• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Gradient Iteration Method for Functional Linear Regression in Reproducing Kernel Hilbert Spaces

    2022-10-10 07:12:02HongzhiTongandMichaelNg
    Annals of Applied Mathematics 2022年3期

    Hongzhi Tong and Michael Ng

    1 School of Statistics,University of International Business and Economics,Beijing 100029,China

    2 Institute of Data Science and Department of Mathematics,The University of Hong Kong,Pokfulam,Hong Kong,China

    Abstract.We consider a gradient iteration algorithm for prediction of functional linear regression under the framework of reproducing kernel Hilbert spaces.In the algorithm,we use an early stopping technique,instead of the classical Tikhonov regularization,to prevent the iteration from an overfitting function.Under mild conditions,we obtain upper bounds,essentially matching the known minimax lower bounds,for excess prediction risk.An almost sure convergence is also established for the proposed algorithm.

    Key words: Gradient iteration algorithm,functional linear regression,reproducing kernel Hilbert space,early stopping,convergence rates.

    1 Introduction

    Due to advance in technology,data are increasingly collected in the form of random functions or curves,as opposed to scalars or vectors.Functional data analysis(FDA)is developed to handle this situation,has drawn considerable attention in recent decades.Various approaches for the analysis of functional data have been developed and proposed in the literature [6,8,12,13,17],offering a comprehensive overview.

    Among many problems involving functional data,functional linear regression is widely used to model the prediction of a functional predictor.Consider the following functional linear regression model

    whereYis a scalar response,X(·) is a square integrable random function (with respect to Lesbesgue measure) on a bounded interval I,α0is the intercept,β0(·)is an unknown slope function andis a centered noise random variable.Without loss of much generality,throughout the paper we assume E(X)0 and the interceptα00,since the intercept can be easily estimated.

    The goal of the prediction problems is to estimate the functional

    based on a set of training data{(Xi,Yi):i1,···,n}consisting ofnindependent copies of (X,Y).Define the risk for a predictionηas

    where (X*,Y *) is a copy of (X,Y) independent of the training data,and E*represents expectations taken overX*andY *only.Let ?ηbe a prediction constructed from the training data.Then,its accuracy can be naturally measured by the excess risk:

    In the context of functional linear regression,most of existing methods are based upon functional principal analysis (FPCA),see,e.g.,[2,7,13,19].The FPCA approach expands the unknown functionβ0using the eigenfunction of the predictor covariance operator.For such a strategy to work well,it is usually necessary to assume that such a basis provides a good presentation of the slope function,which may not have anything to do with the predictor in terms of basis representation accuracy.A more general assumption for slope function may be on its smoothness,it makes a reproducing kernel Hilbert space (RKHS) [9] an interesting alternative,see [3,11,20].In particular,it has already been shown in [3] that the approach based on RKHS performs better when the slope function does not align well with the eigenfunctions of the covariance kernel.

    Motivated by these observations,in this paper we will develop an iterative estimation procedure for functional linear model (1.1) within the framework of RKHS,under which the unknown slope functionβ0is assumed to reside in an RKHSHK.

    More specifically,we are concerned with a kind of iteration path from origin.To prevent the iteration to converge to an overfitting function,it is necessary to choose the moment when the iteration stops.Through a detailed theoretical analysis for a form of gradient-descent applied to the least-squares loss function,we have come up with an early stop rule,which plays a role of regularization.Under the early stopping strategy and some realistic conditions,we show that the same minimax convergence rate as that of [3] is preserved for our algorithm.Different from the result in [3] established in expectation,our convergence rate is in probability.As a consequence,we deduce almost sure convergence of the gradient iteration algorithm by applying the Borel-Cantelli lemma.

    Although the gradient iteration methods with early stopping have been well studied in the context of vector data,see e.g.,[14,18],it is still challenging to deal with the more complicated functional data.To our knowledge,this is the first time we provide a theoretical guarantee for use of these algorithms in functional settings.It is expected to bring some new insights into broadening the methods of FDA.The outline of this paper is given as follows.In Section 2,we review the mathematical framework to formulate the algorithm.In Section 3,we show our main results.A brief discussion are given in Section 4.

