• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Smart Clothing Fabric Color Matching with Reference to Popular Colors

    2022-09-29 01:46:54ZHANGYani張亞妮ZHUANGJianqiang莊劍強(qiáng)HUANGRongDONGAihua董愛(ài)華YUANHaodong袁浩東
    關(guān)鍵詞:愛(ài)華

    ZHANG Yani(張亞妮), ZHUANG Jianqiang(莊劍強(qiáng)), HUANG Rong(黃 榮), 2*, DONG Aihua (董愛(ài)華), 2, YUAN Haodong (袁浩東), 2

    1 College of Information Science and Technology, Donghua University, Shanghai 201620, China

    2 Engineering Research Center of Digitized Textile & Fashion Technology, Ministry of Education, Donghua University, Shanghai 201620, China

    Abstract: Color economy and market fashion trend have an increasing impact on clothing fabric color matching. Therefore, a smart clothing fabric color matching system with reference to popular colors is designed to realize the diversification of clothing color matching, which includes a palette generation module and a clothing fabrics-palette color matching network (CF-PCN). Firstly, palette generation module generates palettes referring popular colors while maintains color styles of clothing fabrics. Secondly, CF-PCN generates color matching images containing color information of palettes. The experimental results show that the color matching system has a higher average pixel ratio of palette colors and contains more palette color information. It demonstrates that the system achieves color matching innovation referring popular colors while retaining color style of clothing brands and provides designers with appropriate color matching solutions.

    Key words: popular color; clothing fabric color matching; support vector machine (SVM); discrete particle swarm optimization algorithm; generative adversarial network

    Introduction

    Clothing and its fabric color matching is of great importance to the competitiveness of brands. In the field of clothing fabric color matching, popular colors are gaining more and more attention from clothing brands and designers[1]. Popular colors are predicted by international trend experts and published on well-known trend websites such as Worth Global Style Network (WGSN), which represents popular trends, reflects the preferred colors of the public to some extent and is important for clothing brand sales[2]. As an element of clothing fashion, popular colors can promote and lead consumer behavior and improve the competitiveness of brands. Whenever a new sales season comes, brand clothing will replace the old products with the new ones in order to attract customers, and the selection of popular colors for clothing fabric color matching is an important tool. A seasonal popular colors often include more than a dozen. How to choose the right brand color among them poses a challenge to designers. Most of the existing researches on popular colors focus on analyzing the color characteristics, but little attention has been paid to the method of selecting color from popular colors for clothing brands.

    In addition, clothing brands have unique clothing styles including color styles as a way to establish consumer loyalty to the brands. Seasonal popular colors can attract customers to buy new clothes in stores, while keeping the color style of clothes unchanged can build customers’ loyalty to the brand and thus enhance the competitiveness of the clothing brand. Therefore, when designers develop a suitable color palette for clothing fabrics with reference to popular colors, they may consider maintaining the original style characteristics of the clothing brand while pursue color innovation to attract consumers.

    Currently, there are three main research directions in the field of color matching of clothing fabrics, in terms of color harmony theory, knowledge engineering theory and intelligent technology, respectively[3 -5]. The first two traditional methods rely on the designer’s professional knowledge and manual operation taking time and effort. Therefore, using intelligent technology for automatic color matching of clothing fabrics by means of intelligent algorithms and artificial intelligence has become a hot topic of research for scholars at home and abroad.

    Changetal.[6]proposed a color transfer algorithm for recoloring images using palettes. Zhangetal.[7]set up convolutional neural networks to directly map palettes in the library for color matching. The above smart color matching models improved the color matching efficiency of clothing fabrics, but their color selection mostly came from expert libraries and databases, and little attention was given to popular colors and clothing fabric styles of certain brand.

    This paper proposes a smart clothing fabric color matching system with reference to popular colors. Firstly, a palette generation module consisting of a support vector machine (SVM)-based clothing fabric style classification model and a popular color selection model is designed. The purpose of the module is to select the color palettes with color innovation from the seasonal popular colors on the basis of maintaining the original color style of clothing brands. Secondly, the clothing fabrics-palette color matching network (CF-PCN) module is designed. The CF-PCN designs a U-Net architecture based main color matching network and a conditional network to color the clothing fabric with popular color palettes. In this paper, intelligent algorithms and artificial intelligence technology in terms of SVM, the discrete particle swarm optimization algorithm, and the conditional generative adversarial network are employed to match the color of clothing fabrics with reference to popular colors, providing an exploration strategy in the field of clothing color matching.

    The rest of the paper are organized as follows. Section 1 discusses the color palette generation module with reference to popular colors. Section 2 illustrates the working theme of CF-PCN and shows the experimental results. Section 3 draws the conclusions.

    1 Color Palette Generation Module with Reference to Popular Colors

    The overall structure diagram of the color palette generation module with reference to popular colors is shown in Fig. 1. The original color style of clothing fabric for one certain brand is discriminated by SVM-based clothing fabric style classification model, and then the popular color selection model based on discrete particle swarm optimization algorithm is designed to select the popular color palettes from the seasonal popular colors.

