• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique

    2022-09-24 08:02:04ChengYuHuang黃成玉JinYanWang王金延BinZhang張斌ZhenFu付振FangLiu劉芳MaoJunWang王茂俊MengJunLi李夢軍XinWang王鑫ChenWang汪晨JiaYinHe何佳音andYanDongHe何燕冬
    Chinese Physics B 2022年9期
    關(guān)鍵詞:王鑫佳音張斌

    Cheng-Yu Huang(黃成玉) Jin-Yan Wang(王金延) Bin Zhang(張斌) Zhen Fu(付振)Fang Liu(劉芳) Mao-Jun Wang(王茂俊) Meng-Jun Li(李夢軍) Xin Wang(王鑫)Chen Wang(汪晨) Jia-Yin He(何佳音) and Yan-Dong He(何燕冬)

    1School of Integrated Circuits,Peking University,Beijing 100871,China

    2Beijing Chip Identification Technology Co.,Ltd,Beijing 102200,China

    Keywords: atomic layer deposition Al2O3/GaN MOSFET, normally-off, interface/border traps, thermal oxidation-assisted wet etching

    1. Introduction

    GaN, as wide band gap semiconductor material, has a bright future in the field of power semiconductor devices due to its advantages of high thermal conductivity, high breakdown electric field, and high electron saturation drift velocity. Two-dimensional electron gas(2DEG)with high concentration and high mobility can be formed at the AlGaN/GaN interface due to the strong polarization effect in III-nitrides.However, the traditional AlGaN/GaN high electron mobility transistor (HEMT) is a depletion-mode device, Considering the design of driving circuit. single polar power supply, and the safe operation,it is necessary to realize enhancement mode(E-mode)AlGaN/GaN device. Various techniques have been proposed to realize the normally-off operation of AlGaN/GaN HEMTs.[1-4]Among them, the recessed-gate with insulator gate dielectric is a commonly used structure to realize E-mode GaN device because of its high gate voltage swing, low gate leakage current, and high threshold voltage, which has been widely studied for realizing E-mode GaN HEMTs.[4]

    Our research group has developed a self-terminating thermal oxidation-assisted wet etching technique[5]to realize the E-mode MOSFET structure,the device which is simple to fabricate, easy to control, and possesses reliable performance,has broad market prospects. In this work, based on this technique,the enhancement mode Al2O3/GaN MOSFETs of sapphire substrate and Si substrate were developed, respectively.And the characteristics of the two devices were analyzed.The indicators reflecting the significant improvement in the sapphire substrate device are maximum drain current (Idmax),field-effect mobility (μFEmax), and on-state resistance (Ron).The experimental results show that the difference in device performance depends on the difference in Al2O3/GaN interface state. The interface/border trap density in the Si substrate device is one order of magnitude higher than that in the sapphire substrate device. The border traps in Al2O3dielectric and the interface traps in Al2O3/GaN gave a significant effect on device channel mobility. The quality of GaN grown on Si is not so good as that grown on sapphire.

    2. Device fabrication

    2.1. Sapphire substrate device

    The AlGaN/GaN epitaxial structure studied here were grown on a 3-in(0 0 0 1)sapphire substrate by metal organic chemical vapor deposition(MOCVD)(1 in=2.54 cm). In the AlGaN/GaN epitaxial structure, the GaN buffer layer is 1.5-μm thick, GaN channel layer is 120-nm thick, AlN spacer layer is 1-nm thick,Al0.23Ga0.77N barrier layer is 18-nm thick,and GaN cap layer is 2-nm thick. Its structure is shown in Fig.1(a).

    2.2. Si substrate device

    The epitaxial structure studied here was grown on a 3-in p-type(111)Si substrate by metal-organic chemical vapor deposition (MOCVD). In the epitaxial structure, GaN buffer layer is 1.5-μm thick,GaN channel layer is 120-nm thick,AlN spacer layer is 1-nm thick, Al0.23Ga0.77N barrier layer is 25-nm thick, and GaN cap layer is 2-nm thick. Its structure is shown in Fig.1(b).

