• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Strain effects on the interfacial thermal conductance of graphene/h-BN heterostructure

    2022-10-09 07:25:02FngLiuYouKunGongRuiZouHuimingNingNingHuYoluLiuLingkWuFuhoMoShoyunFuChngYn
    Namo Materials Science 2022年3期

    Fng Liu ,YouKun Gong ,Rui Zou ,Huiming Ning ,Ning Hu ,Yolu Liu ,Lingk Wu,Fuho Mo,Shoyun Fu,Chng Yn

    a College of Aerospace Engineering,Chongqing University,Chongqing,400044,China

    b School of Mechanical Engineering,Hebei University of Technology,Tianjin,300401,China

    c State Key Laboratory of Reliability and Intelligence Electrical Equipment,Hebei University of Technology,Tianjin,300130,China

    d National Engineering Research Center for Technological Innovation Method and Tool,Hebei University of Technology,Tianjin,300401,China

    e College of Mechanical and Vehicle Engineering,Hunan University,Changsha,410082,China

    f School of Chemistry,Physics and Mechanical Engineering,Queensland University of Technology (QUT),Brisbane,QLD,4001,Australia

    Keywords:Graphene h-BN Heterostructure Strain engineering Interfacial thermal conductance NEMD

    ABSTRACT Previous experimental and computational results have confirmed that the thermal conductivity of a twodimensional (2D) material can be considerably affected by strain.Numerous attention has been paid to explore the relevant mechanisms.However,the strain effects on the interfacial thermal conductance (ITC) of 2D heterostructure have attracted little attention.Herein,the non-equilibrium molecular dynamics (NEMD) simulations were conducted to the graphene/hexagonal boron nitride (GR/h-BN) heterostructure to investigate the strain effects on the ITC.Three types of strains were considered,i.e.,tensile strain,compressive strain,and shear strain.The results indicate that the strain can adjust the ITC for the GR/h-BN heterostructure effectively,and the strain loading direction also influences the ITC.Generally,the tensile strain reduces the ITC of the heterostructure,in addition to the BN-C system at small tensile strain;both the compressive strain and shear strain increase the ITC,especially at a small strain.For the NB-C system,it is more sensitive to the strain loading direction and the yx shear strain of 0.06 is the most effective way to strengthen the ITC.Our results also show that the out-of-plane deformation weakens the in-plane vibration of atoms,leading to a reduction of the interfacial thermal energy transport.

    1.Introduction

    Since graphene (GR) was fabricated by Geim and Novoselov [1],tremendous attention has been attracted due to its excellent material characteristics [2–7].In recent years,many single-layered 2D materials have been found,e.g.,molybdenum disulfide (MoS2),black phosphorus(BP),tungsten diselenide (WSe2) as well as the h-BN [8–12].Among these 2D materials,insulator h-BN possesses promising material characteristics,for instance,outstanding mechanical properties and large thermal conductivity,which result in receiving extensive attention[13–16].Similar to graphene,2D h-BN possesses a one-atomic layer structure [17].Meanwhile,h-BN is an appropriate candidate for producing heterostructure with GR,not only because it has a similar honeycomb structure with GR,but also because it has small lattice mismatches with GR [18].After forming a 2D in-plane GR/h-BN heterostructure,it obtains adjustable electronic and magnetic characteristics[19–21],which can be applied to manufacture 2D devices,e.g.,bandpass filter,field-effect transistor (FET),quantum tunnelling transistor,thermoelectric device,LED,solar cell,etc.[22–26].

    Because of the formation of interfaces after combining the h-BN and GR,its interfacial thermal energy transport capacity becomes critical in determining the thermal characteristics of the GR/h-BN heterostructure.Relevant studies have confirmed that its interfacial thermal characteristics may impact by many factors,for instance,the system size,defect,temperature,doping,interface topography,and loading condition[27–31].For 2D materials,strain and deformation are common,especially,when they are assembled into nanodevices.Typically,two factors are thought to attribute to the strain and deformation,one from constraints imposed by device assembly,and the other from the application environments,e.g.,temperature or moisture changes [32].Recent investigations also indicate that strain engineering can effectively adjust the characteristics of materials,such as the optical and thermal properties[33–35].However,it should be noted that,for different 2D materials,the dependence of strain on the thermal characteristics is diverse.For some 2D materials,such as single-layered GR and MoS2,their thermal conductivities decrease with increasing tensile strain [36,37].In contrast,other 2D materials’ thermal conductivities increase with increasing tensile strain,such as Penta-SiN2[35].For these 2D materials,the diversity originates from the divergent strain dependences of the phonon-phonon scattering rates,heat capacity,and group velocity[32].

