• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Smart Clothing Fabric Color Matching with Reference to Popular Colors

    2022-09-29 01:46:54ZHANGYani張亞妮ZHUANGJianqiang莊劍強(qiáng)HUANGRongDONGAihua董愛(ài)華YUANHaodong袁浩東
    關(guān)鍵詞:愛(ài)華

    ZHANG Yani(張亞妮), ZHUANG Jianqiang(莊劍強(qiáng)), HUANG Rong(黃 榮), 2*, DONG Aihua (董愛(ài)華), 2, YUAN Haodong (袁浩東), 2

    1 College of Information Science and Technology, Donghua University, Shanghai 201620, China

    2 Engineering Research Center of Digitized Textile & Fashion Technology, Ministry of Education, Donghua University, Shanghai 201620, China

    Abstract: Color economy and market fashion trend have an increasing impact on clothing fabric color matching. Therefore, a smart clothing fabric color matching system with reference to popular colors is designed to realize the diversification of clothing color matching, which includes a palette generation module and a clothing fabrics-palette color matching network (CF-PCN). Firstly, palette generation module generates palettes referring popular colors while maintains color styles of clothing fabrics. Secondly, CF-PCN generates color matching images containing color information of palettes. The experimental results show that the color matching system has a higher average pixel ratio of palette colors and contains more palette color information. It demonstrates that the system achieves color matching innovation referring popular colors while retaining color style of clothing brands and provides designers with appropriate color matching solutions.

    Key words: popular color; clothing fabric color matching; support vector machine (SVM); discrete particle swarm optimization algorithm; generative adversarial network

    Introduction

    Clothing and its fabric color matching is of great importance to the competitiveness of brands. In the field of clothing fabric color matching, popular colors are gaining more and more attention from clothing brands and designers[1]. Popular colors are predicted by international trend experts and published on well-known trend websites such as Worth Global Style Network (WGSN), which represents popular trends, reflects the preferred colors of the public to some extent and is important for clothing brand sales[2]. As an element of clothing fashion, popular colors can promote and lead consumer behavior and improve the competitiveness of brands. Whenever a new sales season comes, brand clothing will replace the old products with the new ones in order to attract customers, and the selection of popular colors for clothing fabric color matching is an important tool. A seasonal popular colors often include more than a dozen. How to choose the right brand color among them poses a challenge to designers. Most of the existing researches on popular colors focus on analyzing the color characteristics, but little attention has been paid to the method of selecting color from popular colors for clothing brands.

    In addition, clothing brands have unique clothing styles including color styles as a way to establish consumer loyalty to the brands. Seasonal popular colors can attract customers to buy new clothes in stores, while keeping the color style of clothes unchanged can build customers’ loyalty to the brand and thus enhance the competitiveness of the clothing brand. Therefore, when designers develop a suitable color palette for clothing fabrics with reference to popular colors, they may consider maintaining the original style characteristics of the clothing brand while pursue color innovation to attract consumers.

    Currently, there are three main research directions in the field of color matching of clothing fabrics, in terms of color harmony theory, knowledge engineering theory and intelligent technology, respectively[3 -5]. The first two traditional methods rely on the designer’s professional knowledge and manual operation taking time and effort. Therefore, using intelligent technology for automatic color matching of clothing fabrics by means of intelligent algorithms and artificial intelligence has become a hot topic of research for scholars at home and abroad.

    Changetal.[6]proposed a color transfer algorithm for recoloring images using palettes. Zhangetal.[7]set up convolutional neural networks to directly map palettes in the library for color matching. The above smart color matching models improved the color matching efficiency of clothing fabrics, but their color selection mostly came from expert libraries and databases, and little attention was given to popular colors and clothing fabric styles of certain brand.

    This paper proposes a smart clothing fabric color matching system with reference to popular colors. Firstly, a palette generation module consisting of a support vector machine (SVM)-based clothing fabric style classification model and a popular color selection model is designed. The purpose of the module is to select the color palettes with color innovation from the seasonal popular colors on the basis of maintaining the original color style of clothing brands. Secondly, the clothing fabrics-palette color matching network (CF-PCN) module is designed. The CF-PCN designs a U-Net architecture based main color matching network and a conditional network to color the clothing fabric with popular color palettes. In this paper, intelligent algorithms and artificial intelligence technology in terms of SVM, the discrete particle swarm optimization algorithm, and the conditional generative adversarial network are employed to match the color of clothing fabrics with reference to popular colors, providing an exploration strategy in the field of clothing color matching.

    The rest of the paper are organized as follows. Section 1 discusses the color palette generation module with reference to popular colors. Section 2 illustrates the working theme of CF-PCN and shows the experimental results. Section 3 draws the conclusions.

    1 Color Palette Generation Module with Reference to Popular Colors

    The overall structure diagram of the color palette generation module with reference to popular colors is shown in Fig. 1. The original color style of clothing fabric for one certain brand is discriminated by SVM-based clothing fabric style classification model, and then the popular color selection model based on discrete particle swarm optimization algorithm is designed to select the popular color palettes from the seasonal popular colors.