    Fig. 1 Structure diagram of color palette generation module with reference to popular colors

    1.1 Color style of clothing fabric and popular colors

    The color style of clothing fabric classification method adopts the language image coordinate system proposed by Kobayashi[8]. According to 5-color combinations in clothing fabric, the language image coordinate system classifies color styles of clothing fabric into 16 categories, for example, rough, dynamic, luxurious,etc. Each category has hundreds of combinations. Table 1 shows 7 categories and their representative 5-color combination samples. Full table of 16 categories is shown in Appendix A.

    Table 1 Clothing fabric style table in language image coordinate system (7 categories)

    The popular colors chosen for this paper are 14 seasonal popular colors in the spring/summer of 2021 released by the WGSN trend agency[9], as shown in Fig. 2.

    Fig. 2 Popular color chart the spring/summer of 2021

    1.2 SVM-based clothing fabric style classification model

    The SVM-based clothing fabric style classification model is designed to classify the original color style of clothing fabrics for one certain brand.K-means clustering algorithm and SVM model are engaged to extract 5 main colors of the original clothing fabric and discriminate its style respectively.

    K-means clustering algorithm is engaged to extract 5 main colors from the image of the original clothing fabric for one certain brand. Firstly,Kclass centers (Kis 5 in this paper) are randomly selected in the image, and the Euclidean distance of the color features in terms of RGB from each pixel in the image to the 5 class centers is calculated. Each pixel is assigned to its nearest class center. After that, the mean location of pixels belonging to one class center is calculated and set as the new class center. The procedure repeats iteratively until 5 class centers change no more. Five main colors of the original brand clothing fabric are obtained. The combined features in RGB[10], hue saturation value (HSV[11]) and Lab[12]color space of the above 5 main colors are set as the input to SVM-based clothing fabric style classification model.

    The SVM model is a linear binary classifier with maximum interval in the feature space[13]. In this paper, the SVM binary classification is expanded into 16 classifications by a one-to-one approach, corresponding to 16 color style of clothing fabrics. The SVM models are trained by combining these 16 classifications two by two, for a total of 120 models. Equation (1) shows the training formulation.

    (1)

    1.3 Popular color selection model based on discrete particle swarm optimization algorithm

    Popular color selection model based on discrete particle swarm optimization algorithm is designed to realize the innovation of color matching with seasonal popular colors while retaining the original color style of clothing fabrics for one certain brand. In the discrete particle swarm optimization algorithm[14], the particle encoding, corresponding fitness function and constraint are formulated to select the optimal 5-color popular palette among the seasonal popular colors.

    The discrete particles designed in this paper are binary encoded and 14-dimension matrix particle is set for 14 popular colors in the spring/summer of 2021 in Fig. 2. In the matrix, 1 and 0 means whether the color is selected or not, respectively. One particle represents a 5-color popular color palette. Figure 3 gives an example of the particle encoding [1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0], its corresponding color and the 5-color palette.

    Fig. 3 Particle encoding correspondence table

    Fig. 4 Overall structure diagram of CF-PCN: (a) generative network G1; (b) discriminatory network D1

    Fitness function and constraints are defined to pursue color matching innovation and maintain brand color, respectively.

    In order to realize the innovation of color matching, the fitness functionJis designed to maximize the color transformation between the original clothing fabric image of the brand and the generated 5-color palette. The fitness function is defined as follows: sum up the Euclidean distance among the 5 main colors of the original clothing fabric image and the generated 5-color palette normalized in RGB color space. Besides, the difference of hueHchannel normalized in HSV color space is set as the offset term inJ, shown as

    (2)

    where,R′i,G′i, andB′iare the values of R, G and B of theith main color in the original clothing fabric image;Ri,GiandBiare the R, G and B of theith color in the generated 5-color popular palette;H′irepresents theHvalue of theith color in the 5-color popular palette; the hyper parameterα= 0.5.

    The constraint condition is to maintain the color style of clothing fabric, and the formula is shown as

    SSVM(m)=x,

    (3)

    wheremis the 5-color popular palette generated in the algorithm,SSVM(m)represents its style category obtained by the SVM model designed in section 1.2, andxrepresents the color style category of the original clothing fabric for the brand. Only the particles whose 5-color popular palette is consistence to the original clothing fabric for the brand in the style will be alive and join in the iteration in the algorithm.

    2 CF-PCN Module

    The CF-PCN module generates clothing fabric color matching images according to the optimal solution of 5-color popular palette. CF-PCN is a conditional generative adversarial network, which includes a generative network and a discriminatory network. The former one is composed of a U-Net structure-based main color matching network and a conditional network. The latter one is a classier.

    2.1 Generative network of CF-PCN

    The purpose of the generative network is to make the generated clothing fabric color matching image close to the expected clothing fabric color matching image as much as possible. The generative networkG1consists of a main color matching network and a conditional network. Figure 4(a) shows the structure ofG1.