    Our previous work indicated that doping in the GR/h-BN heterostructure can strengthen the ITC,especially the N atoms doping [29].However,some other factors,such as the strain effect and loading direction,were not considered in our previous work,which may adjust the ITC.Relevant studies regarding the influences of strain on this heterostructure systems’ ITC have been carried out.Such as,Hong et al.[27]applied tensile strain to the GR/h-BN system and obtained that its interfacial thermal resistance(ITR)increases with increasing strain.This tendency has also been found in graphene/silicene monolayer heterostructures[28].Similarly,some critical factors have not been considered in these previous studies,such as shear strain and loading direction.Inspired by the above works,in this paper,how strain engineering influences the ITC for the GR/h-BN heterostructure are systematically investigated.Based on this reason,three different types of strain are considered,i.e.,tensile strain,compressive strain,and shear strain as well as the loading direction.In order to analyze the influences of strain on the ITC of GR/h-BN heterostructure,the non-equilibrium molecular dynamics (NEMD) simulations are applied.We believe this work can provide a fundamental understanding of the strain effects on the ITC of the GR/h-BN heterostructure and provide inspirations for the applications as well as the control of 2D in-plane GR/h-BN heterostructure nanodevices,especially the thermoelectric devices[38,39].

    2.Computational method and model

    The computational results were obtained by using the NEMD simulations in the large-scale molecular dynamics simulations (LAMMPS)[40] software package.For the C,N,and B atoms in our models,the interatomic interactions were computed by the Tersoff potential[41,42].In the calculation,the periodic boundary conditions (PBC) were considered except thez-axis (out-of-plane direction and using free boundary condition),and thex-axis as shown in Fig.1(a)was chosen as the heat flux direction.Meanwhile,two ends of the model were constrained after applying the corresponding strain.The conjugate gradient(CG)algorithm was implemented to minimize the energy of the systems.To eliminate the residual stress of the systems,the isothermal-isobaric(NPT) ensemble was conducted with a time step of 1 fs,the temperature and pressure for the ensemble were set as 300 K and 0 atm,respectively,and the relaxation last 0.5 ns,the above relaxation processes are similar to our previous works [43–46].After the NPT ensemble,a strain was conducted to the system under the canonical(NVT)ensemble with the same temperature and then relaxed the system for another 0.5 ns.As shown in Fig.1(a),to conduct the NEMD simulations a heat source and a heat sink were introduced,respectively.Using the Langevin thermostat[47],the heat source and heat sink were maintained at 330 K and 270 K,respectively.After a relaxation of~10 ns under the microcanonical (NVE) ensemble,stable temperature distribution in thex-axis(i.e.,heat flux direction) was produced,and the heat flux and temperature distribution of the last 4 ns were collected.To obtain accurate results,10–15 independent simulations were conducted to obtain the average results.

    Fig.1.Detailed diagram of the simulation system.(a) NEMD simulation model;two connection types at the interface: (b) BN-C system and (c) NB-C system.

    For the in-plane GR/h-BN heterostructure,two interface types are commonly generated during the fabrication of heterostructure,one is the GR connected with h-BN by a zigzag edge,and the other is the GR connected with h-BN through an armchair edge.As the zigzag linking edge is more easily formed than the armchair linking edge in the heterostructure system during the fabrication[48,49],and the zigzag linking edge is usually applied to study the interfacial thermal characteristics of the GR/h-BN heterostructure [29,30,50].Therefore,we only study the interfacial thermal characteristics for the GR/h-BN system with the zigzag linking edge at the interface.The computational models can be seen in Fig.1(b)and 1(c),corresponding to two connection types.At the interface,the C atoms connect with N atoms,as demonstrated in Fig.1(b),this model is named as BN-C system.Similarly,the model in Fig.1(c),where the C atoms connect with B atoms,is named as NB-C system.

    In this work,three different types of strains were considered for bothx-axis andy-axis to systematically investigate the strain effects on the ITC of the GR/h-BN heterostructure,i.e.,tensile strain,compressive strain,and shear strain,as presented in Fig.2.For all strains,the maximum strain was set as 0.12,which is less than the fracture strains of the GR and h-BN[51–54].

    3.Results and discussion

    The ITC is critical to the thermal properties of the heterostructure,which can be obtained by dividing the heat fluxJby the interfacial temperature difference ΔT,the detailed equation can be found in our previous reports[29,55].

    It is worth noting that all the strains are uniaxial,the biaxial strains are out of consideration here.The tensile/compressive strains are defined by the following equation,

    whereLordenotes the model's original size in the deformation direction,and ΔLrepresents the displacement in the deformation direction.

    For small deformation,the shear strain can be calculated as whereLprepresents the model's original length which is perpendicular to the deformation direction(for instance,they-direction of the system for thexyshear deformation),and ΔLsdenotes displacement in the shear orientation(for instance,along thex-axis in thexyshear deformation).

    To better understand the impact mechanisms of ITC under different strains,the analyses of phonon density of states (PDOS) or phonon vibration power spectrums (VPS) [55–58] for the system were also performed.The results of VPS or PDOS can be obtained by applying a Fourier transform to the VAF,i.e.,the atomic velocity autocorrelation function[55,56],

    whereTmeans the total simulation time,ω represents the frequency,v0andvtare the atomic velocity at the time of 0 andt,respectively,and〈v0·vt〉 denotes the VAF.

    Furthermore,in order to obtain the accurate quantification of the overlap for the VPS or PDOS,we calculated the value of overlapSfor the interfacial N,B,and C atoms,and theScan be obtained as follows [30,59],

    whereDGRrepresents the PDOS of C atoms,Dh-BNmeans the sum PDOS of B and N atoms,and the relevantDcan be calculated by Eq.(3).