    Fig. 1 Structure diagram of color palette generation module with reference to popular colors

    1.1 Color style of clothing fabric and popular colors

    The color style of clothing fabric classification method adopts the language image coordinate system proposed by Kobayashi[8]. According to 5-color combinations in clothing fabric, the language image coordinate system classifies color styles of clothing fabric into 16 categories, for example, rough, dynamic, luxurious,etc. Each category has hundreds of combinations. Table 1 shows 7 categories and their representative 5-color combination samples. Full table of 16 categories is shown in Appendix A.

    Table 1 Clothing fabric style table in language image coordinate system (7 categories)

    The popular colors chosen for this paper are 14 seasonal popular colors in the spring/summer of 2021 released by the WGSN trend agency[9], as shown in Fig. 2.

    Fig. 2 Popular color chart the spring/summer of 2021

    1.2 SVM-based clothing fabric style classification model

    The SVM-based clothing fabric style classification model is designed to classify the original color style of clothing fabrics for one certain brand.K-means clustering algorithm and SVM model are engaged to extract 5 main colors of the original clothing fabric and discriminate its style respectively.

    K-means clustering algorithm is engaged to extract 5 main colors from the image of the original clothing fabric for one certain brand. Firstly,Kclass centers (Kis 5 in this paper) are randomly selected in the image, and the Euclidean distance of the color features in terms of RGB from each pixel in the image to the 5 class centers is calculated. Each pixel is assigned to its nearest class center. After that, the mean location of pixels belonging to one class center is calculated and set as the new class center. The procedure repeats iteratively until 5 class centers change no more. Five main colors of the original brand clothing fabric are obtained. The combined features in RGB[10], hue saturation value (HSV[11]) and Lab[12]color space of the above 5 main colors are set as the input to SVM-based clothing fabric style classification model.

    The SVM model is a linear binary classifier with maximum interval in the feature space[13]. In this paper, the SVM binary classification is expanded into 16 classifications by a one-to-one approach, corresponding to 16 color style of clothing fabrics. The SVM models are trained by combining these 16 classifications two by two, for a total of 120 models. Equation (1) shows the training formulation.

    (1)

    1.3 Popular color selection model based on discrete particle swarm optimization algorithm

    Popular color selection model based on discrete particle swarm optimization algorithm is designed to realize the innovation of color matching with seasonal popular colors while retaining the original color style of clothing fabrics for one certain brand. In the discrete particle swarm optimization algorithm[14], the particle encoding, corresponding fitness function and constraint are formulated to select the optimal 5-color popular palette among the seasonal popular colors.

    The discrete particles designed in this paper are binary encoded and 14-dimension matrix particle is set for 14 popular colors in the spring/summer of 2021 in Fig. 2. In the matrix, 1 and 0 means whether the color is selected or not, respectively. One particle represents a 5-color popular color palette. Figure 3 gives an example of the particle encoding [1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0], its corresponding color and the 5-color palette.

    Fig. 3 Particle encoding correspondence table

    Fig. 4 Overall structure diagram of CF-PCN: (a) generative network G1; (b) discriminatory network D1

    Fitness function and constraints are defined to pursue color matching innovation and maintain brand color, respectively.

    In order to realize the innovation of color matching, the fitness functionJis designed to maximize the color transformation between the original clothing fabric image of the brand and the generated 5-color palette. The fitness function is defined as follows: sum up the Euclidean distance among the 5 main colors of the original clothing fabric image and the generated 5-color palette normalized in RGB color space. Besides, the difference of hueHchannel normalized in HSV color space is set as the offset term inJ, shown as

    (2)

    where,R′i,G′i, andB′iare the values of R, G and B of theith main color in the original clothing fabric image;Ri,GiandBiare the R, G and B of theith color in the generated 5-color popular palette;H′irepresents theHvalue of theith color in the 5-color popular palette; the hyper parameterα= 0.5.

    The constraint condition is to maintain the color style of clothing fabric, and the formula is shown as

    SSVM(m)=x,

    (3)

    wheremis the 5-color popular palette generated in the algorithm,SSVM(m)represents its style category obtained by the SVM model designed in section 1.2, andxrepresents the color style category of the original clothing fabric for the brand. Only the particles whose 5-color popular palette is consistence to the original clothing fabric for the brand in the style will be alive and join in the iteration in the algorithm.

    2 CF-PCN Module

    The CF-PCN module generates clothing fabric color matching images according to the optimal solution of 5-color popular palette. CF-PCN is a conditional generative adversarial network, which includes a generative network and a discriminatory network. The former one is composed of a U-Net structure-based main color matching network and a conditional network. The latter one is a classier.

    2.1 Generative network of CF-PCN

    The purpose of the generative network is to make the generated clothing fabric color matching image close to the expected clothing fabric color matching image as much as possible. The generative networkG1consists of a main color matching network and a conditional network. Figure 4(a) shows the structure ofG1.

