 亚洲精品色激情综合| 熟妇人妻不卡中文字幕| 亚洲一区二区三区欧美精品| 丝袜美足系列| 成人综合一区亚洲| 又大又黄又爽视频免费| 91精品国产九色| 久久免费观看电影| 久久99热这里只频精品6学生| 日韩电影二区| 亚洲国产av影院在线观看| 久久久久国产精品人妻一区二区| 亚洲av二区三区四区| 国产亚洲最大av| 精品少妇内射三级| 一本一本综合久久| 午夜免费男女啪啪视频观看| 国产欧美日韩综合在线一区二区| 中文字幕精品免费在线观看视频 | 亚洲精品456在线播放app| 满18在线观看网站| 99久久综合免费| 国产精品不卡视频一区二区| 日本vs欧美在线观看视频| 三级国产精品片| 永久网站在线| 国产免费视频播放在线视频| 欧美老熟妇乱子伦牲交| 久久久久视频综合| 女的被弄到高潮叫床怎么办| 国产精品 国内视频| 插阴视频在线观看视频| 91精品三级在线观看| 各种免费的搞黄视频| 大香蕉97超碰在线| 久久亚洲国产成人精品v| 少妇被粗大猛烈的视频| 国语对白做爰xxxⅹ性视频网站| 欧美激情国产日韩精品一区| 精品久久国产蜜桃| 老女人水多毛片| 国产白丝娇喘喷水9色精品| 少妇高潮的动态图| 亚洲精品乱久久久久久| 如何舔出高潮| 人人妻人人澡人人爽人人夜夜| 天堂8中文在线网| 日韩视频在线欧美| 国产成人91sexporn| 免费黄网站久久成人精品| 黄片无遮挡物在线观看| 国产精品一区www在线观看| 天天躁夜夜躁狠狠久久av| 亚洲欧美清纯卡通| 亚洲av二区三区四区| 午夜免费鲁丝| 国产不卡av网站在线观看| 国产欧美另类精品又又久久亚洲欧美| 内地一区二区视频在线| 日本av免费视频播放| 亚洲av免费高清在线观看| 国产成人一区二区在线| 免费久久久久久久精品成人欧美视频 | 亚洲欧美成人精品一区二区| 国产一区亚洲一区在线观看| 亚洲av综合色区一区| 国产免费福利视频在线观看| 国产免费一区二区三区四区乱码| 不卡视频在线观看欧美| 国产成人精品婷婷| 自线自在国产av| 一区在线观看完整版| 国产老妇伦熟女老妇高清| videosex国产| 亚洲国产精品一区三区| 人妻 亚洲 视频| 国产男女内射视频| 精品一区二区三卡| 亚洲国产精品专区欧美| 亚洲精品456在线播放app| 成人毛片a级毛片在线播放| 成人影院久久| 日本91视频免费播放| 国产精品成人在线| 欧美日韩av久久| 精品熟女少妇av免费看| 久久青草综合色| 97超碰精品成人国产| 国产成人freesex在线| 亚洲国产精品999| 啦啦啦在线观看免费高清www| 蜜桃久久精品国产亚洲av| 欧美精品一区二区免费开放| 亚洲人与动物交配视频| 三级国产精品欧美在线观看| 午夜老司机福利剧场| videosex国产| 亚洲精品av麻豆狂野| 亚洲久久久国产精品| 日韩强制内射视频| 一区二区日韩欧美中文字幕 | 成人免费观看视频高清| 黄色怎么调成土黄色| 久久久久久久久久成人| 久久ye,这里只有精品| 一区二区日韩欧美中文字幕 | 少妇丰满av| 亚洲人成网站在线播| 精品国产乱码久久久久久小说| 婷婷色av中文字幕| 国产黄频视频在线观看| 亚洲人与动物交配视频| 两个人的视频大全免费| 天美传媒精品一区二区| 伊人久久精品亚洲午夜| 精品少妇久久久久久888优播| 伦精品一区二区三区| 亚洲情色 制服丝袜| kizo精华| 在线观看国产h片| 国产精品人妻久久久久久| av一本久久久久| 午夜视频国产福利| 一级片'在线观看视频| 大又大粗又爽又黄少妇毛片口| 国产成人精品婷婷| 在线观看免费视频网站a站| 