    2 Notation and algorithm

    We begin by introducing some notations on RKHS and kernel-induced integral operators,before turning to a precise formulation of the algorithm studied in this paper.

    2.1 Integral operators

    Recall a reproducing kernelK:I×I→R is a real,symmetric,continuous,and nonnegative definite function.The RKHSHKassociated with the kernelKis the completion of the linear span of functions{Ks:K(s,·)I}with the inner product given byK(s,u). The so-called reproducing property ofHKis critical in both theoretical analysis and computation,which states that

    DenoteL2the Hilbert space of square integrable functions on I endowed with inner product〈·,·〉and corresponding norm‖·‖(i.e.,‖f‖2〈f,f〉).We consider that‖·‖opstands for the usual operator norm,that is,for an operator U:L2→L2.Define the integral operator LK:L2→L2associated with kernelKby

    where for2,f ?g:L2→L2is defined by (f ?g)(h)〈g,h〉ffor any2.The empirical version of T is given by

    Both two operators will play the key role in the formulation and analysis of our gradient iteration algorithm.

    2.2 Gradient iteration algorithm

    Consider the empirical risk minimization based on the observation{(Xi,Yi):i1,···,n}of least square scheme

    for any.In the following,we assume thatHKis dense inL2,which ensures thatf0andfare uniquely defined.This assumption can be satisfied whenKis a universal kernel,such as Gaussian kernel,see [15].Now (2.1) can be rewritten as

    Our algorithm is then taken as a gradient descent method for (2.2),which can be stated iteratively as a sequence2by

    whereγ >0 is the step size.Note that

    it follows by induction with0 that

    where I is the identity operator and

    It is not hard to see that

    From the iteration relation (2.4),we can obtain

    In the next section,we shall estimate each of terms of (2.5) so that the bound of the excess riskE()-E(η0) can be obtained.

    3 Convergence analysis

    This section presents our main results.Theorem 3.1 and Theorem 3.2 contain separate estimates of the first and second term of (2.5) and lead to Theorem 3.3 which gives an upper bound ofE()-E(η0).

    3.1 Assumptions and lemmas

    To derive nontrivial rates of convergence,we need impose some basic assumptions.The following boundedness condition is introduced in [16]

    (A1) There exists a constantκ>0 such that≤κ2almost surely.

    It follows from (A1) that both T and Tnare compact trace-class operators.

    We assume the noisein model (1.1) satisfies Bernstein condition:holds almost surely,for every integerl≥2 and some constantsM,v>0.

    Assumption (A2) is a broad model for the noise,it is satisfied when the noise is uniformly bounded,Gaussian or sub-Gaussian.

    We also introduce a regularity condition of the operator T,which is measured in terms of the so-called effective dimensionality (see [4,22]).Forλ>0,the effective dimension of T is defined to be the trace of the operator (T+λI)-1T as follows:

    (A3) There exist constants 0<θ≤1 andcθ >0,such that

    In order to derive the error bounds of the terms in (2.5),we still need some preliminary lemmas.The following lemma was proved in [16],which will play a key role in our analysis.

    Lemma 3.1.Under the assumption in(A1),for any0<δ <1,with confidence at least1-δ/2,there holds

    The next lemma was established in [4],based on a Bernstein-type inequality for random variables taking values in Hilbert space,see [10,21].

    Lemma 3.2.Let H be a Hilbert space and ξ be a random variable with values in H.Let {ξ1,ξ2,···,ξn} be a sample of n independent observations for ξ.If for some constants u,v>0,the bound

    holds for every2N,then for any0<δ<1,

    with confidence at least1-δ.

    3.2 Main results

    We first bound the first term on the right-hand side of (2.5) by using Lemma 3.1.

    Theorem 3.1.Under the assumption in(A1)and0<γ <κ-2,for any0<δ <1,with confidence at least1-δ/2,there holds

    Proof.Since

    Using a operator norm inequality for self-adjoint positive operators A and B,see [1,Theorem X.1.1],where the result is stated for positive matrices,but the proof applies as well to positive operators on a Hilbert space.We can get from Lemma 3.1 that with confidence at least 1-δ/2,

    Hence,

    This together with (3.2) proves the theorem.

