• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Time Delay Identification in Dynamical Systems Based on Interpretable Machine Learning

    2022-09-29 01:47:04XIAMengWUYuzhe吳毓哲WANGZhijie王直杰

    XIA Meng(夏 夢), WU Yuzhe(吳毓哲), WANG Zhijie(王直杰)

    College of Information Science and Technology, Donghua University, Shanghai 201620, China

    Abstract: The existence of time delay in complex industrial processes or dynamical systems is a common phenomenon and is a difficult problem to deal with in industrial control systems, as well as in the textile field. Accurate identification of the time delay can greatly improve the efficiency of the design of industrial process control systems. The time delay identification methods based on mathematical modeling require prior knowledge of the structural information of the model, especially for nonlinear systems. The neural network-based identification method can predict the time delay of the system, but cannot accurately obtain the specific parameters of the time delay. Benefit from the interpretability of machine learning, a novel method for delay identification based on an interpretable regression decision tree is proposed. Utilizing the self-explanatory analysis of the decision tree model, the parameters with the highest feature importance are obtained to identify the time delay of the system. Excellent results are gained by the simulation data of linear and nonlinear control systems, and the time delay of the systems can be accurately identified.

    Key words: time delay; dynamical system; interpretability; regression tree; feature importance

    Introduction

    When modeling the process of many systems in the industry, time delay is frequently encountered. Time delay in industrial processes comes from many sources. There are two main factors that contribute to the occurrence of time delay in the production process. One is the characteristics of medium transfer and energy exchange in the system. The other is related with automatic control systems, such as measurement sensing equipment, information transmission equipment, control equipment, and actuators. When time delay exists, it becomes more difficult to govern the corresponding system, and the stability of the system suffers significantly, resulting in a decline in the quality of productions. Therefore, there are many models aiming to figure out the exact time delay of the control systems[1-2]. The accurate identification of the time delay is also strongly tied to other performances besides stability of many controllers, such as the Smith controller[3]. It is imperative to develop an accurate model for the delay system to precisely identify the value of the delay. There are now two kinds of the time delay modeling researches: mathematical identification[4-5]and machine learning model[6-7].

    Initially, the traditional time delay identification methods were studied based on mathematical statistics. Yang and Gao[8]used the expectation-maximization (EM) algorithm to identify the time delay of a linear system. SASSIetal.[9]considered a method which consisted in minimizing a quadratic criterion using either the gradient method or the Levenberg-Marquardt method in dynamical time delay systems. Meanwhile, to improve the performance of the algorithm, they proposed quasi-Newton approach based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. Lietal.[10]put forward a time delay identification algorithm for perturbed closed-loop dynamic processes based on maximum correlation analysis and verified the effectiveness of the algorithm in the actual industrial production process. However, the above methods need to know the prior knowledge of the system, and need to involve different mathematical and statistical algorithms to identify the time delay for different systems. With the rapid development of computer technology, machine learning algorithms have begun to shine in time delay identification. Karouietal.[11]conducted a new algebraic technique and constructed an online delay identification approach based on a distributional algebraic technique and a convolution way that could identify different time delays of different systems. However, most machine learning models are black-box models, which cannot accurately obtain some key information of the system (such as delay). Li and Yan[12]built a multidimensional Taylor network to simulate nonlinear time delay systems, and introduced a particle swarm optimization algorithm to adjust the weights of the Taylor network. Later, the authors replaced the particle swarm optimization algorithm with a modified conjugate gradient method to train multidimensional Taylor networks. Dingetal.[13]constructed a grey-box model combining discrete bayesian optimization (DBO) and controlled recurrent neural network (CRNN), namely the CRNN-DBO model, to model and identify time delay systems. This method provided a combination of back-propagation algorithm and DBO method to find the minimum loss value of the model, as well as the correct time delay. Some researchers have attempted to use neural networks for system modeling and time delay identification, but their applications are limited to single-input or linear systems.

    The time delay identification algorithm mentioned above can identify the time delay of the dynamic system well in practice. The models based on the mathematical statistics method can be understood, but these methods require prior knowledge of the structural information and nonlinear parts of the system, which is often inaccessible. Machine learning-based modeling techniques are not concerned with the structure of the model, but rather with the mapping relationship between input and output, unable to obtain the precise value of the time delay, which is detrimental when constructing the control strategy. The time delay identification method based on the neural network belongs to the black-box model after all, which lacks interpretability. At the same time, as machine learning technology improves, more and more researches care about how rationally the model predicts things. Tree-based interpretability models[14-15]are developing rapidly. The application of the tree model in financial[16], medical[17]and other issues fully demonstrates the outstanding interpretability of the tree model.