    3.1.Uniaxial tensile strain

    Fig.2.Schematic of different strain loadings.Tension: (a) and (c);compression: (b) and (d);shear: (e) and (f).

    Fig.3.Variation of ITC under tensile strain.(a) Applied x-axial tensile strain;(b) applied y-axial tensile strain.

    Fig.3 shows the variations of ITC under different tensile strains for the BN-C and NB-C systems,and these variations are consistent with the reference [60].We can know that the ITC of the BN-C system is much larger than that of the NB-C system regardless of whether the strain is utilized or not.The proposed explanation is that the strength of the C–N bond is larger than that of the C–B bond [30].To better understand the potential mechanisms,we compared the PDOS of the interfacial N,B,and C atoms.Compared with the NB-C system,we can see that the C atoms have more PDOS overlaps with the N and B atoms in the BN-C system,as shown in Fig.4,especially at low frequency (i.e.,within the scope of 0–5 THz).We also analyzed the overlap value of PDOS for the strain-free system and obtained that theSof the BN-C system and NB-C system are 0.0187 and 0.0181,respectively.The largerSmeans more thermal energy can be transported across the interface,resulting in larger ITC for the BN-C system.It should be noted that for the BN-C system with thex-axial tensile strain,the ITC increases at small strains(i.e.,less than 0.02),and a similar phenomenon can be found in Ref.[61].The possible reason is that after applying small tensile strain,the distancel1between atoms 1–4 increases;however,the angel θ of atoms 2-1-3(or 5-4-6)and distancel2between atoms 5–6(or 2–3)decrease,as shown in Fig.5,which slightly increase the thermal energy transport between atoms 5–6 and 2–3.For deeper insight into the increase of ITC for BN-C under small tensile strain,the overlap of PDOS for the BN-C system was analyzed and found that the overlap of PDOS increases at 5–7 THz and 40–43 THz along with the increases ofS,as shown in Fig.6(a).Beyond the strain of 0.02,the ITC decreases as thex-axial tensile strain increases.From Fig.6(b),we can see that at largex-axial tensile strains,the overlap of PDOS degenerates at high frequencies.Meanwhile,from Figs.4(a) and Fig.6(b),we can see that the G-bands of the C,B,and N atoms become softened when the strain increases,which means a redshift for the G-band and a reduction of phonon group velocities[27,62],leading to degradation for the thermal energy transport across the interface.

    3.2.Uniaxial compressive strain

    To study the effects of compressive strain on the ITC for the heterostructure system,thex-andy-axial uniaxial compressive strains were applied to the systems,respectively,as shown in Fig.2(b) and (d).The results show that both the ITCs of the BN-C and NB-C systems increase first,as shown in Fig.7,then the ITCs decrease with the compressive strain after reaching the maximum.We also found that under they-axial compressive strain the ITCs of the BN-C and NB-C systems usually larger than those of the strain-free BN-C and NB-C systems.However,at largexaxial compressive strain,the ITCs of the BN-C(at the strain of 0.12)and NB-C systems (at the strain of 0.10) become smaller than those of the corresponding strain-free systems.The possible reason is ascribed to the different deformation modes for the heterostructure systems,as presented in the inset of Fig.7(a)-7(b).

    Because the in-plane GR/h-BN heterostructure has a single-layered 2D structure,after applying a small compressive strain to the heterostructure,a part of bonds between atoms are compressed,e.g.,for C atoms the bonds compressed from~1.425 ? to~1.375 ?,which increases the interactions between atoms and enhances the interfacial thermal energy transport capacity,resulting in the improvement of ITC.However,when the compressive strain increases,the compression of bonds does not continue.Without out-of-plane constraints,the heterostructure system produces an out-of-plane deformation,which decreases the in-plane vibration of atoms,leading to the reduction of ITC.At the same time,as shown in the inset of Fig.7(a)-7(b),the out-of-plane deformation increases with the compressive strain.We also observed that the out-of-plane deformation for the heterostructure system is dependant on the compressive direction.

    3.3.Shear strain

    Applying a shear strain to the freestanding GR/h-BN monolayer is challenging in experiments,to our best knowledge,the relevant studies have not been reported.In MD simulations a shear strain is easy to apply on the 2-D model.Therefore,the influences of shear strain on the ITC for the heterostructure system were also explored.In the current work,both thexyandyxshear strains were considered for the systems,as shown in Fig.2(e)and(f).It should be noted that we could not obtain stable results for the BN-C system with theyxshear strain,the possible reason is that the dramatic deformation in out-of-plane.Therefore,under theyxshear strain,we only discussed the effects of the shear strain on the ITC for the NB-C systems.As shown in Fig.8(a),the ITCs of the BN-C and NB-C systems increase and then decrease with thexyshear strain.The variations of ITC for the NB-C system under theyxshear strain are similar to the above discussion,as shown in Fig.8(b),i.e.,the ITC increases and then decreases with the strain.As under large shear strain,the heterostructure systems produce out-of-plane deformation,i.e.,wrinkle,as shown in Fig.9,which weakens the in-plane vibration of atoms,resulting in the reduction of ITC.