    Next we turn to bound the second term of (2.5) by using Lemmas 3.1 and 3.2.

    Theorem 3.2.Under the assumption of(A1),(A2)and0<γ<κ-2,for any0<δ<1,with confidence at least1-δ,there holds

    Proof.Since

    Here in the last inequality we have used the fact (3.1) again.By Lemma 3.1,we have with the same confidence set of (3.2),

    To estimate

    and forl≥2,

    Note that

    Hence we obtain from (A2) that

    By applying Lemma 3.2 toξ,we have with confidence at least 1-δ/2,

    This together with (3.3),(3.4) proves the theorem.

    Now we can derive the explicit learning rates of gradient iteration algorithm(2.3)for functional linear regression model (1.1).

    where C is a constant independent of n or δ,denotes the smallest integer greater or equal than xR.

    Since Theorems 3.1 and 3.2 hold simultaneously with probability at least 1-δ,we get from (2.5) that

    This proves the theorem with

    3.3 Almost sure convergence

    Based on the confidence-based error estimate in Theorem 3.3,we can deduce almost sure convergence of gradient iteration algorithm (2.3) by applying the following Borel-Cantelli lemma [5,p.262].

    Lemma 3.3.Let μi be a sequence of events in some probability space and νi be a sequence of positive numbers satisfyinglimi→∞νi0.If

    then μi converges to μ almost surely.

    almost surely.

    Proof.Takeδδnn-2in Theorem 3.3.Then for anynandε >0,we get from Theorem 3.3,

    We can write

    it is easy to see

    and limn→∞νn0.Then our conclusion follows by Lemma 3.3.

    4 Discussion and summary

    In this paper we have introduced a gradient iteration approach to functional linear regression model.To prevent the iteration to converge to an overfitting function,we develop an early stopping rule.Rigorous theoretical analysis grantees the proposed algorithm converge to target almost surely.

    The main difference is that for functional linear regression,the unknown slope function is assumed in an RKHS,and the functionsXiare not in the RKHS.The minimization problem is written directly inL2,and gradients are taken w.r.t.theL2inner product.While in most of the papers for classical non-parametric regression in RKHS (see,e.g.,[14,18]),the gradients are taken w.r.t.the inner product in the RKHS,and the feature mapsbelong to the RKHS.

    It is interesting to discuss what happens if the slope function is out of the RKHS,a promising way is to quantify the regularity of the slope function by means of operator T.It is involved in the alignment of the reproducing kernelKand the covariance function ofX,and will be a topic in the future work.

    We finally present a detailed comparison of our result with related results for model (1.1).In [3],the authors derive minmax optimal rates for the Tikhonov regularized least squares scheme

    Under two crucial assumptions: the eigenvalues of T decay

    withr>1/2 and

    for some constantc>0 and any2.The authors choose a regularization parameterleading to the excess prediction risk

    being minimax optimal.

    Inequality (4.2) may be very difficult to verify except for Gaussian dataX.The boundedness assumption (A1) is used to replace it.Although condition (A1) is not satisfied for any non-degenerate Gaussian process,real-data processes are bounded as usual.Hence,Assumption (A1) is more realistic and at least can be considered as complimentary conditions to (4.2).

    On the other hand,Assumption(A3)is more general than(4.1).In fact,if(4.1)is satisfied,it is easy to check that

    The convergence rate coincides the minimax rate (4.3) of [3],and thus is optimal.

    Acknowledgements

    H.Tong’s research is supported in part by National Natural Science Foundation of China(Grant No.11871438).M.Ng’s research is supported in part by the HKRGC GRF Nos.12300218,12300519,17201020,17300021,C1013-21GF,C7004-21GF,and Joint NSFC-RGC N-HKU76921.