    The upper part in Fig. 4(a) is a conditional network. It is composed of three 3-kernel 2-step convolutional layers and one 3-kernel 1-step convolutional layer. The bottom part in Fig. 4(a) is the main color matching network. It adopts the U-Net architecture with eight 3×3 convolutional layers and three 4×4 convolutional layers[15]. Its skip structure could avoid information loss during down-sampling. It helps to recover spatial information and enhance the generative capacity of the network.

    The conditional network is composed of four convolutional layers, and the palette size input by the conditional network is 256×256×15. The conditional network extracts features with color information by convolving layer by layer and outputs a feature map of 32×32×512, while the features of layers 1, 2 and 4 are copied spatially and integrated into layers 9, 8 and 4 of the main color matching network, respectively. This ensures that the color matching image contains the color information of palettepin a high degree.

    The main color matching network model consists of 8 convolutional layers and 3 deconvolutional layers. It has an input grayscale image of 256×256×1 and outputs a clothing fabric color matching image of 256×256×1 which incorporates the color information of the color palette. The convolutional layers use the convolutional kernel of 3×3, the deconvolutional layers use the kernel of 4×4, and the network adopts rectified linear unit ReLU activation function.

    2.2 Discriminatory network of CF-PCN

    The discriminatory networkD1is a binary classifier, whose function is to distinguish the expected clothing fabric color matching image and the generated one. Figure 4(b) shows the structure ofD1.

    2.3 CF-PCN loss functions

    The generative networkG1and discriminatory networkD1models are trained against each other. Loss functions are defined to improve the quality of generated clothing fabric color matching image. Equations (4) and (5) are loss functions ofD1andG1, respectively.

    (4)

    (5)

    3 Experimental Results and Analysis

    This paper proposes a smart clothing color matching method with reference to popular colors and demonstrates the effectiveness of this method through experiments.

    3.1 Experimental results of SVM-based clothing fabric style classification model

    The proposed SVM model is implemented in Python language. SVC class in sklearn.svm library is chosen to train the model while the radial basis function (RBF) is selected as the kernel function. A voting strategy is designed for classification. In this paper, 16 color styles of clothing fabrics are labeled with labels 0 to 15, and each label has 300 samples and a total of 4 800 5-color palettes for training.

    The trained SVM model is applied to classify the color styles of clothing fabrics for certain brands. Figure 5 shows 4 examples of the classification results. In Fig. 5, from top to bottom, there are clothing fabric images, 5 main colors obtained by theK-means clustering algorithm, fabric color styles classified by the SVM model, and the one representative 5-color combination sample of the corresponding category in Table 1. The 5 main colors of each fabric image is quite similar to the representative sample in Table 1 previously mentioned, which verifies the classification capacity of the proposed SVM model.

    Fig. 5 Examples of SVM-based clothing fabric style classification model result: (a) rough; (b) natural; (c) dynamic; (d) classical

    Fig. 6 Example 1 of the popular color selection model based on discrete particle swarm optimization algorithm: (a) clothing fabric image; (b) palette; (c) fitness curve; (d) popular color chart

    Fig. 7 Example 2 of the popular color selection model based on discrete particle swarm optimization algorithm: (a) clothing fabric image; (b) palette; (c) fitness curve; (d) popular color chart

    3.2 Experimental results of popular color selection model

    Matlab language is applied to implement the popular color selection model. The initialization parameters of popular color particle population are set as follows: the population size is 30, the maximum number of iterations is 50, weight coefficientsc1andc2are 2, and the initialization speed of particlesviis [-4, 4].

    Figures 6 and 7 show two optimal solutions of 5-color popular palette and the corresponding fitness curves. Figures 6(a) and 7(a) are images of clothing fabrics for two different certain brands. The upper part of Figs. 6(b) and 7(b) are 5 main colors of the original clothing fabric obtained byK-means clustering algorithm, and the lower part of Figs. 6(b) and 7(b) are the optimal solutions of the 5-color palette obtained by the popular color selection model. The color styles classified by the SVM model are shown in the lower part of Figs. 6(b) and 7(b) and the color styles are rough and dynamic, respectively. Figures 6(c) and 7(c) are the algorithm fitness curves, and Figs. 6(d) and 7(d) are the popular color charts in the spring/summer of 2021. The optimal solutions are obtained at the 16th and 15th iteration in the two examples, whose fitness function valuesJare 4.16 and 3.96, respectively.

    It is obvious that the lower part of Figs. 6(b) and 7(b) are selected from Figs. 6(d) and 7(d). The popular color selection model designed in this paper can obtain an innovative popular color matching image on the basis of maintaining the original color style of clothing fabrics.

    3.3 Experimental results of CF-PCN model

    CF-PCN model is implemented in Python language. A Pytorch 3.6.5 deep learning framework is built on a Ubuntu 16.04 system with a NVIDIA-RTX3090 GPU and a 32 G of video memory. The data set is bird256 and the size of training set is 10 600 while that of test set is 1 100. The training batch size is 16 and the Adam optimizer is used to optimize the loss function by setting the learning rate to 0.000 2. Totally 1 000 iterations are trained.