    The upper part in Fig. 4(a) is a conditional network. It is composed of three 3-kernel 2-step convolutional layers and one 3-kernel 1-step convolutional layer. The bottom part in Fig. 4(a) is the main color matching network. It adopts the U-Net architecture with eight 3×3 convolutional layers and three 4×4 convolutional layers[15]. Its skip structure could avoid information loss during down-sampling. It helps to recover spatial information and enhance the generative capacity of the network.

    The conditional network is composed of four convolutional layers, and the palette size input by the conditional network is 256×256×15. The conditional network extracts features with color information by convolving layer by layer and outputs a feature map of 32×32×512, while the features of layers 1, 2 and 4 are copied spatially and integrated into layers 9, 8 and 4 of the main color matching network, respectively. This ensures that the color matching image contains the color information of palettepin a high degree.

    The main color matching network model consists of 8 convolutional layers and 3 deconvolutional layers. It has an input grayscale image of 256×256×1 and outputs a clothing fabric color matching image of 256×256×1 which incorporates the color information of the color palette. The convolutional layers use the convolutional kernel of 3×3, the deconvolutional layers use the kernel of 4×4, and the network adopts rectified linear unit ReLU activation function.

    2.2 Discriminatory network of CF-PCN

    The discriminatory networkD1is a binary classifier, whose function is to distinguish the expected clothing fabric color matching image and the generated one. Figure 4(b) shows the structure ofD1.

    2.3 CF-PCN loss functions

    The generative networkG1and discriminatory networkD1models are trained against each other. Loss functions are defined to improve the quality of generated clothing fabric color matching image. Equations (4) and (5) are loss functions ofD1andG1, respectively.

    (4)

    (5)

    3 Experimental Results and Analysis

    This paper proposes a smart clothing color matching method with reference to popular colors and demonstrates the effectiveness of this method through experiments.

    3.1 Experimental results of SVM-based clothing fabric style classification model

    The proposed SVM model is implemented in Python language. SVC class in sklearn.svm library is chosen to train the model while the radial basis function (RBF) is selected as the kernel function. A voting strategy is designed for classification. In this paper, 16 color styles of clothing fabrics are labeled with labels 0 to 15, and each label has 300 samples and a total of 4 800 5-color palettes for training.

    The trained SVM model is applied to classify the color styles of clothing fabrics for certain brands. Figure 5 shows 4 examples of the classification results. In Fig. 5, from top to bottom, there are clothing fabric images, 5 main colors obtained by theK-means clustering algorithm, fabric color styles classified by the SVM model, and the one representative 5-color combination sample of the corresponding category in Table 1. The 5 main colors of each fabric image is quite similar to the representative sample in Table 1 previously mentioned, which verifies the classification capacity of the proposed SVM model.

    Fig. 5 Examples of SVM-based clothing fabric style classification model result: (a) rough; (b) natural; (c) dynamic; (d) classical

    Fig. 6 Example 1 of the popular color selection model based on discrete particle swarm optimization algorithm: (a) clothing fabric image; (b) palette; (c) fitness curve; (d) popular color chart

    Fig. 7 Example 2 of the popular color selection model based on discrete particle swarm optimization algorithm: (a) clothing fabric image; (b) palette; (c) fitness curve; (d) popular color chart

    3.2 Experimental results of popular color selection model

    Matlab language is applied to implement the popular color selection model. The initialization parameters of popular color particle population are set as follows: the population size is 30, the maximum number of iterations is 50, weight coefficientsc1andc2are 2, and the initialization speed of particlesviis [-4, 4].

    Figures 6 and 7 show two optimal solutions of 5-color popular palette and the corresponding fitness curves. Figures 6(a) and 7(a) are images of clothing fabrics for two different certain brands. The upper part of Figs. 6(b) and 7(b) are 5 main colors of the original clothing fabric obtained byK-means clustering algorithm, and the lower part of Figs. 6(b) and 7(b) are the optimal solutions of the 5-color palette obtained by the popular color selection model. The color styles classified by the SVM model are shown in the lower part of Figs. 6(b) and 7(b) and the color styles are rough and dynamic, respectively. Figures 6(c) and 7(c) are the algorithm fitness curves, and Figs. 6(d) and 7(d) are the popular color charts in the spring/summer of 2021. The optimal solutions are obtained at the 16th and 15th iteration in the two examples, whose fitness function valuesJare 4.16 and 3.96, respectively.

    It is obvious that the lower part of Figs. 6(b) and 7(b) are selected from Figs. 6(d) and 7(d). The popular color selection model designed in this paper can obtain an innovative popular color matching image on the basis of maintaining the original color style of clothing fabrics.

    3.3 Experimental results of CF-PCN model

    CF-PCN model is implemented in Python language. A Pytorch 3.6.5 deep learning framework is built on a Ubuntu 16.04 system with a NVIDIA-RTX3090 GPU and a 32 G of video memory. The data set is bird256 and the size of training set is 10 600 while that of test set is 1 100. The training batch size is 16 and the Adam optimizer is used to optimize the loss function by setting the learning rate to 0.000 2. Totally 1 000 iterations are trained.