    一个人看视频在线观看www免费| 国产69精品久久久久777片| 我的老师免费观看完整版| 国产免费又黄又爽又色| 在线免费十八禁| 舔av片在线| 自拍偷自拍亚洲精品老妇| 久久久久国产网址| av线在线观看网站| 国语对白做爰xxxⅹ性视频网站| 日韩欧美三级三区| 三级国产精品欧美在线观看| 80岁老熟妇乱子伦牲交| 久久精品国产亚洲网站| 欧美日韩在线观看h| 免费无遮挡裸体视频| 久久精品国产鲁丝片午夜精品| 日本免费a在线| 成人特级av手机在线观看| 高清av免费在线| 精品一区二区三区人妻视频| 亚洲av中文字字幕乱码综合| 97精品久久久久久久久久精品| 久久99热6这里只有精品| 久久精品久久久久久久性| 亚洲成人一二三区av| 一本一本综合久久| 卡戴珊不雅视频在线播放| 一夜夜www| 欧美成人a在线观看| 国产精品熟女久久久久浪| 国产精品久久久久久av不卡| 久久这里只有精品中国| 国产精品久久久久久久电影| 久久久久久久久中文| 精品久久久久久久人妻蜜臀av| 精品国内亚洲2022精品成人| 亚洲在线自拍视频| 麻豆精品久久久久久蜜桃| 国产成人91sexporn| 免费观看在线日韩| 又黄又爽又刺激的免费视频.| 九九爱精品视频在线观看| 成人二区视频| 国产精品一二三区在线看| 欧美日韩国产mv在线观看视频 | 丰满少妇做爰视频| 精品久久国产蜜桃| 亚洲综合色惰| 亚洲欧美成人综合另类久久久| 久久久久精品久久久久真实原创| 尾随美女入室| 国产成人aa在线观看| 插阴视频在线观看视频| 美女cb高潮喷水在线观看| 水蜜桃什么品种好| 能在线免费看毛片的网站| 一级片'在线观看视频| 又大又黄又爽视频免费| 日韩av不卡免费在线播放| 亚洲电影在线观看av| .国产精品久久| 欧美人与善性xxx| 熟妇人妻不卡中文字幕| 嘟嘟电影网在线观看| 成人鲁丝片一二三区免费| 久久精品久久久久久久性| 晚上一个人看的免费电影| 国模一区二区三区四区视频| 国产精品一区二区三区四区久久| 久久国产乱子免费精品| 精品人妻偷拍中文字幕| 亚洲成人av在线免费| 中文资源天堂在线| 老师上课跳d突然被开到最大视频| 欧美3d第一页| 国产精品一二三区在线看| 一夜夜www| 免费观看性生交大片5| 嫩草影院入口| 在线免费十八禁| 亚洲va在线va天堂va国产| 91久久精品国产一区二区三区| 亚洲av国产av综合av卡| 亚洲欧美精品自产自拍| 汤姆久久久久久久影院中文字幕 | 国产三级在线视频| 国产爱豆传媒在线观看| 日产精品乱码卡一卡2卡三| 亚洲国产精品sss在线观看| 亚洲国产av新网站| 亚洲激情五月婷婷啪啪| 久久久久久久久久久丰满| 国产美女午夜福利| 五月天丁香电影| 国产精品美女特级片免费视频播放器| 麻豆av噜噜一区二区三区| 啦啦啦啦在线视频资源| 久99久视频精品免费| 国产亚洲精品久久久com| 丰满少妇做爰视频| 插阴视频在线观看视频| 精品久久久久久久末码| 久久99蜜桃精品久久| 国内精品美女久久久久久| 精品不卡国产一区二区三区| 黄色日韩在线| 日韩精品青青久久久久久| 亚洲精品aⅴ在线观看| 日日啪夜夜撸| 又大又黄又爽视频免费| 亚洲精品国产成人久久av| 欧美激情在线99| 99久国产av精品国产电影| 亚洲四区av| 婷婷色综合www| 激情五月婷婷亚洲| 欧美一区二区亚洲| 成人无遮挡网站| 久久午夜福利片| 久久久久网色| 国内精品宾馆在线| 亚洲欧美清纯卡通| 国产亚洲精品久久久com| 