    Fig.4.PDOS of interfacial atoms for heterostructure.(a) BN-C system;(b) NB-C system.

    Fig.5.Atomics location variation under tensile strain.(a) Strain-free;(b) applied tensile strain.

    Fig.6.Representative PDOS of the BN-C system with different x-axial tensile strains.(a) 0.02;(b) 0.06.The higher frequency peaks denote the G-band.

    Fig.7.Variations of ITC under compressive strain.(a)Applied x-axial strain;(b)applied y-axial strain.The insets demonstrate the representative schematic of model deformation under different compressive strains,i.e.,0.02 and 0.10.

    Fig.8.Shear strain effects on the ITC of heterostructure systems.(a) Applied xy shear strain.

    For the BN-C heterostructure,compared with the corresponding strain-free system,the compressive strain andxyshear strain can enhance the ITC even at a large strain of 0.12,as shown in Figs.7 and 8(a).Meanwhile,we can see that the ITCs increase with the strain and then decrease after the critical value,as shown in Figs.7 and 8,the reason is that before the critical strain the system is mainly dominated by bond compression and small deformation.However,after the critical strain,the system is mainly dominated by large out-of-plane deformation,which reduces the interfacial thermal energy transport.For the NB-C system,by contrast,only they-axial compressive strain can enhance the ITC within the range of all strain values.Affect by the loading direction,the deformation of the NB-C system is different,as shown in Fig.9.Under this condition,as shown in Fig.8(a),thexyshear strain only enhances the ITC at a small strain(i.e.,<0.06).However,we can see from Fig.8(b)that theyxshear strain can enhance the ITC at a larger strain (i.e.,<0.10).It is worth noting that the error bars in Figs.7 and 8 are higher than Fig.3,the main reason is that the initial deformation location is random for the heterostructure systems under compressive strain and shear strain,which leads to the fluctuation of results.

    We also compared the maximum ITC for the heterostructure system under different strain types and corresponding strain values,as shown in Table 1.For the BN-C system,both the compressive strain and shear strain have similar enhancement effects on the ITC,and the loading direction has little influence on the enhancement.For the NB-C system,by contrast,both strain type and loading direction have large effects on theenhancement of ITC.It is also found that theyxshear strain can effectively improve the NB-C system's ITC.

    Table 1 Enhancement of ITC for the heterostructure systems under strain.

    Fig.9.Out-of-plane deformation of NB-C heterostructure systems.(a) Applied xy shear strain;(b) applied yx shear strain.

    4.Conclusion

    To systematically study the effects of strain on the ITC for the GR/h-BN heterostructures(including two interface types,i.e.,BN-C system and NB-C system),three different types of strain were conducted to the systems.Through the NEMD simulations,we found that the ITC can be controlled by strain engineering.Generally,the tensile strains degrade the ITC of the GR/h-BN heterostructure.It should be noted that a small tensile strain (<0.02) can slightly improve the ITC of the BN-C system.From the analyses,we can see that both the compressive strain and shear strain can enhance the ITC of the BN-C system.However,for the NB-C system,only they-axial compressive strain can enhance the ITC in the strain range of 0.0–0.12;thex-axial compressive strain,as well as the shear strain,just improve the ITC at a relatively small strain range.Compared with the BN-C system,the NB-C system is more sensitive to the strain loading direction,and theyxshear strain of 0.06 is the most effective way to enhance its ITC.The results also show that the out-ofplane deformation weakens the in-plane vibration of atoms,leading to a reduction of ITC.Our investigation may provide a fundamental understanding of the strain effects on the ITC of the GR/h-BN heterostructure and serves as theoretical guidance for the applications and control of thermoelectric devices.

    Declaration of competing interest

    The authors declare that they have no conflict of interest.

    Acknowledgments

    This research was funded by the National Natural Science Foundation of China (11902056,11632004,11902053,and U1864208),the National Key Research and Development Program of China(2018YFC1105800),the National Science and Technology Major Project(2017-VII-0011-0106),the Key Program for International Science and Technology Cooperation Projects of the Ministry of Science and Technology of China(2016YFE0125900),the Key Project of Natural Science Foundation of CQ CSTC(cstc2017jcyjBX0063),Science and Technology Planning Project of Tianjin(20ZYJDJC00030),Key Program of Research and Development of Hebei Province (202030507040009),the Fund for Innovative Research Groups of Natural Science Foundation of Hebei Province (A2020202002) and the Key Project of Natural Science Foundation of Tianjin (S20ZDF077),we also want to thanks the China Postdoctoral Science Foundation funded project (2019M653334 and 2020M680842).