    Six sets of color matching results using the proposed CF-PCN is shown in Fig. 8. The model in Ref.[6] is engaged as a comparison here.

    Fig. 8 Comparison of color matching results

    In Fig. 8, the first and the second columns are the input clothing fabric grayscale images and the 5-color popular palette while the third and the fourth columns are color matching results of Ref.[6] and proposed CF-PCN, respectively. In order to evaluate the color matching effect of CF-PCN, evaluation index of palette color proportion is designed and user research in the form of questionnaires is carried out. The 50 sets of color matching samples using the CF-PCN model and the model in Ref.[6] are studied for the evaluation.

    Fig. 9 Results of smart clothing fabric color matching system with reference to popular colors: (a) rough; (b) natural; (c) dynamic; (d) romantic; (e) lovely; (f) luxurious

    The evaluation index of palette color proportionpcis defined in Eq. (6). It counts the pixel ratio of colors in the 5-color popular palette among the clothing fabric color matching image. The higher palette color proportion is, the better the color matching image is

    (6)

    wherepirepresents the number of pixels of theith color in the 5-color popular palette, andpsumrepresents the total number of pixels in the clothing fabric color matching image.

    A questionnaire was designed to compare the given color matching results of the CF-PCN model and the model in Ref.[6] among 50 users. The users were asked to select the better color matching effect in each set among the 50 sets. The rates of votes obtained by the two models were counted.

    Table 2 Evaluation comparison of color matching effects

    Table S1 Clothing fabric style table in language image coordinate system (16 categories)

    The proposed smart fabric color matching system is applied to generate color palette with reference to popular colors and color the clothing fabrics. And the analysis of the results is presented.

    Figure 9 shows 6 groups of color matching results. The first column is the grayscale image of clothing fabrics, the second column is the 5-color popular palette, the third column is the clothing fabrics color matching image generated by CF-PCN model using the 5-color popular palette, and the fourth column is the original clothing fabric image of the brand. The color style categories classified by SVM model of the generated color matching image and the original one are given in the bottom of columns 3 and 4. It is clear that the styles of two images are of consistence. The CF-PCN model is capable of obtaining the color matching image of clothing fabrics with reference to popular color palette. Compared with the original images, the color matching images of clothing fabrics have enough visual changes. Therefore, on the basis of maintaining the original color style of clothing fabrics for one certain brand, the goal of pursuing color matching innovation is realized.

    4 Conclusions

    This paper designs a smart clothing fabric color matching system with reference to popular colors. The method includes two parts: a palette generation module referring to popular colors and CF-PCN. In the part of the palette generation, an SVM-based clothing fabric style classification model is designed to judge the color style of the original clothing fabric image for one certain brand. A popular color selection model based on a discrete particle swarm optimization algorithm is designed to select the appropriate 5-color popular palette by iterations. The CF-PCN employs a U-Net structure-based conditional generative adversarial network to generate clothing fabric color matching images according to the optimal 5-color popular palettes. The average pixel ratio of the color palette in the proposed clothing color matching image reaches 90.2%, which is 29.6% higher than that of the model in Ref.[6]. Moreover, the vote rate in the user research is much higher than that of the latter. The results of the smart clothing fabric color matching system with reference to popular colors provide color matching images for maintaining the original brand style and pursuing color innovation. The proposed method thus explores feasible strategy for designers.

