• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-performance Zn microbattteries based on a NiCo-LDH@ITO nanowire/carbon cloth composite

    2022-10-10 09:10:10LIXijuanLIUGuoWUQingfengWANGXukunSUIXinyiWANGXingeFANZiyeXIEErqingZHANGZhenxing
    新型炭材料 2022年5期

    LI Xi-juan, LIU Guo, WU Qing-feng, WANG Xu-kun, SUI Xin-yi,WANG Xin-ge, FAN Zi-ye, XIE Er-qing, ZHANG Zhen-xing

    (Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology,Lanzhou University, Lanzhou 730000, China)

    Abstract: Following the fast growth of micro-energy storage devices, there is an urgent need to develop miniaturized electronic devices with excellent performance that are both green and safe. Planar interdigitated rechargeable Zn microbatteries (MBs) have gained widespread attention in recent years due to their ease of series-parallel integration, mechanical flexibility and no need for traditional separators. We prepared a patterned cathode of NiCo layered double hydroxide (LDH)@indium tin oxide (ITO) nanowires(NWs) @carbon cloth (CC) by the chemical vapor deposition of ITO NWs on the carbon fibers in a CC, laser patterning, and finally the electrodeposition of NiCo-LDH to coat the ITO NW@carbon fibers. The cathode was combined with a patterned Zn foil anode to form a planar MB. Because of the highly conductive ITO NWs@CC current collector, the interdigitated MB had a satisfactory performance. The planar MB has a high specific capacity of 453.5 mAh g-1 (corresponding to 0.56 mAh cm-2) in an alkaline water-based electrolyte at 1 mA cm-2. After 4 000 cycles the capacity increased to 216% of the initial value due to gradual penetration of electrolyte into the three-dimensional NiCo-LDH@ITO NW@CC network. It also had excellent energy (798.4 μWh cm-2, corresponding to 649.9 Wh kg-1) and power densities (4.1 mW cm-2, corresponding to 3 282.7 mW kg-1). Furthermore, MBs connected in series-parallel in lighting tests illustrate the excellent performance of the device. Therefore, these fast and simple Zn MBs with an in-plane interdigital structure provide a reference for next-generation high-performance, environmentally-friendly, and scalable planar micro-energy storage systems.

    Key words: Micro-energy storage devices;Micro batteries;Laser etching;ITO NWs;Carbon cloth

    1 Introduction

    Micro-energy storage devices mainly include micro-supercapacitors (MSCs)[1-4]and micro-batteries(MBs)[5-7], which have become the focus of research due to their great application potential in smart electronics[8-10], wireless sensor nodes[11], medical implantation and drug delivery devices[12], health detection and diagnosis[13], environmental monitoring[14,15],etc.However, compared with MSCs[16]and micro lithium ion batteries (LIBs)[17,18], micro zinc ion batteries (ZIBs)are seen as the best candidates for next generation micro-energy storage devices due to their outstanding theoretical specific capacity (820 mAh g-1), high safety,-inexpensive, aqueous electrolytes, environmentally friendliness[10,19-21]. In addition, planar interdigitated rechargeable Zn MBs (ZMBs) have received extensive attention due to their scalability, high safety and no separators of conventional batteries[5,20,21]. Unlike conventional sandwich-shaped cells, planar interdigitated MBs rarely show cell short-circuiting due to less zinc dendrite growth. Very recently, Wang et al. reported a screen printed aqueous-based Zn//MnO2planar interdigitated MBs, which delivered a high specific capacity of 393 mAh g-1[22]. Li et al. reported that the flexible planar Zn//PANI MBs delivered a high energy density of 0.25 mWh cm-2[23]. Moreover, vanadium-based[24,25]and manganese-based materials[5],due to their poor electronic conductivity, structural deformation and poor stability, are often combined with graphene, carbon nanotubes, etc. as cathode materials for batteries.

    Herein, three-dimensional indium tin oxide nanowires (ITO NWs) were first grown on carbon cloth (CC) by chemical vapor deposition (CVD), and the obtained ITO NWs@CC served as the substrate for growing NiCo-LDH (NiCo-LDH@ITO NWs@CC). With the help of laser cutting technology, NiCo-LDH@ITO NWs@CC and Zn foils were patterned into interdigitated cathode and anode and assembled into ZMBs. The three-dimensional ITO NWs@CC conductive network can increase the mass loading of active materials, facilitate fast charge transfer, and tolerate structure changes in cycling, leading to improved the energy storage performance of ZMBs. The prototype aqueous Zn//NiCo-LDH@ITO NWs@CC MB delivers an areal capacity of 0.56 mAh cm-2(correspond to 453.5 mAh g-1) at 1 mA cm-2, satisfactory rate performance (63.8% capacity retention at 3 mA cm-2), and excellent cycling performance(216% capacity retention after 4 000 cycles at 5 mA cm-2). The maximum energy density of 798.4 μWh cm-2(~ 649.9 Wh kg-1) and the maximum power density of 4.1 mW cm-2(~ 3 282.7mW kg-1) can be obtained. Furthermore, the seriesparallel lighting tests of ZMBs demonstrate the good device consistency and integrability.