    To address the problems of the time delay identification, a method inspired by the development of the interpretable machine learning is established. And this paper establishes an interpretable machine learning model based on regression tree to identify the time delay. Experiments are conducted for linear and nonlinear control systems, and the experimental results verify the accuracy of the interpretable model in time delay identification, showing that the interpretable algorithm can be developed as a new method to identify the time delay of the system. Meanwhile, the experimental results also show that the interpretable model can be applied to both linear and nonlinear systems, and can deal with short and long delay.

    1 Methodology

    1.1 Discrete system

    Three different discrete systems are considered in this paper. They are linear first-order (LFO) time delay systems, linear second-order (LSO) time delay systems, and nonlinear time delay systems.

    1.1.1LFOtimedelaysystem

    Consider the following system:

    y(k)=Ay(k-1)+x(k-i),

    (1)

    wherei∈{1, 2,…,N} represents the time delay,xis the input of the time delay system,yis the system output, andAis the parameter of the system.

    Meanwhile, the system with noise is

    y(k)=Ay(k-1)+x(k-i)+ε(k),

    (2)

    whereε(k) is the white noise with zero mean and varianceδ.

    1.1.2LSOtimedelaysystem

    The system is

    y(k)=Ay(k-1)+By(k-2)+x(k-i),

    (3)

    whereAandBare the parameters of the system. The system with noise is

    y(k)=Ay(k-1)+By(k-2)+x(k-i)+ε(k).

    (4)

    1.1.3Nonlineartimedelaysystem

    The expression of nonlinear time delay system is

    y(k)=Ays(k-1)+x(k-i),

    (5)

    wheresstands for power. Add noise to the system

    y(k)=Ays(k-1)+x(k-i)+ε(k).

    (6)

    1.2 Time delay identification with explainable algorithm based on regression decision tree

    In this paper, the regression decision tree model is employed as the discrete time delay recognition model. Through the interpretability analysis of the tree model, it is convenient for readers to understand the interpretability principle of time delay identification.

    1.2.1Structureofalgorithmfortimedelayidentification

    The structure of the algorithm for time delay identification is shown in Fig. 1. The whole algorithm includes datasets construction, regression analysis and interpretability analysis. Matlab is used to simulate each system and generate the data needed for training. In the process of regression analysis, the simulation data are preprocessed, and the regression decision tree model is used for training. With coefficient of determination as the evaluation index of regression model performance, the optimal decision tree model is selected as the final regression model. Then, interpretability analysis is carried out to determine the time delay of the system. Specifically, based on the interpretability of the decision tree model, it is further to summarize and sort out the interpretability of the decision path of the decision tree, and finally identify the time delay of the system from the perspective of interpretability.

    Fig. 1 Structure of algorithm for time delay identification

    1.2.2Regressiondecisiontree

    Regression decision tree is a basic regression method. The decision tree consists of nodes and directed edges. There are two types of nodes: internal nodes and leaf nodes. An internal node represents a feature or attribute, and a leaf represents a category or value.

    Given a datasetD={(x1,y1),(x2,y2),…,(xn,yn)},xiis at-dimensional vector and hastfeatures. The goal of the regression problem is to create a functionf(x) to fit the elements in datasetD, and then get the smallest mean square error (MSE) shown as

    (7)

    Figure 2 presents the algorithm of the regression decision tree. In Fig. 1, it is assumed that a regression tree withMleaves needs to be constructed, which means that the feature spacexneeds to be divided intoMunitsR1,R2, …,Rm, and there is a predicted value for each feature space. Then the minimum MSE of the regression tree was calculated as

    Fig. 2 Regression decision tree algorithm

    (8)

    wherecmis on behalf of the predicted values of themth leaf.

    To get the minimum MSE, just need to minimize the MSE for each leaf, that is, set the predicted value to the mean of the leaves containing the training dataset labels.

    1.2.3Interpretabilityofregressiondecisiontree

    The interpretability of regression tree model is demonstrated through the analysis of feature importance[18]and tree decomposition[19].

    Feature importance traverses all partition points using this feature and calculates how much (in proportion) it reduces the variance or Gini index of the result compared to the parent node. The importance of each feature can be understood as an explanatory part of the whole model. Tree decomposition is to restore the path of the instance and add up the contributions of the passing nodes.