    Six sets of color matching results using the proposed CF-PCN is shown in Fig. 8. The model in Ref.[6] is engaged as a comparison here.

    Fig. 8 Comparison of color matching results

    In Fig. 8, the first and the second columns are the input clothing fabric grayscale images and the 5-color popular palette while the third and the fourth columns are color matching results of Ref.[6] and proposed CF-PCN, respectively. In order to evaluate the color matching effect of CF-PCN, evaluation index of palette color proportion is designed and user research in the form of questionnaires is carried out. The 50 sets of color matching samples using the CF-PCN model and the model in Ref.[6] are studied for the evaluation.

    Fig. 9 Results of smart clothing fabric color matching system with reference to popular colors: (a) rough; (b) natural; (c) dynamic; (d) romantic; (e) lovely; (f) luxurious

    The evaluation index of palette color proportionpcis defined in Eq. (6). It counts the pixel ratio of colors in the 5-color popular palette among the clothing fabric color matching image. The higher palette color proportion is, the better the color matching image is

    (6)

    wherepirepresents the number of pixels of theith color in the 5-color popular palette, andpsumrepresents the total number of pixels in the clothing fabric color matching image.

    A questionnaire was designed to compare the given color matching results of the CF-PCN model and the model in Ref.[6] among 50 users. The users were asked to select the better color matching effect in each set among the 50 sets. The rates of votes obtained by the two models were counted.

    Table 2 Evaluation comparison of color matching effects

    Table S1 Clothing fabric style table in language image coordinate system (16 categories)

    The proposed smart fabric color matching system is applied to generate color palette with reference to popular colors and color the clothing fabrics. And the analysis of the results is presented.

    Figure 9 shows 6 groups of color matching results. The first column is the grayscale image of clothing fabrics, the second column is the 5-color popular palette, the third column is the clothing fabrics color matching image generated by CF-PCN model using the 5-color popular palette, and the fourth column is the original clothing fabric image of the brand. The color style categories classified by SVM model of the generated color matching image and the original one are given in the bottom of columns 3 and 4. It is clear that the styles of two images are of consistence. The CF-PCN model is capable of obtaining the color matching image of clothing fabrics with reference to popular color palette. Compared with the original images, the color matching images of clothing fabrics have enough visual changes. Therefore, on the basis of maintaining the original color style of clothing fabrics for one certain brand, the goal of pursuing color matching innovation is realized.

    4 Conclusions

    This paper designs a smart clothing fabric color matching system with reference to popular colors. The method includes two parts: a palette generation module referring to popular colors and CF-PCN. In the part of the palette generation, an SVM-based clothing fabric style classification model is designed to judge the color style of the original clothing fabric image for one certain brand. A popular color selection model based on a discrete particle swarm optimization algorithm is designed to select the appropriate 5-color popular palette by iterations. The CF-PCN employs a U-Net structure-based conditional generative adversarial network to generate clothing fabric color matching images according to the optimal 5-color popular palettes. The average pixel ratio of the color palette in the proposed clothing color matching image reaches 90.2%, which is 29.6% higher than that of the model in Ref.[6]. Moreover, the vote rate in the user research is much higher than that of the latter. The results of the smart clothing fabric color matching system with reference to popular colors provide color matching images for maintaining the original brand style and pursuing color innovation. The proposed method thus explores feasible strategy for designers.