亚洲四区av| 成人性生交大片免费视频hd| 男人爽女人下面视频在线观看| 禁无遮挡网站| 欧美一区二区亚洲| 免费不卡的大黄色大毛片视频在线观看 | 肉色欧美久久久久久久蜜桃 | 国产免费又黄又爽又色| 免费黄网站久久成人精品| 超碰97精品在线观看| 非洲黑人性xxxx精品又粗又长| 亚洲国产精品成人久久小说| 好男人在线观看高清免费视频| 亚洲va在线va天堂va国产| 亚洲高清免费不卡视频| 欧美日韩视频高清一区二区三区二| 精品一区在线观看国产| 久久久国产一区二区| 最近最新中文字幕免费大全7| 少妇人妻一区二区三区视频| 国产三级在线视频| 黄片无遮挡物在线观看| 国产黄频视频在线观看| av在线观看视频网站免费| 亚洲精品日韩av片在线观看| 亚洲真实伦在线观看| 91aial.com中文字幕在线观看| 少妇被粗大猛烈的视频| 亚洲熟妇中文字幕五十中出| 亚洲欧洲日产国产| 色综合站精品国产| 噜噜噜噜噜久久久久久91| 我要看日韩黄色一级片| av一本久久久久| 嫩草影院入口| 亚洲人与动物交配视频| 九九爱精品视频在线观看| 亚洲人成网站在线观看播放| 久久亚洲国产成人精品v| 国产黄片美女视频| 久久精品国产亚洲av涩爱| 日韩国内少妇激情av| 免费观看av网站的网址| 十八禁网站网址无遮挡 | 亚洲av成人精品一二三区| 久久久成人免费电影| 国产一区二区亚洲精品在线观看| 亚洲婷婷狠狠爱综合网| 久久人人爽人人片av| 大香蕉97超碰在线| 乱人视频在线观看| 欧美性猛交╳xxx乱大交人| 嫩草影院入口| 亚洲欧美中文字幕日韩二区| 秋霞在线观看毛片| 国产综合懂色| 国产毛片a区久久久久| 亚洲精品乱码久久久久久按摩| 日产精品乱码卡一卡2卡三| 亚洲av男天堂| 一区二区三区四区激情视频| 久久精品久久久久久久性| 欧美高清性xxxxhd video| 精品久久久久久久人妻蜜臀av| 黄色配什么色好看| 亚洲精品乱码久久久久久按摩| 亚洲熟妇中文字幕五十中出| 久久午夜福利片| 欧美3d第一页| 亚洲精品一区蜜桃| 午夜激情福利司机影院| 又爽又黄a免费视频| 白带黄色成豆腐渣| 男人舔女人下体高潮全视频| 一级毛片电影观看| 在现免费观看毛片| 能在线免费看毛片的网站| 欧美激情在线99| 一夜夜www| 禁无遮挡网站| 麻豆精品久久久久久蜜桃| 亚洲精品国产av蜜桃| 国产日韩欧美在线精品| 亚洲最大成人中文| 99视频精品全部免费 在线| 亚洲精品,欧美精品| 高清av免费在线| 色播亚洲综合网| 国产亚洲av嫩草精品影院| 成人av在线播放网站| 麻豆av噜噜一区二区三区| 中文字幕免费在线视频6| 免费黄频网站在线观看国产| 精品国内亚洲2022精品成人| 亚洲无线观看免费| 伦理电影大哥的女人| 插逼视频在线观看| 亚洲激情五月婷婷啪啪| 哪个播放器可以免费观看大片| 99久久精品热视频| 亚洲内射少妇av| 免费看美女性在线毛片视频| 国精品久久久久久国模美| 97热精品久久久久久| 能在线免费观看的黄片| 欧美丝袜亚洲另类| 精品久久久久久成人av| 亚洲久久久久久中文字幕| 可以在线观看毛片的网站| 久久久久久久久久人人人人人人| 国产精品无大码| 国产亚洲午夜精品一区二区久久 | 欧美日韩综合久久久久久| 男人舔奶头视频| 国产国拍精品亚洲av在线观看| 女人十人毛片免费观看3o分钟| 99热全是精品| 赤兔流量卡办理| 免费观看在线日韩| 亚洲精品自拍成人| 国产精品国产三级国产av玫瑰| 毛片一级片免费看久久久久| 超碰97精品在线观看| 人妻一区二区av| 男人舔奶头视频| 99热网站在线观看| 男女国产视频网站| 日本爱情动作片www.