    Fig.1. Structure diagram of GaN MOSFET with 25-nm-thick ALD Al2O3,showing(a)sapphire substrate GaN MOSFET with ALD Al2O3 and(b)Si substrate GaN MOSFET with ALD Al2O3.

    Self-terminating thermal oxidation assisted wet etching technique process flows of these two devices were identical.First, the fabrication of devices started with gated recess fabrication, GaN cap layer served as a recess mask.[6]Specifically,650-°C thermal oxidation lasted 50 min,and then 70-°C wet etching in KOH rtook 75 min. And then at 250°C, 18-nm or 25-nm-thick gate dielectric Al2O3layer was deposited by atomic layer deposition(ALD).After removing the dielectric Al2O3at the source and drain positions by buffered oxide etch, Ohmic contact Ti/Al/Ni/Au (20/160/50/100 nm) metal stack was fabricated by e-beam evaporation. Then at 870°C,rapid thermal annealing lasted 30 s. Then,multi-energy F-ion implantation for device isolation was conducted. Finally, a gate region was defined by the lithography technique,and the Ni/Au gate stack was completed by e-beam evaporation.

    3. Results and discussion

    TheID-(VGS-Vth)andID-VDScharacteristics of the GaN MOSFETs with sapphire substrate and Si substrate are shown in Fig.2. The geometrical dimensions of both samples are as follows. A gate-source distanceLGSis 2 μm, a gate lengthLGis 2 μm, a gate-drain distanceLGDis 20 μm, and a gate widthWGis 20 μm. Figure 2(a) shows the transfer characteristics of the GaN MOSFETs with sapphire substrate device and Si substrate device atVds=7 V.TheVgsvoltage increases from-2 V to 7 V for the sapphire substrate device,and from-2 V to 7.5 V for the Si substrate device. The threshold voltage (Vth) is 0.2 V for the sapphire substrate device and 1.5 V for the Si substrate device. The two devices are well pinched off atVGS=0 V.With the upward scanning of gate voltageVGS,drain currentIDof sapphire substrate device rises rapidly,indicating better gate control performance of sapphire substrate device. The maximum drain currentIdmaxis~401 mA/mm and the maximum transconductanceGmis~75 mS/mm for sapphire substrate device, while theIdmaxandGmare~228 mA/mm and~55 mS/mm for the Si substrate device. Thus,it can be seen that comparing with the Si substrate device,the maximum drain current of sapphire substrate device is 1.76 times that of silicon substrate device. The output characteristics of the sapphire substrate device and Si substrate device withVGSscanning from 0 V to 8 V in steps of 2 V are shown in Fig. 2(b). The performance of sapphire substrate device is improved obviously. UnderVGS=8 V andVDS=10 V bias, GaN MOSFET of sapphire substrate has a very high drain current (401 mA/mm), and a very small onresistance(15.2 Ω·mm),in comparison with the the maximum drain current of 228 mA/mm and on-resistance of 21.2 Ω·mm of the Si substrate device.

    It is obvious that the performance of the sapphire substrate device is better than that of Si substrate device. The difference in performance between the sapphire substrate device and Si substrate device is very large. In order to analyze its underlying mechanism, we evaluate the interface trap distribution of the GaN MOSFET with ALD Al2O3gate dielectric by the conductance method.[7]This technique is based on measuring the equivalent parallel conductanceGpof an MOS capacitor as a function of bias voltage and frequency. The MOS capacitor equivalent circuit is shown in Fig.3(a),where theCoxrepresents the capacitance of the gate insulator,andCsrefers to the capacitance of the channel depletion region. TheCitandRitin series describe the capacitance effect of the traps located at the interface between the gate insulator and the GaN buffer layer. TheRittogether with theCitdescribes the time delay(τit)required for the electrons trapped at the interface to form an equilibrium with those in the channel,τit=RitCitbeing the time constant of interface trap,andCitbeing related to the trap density(Dit). Simplified circuit of Fig.3(a)is shown Fig.3(b),whereCpandGpare the equivalent parallel capacitance and conductance respectively.