    2 Experimental

    2.1 Preparation of three-dimensional ITO NWs

    ITO NWs were grown on CC by CVD. Firstly,CC was ultrasonically cleaned with acetone, hydrochloric acid and deionized water each for 10 min, and dried at 65 °C for 10 min. Secondly, Au nanoparticles were deposited on CC as catalyst by ion sputtering(SBC-12) for ITO NWs growth. Typically, the sputtering current was 10 mA for 20 s. Thirdly, Au-coated CC was placed 5 cm downstream of the heating point in the quartz tube, In and Sn metal sources were mixed with a mass ration of 24∶5 and placed at the tube furnace center. Fourthly, the furnace was ramped up to 835 °C at 20 °C min-1with Ar gas (4 mL min-1)atmosphere, and O2gas was introduced for 30 min. Finally, the tube furnace was turned off and cooled to room temperature naturally, and the three-dimensional ITO NWs on CC were obtained (ITO NWs@CC).

    2.2 Preparation of NiCo-LDH@ITO NWs@CC cathode

    The obtained ITO NWs@CC was laser patterned into interdigitated electrodes. Then the interdigitated ITO NWs@CC electrode with an area of about 1.75 cm2, Pt sheet, and Ag/AgCl electrode were used as the working electrode, counter electrode, and reference electrode, respectively. The NiCo-LDH electrodeposition on ITO NWs@CC was performed at a constant voltage of -1 V for 200 s in the mixed solution consisting of 0.05 mol L-1Ni(NO3)2·6H2O,0.05 mol L-1Co(NO3)2·6H2O, 0.05 mol L-1C4H6NiO4·4H2O, 0.05 mol L-1C4H6CoO4·4H2O in 40 mL deionized water at room temperature. Subsequently, the obtained NiCo-LDH@ITO NWs@CC electrodes were kept at 65 °C for 2 h after being rinsed for several times (NiCo-LDH mass loading: ~1.23 mg cm-2).The NiCo-LDH on CC (NiCo-LDH@CC) was prepared by the same conditions for control experimental(NiCo-LDH mass loading: ~1.11 mg cm-2).

    2.3 Preparation of Zn anode

    Commercial zinc foil was laser patterned into interdigitated electrodes with a single electrode area of 1.75 cm2. The parameters of laser etching in N2environment are as follows: a cutting speed of 200 mM s-1,a power ratio of 80%, a frequency of 40 kHz for the first cut, and a cooling for 1 min, then a cutting speed of 50 mM s-1, a power ratio of 70%, and a frequency of 40 kHz for the second cut.

    2.4 Preparation of micro Zn batteries

    The NiCo-LDH@ITO NWs@CC interdigitated electrode as cathode, the interdigitated zinc foil as anode, the glass slide as the support, and AB glue as the binder, were assembled into ZMBs. Similarly, the Zn//NiCo-LDH@CC ZMBs were also as-sembled.Meanwhile, the AB glue is alkaline resistant at room temperature. Therefore, the long-term cycling tests of the ZMBs in an alkaline environment do not cause the cathode and anode to fall.

    2.5 Characterization and electrochemical tests

    The surface morphologies were characterized by field emission electron microscopy (FESEM, Hitachi,S4800, Japan) and high-resolution electron microscopy (HR-TEM, FEI, Techni G2 F30, operated at 300 kV). The elemental compositions were determined by X-ray photoelectron spectroscopy (XPS,PHI5702, MgKα X-ray, 1 253.6 eV) and EDS (HRTEM, FEI, Techni G2 F30, operated at 300 kV). The crystal structure and phases were analyzed by X-ray diffraction (XRD, Philips X'Pert pro, CuKα, 0.154 06 nm) and Raman micro spectrometer (JY-HR800,532 nm YAG laser). The cyclic voltammetry (CV)was performed using an electrochemical workstation(CHI 660E), the galvanostatic charge-discharge(GCD) using a blue cell test system in 2 mol L-1KOH mixed 0.2 mol L-1C4H6O4Zn·2H2O aqueous electrolyte at 25 °C. The discharge curve was used to calculate the specific capacity (mass specific capacity and areal capacity) of the battery, according to the equation ofC=(I×△t) /X(X=morA), whereCis the specific or areal capacity (mAh g-1or mAh cm-2),Iis the discharge current (mA), △t is the discharge time (h),Xrepresents the mass or area,mandAare the mass(g) and area (cm2) of the active material in the cathode of the battery, respectively.

    3 Results and discussion

    The brief synthesis process and device assembly steps of the planar interdigitated Zn//NiCo-LDH@ITO NWs@CC MBs are shown in Fig. 1.Firstly, indium tin oxide nanowires (ITO NWs) are grown on carbon cloth (CC) by CVD. Secondly, two independent interdigitated finger ITO NWs@CC electrodes and Zn finger electrodes from Zn foil are laser patterned. Thirdly, NiCo-LDH nanosheets are electrodeposited on ITO NWs@CC electrode. Finally,planar interdigitated Zn and NiCo-LDH@ITO NWs@CC electrodes, with the help of a binder, conductive gel and CC wire, are assembled into ZMBs on glass slides. The dimensional diagram of ZMBs is shown in Fig. S1.