    2 Experimental Verification

    2.1 Datasets

    According to different discrete time delay systems, different datasets are constructed for training and testing the model. The training data can be listed as a matrix, shown as

    (9)

    whereqrepresents the start time of discrete system data,wrepresents the number of discrete system continuous data to be extracted, andurepresents size of data.

    In this study, datasets used in the experiment are collected by different systems in Matlab simulation. According to the three systems mentioned in section 1.1, Matlab is used to simulate them respectively. For each system, two kinds of datasets are generated, one with white noise and the other without white noise.

    In the LFO system without noise, the output of the previous moment of the current moment of the system output is taken as a feature, and the input including the current moment as well as the previous nine moments is taken as features. These features form a feature set. The label is the output of the current moment. The dataset with noise is constructed in the same way.

    In the LSO system dataset, the output of the first two moments of the current moment are taken, and the input including the current moment and the first nine moments are obtained as features. The datasets of the nonlinear system are the same operation as the LFO system. The relevant information of the dataset is shown in Table 1.

    In order to enrich the variety of experiments, different time delays are set. Time delays of different systems are shown in Table 2. Time delay identification of first-order, second-order and nonlinear systems is carried out.

    Table 1 Details of datasets

    Table 2 Time delay of each dataset

    In the industrial process, the discrete system is obtained by sampling the continuous system, and the time delay of the system is related to the delay of the continuous system and the sampling interval. Therefore, many datasets need to be obtained after a series of steps such as analysis and simulation from a specific system, and for different systems, many models are independent and do not have universal applicability. However, in this paper, different datasets can be established for different discrete time delay systems. The steps of establishing datasets are the same as those in this paper that just need to determine the size ofn, and the algorithm proposed in this paper is generally applicable. Therefore, the algorithm in this paper is scalable and greatly improves the efficiency of system time delay identification.

    2.2 Evaluation metrics for time delay identification

    The tree depth of regression decision tree has a certain influence on the interpretability, in the process of regression decision tree training, and it is necessary to determine the tree depth it can accurately fit the datasets.

    This paper uses the coefficient of determination referred to asR2to evaluate regression tree models performance. Its calculation formula is:

    (10)

    Fig. 3 R2 curves of different tree depths in different datasets

    Table 3 R2 scores of regression decision tree with different depths for each dataset

    Table 4 Optimal tree depth of each dataset

    2.3 Interpretability analysis

    2.3.1Featureimportanceanalysis(FIA)

    FIA commonly is used to detect a contribution to the prediction results. The basic idea is that FIA disrupts the feature column data, the other features are unchanged, then observe the change of model prediction accuracy or loss. FIA iterates over all features.

    The feature importance was analyzed for the dataset with fixed tree depth, and the result was shown in Fig.4. In Fig. 4,X1,X2, …,X10representx(k-10),x(k-9), …,x(k-1),x(k), respectively;X11andX12denotey(k-2) andy(k-1), respectively.

    It can be seen from the FIA in Fig. 4 that the regression tree model can fit the control system well, and the FIA can find the time delay of the system. As shown in Fig. 4(a), what can be clearly seen in this figure is the high score ofX5. And the corresponding time delay of the LFO system is 5. Time delay of the LFO system can be accurately identified by the FIA. The conclusion of FIA for the system with noise are almost the same as that without noise in Fig. 4(b).

    Fig. 4 FIA of different datasets: (a) LFO; (b) LFOWN; (c) LSO; (d) LSOWN; (e)NLFO; (F) NLFOWN

    Fig. 5 Visualization of regression decision tree for interpreting LFO dataset

    In Figs. 4(c) and 4(d), the results of FIA show that the model has redundant characteristics in the training process, leading to a little deviation in the results of FIA and partial over-fitting of the model, but it is still obviously observed thatX4has the highest score in feature importance score of the LSO system.

    Figures 4(e) and 4(f) show that FIA well identifies the time delay of nonlinear system, that is, the feature that has the greatest impact on the system. We can see from Figs. 4(e) and 4(f) that this feature isX5, meaning that the time delay is 5. This is consistent with the time delay set by simulation. Therefore, the time delay of the system is well identified by the interpretability analysis of the regression decision tree, and this paper provides an effective identification method for the system time delay identification.