    Fig.2. The I-V characteristics of the fabricated GaN MOSFET with device dimension of LGS/LG/LGD/WG=2/2/20/20μm: (a)transfer characteristics and(b)output characteristics.

    Fig.3. (a)Equivalent circuit of MOS capacitor with interface trap,and(b)simplified circuit of equivalent circuits of MOS capacitor with interface trap,with Cp and Gp denoting equivalent parallel capacitance and conductance respectively.

    Figure 4 shows the curves ofGp/ω versus ωunder differentVgsfor sapphire substrate device and Si substrate device,

    whereGp/ωnamed the normalized equivalent parallel conductance is the frequency-dependent values ofGpand can be used to calculate the interface trap density,andωis the angular frequency. The measured capacitance and conductance are used to extract the normalized equivalent parallel conductance(Gp/ω). By assuming a single trap level, the relationship ofGp/ω versus ωcan be given below:

    Thefscanning frequencytranges from 1 kHz to 1 MHz in the experiment, the gate bias voltage scanning ranges from-0.5 V to 0.1 V and from 0.8 V to 1.4 V in steps of 0.1 V for the sapphire substrate device and Si substrate device, respectively. The MOS capacitor is biased at the depletion state so that the Fermi level is located within the GaN bandgap for the detection of interface traps. As can be seen from Fig. 4,the peak value ofGp/ωmoves towards high frequency as the bias increases.[8-15]It has similar characteristics to other existing reports. But theGp/ωvalue of Si substrate device is significantly higher than that of sapphire substrate device. For sapphire substrate device, theGp/ωvalue is small when the frequency is below 105s-1, instead,Gp/ωvalue of Si substrate device is still large. Indicating that the deeper level trap of Si substrate device is higher than that of sapphire substrate device.

    Fig. 4. Characteristics curves Gp/ω versus ω of MOS capacitor for (a)sapphire substrate device bias (from -0.5 V to 0.1 V in steps of 0.1 V)and (b) Si substrate device at bias (from 0.8 V to 1.4 V in steps of 0.1 V).Gp/ω is normalized equivalent parallel conductance,with ω being angular frequency.

    As can be seen from Fig.4,the curve obviously has more than one peak value, and the equivalent parallel conductivity model of single-level trap cannot be applied to our system.Hence, in order to quantitatively extract the interface states,theGp/ωcurves are fitted through considering two or three different distributions of trap density levelsDitwith different values of time constantτitby using the following equations:[7]

    whereω=2π fis the radial frequency,Dit1,Dit2,andDit3are the interface trap densities,τit1,τit2,τit3are the time constants of traps. Figure 5 show the experimental and fitting curves of MOS capacitor with sapphire substrate and Si substrate at bias voltages of-0.2 V and 0.9 V,the measurement curves and fitting curves of the two MOS devices are in good consistency with each other. For devices of sapphire substrate,each measured curve can be decomposed into two fitting curves,showing that there are two types of traps at a given bias voltage.For Si substrate device,each measured curve can be decomposed into three fitting curves. It can be seen from Fig.5 that there are at least two peak values in theGp/ωcurve of sapphire substrate device, and at least three peak values in theGp/ωcurve of Si substrate device. TheDitof traps is a function of trap characteristic time constant (τit) and trap energy level as shown in Fig.6. The relationship between the time constants and trap energy level is expressed as

    wherevth= 2.6×107cm/s is the thermal velocity,Nc=2.7×1018cm-3is the effective density states in the GaN conduction band,[15]andσn=1×10-14cm2is the electron capture cross section.