在线观看| 人妻少妇偷人精品九色| 一级爰片在线观看| 欧美日韩综合久久久久久| 亚洲欧美日韩无卡精品| 免费看美女性在线毛片视频| 一级av片app| a级一级毛片免费在线观看| 成人午夜精彩视频在线观看| 内射极品少妇av片p| 两个人的视频大全免费| 看非洲黑人一级黄片| 美女xxoo啪啪120秒动态图| 在线免费观看不下载黄p国产| 亚洲av在线观看美女高潮| 精品少妇黑人巨大在线播放| 欧美日韩在线观看h| 狂野欧美激情性xxxx在线观看| 国内精品宾馆在线| 高清在线视频一区二区三区| 久久精品国产亚洲av涩爱| 三级国产精品欧美在线观看| 亚洲av福利一区| 午夜老司机福利剧场| 久久久久久久国产电影| 99re6热这里在线精品视频| 亚洲av国产av综合av卡| 亚洲欧洲日产国产| 国产成人aa在线观看| 日韩电影二区| 免费无遮挡裸体视频| 午夜福利在线在线| 亚洲av男天堂| 久久97久久精品| 亚洲图色成人| 亚洲成色77777| 亚洲av.av天堂| 欧美xxxx黑人xx丫x性爽| 精品人妻熟女av久视频| 精品人妻一区二区三区麻豆| 伊人久久精品亚洲午夜| 国产女主播在线喷水免费视频网站 | 26uuu在线亚洲综合色| 欧美性感艳星| 国产精品久久久久久精品电影小说 | 中文字幕久久专区| 两个人的视频大全免费| av免费在线看不卡| 一夜夜www| 日韩 亚洲 欧美在线| 最近最新中文字幕大全电影3| 精品少妇黑人巨大在线播放| 男的添女的下面高潮视频| 热99在线观看视频| 亚洲av电影在线观看一区二区三区 | 亚洲自拍偷在线| 精品久久国产蜜桃| 97热精品久久久久久| 免费看日本二区| 久久精品国产亚洲av涩爱| 又大又黄又爽视频免费| 成人亚洲精品av一区二区| 亚洲国产精品国产精品| 尾随美女入室| 亚洲第一区二区三区不卡| 免费电影在线观看免费观看| 亚洲高清免费不卡视频| 精品亚洲乱码少妇综合久久| 人体艺术视频欧美日本| 2018国产大陆天天弄谢| 在线免费观看不下载黄p国产| 少妇的逼水好多| ponron亚洲| 精品久久久久久久久av| 国产乱来视频区| 亚洲在久久综合| 成人国产麻豆网| videossex国产| 亚洲精品一区蜜桃| 伦理电影大哥的女人| 亚洲激情五月婷婷啪啪| 国产亚洲91精品色在线| 在线免费十八禁| 国产午夜精品论理片| 久久精品久久久久久噜噜老黄| 91久久精品国产一区二区成人| 亚洲久久久久久中文字幕| 国产老妇女一区| 久久精品夜夜夜夜夜久久蜜豆| 夫妻午夜视频| 亚洲最大成人手机在线| 国产亚洲av片在线观看秒播厂 | 国产熟女欧美一区二区| 亚洲18禁久久av| 秋霞在线观看毛片| 人妻制服诱惑在线中文字幕| 免费观看a级毛片全部| 国产精品久久久久久av不卡| 国产乱人偷精品视频| 色网站视频免费| 99热网站在线观看| 少妇熟女欧美另类| 亚洲最大成人中文| 精品久久久久久久久亚洲| 精品久久久久久久末码| 18禁动态无遮挡网站| 全区人妻精品视频| 国产亚洲最大av| 成年av动漫网址| av.