男女国产视频网站| 热99久久久久精品小说推荐| 国产精品一区二区在线不卡| 少妇被粗大的猛进出69影院 | 欧美日韩一区二区视频在线观看视频在线| 精品少妇内射三级| 免费av不卡在线播放| 日日摸夜夜添夜夜爱| 九草在线视频观看| 黄片播放在线免费| 麻豆成人av视频| 狂野欧美激情性xxxx在线观看| 高清在线视频一区二区三区| 日韩不卡一区二区三区视频在线| 韩国高清视频一区二区三区| 亚洲激情五月婷婷啪啪| 国内精品宾馆在线| 大陆偷拍与自拍| 欧美 亚洲 国产 日韩一| 人体艺术视频欧美日本| 国模一区二区三区四区视频| 黑丝袜美女国产一区| 丰满少妇做爰视频| 亚洲成人av在线免费| av国产久精品久网站免费入址| 久久女婷五月综合色啪小说| 大片免费播放器 马上看| 国产成人精品在线电影| av国产久精品久网站免费入址| 最近中文字幕2019免费版| 午夜91福利影院| 国产有黄有色有爽视频| 午夜福利影视在线免费观看| 人体艺术视频欧美日本| 人妻人人澡人人爽人人| 夜夜看夜夜爽夜夜摸| 国产精品熟女久久久久浪| 成人毛片60女人毛片免费| 在线 av 中文字幕| 亚洲av欧美aⅴ国产| 久久精品夜色国产| 两个人的视频大全免费| 99热6这里只有精品| 最黄视频免费看| 免费人成在线观看视频色| 免费观看无遮挡的男女| 人成视频在线观看免费观看| 亚洲av不卡在线观看| 2018国产大陆天天弄谢| 久久鲁丝午夜福利片| 男人爽女人下面视频在线观看| 精品久久久久久久久亚洲| 精品久久久噜噜| 最近中文字幕高清免费大全6| 日本黄大片高清| 嘟嘟电影网在线观看| 大片电影免费在线观看免费| 精品人妻熟女毛片av久久网站| 一本一本综合久久| 精品久久久久久久久亚洲| 成年女人在线观看亚洲视频| 国产成人a∨麻豆精品| 久久免费观看电影| 国产乱人偷精品视频| 丰满乱子伦码专区| 99精国产麻豆久久婷婷| 欧美丝袜亚洲另类| 国产成人精品婷婷| 人妻制服诱惑在线中文字幕| 丰满少妇做爰视频| 久久99一区二区三区| 久久久精品区二区三区| 亚洲av福利一区| 国产精品人妻久久久久久| 久久久久久久精品精品| 久久久久久久久久人人人人人人| 99热全是精品| 国产欧美另类精品又又久久亚洲欧美| 亚洲国产日韩一区二区| 亚洲欧美中文字幕日韩二区| 亚洲av成人精品一二三区| av视频免费观看在线观看| av国产久精品久网站免费入址| 亚洲精品,欧美精品| 涩涩av久久男人的天堂| 18禁在线播放成人免费| 国产免费一级a男人的天堂| 内地一区二区视频在线| 久久久久人妻精品一区果冻| 欧美三级亚洲精品| 纯流量卡能插随身wifi吗| 欧美国产精品一级二级三级| 国产高清不卡午夜福利| 国产精品一二三区在线看| 爱豆传媒免费全集在线观看| 免费大片黄手机在线观看| 久久精品夜色国产| 一本色道久久久久久精品综合| 欧美日本中文国产一区发布| 丝袜脚勾引网站| 亚洲,一卡二卡三卡| 亚洲精品aⅴ在线观看| 99热这里只有精品一区| 成人18禁高潮啪啪吃奶动态图 | 美女xxoo啪啪120秒动态图| 国产精品久久久久久久电影| 亚洲国产欧美日韩在线播放| 欧美国产精品一级二级三级| 全区人妻精品视频| 婷婷成人精品国产| 一边亲一边摸免费视频| 女性生殖器流出的白浆| 国产精品一区www在线观看| 国产成人91sexporn| 伦精品一区二区三区| 在线 av 中文字幕| 亚洲伊人久久精品综合| 久久精品国产亚洲av涩爱| 狂野欧美激情性bbbbbb| 免费不卡的大黄色大毛片视频在线观看| 欧美日本中文国产一区发布| 亚洲五月色婷婷综合|