    Appendix A

    猜你喜歡
    愛(ài)華
    Absorption spectra and enhanced Kerr nonlinearity in a four-level system
    Color-Changing Fabric System with Temperature Control
    野花
    我在外婆家
    第一次拔牙
    神奇的光
    寂寞的大地歌手
    在廈金胞張愛(ài)華孝親牽起兩岸情
    海峽姐妹(2016年2期)2016-02-27 15:15:48
    隨機(jī)模擬法求不規(guī)則圖形面積
    日韩三级伦理在线观看| 乱人伦中国视频| 熟女av电影| 22中文网久久字幕| 久久久久视频综合| 在现免费观看毛片| 涩涩av久久男人的天堂| 插逼视频在线观看| 视频区图区小说| 综合色丁香网| 人妻系列 视频| 日韩一区二区视频免费看| 大话2 男鬼变身卡| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩一区二区视频免费看| 高清午夜精品一区二区三区| 日韩大片免费观看网站| 老司机影院成人| 又爽又黄a免费视频| av专区在线播放| 午夜激情久久久久久久| 免费不卡的大黄色大毛片视频在线观看| 久久99蜜桃精品久久| 免费高清在线观看视频在线观看| 亚洲精品视频女| 伊人亚洲综合成人网| 日日啪夜夜撸| 国产午夜精品久久久久久一区二区三区| 精品久久久久久久久亚洲| 99久久精品热视频| 日韩中文字幕视频在线看片| 国产高清国产精品国产三级| 色视频在线一区二区三区| 91精品伊人久久大香线蕉| 国产精品熟女久久久久浪| 少妇 在线观看| 狠狠精品人妻久久久久久综合| 精品亚洲成a人片在线观看| 国产精品人妻久久久久久| 久久鲁丝午夜福利片| 免费高清在线观看视频在线观看| 免费观看性生交大片5| 在线观看www视频免费| 欧美高清成人免费视频www| 国产永久视频网站| 18禁在线播放成人免费| 欧美日韩亚洲高清精品| 国产高清不卡午夜福利| 亚州av有码| 能在线免费看毛片的网站| 黄色视频在线播放观看不卡| 精品人妻一区二区三区麻豆| 不卡视频在线观看欧美| 高清黄色对白视频在线免费看 | 热re99久久精品国产66热6| 久久精品国产a三级三级三级| 少妇的逼水好多| 久久国产精品大桥未久av | 国产乱来视频区| av黄色大香蕉| 黄色配什么色好看| 亚洲av国产av综合av卡| 亚洲av.av天堂| 精品一区在线观看国产| 免费观看无遮挡的男女| 日日摸夜夜添夜夜爱| 人妻人人澡人人爽人人| 免费在线观看成人毛片| 亚洲精品国产av蜜桃| 老女人水多毛片| av视频免费观看在线观看| 黄色一级大片看看| 国产av码专区亚洲av| 国产黄色免费在线视频| 国产精品秋霞免费鲁丝片| 久久午夜综合久久蜜桃| 最后的刺客免费高清国语| 欧美日韩亚洲高清精品| 久久人妻熟女aⅴ| 自拍欧美九色日韩亚洲蝌蚪91 | 中文欧美无线码| 啦啦啦中文免费视频观看日本| 亚洲精品中文字幕在线视频 | 在线观看三级黄色| 午夜激情福利司机影院| 人妻制服诱惑在线中文字幕| 一本色道久久久久久精品综合| 亚洲高清免费不卡视频| 丰满饥渴人妻一区二区三| 国产精品蜜桃在线观看| 极品人妻少妇av视频| 亚洲激情五月婷婷啪啪| 日韩大片免费观看网站| av在线播放精品| 久久精品久久久久久噜噜老黄| 国产精品三级大全| 久久久精品94久久精品| 卡戴珊不雅视频在线播放| 五月天丁香电影| 亚洲人成网站在线播| av视频免费观看在线观看| 波野结衣二区三区在线| 国产精品偷伦视频观看了| 自拍欧美九色日韩亚洲蝌蚪91 | 一级毛片aaaaaa免费看小| 国产毛片在线视频| 中文字幕人妻丝袜制服| 亚洲精品日韩av片在线观看| 午夜久久久在线观看| 99久久综合免费| 丰满饥渴人妻一区二区三| 久久国产精品男人的天堂亚洲 | 国产69精品久久久久777片| 国产在线男女| 又大又黄又爽视频免费| 夜夜骑夜夜射夜夜干| 精品视频人人做人人爽| 午夜av观看不卡| 亚洲成人手机| 久久久精品免费免费高清| 国产精品国产三级专区第一集| 免费大片18禁| 国产深夜福利视频在线观看| av.在线天堂| 亚洲欧洲日产国产| 免费看日本二区| 国产精品.