在线天堂| 精品久久国产蜜桃| 国产69精品久久久久777片| 久久久久免费精品人妻一区二区| 国产精品国产三级专区第一集| 精品久久久久久电影网| 久久精品久久精品一区二区三区| 蜜桃久久精品国产亚洲av| 国产av码专区亚洲av| 亚洲欧洲日产国产| 男人狂女人下面高潮的视频| 伦精品一区二区三区| 哪个播放器可以免费观看大片| 日日干狠狠操夜夜爽| 免费黄网站久久成人精品| 夫妻性生交免费视频一级片| 草草在线视频免费看| 一区二区三区乱码不卡18| 成人美女网站在线观看视频| 1000部很黄的大片| 色哟哟·www| 最近的中文字幕免费完整| 日日摸夜夜添夜夜添av毛片| 菩萨蛮人人尽说江南好唐韦庄| 男插女下体视频免费在线播放| 天堂av国产一区二区熟女人妻| 亚洲成人中文字幕在线播放| 亚洲aⅴ乱码一区二区在线播放| 免费少妇av软件| 天堂中文最新版在线下载 | 中文资源天堂在线| 国产午夜精品久久久久久一区二区三区| 免费大片18禁| 极品教师在线视频| 岛国毛片在线播放| 久久这里只有精品中国| 综合色丁香网| 国产在视频线精品| 国产色爽女视频免费观看| 天堂中文最新版在线下载 | 天堂影院成人在线观看| 国产成人freesex在线| 成人亚洲精品一区在线观看 | 视频中文字幕在线观看| 国产在视频线在精品| 亚洲国产高清在线一区二区三| 中文精品一卡2卡3卡4更新| 亚洲国产色片| 欧美高清成人免费视频www| 街头女战士在线观看网站| 最后的刺客免费高清国语| 国产又色又爽无遮挡免| 久久这里只有精品中国| 最近2019中文字幕mv第一页| 一个人看的www免费观看视频| 亚洲综合色惰| 久99久视频精品免费| 国产成人一区二区在线| 亚洲一级一片aⅴ在线观看| 国产乱来视频区| 国产熟女欧美一区二区| 亚洲精品久久午夜乱码| 久久精品熟女亚洲av麻豆精品 | 国内揄拍国产精品人妻在线| 美女国产视频在线观看| 亚洲人与动物交配视频| 波野结衣二区三区在线| 久久久精品94久久精品| 色尼玛亚洲综合影院| 国产免费一级a男人的天堂| 青青草视频在线视频观看| 亚洲成人一二三区av| 美女脱内裤让男人舔精品视频| 国产成人精品婷婷| 色视频www国产| 欧美区成人在线视频| 久久久久久国产a免费观看| 日本三级黄在线观看| 欧美最新免费一区二区三区| 我要看日韩黄色一级片| 国产一级毛片在线| 国产女主播在线喷水免费视频网站 | 国产成人a∨麻豆精品| 成人一区二区视频在线观看| 看非洲黑人一级黄片| 三级毛片av免费| 九九在线视频观看精品| 夫妻午夜视频| 欧美日韩亚洲高清精品| 永久免费av网站大全| 亚洲高清免费不卡视频| 人妻一区二区av| 亚洲欧洲日产国产| 久久久久久久亚洲中文字幕| 精华霜和精华液先用哪个| 国产乱来视频区| 三级国产精品欧美在线观看| av在线播放精品| 精品国内亚洲2022精品成人| 免费高清在线观看视频在线观看| 精品一区二区免费观看| 国产中年淑女户外野战色| 在线a可以看的网站| 激情五月婷婷亚洲| 午夜精品国产一区二区电影 | 一级av片app| 日本免费在线观看一区| 中国国产av一级| 伊人久久国产一区二区| 国产乱人视频| 国产精品女同一区二区软件| 天堂影院成人在线观看| 男人舔奶头视频| 国产精品久久视频播放| a级一级毛片免费在线观看| 九九久久精品国产亚洲av麻豆| 最近的中文字幕免费完整| 亚洲av二区三区四区| 我要看日韩黄色一级片| 天堂网av新在线| 热99在线观看视频| 99热这里只有是精品在线观看| 永久网站在线| 啦啦啦中文免费视频观看日本| 精品久久久噜噜| 男人舔女人下体高潮全视频| 欧美xxxx性猛交bbbb| 精品国产露脸久久av麻豆 | 青春草国产在线视频| 1000部很黄的大片| 美女cb高潮喷水在线观看| 国产精品.