    The XRD pattern of the ITO NWs@CC is shown in Fig. 2a. ITO NWs@CC exhibits five main characteristic peaks at 21.5°, 30.6°, 35.5°, 51.1° and 57.6°,corresponding to the (211), (222), (400), (440) and(620) crystal planes of cubic In2O3(JCPDS#06-0416)[26], respectively. Thus, ITO NWs with a high crystallinity are successfully grown on CC. Comparatively, the XRD pattern of the NiCo-LDH@ITO NWs@CC in Fig. 2b exhibits the (001) plane of Co(OH)2at 9.5° (JCPDS#51-1731)[27]. The peaks at 33.5° and 38.8° belong to (101) and (015) planes of α-Ni(OH)2·0.75H2O (JCPDS#38-0715)[28], respectively.Similarly, typical peaks of Co(OH)2and α-Ni(OH)2·0.75H2O also appear in the XRD pattern of NiCo-LDH@CC (Fig. S2). The weak and broad peaks indicate a lower crystallinity of NiCo-LDH. As shown in the XPS survey spectra of Fig. 2c, the ITO NWs@CC presents In, Sn and O elemental peaks besides C1s peak from carbon cloth, and the corresponding fine spectra are shown in Fig. S3a-d. NiCo-LDH@ITO NWs@CC presents obvious Ni and Co elements peaks in Fig. 2d. The Ni2p XPS fine spectrum in Fig. 2e can be well fitted into 4 peaks at 855.85, 857.8, 873.15 and 875.10 eV with satellite peaks, consistent well with Ni 2p3/2and Ni2p1/2levels,respectively[29]. The Co2p XPS fine spectrum in Fig. 2f can be fitted to Co3+at 781.13 and 796.73 eV,and Co2+at 783.7 and 798.69 eV[30]. The O1s XPS fine spectrum shows 2 oxygen contributions (Fig. S4).The main peak at 531.22 eV is the oxygen in the OHgroup, and the tiny peak at 532.22 eV is related to the oxygen in the absorbed water or the surface absorbed oxygen[31]. These XRD and XPS results indicate that a low crystallinity NiCo-LDH is successfully synthesized on ITO NWs@CC.

    Surface morphologies and microstructures are shown in Fig. 3. CC has a very uniform surface(Fig. 3a), and ITO nanowires are densely and uniformly grown on the surface of CC (Fig. 3b) with a diameter of about 350±10 nm (Fig. S5). The growth of ITO NWs on the Au nanoparticle-loaded CC belongs to the “bottom-up” process. The vaporized metal source dissolves into the Au particles with the gas flow, and forms Au/In-Sn alloy droplets as the temperature increase[32]. When the droplets reach saturation, nucleation occurs, and then the nanowires begin to grow. Therefore, the final product deposited on the carbon cloth is Au-tipped ITO NWs[33]. Overall, the Au catalyst determines the lateral size and density of the nanowires[34]. The as-prepared NiCo-LDH@ITO NWs@CC composite has an interconnected nanosheet structure (Fig. 3c). NiCo-LDH nanosheets are uniformly riveted on the ITO NWs surface with a mean thickness of approximately 300±10 nm (Fig. S5). The three-dimensional conductive network of ITO NWs@CC facilitates the overall uniform growth of NiCo-LDH active material (Fig. S6). TEM images further confirm the entanglement of NiCo-LDH nanosheets (Fig. 3d-e). The corresponding HRTEM image in Fig. 3f has a clear lattice pitch of 0.22 nm,fitting well with the (015) plane of Ni(OH)2·0.75H2O.However, a small amount of amorphous structure appears, verifying the poor crystallinity of NiCo-LDH with XRD results. The elemental mapping image clearly shows that Ni, Co and O elements are uniformly distributed on the NiCo-LDH@ITO NWs@CC composite (Fig. 3g-j). Similarly, the overall microscopic morphologies of NiCo-LDH@CC exhibit interconnected thin nanosheets, and flower-like growth occurs due to the uneven distribution of the local electric field. As shown from the i-t curves of Fig. S7, NiCo-LDH tends to grow more steadily on ITO NWs@CC than CC after the nucleation process.Consequently, the NiCo-LDH@CC has obvious cracks (Fig. S8a-d) compared with NiCo-LDH@ITO NWs@CC, which may be ascribed to the affected growth of NiCo-LDH by the non-uniform electric force. Therefore, ITO NWs on CC can harmonize the electric field and create more space for the uniform growth of NiCo-LDH nanosheets.

    The electrochemical behavior of ZMBs explored by cyclic voltammetry (CV) indicates that the CV curve is not significantly distorted as the scan rate increases from 1 to 10 mV s-1, as shown in Fig. 4a. The observed redox peaks can be attributed to the following reversible reactions:

    According to the equation logi= loga+blogυ,υis the scan rate,iis the highest current at a certain scan speed,aandbbelong to adaptable factors[35]. The current is entirely contributed by diffusion control only when the value ofbis 0.5. Whenbis 1, the current is contributed by capacitive behavior. Whenbtakes a value between 0.5 and 1, the current contribution consists of the two above parts. The calculatedbof the oxidation peak is 0.54, indicating that the current contribution is dominated by diffusion control, as shown in Fig. 4b. In addition, in the light of the equationi(at fixed voltage) =k1υ + k2υ1/2,k1υrepresents the capacitive current andk2υ1/2is the diffusion current[36]. The calculated proportions of capacitive behavior and diffusion control are shown in Fig. 4c.Clearly, diffusion control dominates at low scan rates,while capacitive behavior dominates as the scan rate increases. The phenomenon indicate that the electrolyte ions have enough time to enter the spaces of the active material to cause redox reactions at low scan rates, while at high scan rates, rapid adsorption and desorption occur on the electrode surface.