    In Fig. 6, There are two kinds of traps that are continuous distributions of energy level ranging from 0.34 eV to 0.41 eV and from 0.42 eV to 0.46 eV. Both traps should be attributed to common interface states,[10]marked as interface trap in Fig. 6. And the other kinds of traps are very possible to be border trap states, for they exhibit single trap energy level of around 0.48 eV,marked as border trap in Fig.6.Note that the time constant of a border trap is~1.5×10-4s,which is close to our extraction value~1.8×10-4s reported at Al2O3/GaN interface.[13]Moreover, what is observed at SiO2/GaN interface[14,15]is also a similar border trap with a time constant of~1.4×10-4s-3×10-4s. Figure 6 shows the curves of interface trap and border trap extracted from sapphire substrate and Si substrate MOS capacitors, and the increase of measured trap density withVGSincreasing,indicating the apparent differences in trap distribution and density.First, the interface trap concentration of Si substrate device with energy distribution between 0.34 eV and 0.41 eV is nearly one order of magnitude higher than that of sapphire substrate device. The Si substrate device has a wide interface trap distribution,while the sapphire substrate device has no interface trap distribution between 0.4 eV and 0.46 eV. Furthermore,the border trap concentration of Si substrate device is one order of magnitude higher than that of sapphire substrate device.It shows that the quality of GaN grown on Si is inferior to that grown on sapphire substrate.which is likely to be due to the fact that the GaN grown on Si substrate has higher oxygen and nitrogen vacancies.[13,17-20]

    Fig.5.Measured curves and fitting curves of Gp/ω versus ω at VA of-0.2 V and 0.9 V for(a)sapphire substrate device and(b)Si substrate device.

    Fig.6. Trap state density as a function of energy level for both devices.

    It can be seen from Fig.7 that with the gate bias increasing,Si substrate MOS capacitor increases continually and the sapphire substrate MOS capacitor trends to saturate. Therefore,it can be reasonably inferred that the degraded transport performance in the channel of Si substrate device can be attributed to the presence of high density of interface traps and border traps at the Al2O3/GaN interface. The Al2O3/GaN MOS capacitor structure with interface trap and border trap distributions is shown in Fig.8.

    Fig.7. Curves of trap state density of border trap versus Vgs-Vth.

    Fig. 8. Schematic band diagram of Al2O3/GaN MOS capacitor structure with interface trap and border trap distributions.

    In addition,the field effect mobility at low field(μFE)for the sapphire substrate device and the Si substrate device are also extracted in the linear region (Vds=0.1 V) and shown in Fig. 9. When a GaN MIS HEMT device operates in a linear operating region, the drain currentIDScan be expressed as[6,21,22]

    From Eq. (7), the maximum field effect mobility (μFEmax) is calculated to be 176 cm2/V·s for sapphire substrate device and 96 cm2/V·s for Si substrate device. The accumulation capacitance (Cox) is 378 nF/cm2for sapphire substrate and 386 nF/cm2for Si substrate.

    Fig. 9. Curve of extracted field effect mobility (μFE) versus VGS-Vth for sapphire substrate device and for Si substrate device.

    Some authors described the channel mobility on MOSFETs fabricated by wide bandgap semiconductor,[23-26]with consideration of the contributions to the Matthiessen’s rule,made by the bulk mobility factor (μB), the acoustic-phonon scattering (μAC), the surface roughness scattering (μSR), and the Coulomb scattering (μC) due to the presence of interface charges,specifically

    The study of the temperature behavior of the field-effect mobility is a useful method to acquire the information on the insulator/semiconductor interface properties in MOSFETs. Figure 10 shows the experimental results of the field-effect mobilityversus VG-Vthat different measured temperatures(298 K-398 K).As can be seen,the maximum values of these curves decrease as the measured temperature increases.