久久久| 一本色道久久久久久精品综合| 亚洲国产色片| 亚洲无线观看免费| 最近最新中文字幕免费大全7| 男人爽女人下面视频在线观看| 人人妻人人看人人澡| 91aial.com中文字幕在线观看| 亚洲,一卡二卡三卡| 97在线人人人人妻| 国产精品一区二区性色av| 精品久久国产蜜桃| 欧美成人午夜免费资源| 亚洲av中文av极速乱| 黄色怎么调成土黄色| 亚洲图色成人| 2022亚洲国产成人精品| av在线播放精品| 精品亚洲成国产av| 自拍偷自拍亚洲精品老妇| 黄色毛片三级朝国网站 | 成人漫画全彩无遮挡| 18禁动态无遮挡网站| 99精国产麻豆久久婷婷| 中国国产av一级| 久久久久久久大尺度免费视频| 成人亚洲欧美一区二区av| 久久人人爽人人爽人人片va| 久热久热在线精品观看| 亚洲av欧美aⅴ国产| 成人漫画全彩无遮挡| 丝瓜视频免费看黄片| 日本黄大片高清| 国产精品一区二区在线不卡| 少妇精品久久久久久久| 最新的欧美精品一区二区| 啦啦啦中文免费视频观看日本| 中文字幕人妻熟人妻熟丝袜美| 久久久亚洲精品成人影院| 久久精品久久精品一区二区三区| h视频一区二区三区| 国产真实伦视频高清在线观看| 99久久综合免费| av专区在线播放| 欧美日韩精品成人综合77777| 国语对白做爰xxxⅹ性视频网站| 男女无遮挡免费网站观看| 欧美亚洲 丝袜 人妻 在线| 国产av国产精品国产| 麻豆乱淫一区二区| 国产欧美亚洲国产| 亚洲国产欧美在线一区| 一本一本综合久久| 国产午夜精品一二区理论片| av福利片在线| 成年人午夜在线观看视频| 欧美+日韩+精品| 色吧在线观看| 国产精品久久久久久精品古装| 久久久久久久久久人人人人人人| 狂野欧美激情性xxxx在线观看| 免费黄网站久久成人精品| 国产免费一级a男人的天堂| 色视频在线一区二区三区| tube8黄色片| 婷婷色麻豆天堂久久| 六月丁香七月| 亚洲,欧美,日韩| 国产成人免费观看mmmm| 国产一级毛片在线| 亚洲av国产av综合av卡| 精品卡一卡二卡四卡免费| 人妻 亚洲 视频| 26uuu在线亚洲综合色| 男人爽女人下面视频在线观看| av免费观看日本| 色婷婷久久久亚洲欧美| 久久久久久久久久久免费av| 色哟哟·www| 香蕉精品网在线| 女人久久www免费人成看片| 国产熟女午夜一区二区三区 | 大香蕉97超碰在线| 欧美精品亚洲一区二区| 久久久久久人妻| 内射极品少妇av片p| 日韩人妻高清精品专区| 精品久久国产蜜桃| 精品一区二区三区视频在线| 丁香六月天网| 亚洲国产精品一区二区三区在线| 97超视频在线观看视频| 插阴视频在线观看视频| 亚洲国产毛片av蜜桃av| 日本免费在线观看一区| 中国三级夫妇交换| 婷婷色综合www| 一级爰片在线观看| 日本免费在线观看一区| 一本色道久久久久久精品综合| 亚洲综合精品二区| videos熟女内射| 一级毛片黄色毛片免费观看视频| 我的女老师完整版在线观看| 国产亚洲精品久久久com| tube8黄色片| 日产精品乱码卡一卡2卡三| 久久人人爽av亚洲精品天堂| 亚洲精品456在线播放app| 三级国产精品欧美在线观看| 18禁在线无遮挡免费观看视频| 国产精品国产av在线观看| 亚洲av.av天堂| 婷婷色av中文字幕| 国产精品国产三级专区第一集| 亚洲精品国产av成人精品| 99国产精品免费福利视频| 国产亚洲91精品色在线| av黄色大香蕉| 22中文网久久字幕| 日韩中文字幕视频在线看片| 夫妻性生交免费视频一级片| 日韩人妻高清精品专区| 女人精品久久久久毛片| 久久午夜福利片| 女的被弄到高潮叫床怎么办| 人人妻人人看人人澡| 91午夜精品亚洲一区二区三区| 久久久精品94久久精品| 国产美女午夜福利| 久久婷婷青草| 亚洲精品日韩在线中文字幕| 18禁在线播放成人免费| 啦啦啦啦在线视频资源| 欧美日本中文国产一区发布| 亚洲欧美成人综合另类久久久| 精品卡一卡二卡四卡免费| 中文在线观看免费www的网站| 亚洲电影在线观看av| 国产精品三级大全| 日韩一区二区三区影片| 成人毛片a级毛片在线播放| 嫩草影院入口| 伦理电影大哥的女人| 国产视频首页在线观看| 两个人免费观看高清视频 | 晚上一个人看的免费电影| 男女啪啪激烈高潮av片| 男人爽女人下面视频在线观看| 日韩熟女老妇一区二区性免费视频| 国产精品人妻久久久影院| 免费黄色在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 99精国产麻豆久久婷婷| 亚洲av成人精品一二三区| 亚洲色图综合在线观看| 国产在线一区二区三区精| 插逼视频在线观看| xxx大片免费视频| 亚洲欧美日韩另类电影网站| 中文资源天堂在线| 国产熟女午夜一区二区三区 | 日韩欧美精品免费久久| 国产色婷婷99| 纵有疾风起免费观看全集完整版| 国产视频首页在线观看| 亚洲精品中文字幕在线视频 | 