    2.3.2Treedecomposition

    In order to see the decision-making process of the regression decision tree more intuitively, the decision-making process of the LFO system is visualized in Fig. 5, wherecis on behalf of the predicted values of themth leaf. As shown in Fig. 5, it is clear that each decision path in the decision tree represents a rule in the decision process.

    According to the rule of node selection in the decision tree, the structure of the decision tree is almost split based on the featureX5, which is the most important feature affecting the whole decision tree, and also echoes the feature importance analysis.

    3 Conclusions

    In this paper, a novel method is proposed for time delay identification by using the interpretability of machine learning. Experimental results show that the method based on the interpretable regression decision tree model can accurately identify the time delay of control systems, and thus provides a new algorithm for time delay identification of dynamical systems.

    老司机在亚洲福利影院| 亚洲国产精品国产精品| 国产在视频线精品| 国产成人免费无遮挡视频| 制服人妻中文乱码| 国产视频首页在线观看| 国产男女内射视频| 日日撸夜夜添| 丝袜人妻中文字幕| 亚洲人成电影观看| 免费高清在线观看视频在线观看| 街头女战士在线观看网站| 国产精品无大码| 岛国毛片在线播放| 久久鲁丝午夜福利片| 久久天堂一区二区三区四区| 热99久久久久精品小说推荐| 国产成人午夜福利电影在线观看| 男女床上黄色一级片免费看| 大香蕉久久网| 国产成人精品福利久久| 国产在线免费精品| 国产精品一区二区在线观看99| 欧美日韩亚洲综合一区二区三区_| 久久女婷五月综合色啪小说| 制服丝袜香蕉在线| 人妻一区二区av| 日日啪夜夜爽| 欧美成人精品欧美一级黄| 蜜桃国产av成人99| 国产一级毛片在线| 伊人久久国产一区二区| 国产成人系列免费观看| 国产日韩欧美亚洲二区| 午夜福利视频在线观看免费| 日韩精品免费视频一区二区三区| 在线观看免费视频网站a站| 两个人免费观看高清视频| 午夜福利视频在线观看免费| 国产野战对白在线观看| 久久久久久久大尺度免费视频| 精品国产超薄肉色丝袜足j| 婷婷色av中文字幕| videos熟女内射| 欧美精品高潮呻吟av久久| h视频一区二区三区| 久久天堂一区二区三区四区| kizo精华| 亚洲精品美女久久av网站| 国产不卡av网站在线观看| 狠狠精品人妻久久久久久综合| 曰老女人黄片| 国产亚洲一区二区精品| 久久久久久久大尺度免费视频| 午夜精品国产一区二区电影| 国产亚洲av高清不卡| 日韩一区二区三区影片| 