    Figure 11 shows the peak of the field-effect mobility values as a function of temperature, extracted from Fig. 10. As can be seen, the experimental peak mobility values decrease with the measured temperature increasing. As can be seen from Eq.(8),the limiting factor of the mobility comes from the contributions made by the surface roughness(μSR),the acoustic phonon (μAC), and the Coulomb scattering (μC) contributions.Because the larger value of bulk mobility only has a negligible effect on the total mobility. The sapphire substrate device is mainly responsible for acoustic-phonon scattering,and Si substrate device is mainly responsible for the surface roughness scattering. It should be mentioned that the subthreshold region of theIDS-VDScan be affected by the non-steep change in the gate capacitance. The early ascending part of the curve of field-effect mobilityversusVGS-Vthcan be influenced by the soft gate-capacitance variation. However, forVGS-Vth>1 V the device is in accumulation and the capacitance value is almost constant. Hence, the peak mobility values used in the following are not affect by the capacitance value variation.

    Fig.10. Curves of field-effect mobility(μFE)versus VG-Vth at different temperatures for(a)sapphire substrate device and(b)Si substrate device.

    Fig.11. Peaks of the field-effect mobility values as a function of temperature.

    Figure 12 displays the temperature-dependentC-Vmeasurement results for GaN MOSFET with sapphire substrate and Si substrate, respectively, showing that our model reproduces the characteristic shapes ofC-Vcurves from the MOS capacitors,specifically,a nearly flat part of the voltage above threshold voltage (Vth), a rapid change in the capacitance atVth, and a very small capacitance in the subthreshold region(belowVth). The capacitance for the gate voltage of the voltage above threshold voltage(Vth)is determined by the capacitance of Al2O3layer and is almost bias-independent. The capacitance in the subthreshold region depends on the background doping in the GaN layer. The effect of increasing temperature onC-Vcurve is a reduction of the slope caused by the increased Debye length and the thermal broadening of the Fermi-Dirac distribution.[27]The slope of sapphire substrate device,KSapphire,is greater than that of Si substrate device,KSias shown in Fig. 12. The higher the trap concentration, the lower the slope is. It shows that the trap concentration of the interface of Si substrate device is higher that of sapphire substrate device.

    On the other hand, the increasing in temperature led theC-Vcurves to shift positively by around 0.04 V for sapphire substrate device. But the increasing in temperature results in a negative shift ofC-Vcurves by around 0.2 V for Si substrate device as shown in Fig.13. The temperature-dependent voltage shift is attributed to the depletion and redistribution of carriers.[28]The negative shift of theC-Vcurve of the Si substrate device indicates that the shallow level trapped electrons are detrapping and a positive charge appears. The larger the trap charge concentration, the larger theVthshift is, indicating the excellent Al2O3/GaN interface quality for sapphire substrate device.

    Fig. 12. The VGS-dependent gate capacitance for (a) sapphire substrate device and(b)Si substrate device at various temperatures.

    Fig.13. The Vth shifts versus temperature for sapphire substrate and Si substrate.

    To further study the crystalline quality of the GaN epilayers on sapphire substrate and Si substrate,the crystal quality of GaN is analyzed by high resolution x-ray diffraction measurements.The measurement results of symmetric(002)plane and asymmetric(102)plane of GaN epilayer are shown in Table 1.The full width at half maximum(FWHM)values of the(002)and(102)planes for the GaN of sapphire substrate are 316 arcsec and 613 arcsec,while those for the GaN of Si substrate are 688 arcsec and 941 arcsec respectively. The FWHM value of(002)plane for the GaN of Si substrate is about twice that for the GaN of sapphire substrate,and the FWHM value of(102)plane for the GaN of Si substrate is about one and a half times that for the GaN of sapphire substrate. Because the FWHM value is associated with threading dislocation density in GaN epilayer,this significant difference FWHM value confirms that quality of GaN of sapphire substrate is better than that of GaN of Si substrate.One of the biggest challenges is the large stress caused by the thermal mismatch between GaN epilayer and Si substrate.The large lattice mismatch between GaN and Si will result in high density dislocations. Owing to the existence of oxygen,silicon impurities and nitrogen vacancies,the quality of GaN grown on Si is not good.[29,30]

    Table 1. X-ray diffraction measurement results of GaN epilayer on sapphire and Si.