    The GCD curves of ZMBs at various current densitiesare shown in Fig. 4d, and a maximum capacity of 453.5 mAh g-1can be obtained (~0.56 mAh cm-2,Fig. S9a). The device exhibits outstanding rate performance, as shown in Fig. 4e, and the capacity is 508.6, 418.0, 367.6, 302.5 and 194.0 mAh g-1(corresponding to areal capacity of 0.63, 0.51, 0.45, 0.37 and 0.24 mAh cm-2, respectively (Fig. S9b)) at 1, 1.5, 2,2.5 and 3 mA cm-2, respectively. Surprisingly, when the current density returns to the minimum value of 1mA cm-2, the capacity surpasses its initial value, implying perfect electrochemical stability and charge/discharge reversibility of ZMBs. What's more, the energy storage performance of ZMBs is compared with other recently reported micro-energy storage devices in the Ragon plot of Fig. 4f including a quasi-solidstate HOP Ni-Zn MB (260 μWh cm-2)[21], aqueous Zn//MnO2in-plane MB (168 μWh cm-2)[20], NiCo-LDH@CC//Zn MB (135.6 μWh cm-2)[19], a flexible planar Zn-PANI MB (250 μWh cm-2)[23], a flexible Zn//Ti3C2Tx(20 μWh cm-2)[37], Zn//AC MSC (115.4 μWh cm-2)[38]. Satisfactorily, our ZMBs have a maximum energy density output of 798.5 μWh cm-2(~649.9 Wh kg-1) at power density of 1.4 mW cm-2(~1 167.2 mW kg-1), and even a relatively high energy density of 478.2 μWh cm-2(~389.2 Wh kg-1) at the maximum power density of 4.1 mW cm-2(~3 282.7 mW kg-1) (Fig. S9c).

    The devices in series and parallel were analyzed by CV and GCD tests to explore the integrability of ZMBs. As shown in Fig. 4g, the highest current of two MBs in parallel is twice that of a single device,while the operating voltage of 2 devices in series extends from 1.1 to 2.2 V. Moreover, the shapes of the CV curves are not distorted from each other at 5 mV s-1. At the same time, the two devices in series can achieve a potential window of 1.6-3.8 V and the charge/discharge time of two MBs in parallel is extended to twice that of a single device (Fig. 4h), which reflects the excellent integratability and consistency of ZMBs. Remarkably, two ZMBs in series can light up 36 different parallel LEDs after charged at 3 mA cm-2(Fig. 4i) and power 20 red LEDs for more than 5 min(Fig. S9d). As a comparison, the performance of Zn//NiCo-LDH@CC MBs was evaluated under the same conditions. The CV curves are similar to Zn//NiCo-LDH@ITO NWs@CC MBs but with significantly small peak currents (Fig. S10a). The rate performance is shown in Fig. S10b, and the specific capacity is 316.6, 199.6, 107.7, 54.2 and 35.2 mAh g-1at the current density of 1, 1.5, 2, 2.5 and 3 mA cm-2,respectively. Unfortunately, the specific capacity does not return to its original level when the current density returns back. Specifically, the capacity is only 269.0 mAh g-1when the current density decreases to 1 mA cm-2, showing poor stability and charge/discharge reversibility. GCD curves in Fig. S10c indicate a maximum capacity of 315.3 mAh g-1(~0.35mAh cm-2, Fig. S10d). Benefiting from the uniform electric field environment and more growth sites of NiCo-LDH nanosheets by the three-dimensional ITO NWs@CC conductive network, Zn//NiCo-LDH@ITO NWs@CC MBs exhibit superior energy storage performance.

    The cycling stability of ZMBs was further investigated. It exhibits 101% capacity retention and satisfactory coulombic efficiency (about 111%) for 1 000 cycles at 1 mA cm-2, as shown in Fig. 5a. Moreover, a long time cycling tests of 4 000 times at 5 mA cm-2proves that ZMBs has excellent cycling performance,which is 119 mAh g-1at the beginning, as the cycle progresses, the capacity shows a gradual upward trend, and it increases to 258 mAh g-1after the cycle process (Fig. 5b). This is mainly due to the large specific surface area of the three-dimensional structured ITO NWs, which leads to a large mass loading of active material and thus a longer activation time of the cathode material. Fig. 5c reveals the first, the first thousandth, the second thousandth, the third thousandth, and the fourth thousandth charge/discharge curves within the open circuit voltage of 0.8-1.9 V at 5 mA cm-2. Obviously, the discharge plateau becomes longer, and no side reactions are generated during cycling. The increased discharge plateaus implies the increased capacity at the same discharge current,which is ascribed to the slow electrolyte penetration into the three-dimensional NiCo-LDH@ITO NWs@CC networks during the cycling tests. Furthermore, the charge/discharge time increases during cycling (Ⅰ: 210-220 h and Ⅱ: 390-400 h) (Fig. 5d). Surprisingly, SEM images after long cycles only show slight agglomeration at the interconnected nanosheets,almost the same morphologies as the pristine NiCo-LDH@ITO NWs@CC (Fig. 5e-h). The possible reason is that the three-dimensional structure of ITO NWs as the carrier of active material, can buffer the volume effect of the cathode nanosheet structure during the cycling process. However, NiCo-LDH nanosheets of Zn//NiCo-LDH@CC MBs have been completely agglomerated after long-term cycling, and there are still exfoliated blocks in a large area (Fig. S11). Therefore,Zn//NiCo-LDH@ITO NWs@CC MBs perform better cycling stability than Zn//NiCo-LDH@CC MBs.