亚洲av在线观看美女高潮| 欧美 日韩 精品 国产| av线在线观看网站| 中文字幕亚洲精品专区| 极品少妇高潮喷水抽搐| 美女中出高潮动态图| 亚洲第一青青草原| 国产午夜精品一二区理论片| 男人添女人高潮全过程视频| 1024香蕉在线观看| 成人免费观看视频高清| 19禁男女啪啪无遮挡网站| 欧美日韩一区二区视频在线观看视频在线| 1024视频免费在线观看| 菩萨蛮人人尽说江南好唐韦庄| 十分钟在线观看高清视频www| 2018国产大陆天天弄谢| 人人澡人人妻人| 一二三四中文在线观看免费高清| 我要看黄色一级片免费的| 最近手机中文字幕大全| 下体分泌物呈黄色| 亚洲精品中文字幕在线视频| 99久久人妻综合| 精品一品国产午夜福利视频| 一区福利在线观看| 精品少妇黑人巨大在线播放| 夫妻性生交免费视频一级片| 精品福利永久在线观看| 青草久久国产| 少妇人妻久久综合中文| 欧美久久黑人一区二区| 91老司机精品| 一本久久精品| 黄网站色视频无遮挡免费观看| 精品国产超薄肉色丝袜足j| 午夜影院在线不卡| 精品少妇黑人巨大在线播放| 久久精品国产亚洲av高清一级| 国产精品一国产av| 国产激情久久老熟女| 一边亲一边摸免费视频| √禁漫天堂资源中文www| 丁香六月欧美| 777久久人妻少妇嫩草av网站| 国产在线一区二区三区精| 亚洲精品久久成人aⅴ小说| 成人亚洲欧美一区二区av| 午夜福利网站1000一区二区三区| 国产精品久久久久久人妻精品电影 | 亚洲美女搞黄在线观看| 亚洲美女搞黄在线观看| 天天躁狠狠躁夜夜躁狠狠躁| tube8黄色片| 成人午夜精彩视频在线观看| 十八禁网站网址无遮挡| 亚洲欧美精品自产自拍| 亚洲天堂av无毛| 亚洲一卡2卡3卡4卡5卡精品中文| 桃花免费在线播放| 国产片内射在线| 国产免费一区二区三区四区乱码| 国产日韩欧美视频二区| 国产一区有黄有色的免费视频| 欧美激情极品国产一区二区三区| 久久精品国产亚洲av涩爱| 国产成人精品福利久久| 亚洲精品久久久久久婷婷小说| 最近最新中文字幕免费大全7| av天堂久久9| 丰满少妇做爰视频| 亚洲精品在线美女| 美国免费a级毛片| 亚洲色图综合在线观看| 亚洲精品日本国产第一区| 自线自在国产av| 另类亚洲欧美激情| 国产熟女欧美一区二区| 国产 一区精品| 亚洲国产欧美在线一区| 日本爱情动作片www.在线观看| 国产精品嫩草影院av在线观看| www.自偷自拍.com| 人妻一区二区av| 男女之事视频高清在线观看 | 国产免费现黄频在线看| 汤姆久久久久久久影院中文字幕| 99热网站在线观看| 日韩成人av中文字幕在线观看| 色婷婷久久久亚洲欧美| 美女视频免费永久观看网站| 青春草视频在线免费观看| 久久鲁丝午夜福利片| 麻豆av在线久日| 18禁裸乳无遮挡动漫免费视频| 日本av手机在线免费观看| 午夜激情av网站| 国产亚洲精品第一综合不卡| 国产精品免费视频内射| 亚洲精品国产色婷婷电影| 午夜激情av网站| 97在线人人人人妻| 成人免费观看视频高清| 亚洲av国产av综合av卡| 亚洲综合色网址| 91精品国产国语对白视频| 国产精品久久久久久久久免| 精品视频人人做人人爽| 国产熟女欧美一区二区| 久久久精品国产亚洲av高清涩受| 人人澡人人妻人| 中文乱码字字幕精品一区二区三区| 97在线人人人人妻| 久久精品aⅴ一区二区三区四区| 99国产综合亚洲精品| 亚洲美女黄色视频免费看| 欧美中文综合在线视频| 女人爽到高潮嗷嗷叫在线视频| 妹子高潮喷水视频| 国产午夜精品一二区理论片| 交换朋友夫妻互换小说| 最新在线观看一区二区三区 | 国产97色在线日韩免费| 99久久综合免费| 久久久久久人人人人人| a级片在线免费高清观看视频| 亚洲一码二码三码区别大吗| 亚洲av成人精品一二三区| 综合色丁香网| 一级a爱视频在线免费观看| 亚洲精品一区蜜桃| 在线天堂中文资源库| 亚洲人成电影观看| 欧美中文综合在线视频| 夜夜骑夜夜射夜夜干| 久久久久久久国产电影| 亚洲视频免费观看视频| 老鸭窝网址在线观看| 