    By comparing the fabrication of the sapphire substrate device with the fabrication of the Si substrate device, it can be assumed that a self-terminating gate recess technique used for recessed GaN MOSFET fabrication can effectively inhibit the generation of interface and border trap at the Al2O3/GaN interface, thus improving the device performance. The selfterminating thermal oxidation assisted wet etching technique is shown to be effective and feasible. At the same time, the technique is also shown to cause different property changes in gallium nitride materials with different substrates. This finding can be used as a reference for further optimizing the Si substrate devices.

    4. Conclusions

    The improved GaN MOSFET device with sapphire and silicon substrates are developed based on our proposed the thermal oxidation-assisted self-terminating gate recess technique, and two kinds of devices are systematically studied.The experimental results demonstrate that the performance index of the enhanced device on sapphire substrate in terms ofIdmax(~76%),μFEmax(~83%) as well asRon(~39%) is significantly improved in comparison with that of the device on silicon substrate. Moreover,the frequency-dependent conductance measurement is used to evaluate the performance of the device. The results show that the improvement of the device performance on sapphire substrate should be attributed to the significant suppression of self-terminated groove gate technology that significantly inhibits the Al2O3/GaN interface and border trap,and reduces the time constant of interface trap to~1×10-6s-8×10-6s and the time constant of border trap to~1.6×10-4s-3×10-4s, respectively. Our experimental results demonstrate that(i)the Al2O3/GaN interface traps have a significant influence on the performance of device, (ii) the self-terminating gate recess technique can effectively suppress the generation of interface/border traps of at Al2O3/GaN interface,thus improving the performance of the device,(iii)the improving of performances varies according to GaN materials with different substrates.The research results in this work can provid a reference for further optimizing the performances of silicon substrate devices.

    Acknowledgements

    The authors would like to thank the National Key Micrometer/Nanometer Processing Laboratory, Atomic Nanomaterials and Equipment Co. Ltd (ANAME) and the Suzhou Institute of Nano-Tech and Nano-Bionics(SINANO)for help in device fabrication.

    Project supported by the Research on Key Techniques in Reliability of Low Power Sensor Chip for IOTIPS and the Technology Project of Headquarters, State Grid Corporation of China(Grant No.5700-202041397A-0-0-00).