    4 Conclusion

    Planar interdigitated Zn//NiCo-LDH@ITO NWs@CC MBs have been fabricated by a combined method of CVD, laser patterning and electrodeposition. Benefiting from the fast ion transport provided by the highly conductive three-dimensional ITO NWs@CC network and the interconnected nanosheet structure of NiCo-LDH, the aqueous ZMB exhibits excellent specific capacity (453.5 mAh g-1, ~0.56 mAh cm-2at 1 mA cm-2), satisfactory rate performance (capacity retention rate of 63.8%at 3 mA cm-2), outstanding cycle life (216% of the capacity is maintained). In addition, ZMB delivers an impressive energy density (798.4 μWh cm-2, ~649.9 Wh kg-1) and power density (4.1 mW cm-2, ~3 282.7 mW kg-1). Furthermore, ZMBs in series and parallel tests and lighting tests prove the considerable consistency and integrability, and impressive energy storage performance. Therefore, high-performance, safe, and scalable planar interdigitated Zn//NiCo-LDH@ITO NWs@CC MBs have huge potential in developing next-generation micro-energy storage devices.

    Acknowledgements

    This work was supported by National Natural Science Foundation of China (51972154), and Natural Science Foundation of Gansu Province(20JR5RA244)..

    av在线蜜桃| 露出奶头的视频| 女人十人毛片免费观看3o分钟| 欧美xxxx性猛交bbbb| 国产在视频线在精品| 黄色配什么色好看| 日韩人妻高清精品专区| 国产精品日韩av在线免费观看| 天天躁日日操中文字幕| 免费看av在线观看网站| 欧美高清成人免费视频www| 精品不卡国产一区二区三区| 久久精品久久久久久噜噜老黄 | 亚洲成人精品中文字幕电影| 一级毛片电影观看 | 久久久成人免费电影| 熟妇人妻久久中文字幕3abv| 免费在线观看影片大全网站| 天堂√8在线中文| 在线观看午夜福利视频| 国产aⅴ精品一区二区三区波| 日日啪夜夜撸| 黑人高潮一二区| 午夜老司机福利剧场| 精品久久久久久成人av| 成人永久免费在线观看视频| 91av网一区二区| 免费看美女性在线毛片视频| 精品午夜福利视频在线观看一区| 亚洲国产精品合色在线| 深夜a级毛片| a级毛片a级免费在线| 能在线免费观看的黄片| 人人妻人人看人人澡| 22中文网久久字幕| 亚洲最大成人av| 狂野欧美白嫩少妇大欣赏| 欧美最黄视频在线播放免费| 男人舔奶头视频| 五月玫瑰六月丁香| 亚洲欧美清纯卡通| 亚洲不卡免费看| 免费无遮挡裸体视频| 少妇被粗大猛烈的视频| 久久久久国内视频| av在线老鸭窝| 91久久精品电影网| 国产亚洲91精品色在线| 麻豆乱淫一区二区| 伊人久久精品亚洲午夜| 男女做爰动态图高潮gif福利片| 两个人视频免费观看高清| 国产精品伦人一区二区| 国产精品国产高清国产av| 美女大奶头视频| 少妇裸体淫交视频免费看高清| aaaaa片日本免费| 亚洲中文日韩欧美视频| 天天躁夜夜躁狠狠久久av| 国产一区二区激情短视频| 别揉我奶头~嗯~啊~动态视频| 别揉我奶头 嗯啊视频| 黄色配什么色好看| 美女大奶头视频| 我要搜黄色片| 男人狂女人下面高潮的视频| 亚洲av二区三区四区| 国产精品av视频在线免费观看| 天美传媒精品一区二区| 一级黄片播放器| 天堂网av新在线| 不卡一级毛片| 激情 狠狠 欧美| 99热6这里只有精品| 国产 一区 欧美 日韩| 国产成人freesex在线 | av天堂中文字幕网| 国产午夜福利久久久久久| 久久这里只有精品中国| 久久久久久伊人网av| 亚洲va在线va天堂va国产| 99久国产av精品| 