    Appendix A

    猜你喜歡
    愛(ài)華
    Absorption spectra and enhanced Kerr nonlinearity in a four-level system
    Color-Changing Fabric System with Temperature Control
    野花
    我在外婆家
    第一次拔牙
    神奇的光
    寂寞的大地歌手
    在廈金胞張愛(ài)華孝親牽起兩岸情
    海峽姐妹(2016年2期)2016-02-27 15:15:48
    隨機(jī)模擬法求不規(guī)則圖形面積
    亚洲,一卡二卡三卡| 色婷婷久久久亚洲欧美| 亚洲欧美清纯卡通| 美女主播在线视频| 亚洲成人av在线免费| 日韩一本色道免费dvd| 欧美日韩av久久| 老鸭窝网址在线观看| 叶爱在线成人免费视频播放| 99香蕉大伊视频| 国产午夜精品一二区理论片| 999久久久国产精品视频| 精品国产国语对白av| 青草久久国产| 尾随美女入室| 欧美成人精品欧美一级黄| 人人妻人人添人人爽欧美一区卜| 日韩av免费高清视频| 一区二区av电影网| 街头女战士在线观看网站| 精品人妻熟女毛片av久久网站| 男女无遮挡免费网站观看| 老汉色∧v一级毛片| 超碰成人久久| 欧美久久黑人一区二区| 一区在线观看完整版| 免费看av在线观看网站| 99久久精品国产亚洲精品| 不卡视频在线观看欧美| 亚洲精品第二区| 久久韩国三级中文字幕| 自拍欧美九色日韩亚洲蝌蚪91| 成人午夜精彩视频在线观看| 久久久精品区二区三区| 黄色 视频免费看| 一区二区三区乱码不卡18| 国产精品免费大片| 69精品国产乱码久久久| 91国产中文字幕| a级毛片在线看网站| 久久人妻熟女aⅴ| av在线老鸭窝| 国产深夜福利视频在线观看| av女优亚洲男人天堂| 国产1区2区3区精品| 成人18禁高潮啪啪吃奶动态图| 国产亚洲午夜精品一区二区久久| 美国免费a级毛片| 中文字幕色久视频| 又大又黄又爽视频免费| 纵有疾风起免费观看全集完整版| 老司机影院毛片| 国产一区二区三区综合在线观看| 高清在线视频一区二区三区| 黄色 视频免费看| 老司机靠b影院| 侵犯人妻中文字幕一二三四区| 欧美精品亚洲一区二区| 日本欧美国产在线视频| 免费在线观看黄色视频的| 亚洲伊人色综图| 国产1区2区3区精品| 久久精品国产综合久久久| 日本wwww免费看| 久久鲁丝午夜福利片| 国产精品久久久人人做人人爽| 久久久精品区二区三区| 91老司机精品| 国产亚洲欧美精品永久| 国产欧美日韩综合在线一区二区| a级毛片在线看网站| 中文字幕人妻丝袜制服| 你懂的网址亚洲精品在线观看| 久久国产精品大桥未久av| videosex国产| 亚洲视频免费观看视频| 欧美变态另类bdsm刘玥| 自线自在国产av| 亚洲国产精品国产精品| 丝袜喷水一区| 妹子高潮喷水视频| 国产成人啪精品午夜网站| 精品久久蜜臀av无| 中文字幕另类日韩欧美亚洲嫩草| 久久久精品免费免费高清| 亚洲成色77777| 亚洲七黄色美女视频| 男女下面插进去视频免费观看| 精品亚洲成a人片在线观看| 欧美黑人精品巨大| 夫妻性生交免费视频一级片| 久久99精品国语久久久| 中文字幕色久视频| 国产成人免费无遮挡视频| 97人妻天天添夜夜摸| 国产在线一区二区三区精| 亚洲成人国产一区在线观看 | 日韩中文字幕欧美一区二区 | 亚洲国产精品999| 免费女性裸体啪啪无遮挡网站| 日本色播在线视频| 国产高清国产精品国产三级| 一二三四中文在线观看免费高清| 免费高清在线观看日韩| 在线观看免费视频网站a站| 国产亚洲av片在线观看秒播厂| 久久久精品区二区三区| a级毛片黄视频| 99九九在线精品视频| 免费观看性生交大片5| 国产高清国产精品国产三级| 高清av免费在线| 18禁裸乳无遮挡动漫免费视频| 免费不卡黄色视频| 日韩中文字幕视频在线看片| 桃花免费在线播放| 视频区图区小说| 七月丁香在线播放| 国产国语露脸激情在线看| av片东京热男人的天堂| 亚洲国产av新网站| 日本色播在线视频| 菩萨蛮人人尽说江南好唐韦庄| 国产精品无大码| 哪个播放器可以免费观看大片| 男人操女人黄网站| 91aial.com中文字幕在线观看| 亚洲av男天堂| 七月丁香在线播放| 一级毛片 在线播放| 成人漫画全彩无遮挡| 中文字幕高清在线视频| 啦啦啦视频在线资源免费观看| 日日摸夜夜添夜夜爱| 午夜激情av网站| 777久久人妻少妇嫩草av网站| 999精品在线视频| 