    一级二级三级毛片免费看| 级片在线观看| 免费av不卡在线播放| 日本与韩国留学比较| 变态另类丝袜制服| 好男人在线观看高清免费视频| 精品久久久久久成人av| 伦理电影大哥的女人| 2022亚洲国产成人精品| 色综合站精品国产| 国产黄色视频一区二区在线观看 | 亚洲一级一片aⅴ在线观看| 69av精品久久久久久| 麻豆av噜噜一区二区三区| 赤兔流量卡办理| 两个人的视频大全免费| 久久久精品94久久精品| a级毛色黄片| 欧美变态另类bdsm刘玥| 成人毛片a级毛片在线播放| 亚洲综合色惰| 禁无遮挡网站| 联通29元200g的流量卡| 久久久久久九九精品二区国产| 亚州av有码| 成人午夜高清在线视频| 午夜福利成人在线免费观看| 波野结衣二区三区在线| 高清日韩中文字幕在线| 久久6这里有精品| 嘟嘟电影网在线观看| 欧美人与善性xxx| 国产精品福利在线免费观看| 欧美性猛交╳xxx乱大交人| 热99re8久久精品国产| 免费一级毛片在线播放高清视频| 午夜日本视频在线| 国产精品99久久久久久久久| 中文天堂在线官网| or卡值多少钱| 看黄色毛片网站| 欧美一区二区精品小视频在线| av又黄又爽大尺度在线免费看 | 久久亚洲国产成人精品v| 又粗又爽又猛毛片免费看| 高清av免费在线| 午夜免费激情av| 老女人水多毛片| 最近中文字幕2019免费版| 色噜噜av男人的天堂激情| 亚洲欧美日韩卡通动漫| 老司机福利观看| 国产精品乱码一区二三区的特点| 婷婷六月久久综合丁香| 最后的刺客免费高清国语| 日本三级黄在线观看| 看十八女毛片水多多多| 久久婷婷人人爽人人干人人爱| 久久韩国三级中文字幕| 99热这里只有精品一区| 色网站视频免费| 久久这里只有精品中国| 97热精品久久久久久| 韩国高清视频一区二区三区| 成年版毛片免费区| 97超视频在线观看视频| 国产美女午夜福利| 久久久久久久久久成人| 欧美日韩在线观看h| 免费看美女性在线毛片视频| 精品久久久久久成人av| 大话2 男鬼变身卡| 欧美一区二区国产精品久久精品| 午夜爱爱视频在线播放| 国产亚洲精品av在线| 日韩精品青青久久久久久| 色哟哟·www| 国产麻豆成人av免费视频| 午夜视频国产福利| 午夜福利在线在线| 少妇猛男粗大的猛烈进出视频 | 国产v大片淫在线免费观看| 少妇熟女aⅴ在线视频| 日本色播在线视频| 久久久久九九精品影院| 国产激情偷乱视频一区二区| 日韩人妻高清精品专区| 观看美女的网站| 特大巨黑吊av在线直播| 国产老妇女一区| 七月丁香在线播放| 99热6这里只有精品| 亚洲三级黄色毛片| 亚洲精品久久久久久婷婷小说 | 亚洲丝袜综合中文字幕| 村上凉子中文字幕在线| av在线播放精品| 午夜精品国产一区二区电影 | 高清在线视频一区二区三区 | 一夜夜www| 99热这里只有是精品在线观看| 国产色婷婷99| 中文字幕av成人在线电影| 听说在线观看完整版免费高清| 韩国高清视频一区二区三区| 亚洲成人av在线免费| 日韩欧美三级三区| 免费黄色在线免费观看| www.av在线官网国产| 国产伦精品一区二区三区视频9| 插阴视频在线观看视频| 美女被艹到高潮喷水动态| 亚洲精品自拍成人| 国产黄片视频在线免费观看| 久久人妻av系列| 身体一侧抽搐| 免费大片18禁| 国产久久久一区二区三区| 99视频精品全部免费 在线| 亚州av有码| 欧美xxxx性猛交bbbb| 欧美激情国产日韩精品一区| 亚洲一级一片aⅴ在线观看| 99久久无色码亚洲精品果冻| 亚洲va在线va天堂va国产| 99热这里只有是精品在线观看| 国产乱人偷精品视频| 老师上课跳d突然被开到最大视频| 亚洲最大成人中文| 午夜日本视频在线| 精品午夜福利在线看| 最近手机中文字幕大全| 18禁动态无遮挡网站| 伦精品一区二区三区| 又粗又爽又猛毛片免费看| 亚洲自偷自拍三级| 一区二区三区免费毛片| 午夜福利成人在线免费观看| 久久久久免费精品人妻一区二区| 国内精品美女久久久久久| 99久久中文字幕三级久久日本| 久久精品久久精品一区二区三区| 久久久精品大字幕| 97人妻精品一区二区三区麻豆| 亚洲高清免费不卡视频| 99热精品在线国产| 3wmmmm亚洲av在线观看| 好男人在线观看高清免费视频| 亚洲欧美成人精品一区二区| 七月丁香在线播放| 成人鲁丝片一二三区免费| 免费无遮挡裸体视频| 日韩欧美三级三区| 久久草成人影院| 