亚洲av福利一区| 午夜日韩欧美国产| 三上悠亚av全集在线观看| a级片在线免费高清观看视频| 欧美xxⅹ黑人| 最新在线观看一区二区三区 | 久久久久视频综合| 嫩草影院入口| 亚洲欧美一区二区三区国产| 国产免费又黄又爽又色| 满18在线观看网站| av免费观看日本| 国产精品女同一区二区软件| 国产日韩欧美视频二区| 欧美变态另类bdsm刘玥| 女人久久www免费人成看片| 亚洲天堂av无毛| 精品一区二区三区av网在线观看 | 男人爽女人下面视频在线观看| 国产又爽黄色视频| 99精国产麻豆久久婷婷| 别揉我奶头~嗯~啊~动态视频 | 亚洲七黄色美女视频| 桃花免费在线播放| 国语对白做爰xxxⅹ性视频网站| 黑人巨大精品欧美一区二区蜜桃| 91精品三级在线观看| 欧美人与性动交α欧美精品济南到| 日本色播在线视频| 91精品伊人久久大香线蕉| 老司机影院毛片| 国产精品女同一区二区软件| 黄色视频不卡| 久久女婷五月综合色啪小说| av福利片在线| av一本久久久久| 秋霞在线观看毛片| av视频免费观看在线观看| 午夜日本视频在线| 七月丁香在线播放| 亚洲欧美清纯卡通| 免费少妇av软件| 国产成人精品久久久久久| 高清av免费在线| 午夜激情av网站| 考比视频在线观看| 51午夜福利影视在线观看| 国产97色在线日韩免费| 99久久综合免费| 人人妻,人人澡人人爽秒播 | 精品国产一区二区三区四区第35| 狠狠婷婷综合久久久久久88av| 国产精品人妻久久久影院| 无限看片的www在线观看| 亚洲少妇的诱惑av| 在线天堂最新版资源| 色婷婷av一区二区三区视频| 亚洲四区av| 国产午夜精品一二区理论片| 日本av免费视频播放| 最近中文字幕高清免费大全6| 亚洲精品中文字幕在线视频| 十八禁网站网址无遮挡| 人人妻人人澡人人看| 丝袜美足系列| 国产日韩欧美在线精品| 51午夜福利影视在线观看| 亚洲国产欧美在线一区| 成人亚洲精品一区在线观看| 国产精品偷伦视频观看了| 国产99久久九九免费精品| 啦啦啦啦在线视频资源| 国产毛片在线视频| 亚洲天堂av无毛| av卡一久久| 午夜福利视频在线观看免费| 免费观看人在逋| 夫妻午夜视频| 黄网站色视频无遮挡免费观看| 国产精品二区激情视频| 国产 一区精品| av国产精品久久久久影院| 蜜桃国产av成人99| 久久久国产精品麻豆| 性少妇av在线| 亚洲欧美清纯卡通| 亚洲精品久久成人aⅴ小说| 国产极品天堂在线| 国产99久久九九免费精品| 日日啪夜夜爽| 亚洲一码二码三码区别大吗| 久久午夜综合久久蜜桃| 飞空精品影院首页| 看免费成人av毛片| 久久精品久久久久久噜噜老黄| 一本久久精品| 日韩一区二区视频免费看| 丝袜人妻中文字幕| 亚洲 欧美一区二区三区| 日日啪夜夜爽| 日韩一本色道免费dvd| 中文字幕最新亚洲高清| 老汉色∧v一级毛片| 欧美激情极品国产一区二区三区| 亚洲av成人精品一二三区| 国产精品久久久久成人av| 欧美在线黄色| 91国产中文字幕| 嫩草影院入口| 久久精品熟女亚洲av麻豆精品| 成人手机av| 午夜日韩欧美国产| 青春草视频在线免费观看| 欧美亚洲 丝袜 人妻 在线| av国产精品久久久久影院| 18禁观看日本| 国产成人精品久久久久久| 国产精品一区二区在线不卡| 狠狠精品人妻久久久久久综合| 欧美最新免费一区二区三区| 爱豆传媒免费全集在线观看| 亚洲五月色婷婷综合| 伦理电影大哥的女人| 免费不卡黄色视频| 大片免费播放器 马上看| 纯流量卡能插随身wifi吗| 亚洲男人天堂网一区| 精品久久久久久电影网| 亚洲四区av| 另类亚洲欧美激情| 如日韩欧美国产精品一区二区三区| 在线观看免费高清a一片| 国产无遮挡羞羞视频在线观看| 国产一区二区激情短视频 | 精品一区二区三卡| 在线观看免费日韩欧美大片| 午夜福利视频精品| 欧美av亚洲av综合av国产av | 一二三四在线观看免费中文在| 久久精品国产亚洲av涩爱| 99久久精品国产亚洲精品| 男人爽女人下面视频在线观看| 国产毛片在线视频| 