高清av免费在线| 国产一级毛片在线| 街头女战士在线观看网站| a 毛片基地| 成年美女黄网站色视频大全免费 | 亚洲av在线观看美女高潮| 久久99蜜桃精品久久| 国产精品99久久99久久久不卡 | 亚洲精品色激情综合| 丝瓜视频免费看黄片| 免费观看a级毛片全部| 久久精品夜色国产| 国产成人精品无人区| 丰满少妇做爰视频| 久久久久久久久久人人人人人人| 久久97久久精品| 人妻一区二区av| av一本久久久久| 日韩精品免费视频一区二区三区 | 亚洲国产精品一区二区三区在线| 热99国产精品久久久久久7| 中文资源天堂在线| 丰满人妻一区二区三区视频av| 91精品国产九色| 边亲边吃奶的免费视频| 啦啦啦视频在线资源免费观看| 久热这里只有精品99| 久久久久视频综合| 新久久久久国产一级毛片| 久久精品久久久久久噜噜老黄| 亚洲成人一二三区av| 久久99精品国语久久久| 韩国高清视频一区二区三区| 久久99蜜桃精品久久| 一级黄片播放器| 中文天堂在线官网| 狂野欧美白嫩少妇大欣赏| 国产成人精品无人区| 久久国内精品自在自线图片| 亚洲国产精品一区二区三区在线| 亚洲精品日本国产第一区| 免费观看在线日韩| 99久久精品国产国产毛片| 九九在线视频观看精品| 午夜91福利影院| 大香蕉久久网| 国产精品久久久久久av不卡| 亚洲经典国产精华液单| av卡一久久| 女性生殖器流出的白浆| 六月丁香七月| 九九在线视频观看精品| 国产亚洲午夜精品一区二区久久| 在线观看免费视频网站a站| 午夜激情久久久久久久| h视频一区二区三区| 高清av免费在线| 男人添女人高潮全过程视频| 丰满人妻一区二区三区视频av| 热re99久久精品国产66热6| 插逼视频在线观看| 国产精品人妻久久久影院| 99久久精品国产国产毛片| 亚洲av成人精品一区久久| 亚洲欧美精品专区久久| 日韩免费高清中文字幕av| 久久狼人影院| 国产永久视频网站| 国产在线视频一区二区| 自拍欧美九色日韩亚洲蝌蚪91 | 久久精品国产亚洲av涩爱| 极品人妻少妇av视频| 国产精品一区www在线观看| 国产男女超爽视频在线观看| 午夜激情久久久久久久| 建设人人有责人人尽责人人享有的| 夜夜看夜夜爽夜夜摸| 丰满迷人的少妇在线观看| 国产精品蜜桃在线观看| 欧美精品一区二区大全| 久久韩国三级中文字幕| 亚洲精品乱码久久久v下载方式| 成年美女黄网站色视频大全免费 | 亚洲精品日本国产第一区| 亚洲欧美一区二区三区黑人 | 国产黄频视频在线观看| 亚洲国产欧美日韩在线播放 | 欧美一级a爱片免费观看看| 亚洲精品乱久久久久久| 久久精品熟女亚洲av麻豆精品| 日韩中文字幕视频在线看片| 久久这里有精品视频免费| 欧美另类一区| 人妻一区二区av| 久久久久久久精品精品| 色94色欧美一区二区| 99九九在线精品视频 | 国产乱来视频区| 国产精品福利在线免费观看| 欧美日韩亚洲高清精品| 少妇人妻久久综合中文| 黄色欧美视频在线观看| 有码 亚洲区| 久久久欧美国产精品| 在线观看国产h片| 亚洲,欧美,日韩| av在线播放精品| 成人亚洲精品一区在线观看| 国语对白做爰xxxⅹ性视频网站| 中文字幕人妻丝袜制服| 五月天丁香电影| 22中文网久久字幕| 国产69精品久久久久777片| 国产 一区精品| 欧美成人精品欧美一级黄| 成人国产麻豆网| 国产日韩欧美亚洲二区| 久久久国产一区二区| 精品一品国产午夜福利视频| 青春草亚洲视频在线观看| 久久久久久久久久成人| 男男h啪啪无遮挡| av天堂中文字幕网| 国产精品嫩草影院av在线观看| 伊人亚洲综合成人网| 一级黄片播放器| 91aial.com中文字幕在线观看| 在线亚洲精品国产二区图片欧美 | 亚洲精品国产av成人精品| 在线看a的网站| 亚洲欧美一区二区三区国产| 午夜av观看不卡| 九九爱精品视频在线观看| 十分钟在线观看高清视频www | 七月丁香在线播放| 夜夜爽夜夜爽视频| 亚洲国产精品一区三区| 女人久久www免费人成看片| 一区二区三区乱码不卡18| 久久人妻熟女aⅴ| 国产精品99久久99久久久不卡 | 91在线精品国自产拍蜜月| 欧美激情极品国产一区二区三区 | 伦理电影免费视频| 国产成人精品一,二区| 看免费成人av毛片| 日本午夜av视频| 精品人妻熟女av久视频| 国产成人一区二区在线| 亚洲国产av新网站| 国产精品国产三级国产专区5o| 人人妻人人澡人人爽人人夜夜| 狂野欧美激情性xxxx在线观看| 久久狼人影院| 18禁裸乳无遮挡动漫免费视频| 熟妇人妻不卡中文字幕| 国产精品偷伦视频观看了| 狂野欧美激情性bbbbbb| 大话2 男鬼变身卡| 插阴视频在线观看视频| 