国产精品一区二区精品视频观看| 国产精品一区二区精品视频观看| 啦啦啦啦在线视频资源| 久久鲁丝午夜福利片| 久热这里只有精品99| 国产精品二区激情视频| 国产一区二区激情短视频 | 日韩精品有码人妻一区| 女人精品久久久久毛片| 大片电影免费在线观看免费| av一本久久久久| 99久久综合免费| 老司机亚洲免费影院| 制服人妻中文乱码| 亚洲综合色网址| 国产97色在线日韩免费| 国产黄色免费在线视频| 国产极品天堂在线| 波野结衣二区三区在线| 免费在线观看完整版高清| 国产爽快片一区二区三区| 精品久久久精品久久久| www日本在线高清视频| 久久热在线av| 多毛熟女@视频| 日韩不卡一区二区三区视频在线| 波多野结衣一区麻豆| 成人国产麻豆网| 又粗又硬又长又爽又黄的视频| 久久午夜综合久久蜜桃| 91老司机精品| 欧美国产精品va在线观看不卡| 美女视频免费永久观看网站| 精品一品国产午夜福利视频| 国产成人午夜福利电影在线观看| 日韩欧美一区视频在线观看| 日韩 欧美 亚洲 中文字幕| 精品国产一区二区三区四区第35| 天天影视国产精品| 人妻人人澡人人爽人人| 9191精品国产免费久久| 99久久99久久久精品蜜桃| 欧美 日韩 精品 国产| 午夜免费男女啪啪视频观看| 国产欧美亚洲国产| 在线观看免费视频网站a站| 国产一区二区激情短视频 | 高清欧美精品videossex| 精品亚洲乱码少妇综合久久| 99国产综合亚洲精品| 欧美日韩福利视频一区二区| 精品第一国产精品| 久热爱精品视频在线9| 69精品国产乱码久久久| 亚洲人成电影观看| 七月丁香在线播放| 日韩大片免费观看网站| 国产成人欧美在线观看 | 少妇人妻精品综合一区二区| 久久久久久免费高清国产稀缺| 下体分泌物呈黄色| 侵犯人妻中文字幕一二三四区| 97人妻天天添夜夜摸| 亚洲精品国产av蜜桃| 日韩 欧美 亚洲 中文字幕| 亚洲精品美女久久久久99蜜臀 | 看十八女毛片水多多多| 日韩av不卡免费在线播放| a级毛片在线看网站| 99热国产这里只有精品6| 女人精品久久久久毛片| 欧美中文综合在线视频| 精品第一国产精品| 夜夜骑夜夜射夜夜干| 日韩中文字幕欧美一区二区 | 精品卡一卡二卡四卡免费| 又黄又粗又硬又大视频| 秋霞在线观看毛片| 久久性视频一级片| 免费人妻精品一区二区三区视频| av在线观看视频网站免费| 精品国产一区二区久久| 黄色一级大片看看| 尾随美女入室| 国产毛片在线视频| 1024香蕉在线观看| 精品国产露脸久久av麻豆| 亚洲精品美女久久av网站| av在线观看视频网站免费| 母亲3免费完整高清在线观看| 爱豆传媒免费全集在线观看| 啦啦啦中文免费视频观看日本| av卡一久久| av电影中文网址| 亚洲精品第二区| 新久久久久国产一级毛片| 国产毛片在线视频| 亚洲七黄色美女视频| 久久精品久久久久久噜噜老黄| 成年女人毛片免费观看观看9 | 精品久久久精品久久久| 伊人久久国产一区二区| 午夜免费男女啪啪视频观看| 高清视频免费观看一区二区| 大香蕉久久网| 午夜免费男女啪啪视频观看| 看十八女毛片水多多多| 亚洲欧美精品自产自拍| 又大又爽又粗| bbb黄色大片| 亚洲成国产人片在线观看| www.熟女人妻精品国产| 丰满乱子伦码专区| 国产精品免费大片| 国产av国产精品国产| 丝袜脚勾引网站| 韩国精品一区二区三区| 免费看不卡的av| 亚洲av电影在线进入| 汤姆久久久久久久影院中文字幕| 色婷婷av一区二区三区视频| 午夜免费鲁丝| 亚洲精品av麻豆狂野| 秋霞在线观看毛片| 久久婷婷青草| 男女之事视频高清在线观看 | 搡老岳熟女国产| 99国产精品免费福利视频| 一级毛片黄色毛片免费观看视频| 美女主播在线视频| av一本久久久久| 我要看黄色一级片免费的| 极品少妇高潮喷水抽搐| 女性生殖器流出的白浆| 国产精品偷伦视频观看了| 最新在线观看一区二区三区 | 19禁男女啪啪无遮挡网站| 亚洲激情五月婷婷啪啪| 中国三级夫妇交换| 日日摸夜夜添夜夜爱| 一区二区三区激情视频| 成人午夜精彩视频在线观看| 国产有黄有色有爽视频| 亚洲av成人精品一二三区| 国产精品女同一区二区软件| 在线免费观看不下载黄p国产| 亚洲精品成人av观看孕妇| 丁香六月天网| 国产xxxxx性猛交| 交换朋友夫妻互换小说| 亚洲精品久久久久久婷婷小说| 亚洲国产中文字幕在线视频| av一本久久久久| 一边摸一边做爽爽视频免费| 欧美成人精品欧美一级黄| 久久婷婷青草| 老汉色av国产亚洲站长工具| 久久久亚洲精品成人影院| 亚洲国产av影院在线观看| 亚洲精品久久午夜乱码| 亚洲三区欧美一区| 