99热这里只有是精品50| 欧美三级亚洲精品| 无遮挡黄片免费观看| 少妇裸体淫交视频免费看高清| 乱系列少妇在线播放| 久久精品国产鲁丝片午夜精品| 97超碰精品成人国产| 免费观看在线日韩| 九九久久精品国产亚洲av麻豆| 国产精品爽爽va在线观看网站| 免费搜索国产男女视频| 桃色一区二区三区在线观看| 蜜桃久久精品国产亚洲av| 日本熟妇午夜| 最好的美女福利视频网| 国产私拍福利视频在线观看| 亚洲欧美日韩高清专用| 老女人水多毛片| 欧美人与善性xxx| 国产免费一级a男人的天堂| 国产精品av视频在线免费观看| 综合色丁香网| 男人和女人高潮做爰伦理| 免费看av在线观看网站| 精品久久久久久久人妻蜜臀av| 国产女主播在线喷水免费视频网站 | 亚洲乱码一区二区免费版| 亚洲精品一区av在线观看| 搡老岳熟女国产| 男女做爰动态图高潮gif福利片| 色综合站精品国产| 校园人妻丝袜中文字幕| 毛片一级片免费看久久久久| 99热全是精品| 真实男女啪啪啪动态图| 久久欧美精品欧美久久欧美| 久久久久久久久久黄片| 欧美xxxx黑人xx丫x性爽| 亚洲精品456在线播放app| 国产高清三级在线| 成人高潮视频无遮挡免费网站| 国产成人精品久久久久久| 欧美bdsm另类| 少妇裸体淫交视频免费看高清| 校园春色视频在线观看| 久久精品国产亚洲av涩爱 | 午夜福利18| 久久精品综合一区二区三区| 久99久视频精品免费| 国产在视频线在精品| 国产黄片美女视频| 免费看a级黄色片| 国产一区二区亚洲精品在线观看| 国产视频内射| 国产精品久久久久久久电影| 久久久久久久久久黄片| 久久久国产成人免费| 精品久久久久久久久久免费视频| 亚洲国产高清在线一区二区三| 色综合亚洲欧美另类图片| 岛国在线免费视频观看| 晚上一个人看的免费电影| 国产亚洲精品av在线| 国内少妇人妻偷人精品xxx网站| 高清日韩中文字幕在线| av卡一久久| 乱人视频在线观看| 亚洲性夜色夜夜综合| 欧美一区二区国产精品久久精品| 搡老妇女老女人老熟妇| 听说在线观看完整版免费高清| 精品免费久久久久久久清纯| av.在线天堂| 美女被艹到高潮喷水动态| 久久久欧美国产精品| 欧美中文日本在线观看视频| 色吧在线观看| АⅤ资源中文在线天堂| 国产av不卡久久| 高清日韩中文字幕在线| 国产一区二区在线观看日韩| 3wmmmm亚洲av在线观看| 国产不卡一卡二| 亚洲18禁久久av| a级毛片a级免费在线| 国产精品日韩av在线免费观看| 天天一区二区日本电影三级| 久久久久精品国产欧美久久久| 直男gayav资源| 日韩在线高清观看一区二区三区| 夜夜夜夜夜久久久久| 久久久色成人| 日产精品乱码卡一卡2卡三| 国产亚洲精品久久久久久毛片| 国内精品一区二区在线观看| 国产三级中文精品| 九色成人免费人妻av| 日韩高清综合在线| 亚洲av免费高清在线观看| 夜夜夜夜夜久久久久| 可以在线观看毛片的网站| 国产黄片美女视频| 国产私拍福利视频在线观看| 国产片特级美女逼逼视频| 免费观看精品视频网站| 国内精品美女久久久久久| 国产高清视频在线观看网站| 久久99热6这里只有精品| 色5月婷婷丁香| 久久人人精品亚洲av| 亚洲综合色惰| 一进一出抽搐动态| 国产精品乱码一区二三区的特点| 搡女人真爽免费视频火全软件 | 99riav亚洲国产免费| 尤物成人国产欧美一区二区三区| 伊人久久精品亚洲午夜| 国产成年人精品一区二区| 18禁裸乳无遮挡免费网站照片| 又爽又黄a免费视频| 99国产极品粉嫩在线观看| 深爱激情五月婷婷| 精品午夜福利视频在线观看一区| 三级男女做爰猛烈吃奶摸视频| 国产伦精品一区二区三区视频9| 午夜福利在线观看吧| 久久精品国产鲁丝片午夜精品| 国产白丝娇喘喷水9色精品| 久久亚洲精品不卡| 久久午夜福利片| 一卡2卡三卡四卡精品乱码亚洲| 国产视频一区二区在线看| 国产av不卡久久| 好男人在线观看高清免费视频| 亚洲在线观看片| 永久网站在线| 成人特级av手机在线观看| 麻豆国产av国片精品| 美女被艹到高潮喷水动态| 尾随美女入室| 国产精品1区2区在线观看.| 我的女老师完整版在线观看| 中国美女看黄片| 中文在线观看免费www的网站| 亚洲经典国产精华液单| 亚洲欧美成人综合另类久久久 | 高清日韩中文字幕在线| 91久久精品国产一区二区成人| 桃色一区二区三区在线观看| 国产精品乱码一区二三区的特点| 97人妻精品一区二区三区麻豆| 欧美精品国产亚洲| 国内精品宾馆在线| 伦理电影大哥的女人| 久久精品国产自在天天线| 日本爱情动作片www.在线观看 | 国产精品电影一区二区三区| 特级一级黄色大片| 97碰自拍视频| 国产av不卡久久| 久久久色成人| 免费观看精品视频网站| 少妇丰满av| 性插视频无遮挡在线免费观看| 又爽又黄a免费视频| 亚洲精品在线观看二区| av在线播放精品| 亚洲av电影不卡..