成人亚洲欧美一区二区av| 亚洲av成人av| 嘟嘟电影网在线观看| 熟女电影av网| 免费看美女性在线毛片视频| 国产又黄又爽又无遮挡在线| 深夜a级毛片| 国产精品久久视频播放| 久久这里有精品视频免费| 亚洲成人精品中文字幕电影| 最近手机中文字幕大全| 伊人久久精品亚洲午夜| 又粗又硬又长又爽又黄的视频| 久久久久性生活片| 亚洲av日韩在线播放| 97在线视频观看| 亚洲精品456在线播放app| 日韩,欧美,国产一区二区三区 | 国产片特级美女逼逼视频| 中文天堂在线官网| 亚洲成人中文字幕在线播放| 一级毛片久久久久久久久女| 狂野欧美白嫩少妇大欣赏| 啦啦啦韩国在线观看视频| 永久免费av网站大全| 国产成年人精品一区二区| 日韩欧美精品免费久久| 亚洲美女搞黄在线观看| 国内精品一区二区在线观看| 日本色播在线视频| av视频在线观看入口| 如何舔出高潮| 日韩国内少妇激情av| 国产精品无大码| 乱人视频在线观看| 99热6这里只有精品| 人人妻人人看人人澡| 欧美又色又爽又黄视频| 一本久久精品| 日韩国内少妇激情av| 亚洲自偷自拍三级| 内地一区二区视频在线| 欧美日本亚洲视频在线播放| 国内精品宾馆在线| 欧美不卡视频在线免费观看| 亚洲av电影在线观看一区二区三区 | 欧美bdsm另类| 在现免费观看毛片| .国产精品久久| 久久精品综合一区二区三区| 午夜精品国产一区二区电影 | 久久久久久久久中文| 午夜a级毛片| 亚洲欧美中文字幕日韩二区| 天天一区二区日本电影三级| 一级毛片电影观看 | 美女大奶头视频| 能在线免费看毛片的网站| 日韩一区二区视频免费看| 国内揄拍国产精品人妻在线| 美女高潮的动态| 全区人妻精品视频| 午夜亚洲福利在线播放| 免费一级毛片在线播放高清视频| 国内揄拍国产精品人妻在线| 麻豆精品久久久久久蜜桃| 天堂av国产一区二区熟女人妻| 色5月婷婷丁香| 亚洲av电影不卡..在线观看| 欧美97在线视频| 日本熟妇午夜| 免费观看a级毛片全部| 一区二区三区四区激情视频| 国产精品麻豆人妻色哟哟久久 | 国产精品一区二区在线观看99 | 国产成人精品久久久久久| 亚洲国产欧美在线一区| 最近的中文字幕免费完整| 久久这里有精品视频免费| av国产免费在线观看| 搡老妇女老女人老熟妇| 免费黄色在线免费观看| 成人欧美大片| 午夜福利网站1000一区二区三区| 日韩欧美三级三区| 一级毛片我不卡| 精品久久久久久久人妻蜜臀av| 国产 一区精品| 日韩高清综合在线| 欧美97在线视频| 亚洲欧美精品专区久久| 亚洲五月天丁香| 高清在线视频一区二区三区 | 在线观看一区二区三区| 性色avwww在线观看| 久久精品熟女亚洲av麻豆精品 | 久99久视频精品免费| 成人综合一区亚洲| 伦精品一区二区三区| 日韩人妻高清精品专区| 欧美性猛交黑人性爽| 国产片特级美女逼逼视频| 亚洲国产精品sss在线观看| 一区二区三区四区激情视频| 99久国产av精品| 久久久久久久久久久免费av| 大话2 男鬼变身卡| 精品午夜福利在线看| 亚洲婷婷狠狠爱综合网| 麻豆乱淫一区二区| 国产精品99久久久久久久久| 久久这里只有精品中国| 国内精品宾馆在线| 久久久久久久久中文| 哪个播放器可以免费观看大片| 国产黄色小视频在线观看| 99热精品在线国产| 亚洲av福利一区| 色尼玛亚洲综合影院| 亚洲国产精品sss在线观看| 久久久色成人| 久久精品91蜜桃| 久久6这里有精品| 国产精品不卡视频一区二区| 亚洲av成人av| 黄色欧美视频在线观看| 日韩三级伦理在线观看| 国产在视频线在精品| 91av网一区二区| 日韩 亚洲 欧美在线| 欧美日韩综合久久久久久| 国产黄片视频在线免费观看| 熟妇人妻久久中文字幕3abv| 青青草视频在线视频观看| 成人欧美大片| 精品久久久久久久久av| 啦啦啦观看免费观看视频高清| 亚洲av成人精品一二三区| 婷婷色av中文字幕| 欧美日韩在线观看h| 热99re8久久精品国产| 老司机影院毛片| 床上黄色一级片| 噜噜噜噜噜久久久久久91| 中文字幕精品亚洲无线码一区| 国产探花在线观看一区二区| 寂寞人妻少妇视频99o| 欧美性感艳星| 国产精品永久免费网站| 亚洲激情五月婷婷啪啪| 青春草亚洲视频在线观看| 亚洲精品456在线播放app| 中文资源天堂在线| 日韩精品有码人妻一区| 亚洲精品国产av成人精品| 国产精品野战在线观看| 免费播放大片免费观看视频在线观看 | 久久99精品国语久久久| 日韩成人av中文字幕在线观看| 婷婷色av中文字幕| 中文资源天堂在线| 黄片wwwwww| 成人午夜高清在线视频| 国产精品久久久久久精品电影小说 | 午夜亚洲福利在线播放| 欧美成人午夜免费资源| 欧美+日韩+精品| 只有这里有精品99| 日日摸夜夜添夜夜爱| 韩国av在线不卡| 国产成人午夜福利电影在线观看| 长腿黑丝高跟| 亚洲人成网站高清观看| 国产精品一及| 观看免费一级毛片| 亚洲一级一片aⅴ在线观看| 亚洲精品一区蜜桃| 色综合亚洲欧美另类图片| 亚洲国产成人一精品久久久| 国产真实伦视频高清在线观看| 午夜激情欧美在线| 日日啪夜夜撸| 啦啦啦啦在线视频资源| 国产一区二区三区av在线| 99热6这里只有精品| 天天躁夜夜躁狠狠久久av| 久久久国产成人免费| 精品熟女少妇av免费看| 亚洲综合精品二区| 你懂的网址亚洲精品在线观看 | 人妻夜夜爽99麻豆av| 毛片女人毛片| 亚洲av日韩在线播放| 亚洲最大成人手机在线| 午夜福利在线观看免费完整高清在| 一区二区三区乱码不卡18| 一级黄色大片毛片| 性色avwww在线观看| 三级男女做爰猛烈吃奶摸视频| 99久久无色码亚洲精品果冻| 在线a可以看的网站| 91久久精品国产一区二区成人| 搞女人的毛片| 亚洲欧美日韩卡通动漫| 国产精品1区2区在线观看.| 性插视频无遮挡在线免费观看| 亚洲色图av天堂| 男女视频在线观看网站免费| av福利片在线观看| 国产精华一区二区三区| 午夜福利网站1000一区二区三区| 最近2019中文字幕mv第一页| 久久久亚洲精品成人影院| 国产美女午夜福利| 亚洲精品,欧美精品| 久久99热6这里只有精品| 自拍偷自拍亚洲精品老妇| 99热这里只有是精品在线观看| 国产亚洲5aaaaa淫片| 日韩一区二区三区影片| 村上凉子中文字幕在线| 亚洲av电影不卡..在线观看| 九九久久精品国产亚洲av麻豆| 99久国产av精品| 久久国产乱子免费精品| 亚洲人成网站在线播| 国内揄拍国产精品人妻在线| 乱码一卡2卡4卡精品| 爱豆传媒免费全集在线观看| 可以在线观看毛片的网站| 男女边吃奶边做爰视频| 可以在线观看毛片的网站| 男女边吃奶边做爰视频| 色5月婷婷丁香| 国产黄色小视频在线观看| 日本熟妇午夜| videossex国产| 高清午夜精品一区二区三区| av女优亚洲男人天堂| 国内少妇人妻偷人精品xxx网站| 国产黄色视频一区二区在线观看 | 欧美成人午夜免费资源| 免费不卡的大黄色大毛片视频在线观看 | 蜜桃久久精品国产亚洲av| 少妇被粗大猛烈的视频| 欧美另类亚洲清纯唯美| 99热网站在线观看| 欧美一级a爱片免费观看看| 精品久久国产蜜桃| 91狼人影院| 免费观看人在逋| 看免费成人av毛片| 18禁裸乳无遮挡免费网站照片| 亚洲电影在线观看av| 久久午夜福利片| 亚洲国产高清在线一区二区三| 亚洲国产最新在线播放| 日本黄大片高清| 好男人在线观看高清免费视频| 午夜福利高清视频| 国产视频内射| 精品国产三级普通话版| 日本一本二区三区精品| 亚洲国产欧美人成| 国产伦一二天堂av在线观看| 丝袜美腿在线中文| 国产精品久久久久久久电影| 国产美女午夜福利| 成人三级黄色视频| av黄色大香蕉| 男女边吃奶边做爰视频| 亚洲,欧美,日韩| 亚洲国产精品成人综合色| 老司机影院毛片| 亚洲av免费高清在线观看| 天天躁夜夜躁狠狠久久av| 国产亚洲一区二区精品| 草草在线视频免费看| videos熟女内射| 久久精品影院6| 精品久久久久久久人妻蜜臀av| 18禁在线播放成人免费| 一个人看的www免费观看视频| 最近手机中文字幕大全| 亚洲精品亚洲一区二区| 18禁动态无遮挡网站| 久久久久久久久大av| 午夜精品一区二区三区免费看| 国产精品日韩av在线免费观看| 国产亚洲精品av在线| 亚洲欧美日韩卡通动漫| 日本-黄色视频高清免费观看| 亚洲欧美中文字幕日韩二区| 欧美日韩在线观看h| 国产久久久一区二区三区| 五月玫瑰六月丁香| 中国美白少妇内射xxxbb| 69av精品久久久久久| 国产精品久久久久久久电影| 久久精品夜色国产| 男人舔女人下体高潮全视频| 真实男女啪啪啪动态图| 中文字幕熟女人妻在线| 国产黄片美女视频| 国产精品久久久久久精品电影小说 | 1024手机看黄色片| 免费看a级黄色片| 蜜桃久久精品国产亚洲av| 国产欧美另类精品又又久久亚洲欧美| 乱码一卡2卡4卡精品| 国产精品一及| 午夜免费男女啪啪视频观看| 国产伦精品一区二区三区视频9| 亚洲在线自拍视频| 嫩草影院精品99| 国产精品.