国产不卡av网站在线观看| 欧美精品一区二区大全| 各种免费的搞黄视频| 精品卡一卡二卡四卡免费| 亚洲国产成人一精品久久久| 高清视频免费观看一区二区| 亚洲精品日韩在线中文字幕| 国产人伦9x9x在线观看| 超碰97精品在线观看| 亚洲中文av在线| 亚洲一区二区三区欧美精品| 91aial.com中文字幕在线观看| 少妇人妻 视频| 日本vs欧美在线观看视频| 2018国产大陆天天弄谢| 王馨瑶露胸无遮挡在线观看| 热re99久久精品国产66热6| 青春草视频在线免费观看| 天天添夜夜摸| 成年女人毛片免费观看观看9 | 9热在线视频观看99| 极品少妇高潮喷水抽搐| 在线天堂中文资源库| 亚洲天堂av无毛| 丰满迷人的少妇在线观看| 日韩一区二区三区影片| 日韩视频在线欧美| 51午夜福利影视在线观看| 精品一区二区免费观看| 精品卡一卡二卡四卡免费| 乱人伦中国视频| 叶爱在线成人免费视频播放| 亚洲一卡2卡3卡4卡5卡精品中文| 好男人视频免费观看在线| 亚洲欧美激情在线| 免费看不卡的av| 欧美日韩成人在线一区二区| 两个人看的免费小视频| 亚洲熟女毛片儿| 国产伦理片在线播放av一区| av福利片在线| 久久精品久久精品一区二区三区| 国产精品蜜桃在线观看| 女人久久www免费人成看片| 香蕉国产在线看| 两个人看的免费小视频| 国产乱来视频区| 熟女av电影| 成人手机av| 国产男女内射视频| 9热在线视频观看99| 日韩精品免费视频一区二区三区| 亚洲欧美一区二区三区黑人| 日韩中文字幕视频在线看片| 一边摸一边抽搐一进一出视频| 日韩精品免费视频一区二区三区| 亚洲激情五月婷婷啪啪| 久久ye,这里只有精品| 激情视频va一区二区三区| 中文字幕人妻丝袜一区二区 | 九色亚洲精品在线播放| 熟妇人妻不卡中文字幕| 久久久欧美国产精品| 高清黄色对白视频在线免费看| 最黄视频免费看| 少妇猛男粗大的猛烈进出视频| 国产精品免费视频内射| 在线精品无人区一区二区三| 成人毛片60女人毛片免费| 亚洲国产精品一区三区| 热99国产精品久久久久久7| 人人妻,人人澡人人爽秒播 | 建设人人有责人人尽责人人享有的| 人妻 亚洲 视频| 国产精品国产三级专区第一集| 亚洲av电影在线观看一区二区三区| 青春草国产在线视频| 亚洲精品美女久久av网站| av又黄又爽大尺度在线免费看| 麻豆乱淫一区二区| 国产成人精品在线电影| 一边亲一边摸免费视频| av女优亚洲男人天堂| kizo精华| 国产国语露脸激情在线看| 精品国产国语对白av| 久久狼人影院| 亚洲美女黄色视频免费看| 久久精品国产综合久久久| h视频一区二区三区| 大香蕉久久成人网| 亚洲精品久久午夜乱码| 久久国产精品男人的天堂亚洲| 18在线观看网站| 国产一区二区 视频在线| 亚洲欧美激情在线| 熟女av电影| 波多野结衣一区麻豆| 久久97久久精品| 国产爽快片一区二区三区| 色网站视频免费| bbb黄色大片| 一区二区三区乱码不卡18| 丝袜喷水一区| 最近最新中文字幕大全免费视频 | 制服诱惑二区| 久久97久久精品| 精品亚洲乱码少妇综合久久| 视频在线观看一区二区三区| 国产1区2区3区精品| 亚洲精华国产精华液的使用体验| 欧美精品一区二区免费开放| 亚洲色图综合在线观看| 亚洲av成人不卡在线观看播放网 | 色播在线永久视频| av在线老鸭窝| 伊人亚洲综合成人网| 日日摸夜夜添夜夜爱| 天天影视国产精品| 这个男人来自地球电影免费观看 | 国产av一区二区精品久久| 国产成人精品久久二区二区91 | 久久av网站| 一级毛片 在线播放| 一级黄片播放器| 波野结衣二区三区在线| 午夜久久久在线观看| 欧美日韩亚洲高清精品| 满18在线观看网站| 我的亚洲天堂| 免费黄网站久久成人精品| 中文字幕另类日韩欧美亚洲嫩草| av一本久久久久| 丝瓜视频免费看黄片| 美女大奶头黄色视频| 亚洲,一卡二卡三卡| 国产成人系列免费观看| 青草久久国产| 欧美日韩国产mv在线观看视频| 国产乱人偷精品视频| 中文字幕人妻丝袜一区二区 | 一本大道久久a久久精品| 青春草视频在线免费观看| 亚洲一卡2卡3卡4卡5卡精品中文| a 毛片基地| 日韩熟女老妇一区二区性免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 99热全是精品| 亚洲综合精品二区| 亚洲精品美女久久久久99蜜臀 | 亚洲精品视频女| 亚洲欧洲精品一区二区精品久久久 | 免费观看人在逋| 亚洲一级一片aⅴ在线观看| 激情视频va一区二区三区| 欧美日韩av久久| 成人免费观看视频高清| 