在线观看| 三级经典国产精品| 日本 av在线| 亚洲精品国产成人久久av| 亚洲av不卡在线观看| 天天一区二区日本电影三级| 亚洲av免费在线观看| 春色校园在线视频观看| 乱码一卡2卡4卡精品| 午夜福利18| 久久天躁狠狠躁夜夜2o2o| 亚洲av成人精品一区久久| 大型黄色视频在线免费观看| 亚洲七黄色美女视频| 成熟少妇高潮喷水视频| 中文亚洲av片在线观看爽| 日本精品一区二区三区蜜桃| 午夜久久久久精精品| 亚洲中文字幕一区二区三区有码在线看| 男女边吃奶边做爰视频| 久久久久精品国产欧美久久久| 91久久精品电影网| 99久久无色码亚洲精品果冻| a级一级毛片免费在线观看| 色在线成人网| 成人无遮挡网站| 啦啦啦韩国在线观看视频| 97碰自拍视频| 国产精品久久视频播放| 久久亚洲国产成人精品v| 国产欧美日韩精品亚洲av| 久久久久性生活片| 三级经典国产精品| 久久久久久久午夜电影| 欧美高清性xxxxhd video| 搞女人的毛片| 欧美性猛交╳xxx乱大交人| 色尼玛亚洲综合影院| 在线观看免费视频日本深夜| 变态另类丝袜制服| 精品一区二区三区视频在线| 日本三级黄在线观看| 亚洲三级黄色毛片| 午夜久久久久精精品| 国产成人a区在线观看| 精品国内亚洲2022精品成人| 国产在视频线在精品| 欧美不卡视频在线免费观看| 欧美潮喷喷水| 亚洲国产精品合色在线| 久久精品国产亚洲av涩爱 | 亚洲久久久久久中文字幕| 一进一出抽搐动态| 一级毛片电影观看 | 色综合站精品国产| 午夜激情福利司机影院| 国产激情偷乱视频一区二区| 欧美bdsm另类| 日本一二三区视频观看| 日日摸夜夜添夜夜添av毛片| 国产精品一区二区三区四区久久| 亚洲精品456在线播放app| 日本-黄色视频高清免费观看| 成年女人永久免费观看视频| 最近的中文字幕免费完整| 欧美潮喷喷水| www日本黄色视频网| 精品久久久久久久末码| 日韩国内少妇激情av| 久久精品影院6| 国产69精品久久久久777片| 美女免费视频网站| 99热6这里只有精品| 欧美激情国产日韩精品一区| 国产男人的电影天堂91| 乱系列少妇在线播放| 国产成人精品久久久久久| 国产精品爽爽va在线观看网站| 久久久久久久久久成人| 成人三级黄色视频| 欧美日本亚洲视频在线播放| 久久人人爽人人片av| 精品久久久噜噜| 欧美成人免费av一区二区三区| 中文资源天堂在线| 免费在线观看影片大全网站| 91av网一区二区| 成人漫画全彩无遮挡| 老司机午夜福利在线观看视频| 国产av麻豆久久久久久久| 欧美高清性xxxxhd video| 亚洲成av人片在线播放无| 内射极品少妇av片p| 男女下面进入的视频免费午夜| 麻豆国产av国片精品| 一个人看视频在线观看www免费| 国产精品一区二区三区四区久久| 蜜桃久久精品国产亚洲av| 久久精品人妻少妇| 久久6这里有精品| 国产激情偷乱视频一区二区| 午夜影院日韩av| 99热6这里只有精品| 精品不卡国产一区二区三区| 免费大片18禁| 成人综合一区亚洲| 久久精品国产亚洲av香蕉五月| 国产精品嫩草影院av在线观看| 内射极品少妇av片p| 变态另类丝袜制服| 欧美3d第一页| 无遮挡黄片免费观看| 别揉我奶头~嗯~啊~动态视频| 网址你懂的国产日韩在线| 色哟哟·www| 欧美高清性xxxxhd video| 村上凉子中文字幕在线| 插阴视频在线观看视频| 欧美最黄视频在线播放免费| 国产精品国产三级国产av玫瑰| 欧美色欧美亚洲另类二区| 日本黄色视频三级网站网址| 女人十人毛片免费观看3o分钟| 国产在线男女| АⅤ资源中文在线天堂| 久久久久性生活片| 国语自产精品视频在线第100页| 久久精品久久久久久噜噜老黄 | 国产淫片久久久久久久久| 日本撒尿小便嘘嘘汇集6| 亚洲欧美精品综合久久99| 日本三级黄在线观看| 赤兔流量卡办理| 国产探花在线观看一区二区| 99久久九九国产精品国产免费| 我的老师免费观看完整版| 12—13女人毛片做爰片一| 丰满的人妻完整版| 一边摸一边抽搐一进一小说| 欧洲精品卡2卡3卡4卡5卡区| 熟女电影av网| 久久久久久久久久黄片| 午夜免费激情av| 成年女人毛片免费观看观看9| 啦啦啦啦在线视频资源| 欧美潮喷喷水| 日本黄色视频三级网站网址| 大型黄色视频在线免费观看| 亚洲精品色激情综合| 日韩欧美精品免费久久| 午夜福利成人在线免费观看| 亚洲三级黄色毛片| 欧美人与善性xxx| 欧美+日韩+精品| 欧美日韩在线观看h| 欧美精品国产亚洲| 国产精品久久久久久av不卡| 欧美丝袜亚洲另类| 成人精品一区二区免费| 一个人看视频在线观看www免费| 免费一级毛片在线播放高清视频| 看十八女毛片水多多多| 美女黄网站色视频| 欧美xxxx性猛交bbbb| 国产综合懂色| 国产在线男女| 美女大奶头视频| 国产黄色小视频在线观看| 国产精品一二三区在线看| 亚洲成a人片在线一区二区| 一本精品99久久精品77| 国产精品亚洲美女久久久| 神马国产精品三级电影在线观看| 日韩欧美三级三区| 夜夜爽天天搞| 乱系列少妇在线播放| 欧美3d第一页| 麻豆一二三区av精品| 欧美三级亚洲精品| 国产精品久久久久久精品电影| 麻豆国产97在线/欧美| 亚洲精品456在线播放app| 欧美日韩综合久久久久久| 3wmmmm亚洲av在线观看| 少妇猛男粗大的猛烈进出视频 | 一级毛片电影观看 | 少妇高潮的动态图| 