性高湖久久久久久久久免费观看| 久久人人爽av亚洲精品天堂| 国产又色又爽无遮挡免| 又粗又硬又长又爽又黄的视频| 偷拍熟女少妇极品色| 欧美+日韩+精品| 男男h啪啪无遮挡| 制服丝袜香蕉在线| 国产精品一二三区在线看| 日韩伦理黄色片| videos熟女内射| 亚洲欧洲日产国产| 国产在线视频一区二区| 美女cb高潮喷水在线观看| 91午夜精品亚洲一区二区三区| 国产一级毛片在线| 18禁裸乳无遮挡动漫免费视频| 国产在线男女| 国产免费视频播放在线视频| 成人毛片60女人毛片免费| 三级国产精品片| 国内揄拍国产精品人妻在线| 精品视频人人做人人爽| 久久99热这里只频精品6学生| 久久女婷五月综合色啪小说| 水蜜桃什么品种好| 看非洲黑人一级黄片| 极品教师在线视频| 日韩中字成人| 亚洲不卡免费看| 少妇丰满av| 国产中年淑女户外野战色| 成人免费观看视频高清| 色视频在线一区二区三区| 午夜免费男女啪啪视频观看| 国产成人精品婷婷| 免费少妇av软件| 七月丁香在线播放| 久久久久久人妻| 久久久久精品久久久久真实原创| 九九爱精品视频在线观看| 久久人人爽人人爽人人片va| 99re6热这里在线精品视频| 能在线免费看毛片的网站| 日韩av不卡免费在线播放| 国产精品蜜桃在线观看| 国产男人的电影天堂91| 人妻一区二区av| 精品久久久精品久久久| 日产精品乱码卡一卡2卡三| 老熟女久久久| a级毛片免费高清观看在线播放| 亚洲欧美日韩东京热| 大香蕉97超碰在线| 国产午夜精品久久久久久一区二区三区| 日日啪夜夜爽| 激情五月婷婷亚洲| 波野结衣二区三区在线| 久久久久国产精品人妻一区二区| 人人妻人人澡人人看| 日韩精品免费视频一区二区三区 | 九九在线视频观看精品| 国产日韩欧美视频二区| 美女国产视频在线观看| 国产又色又爽无遮挡免| 99九九在线精品视频 | 成年av动漫网址| 免费久久久久久久精品成人欧美视频 | 亚洲内射少妇av| 午夜福利,免费看| 99九九在线精品视频 | 国产深夜福利视频在线观看| 国国产精品蜜臀av免费| 女人久久www免费人成看片| 丝袜脚勾引网站| 精品国产乱码久久久久久小说| 成人美女网站在线观看视频| 午夜免费鲁丝| 日本-黄色视频高清免费观看| 久久99热6这里只有精品| av免费在线看不卡| 欧美老熟妇乱子伦牲交| 最近手机中文字幕大全| 中文欧美无线码| 久久久久久久亚洲中文字幕| 久久99热这里只频精品6学生| 男女免费视频国产| 如何舔出高潮| 日本猛色少妇xxxxx猛交久久| 黄色配什么色好看| 水蜜桃什么品种好| 国产伦精品一区二区三区视频9| 赤兔流量卡办理| 美女福利国产在线| 亚洲精品自拍成人| 黑人巨大精品欧美一区二区蜜桃 | 日韩中文字幕视频在线看片| 精品人妻熟女毛片av久久网站| 色婷婷久久久亚洲欧美| 日韩伦理黄色片| 午夜视频国产福利| 丰满少妇做爰视频| 欧美精品一区二区免费开放| 国产一区有黄有色的免费视频| 国产综合精华液| 永久网站在线| 特大巨黑吊av在线直播| 夫妻午夜视频| 欧美区成人在线视频| 啦啦啦啦在线视频资源| 在线观看三级黄色| 国产精品.久久久| 亚洲欧美日韩另类电影网站| 十分钟在线观看高清视频www | 91久久精品国产一区二区三区| 黑丝袜美女国产一区| 丰满饥渴人妻一区二区三| 大码成人一级视频| 少妇高潮的动态图| 一级黄片播放器| 免费不卡的大黄色大毛片视频在线观看| 精品少妇黑人巨大在线播放| 下体分泌物呈黄色| 国产成人91sexporn| 国产成人一区二区在线| 在线 av 中文字幕| 亚洲欧美成人综合另类久久久| 亚洲精华国产精华液的使用体验| 欧美 亚洲 国产 日韩一| 最黄视频免费看| 成人午夜精彩视频在线观看| 国产免费一区二区三区四区乱码| 亚洲精品,欧美精品| 黄色欧美视频在线观看| 毛片一级片免费看久久久久| 亚洲av国产av综合av卡| 久久久久久久亚洲中文字幕| 91久久精品国产一区二区成人| 这个男人来自地球电影免费观看 | 亚洲av欧美aⅴ国产| 国产在线一区二区三区精| 偷拍熟女少妇极品色| 国产成人精品无人区| 久久精品国产a三级三级三级| 偷拍熟女少妇极品色| 日韩欧美 国产精品| 日日啪夜夜爽| 精品少妇久久久久久888优播| 在线观看av片永久免费下载| 国产乱人偷精品视频| 午夜免费鲁丝| 亚洲精品乱码久久久久久按摩| 精品亚洲成国产av| 亚洲,一卡二卡三卡| 最新的欧美精品一区二区| 日本欧美视频一区| 国产精品久久久久久av不卡| 国产精品福利在线免费观看| 在线观看免费视频网站a站| 性色avwww在线观看| 最黄视频免费看| 日韩成人伦理影院|