色吧在线观看| av女优亚洲男人天堂| 精品少妇黑人巨大在线播放| 日日撸夜夜添| 在线免费观看不下载黄p国产| 国产免费现黄频在线看| 夫妻午夜视频| 精品人妻一区二区三区麻豆| 老鸭窝网址在线观看| 欧美乱码精品一区二区三区| 在线观看人妻少妇| 久久久久久久久久久免费av| 多毛熟女@视频| 韩国av在线不卡| 国产色婷婷99| 香蕉国产在线看| 2021少妇久久久久久久久久久| 中文字幕人妻丝袜一区二区 | 一本大道久久a久久精品| 欧美老熟妇乱子伦牲交| 日日撸夜夜添| 热re99久久精品国产66热6| 亚洲第一区二区三区不卡| 亚洲精品久久午夜乱码| 精品人妻在线不人妻| 日韩伦理黄色片| 亚洲精品成人av观看孕妇| 亚洲人成77777在线视频| 欧美国产精品一级二级三级| 熟妇人妻不卡中文字幕| 日韩一本色道免费dvd| 亚洲婷婷狠狠爱综合网| 亚洲成人国产一区在线观看 | 成人手机av| 一区二区三区四区激情视频| 亚洲第一av免费看| 操出白浆在线播放| 777久久人妻少妇嫩草av网站| 成人亚洲欧美一区二区av| 精品一区二区三区av网在线观看 | 最近手机中文字幕大全| 免费在线观看完整版高清| 久久久久视频综合| 飞空精品影院首页| 亚洲精品自拍成人| 超碰成人久久| 亚洲,欧美精品.| 国产一区二区在线观看av| 侵犯人妻中文字幕一二三四区| 大香蕉久久网| 丁香六月欧美| 九草在线视频观看| 久久久久久久久免费视频了| 亚洲第一青青草原| 一本色道久久久久久精品综合| 久久久精品区二区三区| 精品国产一区二区三区久久久樱花| 欧美国产精品一级二级三级| 午夜精品国产一区二区电影| 最近最新中文字幕大全免费视频 | 色吧在线观看| 精品国产超薄肉色丝袜足j| 99国产综合亚洲精品| 王馨瑶露胸无遮挡在线观看| 午夜福利,免费看| 美女扒开内裤让男人捅视频| 国产亚洲av片在线观看秒播厂| 看非洲黑人一级黄片| 亚洲欧美日韩另类电影网站| 天堂中文最新版在线下载| 少妇猛男粗大的猛烈进出视频| 宅男免费午夜| 免费久久久久久久精品成人欧美视频| 老熟女久久久| 日本午夜av视频| 精品少妇一区二区三区视频日本电影 | 国产成人系列免费观看| 久久久精品国产亚洲av高清涩受| 老汉色∧v一级毛片| 久久久亚洲精品成人影院| 久久精品亚洲熟妇少妇任你| 夫妻性生交免费视频一级片| av在线播放精品| 尾随美女入室| 久久久久精品国产欧美久久久 | 天天添夜夜摸| 亚洲国产精品一区三区| 国产一卡二卡三卡精品 | 国产成人免费无遮挡视频| 欧美激情 高清一区二区三区| 午夜激情久久久久久久| 国产乱人偷精品视频| 亚洲色图 男人天堂 中文字幕| 国产 精品1| 亚洲一码二码三码区别大吗| 人妻人人澡人人爽人人| 性高湖久久久久久久久免费观看| 狠狠婷婷综合久久久久久88av| 大片电影免费在线观看免费| av在线app专区| 日本一区二区免费在线视频| 妹子高潮喷水视频| 久久99精品国语久久久| 国产精品一区二区精品视频观看| 妹子高潮喷水视频| 成人亚洲精品一区在线观看| 亚洲精品av麻豆狂野| 深夜精品福利| 国产成人啪精品午夜网站| 日本91视频免费播放| 亚洲国产av新网站| 精品人妻一区二区三区麻豆| 久久这里只有精品19| 自线自在国产av| 成人国产麻豆网| 日日啪夜夜爽| 少妇的丰满在线观看| 日韩一区二区视频免费看| 久久久国产一区二区| 亚洲精品久久成人aⅴ小说| 一本色道久久久久久精品综合| 女人高潮潮喷娇喘18禁视频| 久久这里只有精品19| 九九爱精品视频在线观看| 日韩精品有码人妻一区| 中文字幕亚洲精品专区| 国产国语露脸激情在线看| 女人被躁到高潮嗷嗷叫费观| 中文欧美无线码| 亚洲精品成人av观看孕妇| 亚洲一区二区三区欧美精品| 水蜜桃什么品种好| 最近最新中文字幕大全免费视频 | 激情五月婷婷亚洲| 亚洲精华国产精华液的使用体验| 男女高潮啪啪啪动态图| av视频免费观看在线观看| 久久久精品94久久精品| 宅男免费午夜| 黑人欧美特级aaaaaa片| 久久久欧美国产精品| 亚洲精品国产色婷婷电影| 亚洲视频免费观看视频| 制服人妻中文乱码| 欧美老熟妇乱子伦牲交| 久久综合国产亚洲精品| 久久精品国产亚洲av涩爱| 亚洲色图综合在线观看| 岛国毛片在线播放| 中文字幕av电影在线播放| 女人久久www免费人成看片| 在线观看免费高清a一片| 90打野战视频偷拍视频| 99久久99久久久精品蜜桃| 黑丝袜美女国产一区| 一级毛片我不卡| 亚洲国产精品一区二区三区在线| 亚洲欧美精品综合一区二区三区| 男的添女的下面高潮视频| 曰老女人黄片|