久久久久久久午夜电影| 美女被艹到高潮喷水动态| 我的女老师完整版在线观看| 亚洲国产精品久久男人天堂| 日韩中字成人| 干丝袜人妻中文字幕| 九九在线视频观看精品| 日韩av在线大香蕉| 99久久九九国产精品国产免费| 国产精品三级大全| 精品人妻一区二区三区麻豆 | 少妇裸体淫交视频免费看高清| 国产精品电影一区二区三区| 我的女老师完整版在线观看| 直男gayav资源| 国产一区二区三区av在线 | 亚洲欧美清纯卡通| 国产白丝娇喘喷水9色精品| 亚洲av熟女| 国产美女午夜福利| 精品人妻熟女av久视频| 亚洲av免费高清在线观看| 欧美日本视频| 有码 亚洲区| 青春草视频在线免费观看| 国产精品,欧美在线| 欧美成人免费av一区二区三区| 日本与韩国留学比较| 国产成人aa在线观看| 身体一侧抽搐| 男人的好看免费观看在线视频| 熟妇人妻久久中文字幕3abv| 99九九线精品视频在线观看视频| 国产在线男女| 亚洲18禁久久av| 国产亚洲欧美98| 91午夜精品亚洲一区二区三区| 乱系列少妇在线播放| 我的老师免费观看完整版| 俺也久久电影网| 男人狂女人下面高潮的视频| 3wmmmm亚洲av在线观看| av在线播放精品| 欧美高清成人免费视频www| 精品乱码久久久久久99久播| 国产色爽女视频免费观看| 美女免费视频网站| 日本一二三区视频观看| 男女那种视频在线观看| 午夜福利在线在线| 国产成人a∨麻豆精品| 99久久成人亚洲精品观看| 免费观看在线日韩| 超碰av人人做人人爽久久| 淫妇啪啪啪对白视频| 色综合色国产| 国产一区二区在线观看日韩| 十八禁网站免费在线| a级毛片免费高清观看在线播放| 午夜老司机福利剧场| 免费人成在线观看视频色| 亚洲国产精品sss在线观看| 午夜福利视频1000在线观看| 国产激情偷乱视频一区二区| 99国产极品粉嫩在线观看| 亚洲婷婷狠狠爱综合网| 国产在线男女| 人人妻,人人澡人人爽秒播| 亚洲熟妇熟女久久| 亚洲天堂国产精品一区在线| 久久婷婷人人爽人人干人人爱| 成人亚洲精品av一区二区| www日本黄色视频网| 女的被弄到高潮叫床怎么办| 国产真实伦视频高清在线观看| 一级黄片播放器| av在线观看视频网站免费| 欧美色欧美亚洲另类二区| 在线观看一区二区三区| 午夜精品一区二区三区免费看| 嫩草影院精品99| 亚洲精品一卡2卡三卡4卡5卡| 可以在线观看的亚洲视频| 少妇被粗大猛烈的视频| 联通29元200g的流量卡| 女人十人毛片免费观看3o分钟| 寂寞人妻少妇视频99o| 女人被狂操c到高潮| 我的女老师完整版在线观看| 中国美白少妇内射xxxbb| 欧美xxxx黑人xx丫x性爽| 欧美日韩一区二区视频在线观看视频在线 | 男人狂女人下面高潮的视频| 12—13女人毛片做爰片一| 少妇的逼好多水| 欧美高清性xxxxhd video| 久久久久久九九精品二区国产| 天天躁日日操中文字幕| 亚洲图色成人| 亚洲精品一卡2卡三卡4卡5卡| 床上黄色一级片| 久久精品国产鲁丝片午夜精品| 久久精品人妻少妇| 亚洲高清免费不卡视频| 国产色婷婷99| 欧美又色又爽又黄视频| 97热精品久久久久久| 国产色爽女视频免费观看| 久久人人精品亚洲av| 老司机影院成人| 伦精品一区二区三区| 听说在线观看完整版免费高清| 色5月婷婷丁香| 天美传媒精品一区二区| 国产乱人偷精品视频| 自拍偷自拍亚洲精品老妇| 国产视频内射| av中文乱码字幕在线| 国产淫片久久久久久久久| 国产熟女欧美一区二区| 成人无遮挡网站| 国产熟女欧美一区二区| 简卡轻食公司| 人人妻,人人澡人人爽秒播| 国产亚洲欧美98| 少妇丰满av| 国产大屁股一区二区在线视频| 亚洲自偷自拍三级| 国产探花在线观看一区二区| 久久精品影院6| 国产精品一区二区免费欧美| 日本精品一区二区三区蜜桃| 成人综合一区亚洲| 国产成人福利小说| 亚洲丝袜综合中文字幕| 高清日韩中文字幕在线| 日韩大尺度精品在线看网址| 亚洲精品粉嫩美女一区| 成熟少妇高潮喷水视频| 日韩制服骚丝袜av| 精品久久久久久久久久免费视频| 哪里可以看免费的av片| 成人精品一区二区免费| 日本a在线网址| 欧美不卡视频在线免费观看| av视频在线观看入口| .国产精品久久| 在线观看午夜福利视频| 三级国产精品欧美在线观看| 欧美zozozo另类| 在线播放无遮挡| 露出奶头的视频| 搞女人的毛片| 日韩av在线大香蕉| 99国产极品粉嫩在线观看| 91精品国产九色| 久久精品夜夜夜夜夜久久蜜豆| 一本精品99久久精品77| 变态另类丝袜制服| 国产精品99久久久久久久久| 一个人观看的视频www高清免费观看| 亚洲经典国产精华液单| 日韩亚洲欧美综合| 日韩av不卡免费在线播放| 国内精品宾馆在线| 久久精品久久久久久噜噜老黄 | 99国产极品粉嫩在线观看| 欧美极品一区二区三区四区| 久久99热这里只有精品18| 久久人妻av系列| 国产精品爽爽va在线观看网站| 久久鲁丝午夜福利片| 亚洲va在线va天堂va国产| 国产精品综合久久久久久久免费| 三级毛片av免费| 婷婷精品国产亚洲av在线| 亚洲在线观看片| 日韩强制内射视频| 国产精品国产高清国产av|