一级毛片 在线播放| 成年人午夜在线观看视频| 免费在线观看完整版高清| 性少妇av在线| 在线免费观看不下载黄p国产| 美女高潮到喷水免费观看| 精品一区二区三区四区五区乱码 | av天堂久久9| 999精品在线视频| 99精国产麻豆久久婷婷| 精品久久蜜臀av无| 国产日韩欧美视频二区| 人人妻人人澡人人爽人人夜夜| 少妇人妻久久综合中文| 亚洲国产欧美网| 久久天堂一区二区三区四区| 哪个播放器可以免费观看大片| 一区二区三区乱码不卡18| 另类亚洲欧美激情| 国产麻豆69| 侵犯人妻中文字幕一二三四区| 亚洲精品美女久久av网站| 日韩大片免费观看网站| 国产精品免费视频内射| 美女高潮到喷水免费观看| 免费久久久久久久精品成人欧美视频| 麻豆乱淫一区二区| 美女脱内裤让男人舔精品视频| 多毛熟女@视频| 18禁观看日本| 精品福利永久在线观看| 一二三四中文在线观看免费高清| 久久久久久人人人人人| 大话2 男鬼变身卡| 久久久久久久久免费视频了| 天天躁狠狠躁夜夜躁狠狠躁| 青草久久国产| 五月天丁香电影| 亚洲精品美女久久久久99蜜臀 | 狂野欧美激情性xxxx| 丰满饥渴人妻一区二区三| 国产av码专区亚洲av| 久久久久久久精品精品| 免费黄频网站在线观看国产| 91aial.com中文字幕在线观看| 一本久久精品| 亚洲在久久综合| 国产精品免费大片| videos熟女内射| 男人操女人黄网站| 下体分泌物呈黄色| 国产在线视频一区二区| 欧美少妇被猛烈插入视频| 亚洲少妇的诱惑av| 国产一区二区三区av在线| 人妻人人澡人人爽人人| 尾随美女入室| 爱豆传媒免费全集在线观看| 飞空精品影院首页| 视频在线观看一区二区三区| 99久久综合免费| 欧美激情 高清一区二区三区| 女人精品久久久久毛片| 国产精品久久久久久精品古装| 亚洲欧美一区二区三区黑人| 欧美日韩视频高清一区二区三区二| 国产色婷婷99| 三上悠亚av全集在线观看| 国产成人精品在线电影| 成人影院久久| 国产日韩欧美在线精品| 亚洲欧美成人综合另类久久久| 老司机在亚洲福利影院| 啦啦啦 在线观看视频| 亚洲国产欧美在线一区| 国产爽快片一区二区三区| 国产黄色免费在线视频| 婷婷色综合www| av视频免费观看在线观看| 少妇人妻 视频| 成年人午夜在线观看视频| 女性生殖器流出的白浆| av片东京热男人的天堂| 热re99久久精品国产66热6| 男女之事视频高清在线观看 | 久久久久精品久久久久真实原创| 丝袜脚勾引网站| 叶爱在线成人免费视频播放| 人人妻人人添人人爽欧美一区卜| 免费黄频网站在线观看国产| 男人操女人黄网站| 午夜激情av网站| 香蕉丝袜av| 最近中文字幕高清免费大全6| 欧美变态另类bdsm刘玥| 免费不卡黄色视频| 黄网站色视频无遮挡免费观看| 日韩熟女老妇一区二区性免费视频| 国产精品三级大全| 下体分泌物呈黄色| kizo精华| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲美女搞黄在线观看| 成人手机av| 一二三四在线观看免费中文在| 男女免费视频国产| 99久久99久久久精品蜜桃| 99国产精品免费福利视频| 欧美精品av麻豆av| 久久狼人影院| 午夜老司机福利片| 亚洲精品国产区一区二| 18在线观看网站| 在现免费观看毛片| 欧美最新免费一区二区三区| 亚洲精品久久午夜乱码| 久久毛片免费看一区二区三区| 日韩中文字幕视频在线看片| 999久久久国产精品视频| 国产精品国产三级专区第一集| 老司机在亚洲福利影院| 51午夜福利影视在线观看| av国产久精品久网站免费入址| 亚洲国产日韩一区二区| 欧美国产精品一级二级三级| 亚洲第一av免费看| 最新在线观看一区二区三区 | 一区二区三区乱码不卡18| 精品酒店卫生间| 成人漫画全彩无遮挡| 久久国产精品男人的天堂亚洲| 亚洲免费av在线视频| 乱人伦中国视频| 中文字幕人妻熟女乱码| 一边摸一边做爽爽视频免费| 免费女性裸体啪啪无遮挡网站| 热re99久久国产66热| 