久久久| 日本一二三区视频观看| 日产精品乱码卡一卡2卡三| 久久久久久久国产电影| 亚洲自偷自拍三级| 午夜免费男女啪啪视频观看| 免费大片18禁| 中文亚洲av片在线观看爽| 欧美xxxx性猛交bbbb| 婷婷色综合大香蕉| 国产成人a区在线观看| 久久久精品欧美日韩精品| 国产毛片a区久久久久| 美女cb高潮喷水在线观看| 亚洲av日韩在线播放| 最近2019中文字幕mv第一页| 久久精品久久久久久噜噜老黄 | 欧美性感艳星| 波野结衣二区三区在线| 简卡轻食公司| 国产精品福利在线免费观看| 乱码一卡2卡4卡精品| 日日摸夜夜添夜夜添av毛片| 女人十人毛片免费观看3o分钟| 全区人妻精品视频| 青春草国产在线视频| 精品久久久久久电影网 | 青青草视频在线视频观看| .国产精品久久| 成人av在线播放网站| 国产一区二区三区av在线| videos熟女内射| 久久精品综合一区二区三区| 人妻制服诱惑在线中文字幕| 亚洲av免费高清在线观看| av播播在线观看一区| 91精品国产九色| 精品一区二区免费观看| 亚洲av中文字字幕乱码综合| 一个人观看的视频www高清免费观看| 天堂中文最新版在线下载 | 视频中文字幕在线观看| 欧美日韩一区二区视频在线观看视频在线 | av免费观看日本| 国产一区有黄有色的免费视频 | 国产精品久久视频播放| 日韩精品青青久久久久久| 亚洲精品乱码久久久v下载方式| 天堂√8在线中文| 日本熟妇午夜| 99在线视频只有这里精品首页| 少妇人妻一区二区三区视频| 国产在视频线在精品| 久久久精品欧美日韩精品| 国产高清不卡午夜福利| 久久久久性生活片| 久久久久久久久大av| 91精品一卡2卡3卡4卡| av国产久精品久网站免费入址| 日韩一本色道免费dvd| 亚洲精品乱码久久久v下载方式| 亚洲国产欧美人成| 亚洲成色77777| 三级毛片av免费| 99久久精品热视频| 亚洲成av人片在线播放无| videossex国产| 国产精品国产三级专区第一集| av黄色大香蕉| 偷拍熟女少妇极品色| 国产av码专区亚洲av| 美女高潮的动态| 黑人高潮一二区| 亚洲国产日韩欧美精品在线观看| 亚洲五月天丁香| 日日啪夜夜撸| 真实男女啪啪啪动态图| 日韩成人av中文字幕在线观看| 寂寞人妻少妇视频99o| 晚上一个人看的免费电影| 变态另类丝袜制服| 亚洲av二区三区四区| 亚洲欧美一区二区三区国产| 久久婷婷人人爽人人干人人爱| 国产又色又爽无遮挡免| 一级毛片我不卡| 亚洲自拍偷在线| 国产免费又黄又爽又色| 丝袜美腿在线中文| 亚洲av中文av极速乱| av黄色大香蕉| 午夜亚洲福利在线播放| 永久免费av网站大全| 国产精品久久电影中文字幕| 男女国产视频网站| 色网站视频免费| 亚洲一区高清亚洲精品| 国产一区亚洲一区在线观看| 人妻制服诱惑在线中文字幕| 久99久视频精品免费| 日韩制服骚丝袜av| 亚洲精华国产精华液的使用体验| 午夜福利视频1000在线观看| 五月伊人婷婷丁香| 麻豆一二三区av精品| 日韩高清综合在线| 美女大奶头视频| 日韩一区二区视频免费看| 国产精品久久视频播放| 黄片无遮挡物在线观看| 久久精品熟女亚洲av麻豆精品 | 久久精品夜色国产| 国产精品,欧美在线| 一个人看视频在线观看www免费| 国产人妻一区二区三区在| 亚洲欧美成人综合另类久久久 | 午夜福利在线观看吧| 国产精品福利在线免费观看| 青春草视频在线免费观看| 亚洲高清免费不卡视频| 国产午夜精品久久久久久一区二区三区| 日韩视频在线欧美| 99久久无色码亚洲精品果冻| 日本五十路高清| 国产色婷婷99| 18禁在线无遮挡免费观看视频| 只有这里有精品99| 精品国内亚洲2022精品成人| 美女内射精品一级片tv| 国产一区二区三区av在线| 国产精品野战在线观看| 国语对白做爰xxxⅹ性视频网站| av免费观看日本| 人人妻人人看人人澡| 99久国产av精品国产电影| 看非洲黑人一级黄片| 97超碰精品成人国产| 好男人在线观看高清免费视频| 久久婷婷人人爽人人干人人爱| 欧美+日韩+精品| 最近2019中文字幕mv第一页| 免费不卡的大黄色大毛片视频在线观看 | 在线天堂最新版资源| 中文字幕亚洲精品专区| 乱人视频在线观看| 欧美精品一区二区大全|