久久久| 嫩草影院精品99| 国产成人a区在线观看| av免费观看日本| 亚洲精品第二区| 麻豆久久精品国产亚洲av| 卡戴珊不雅视频在线播放| 欧美激情国产日韩精品一区| 激情 狠狠 欧美| 成人综合一区亚洲| 日韩不卡一区二区三区视频在线| 亚洲精品成人av观看孕妇| 你懂的网址亚洲精品在线观看| 欧美性感艳星| 夜夜爽夜夜爽视频| 黑人高潮一二区| 国产色婷婷99| 亚州av有码| 亚洲天堂国产精品一区在线| 自拍偷自拍亚洲精品老妇| 精品一区二区三区视频在线| 精品国产露脸久久av麻豆 | 三级毛片av免费| 久久精品人妻少妇| 成人性生交大片免费视频hd| 我的老师免费观看完整版| 婷婷色综合www| 亚洲经典国产精华液单| 国产精品精品国产色婷婷| 中文字幕久久专区| 久久久久久久久大av| 久久久久久久大尺度免费视频| 日韩一本色道免费dvd| 国产精品熟女久久久久浪| 美女脱内裤让男人舔精品视频| videossex国产| 色综合色国产| or卡值多少钱| 日韩一区二区视频免费看| 日本猛色少妇xxxxx猛交久久| 国产色婷婷99| 国产一区亚洲一区在线观看| 天堂影院成人在线观看| 日日撸夜夜添| 精品亚洲乱码少妇综合久久| 美女主播在线视频| 麻豆精品久久久久久蜜桃| 国产乱人视频| 99久久精品国产国产毛片| 国产老妇女一区| 亚洲高清免费不卡视频| 免费看光身美女| 嫩草影院精品99| 精品久久久久久久人妻蜜臀av| 一级a做视频免费观看| 国产日韩欧美在线精品| av又黄又爽大尺度在线免费看| 久久久a久久爽久久v久久| 美女黄网站色视频| 国产成人精品一,二区| 黑人高潮一二区| 伊人久久国产一区二区| 亚洲美女视频黄频| 女的被弄到高潮叫床怎么办| 亚洲真实伦在线观看| 国产精品美女特级片免费视频播放器| 一级毛片黄色毛片免费观看视频| 亚洲综合精品二区| 国产免费一级a男人的天堂| 水蜜桃什么品种好| 天天躁夜夜躁狠狠久久av| 能在线免费观看的黄片| 午夜福利高清视频| 国产精品美女特级片免费视频播放器| 亚洲av日韩在线播放| 久久国内精品自在自线图片| 国产av码专区亚洲av| 97热精品久久久久久| 亚洲av二区三区四区| 亚洲国产精品成人综合色| 欧美激情久久久久久爽电影| 91在线精品国自产拍蜜月| 免费看光身美女| 久久精品久久精品一区二区三区| 内射极品少妇av片p| 欧美日韩视频高清一区二区三区二| 日韩成人伦理影院| 国产精品日韩av在线免费观看| 国产淫语在线视频| 久久久国产一区二区| av专区在线播放| 97在线视频观看| 久久这里有精品视频免费| 狂野欧美激情性xxxx在线观看| 国产成人午夜福利电影在线观看| 国产精品三级大全| 国产欧美日韩精品一区二区| 国产亚洲91精品色在线| 又粗又硬又长又爽又黄的视频| 真实男女啪啪啪动态图| 一级毛片 在线播放| 中文在线观看免费www的网站| 国产伦精品一区二区三区视频9| 蜜桃久久精品国产亚洲av| 免费看a级黄色片| 色视频www国产| 国产黄频视频在线观看| 国产一级毛片在线| 最新中文字幕久久久久| 亚洲av在线观看美女高潮| 免费不卡的大黄色大毛片视频在线观看 | 国产探花在线观看一区二区| 97在线视频观看| 97超碰精品成人国产| 欧美性猛交╳xxx乱大交人| 色5月婷婷丁香| 日日干狠狠操夜夜爽| 大香蕉久久网| 精品久久久久久久末码| 精品熟女少妇av免费看| 亚洲成人久久爱视频| 亚洲精品,欧美精品| 亚洲一区高清亚洲精品| 国内揄拍国产精品人妻在线|