19禁男女啪啪无遮挡网站| 久久热在线av| 秋霞伦理黄片| 亚洲国产中文字幕在线视频| 国产一区有黄有色的免费视频| 菩萨蛮人人尽说江南好唐韦庄| 久久久久久久国产电影| 国产精品偷伦视频观看了| 亚洲欧美日韩另类电影网站| 男的添女的下面高潮视频| 中文字幕高清在线视频| 美女高潮到喷水免费观看| 日韩成人av中文字幕在线观看| av视频免费观看在线观看| 丰满乱子伦码专区| 久热这里只有精品99| xxx大片免费视频| 国产一区有黄有色的免费视频| 日韩大片免费观看网站| 女人高潮潮喷娇喘18禁视频| 一区二区av电影网| 18禁动态无遮挡网站| 波多野结衣一区麻豆| 黄网站色视频无遮挡免费观看| 亚洲av中文av极速乱| 曰老女人黄片| 交换朋友夫妻互换小说| 久久久久精品性色| 欧美xxⅹ黑人| 老司机深夜福利视频在线观看 | 妹子高潮喷水视频| 午夜日本视频在线| 一二三四在线观看免费中文在| 亚洲精品aⅴ在线观看| 色婷婷久久久亚洲欧美| 制服丝袜香蕉在线| 午夜福利影视在线免费观看| 亚洲成色77777| 久久综合国产亚洲精品| 一本一本久久a久久精品综合妖精| svipshipincom国产片| 国产精品香港三级国产av潘金莲 | 天堂8中文在线网| 两个人免费观看高清视频| 又粗又硬又长又爽又黄的视频| 亚洲第一av免费看| 久久久久视频综合| 涩涩av久久男人的天堂| 操美女的视频在线观看| 亚洲精品中文字幕在线视频| 国产精品国产三级专区第一集| 曰老女人黄片| 制服丝袜香蕉在线| 亚洲精品日本国产第一区| 欧美精品一区二区大全| 欧美 亚洲 国产 日韩一| 最近最新中文字幕大全免费视频 | 女性被躁到高潮视频| av.在线天堂| 亚洲精品日本国产第一区| 制服丝袜香蕉在线| 国产片特级美女逼逼视频| 男的添女的下面高潮视频| 九色亚洲精品在线播放| 亚洲av欧美aⅴ国产| 国产精品一区二区精品视频观看| 亚洲一区二区三区欧美精品| 亚洲欧美激情在线| 国产精品成人在线| 亚洲精品在线美女| 美女主播在线视频| 亚洲av在线观看美女高潮| 最近最新中文字幕免费大全7| 在线观看人妻少妇| 国产成人欧美在线观看 | 在线 av 中文字幕| 欧美精品一区二区大全| 狂野欧美激情性bbbbbb| 亚洲精品自拍成人| 一区二区三区激情视频| 亚洲美女黄色视频免费看| 女人被躁到高潮嗷嗷叫费观| 亚洲欧洲国产日韩| av线在线观看网站| 久久久久久人人人人人| av福利片在线| 99久久人妻综合| bbb黄色大片| 男人爽女人下面视频在线观看| 丝袜美腿诱惑在线| 在现免费观看毛片| 亚洲成色77777| 欧美日韩视频高清一区二区三区二| 另类亚洲欧美激情| 亚洲情色 制服丝袜| 精品人妻熟女毛片av久久网站| 亚洲,一卡二卡三卡| 午夜福利在线免费观看网站| 无限看片的www在线观看| 久久精品国产亚洲av高清一级| 9热在线视频观看99| 这个男人来自地球电影免费观看 | 亚洲av中文av极速乱| 精品国产超薄肉色丝袜足j| 婷婷色综合大香蕉| 高清在线视频一区二区三区| 成年女人毛片免费观看观看9 | 亚洲成av片中文字幕在线观看| 在线观看三级黄色| 精品人妻在线不人妻| 国产高清国产精品国产三级| 亚洲久久久国产精品| 黑人欧美特级aaaaaa片| 在线精品无人区一区二区三| 久久精品久久精品一区二区三区| 看十八女毛片水多多多| 美女福利国产在线| 久久精品国产亚洲av高清一级| 香蕉国产在线看| www日本在线高清视频| 午夜日本视频在线| 亚洲国产欧美日韩在线播放| 精品一区二区免费观看| 久久狼人影院| 青春草亚洲视频在线观看| 五月开心婷婷网| 夜夜骑夜夜射夜夜干| 久久天躁狠狠躁夜夜2o2o | 男人爽女人下面视频在线观看| 婷婷色麻豆天堂久久| 国产无遮挡羞羞视频在线观看| 亚洲欧美成人综合另类久久久| 波多野结衣av一区二区av| 亚洲欧洲日产国产| 欧美人与善性xxx| 99九九在线精品视频| 伊人亚洲综合成人网| 亚洲精品国产区一区二| 欧美日韩视频精品一区| 97在线人人人人妻|