    猜你喜歡
    王鑫佳音張斌
    夕陽家園
    金秋(2022年10期)2022-11-25 16:28:12
    再續(xù)華教使命,網(wǎng)絡課堂傳佳音
    華人時刊(2022年15期)2022-10-27 09:05:52
    秦怡:百年風雨,從容笑對
    質(zhì)量守恒定律的應用
    Sawtooth-like oscillations and steady states caused by the m/n = 2/1 double tearing mode
    Mode structure symmetry breaking of reversed shear Alfvén eigenmodes and its impact on the generation of parallel velocity asymmetries in energetic particle distribution
    一路有你都是歌
    當代音樂(2021年2期)2021-03-18 09:39:08
    沈佳音 丁逸菲 金燕
    《花之戀》
    當國歌響起
    北方音樂(2019年19期)2019-11-29 07:19:36
    免费观看性生交大片5| 亚洲天堂国产精品一区在线| 一个人看视频在线观看www免费| 两个人的视频大全免费| 国产 亚洲一区二区三区 | 九色成人免费人妻av| 成人特级av手机在线观看| or卡值多少钱| 国产精品爽爽va在线观看网站| 在线免费观看的www视频| 日韩三级伦理在线观看| 亚洲国产av新网站| 美女黄网站色视频| xxx大片免费视频| av在线播放精品| 日韩亚洲欧美综合| 色视频www国产| 中文字幕制服av| 亚洲不卡免费看| 日韩欧美国产在线观看| 午夜久久久久精精品| 又黄又爽又刺激的免费视频.| 久久精品熟女亚洲av麻豆精品 | 亚洲无线观看免费| 99re6热这里在线精品视频| 99久久九九国产精品国产免费| 久久久久久久久久人人人人人人| av福利片在线观看| 国产精品综合久久久久久久免费| 亚洲国产精品sss在线观看| 高清日韩中文字幕在线| 亚洲国产最新在线播放| 国产一区有黄有色的免费视频 | 嫩草影院新地址| a级毛色黄片| 小蜜桃在线观看免费完整版高清| 日本与韩国留学比较| 噜噜噜噜噜久久久久久91| 亚洲欧美一区二区三区国产| 精品久久久久久久人妻蜜臀av| 一区二区三区高清视频在线| 搡老乐熟女国产| 在线免费观看不下载黄p国产| 日韩视频在线欧美| 91午夜精品亚洲一区二区三区| 久久人人爽人人爽人人片va| 麻豆乱淫一区二区| 国产一区二区三区综合在线观看 | 日韩人妻高清精品专区| 国产高清国产精品国产三级 | 国产精品嫩草影院av在线观看| av在线老鸭窝| 日韩av不卡免费在线播放| 少妇的逼好多水| 日本一二三区视频观看| 少妇的逼水好多| 久久精品人妻少妇| 免费看美女性在线毛片视频| 欧美极品一区二区三区四区| 亚洲国产高清在线一区二区三| av免费在线看不卡| 简卡轻食公司| 国产伦理片在线播放av一区| 精品国产三级普通话版| 亚洲四区av| 夜夜爽夜夜爽视频| 国产极品天堂在线| 日本av手机在线免费观看| 超碰97精品在线观看| 麻豆成人av视频| 欧美日韩在线观看h| 一个人免费在线观看电影| 青春草国产在线视频| 日韩一区二区视频免费看| 黄色一级大片看看| 亚洲一区高清亚洲精品| 国产精品爽爽va在线观看网站| 99久久精品国产国产毛片| 国产精品蜜桃在线观看| 国产激情偷乱视频一区二区| 国产男女超爽视频在线观看| 久久久午夜欧美精品| 亚洲国产欧美在线一区| 精品久久久精品久久久| 99热这里只有精品一区| 日韩在线高清观看一区二区三区| 国产成人精品福利久久| 国产精品一区二区性色av| 成人国产麻豆网| 欧美另类一区| 久久6这里有精品| 卡戴珊不雅视频在线播放| 亚洲精品成人av观看孕妇| 久久精品夜色国产| 三级毛片av免费| 久久草成人影院| 亚洲三级黄色毛片| 久久久久久久久久成人| 久久久久久九九精品二区国产| 免费高清在线观看视频在线观看| 国产爱豆传媒在线观看| 精品国产露脸久久av麻豆 | 亚洲色图av天堂| 国产午夜福利久久久久久| 国产三级在线视频| 亚洲精品乱久久久久久| 97在线视频观看| 亚州av有码| 国产成人91sexporn| 小蜜桃在线观看免费完整版高清| 美女高潮的动态| 丝瓜视频免费看黄片| 国产激情偷乱视频一区二区| 岛国毛片在线播放| 91久久精品电影网| 男女下面进入的视频免费午夜| 国产亚洲午夜精品一区二区久久 | 午夜亚洲福利在线播放| 久久久色成人| 久久久久久久久久久丰满| 国产精品99久久久久久久久| 大话2 男鬼变身卡| 精品熟女少妇av免费看| 久久鲁丝午夜福利片| 欧美不卡视频在线免费观看| 永久网站在线| 久久国产乱子免费精品| 高清日韩中文字幕在线| 91精品伊人久久大香线蕉| 日本黄色片子视频| 尤物成人国产欧美一区二区三区| 熟妇人妻不卡中文字幕| 国产精品麻豆人妻色哟哟久久 | 亚洲内射少妇av| 性插视频无遮挡在线免费观看| 成年人午夜在线观看视频 | www.av在线官网国产| 成人亚洲精品一区在线观看 | 欧美日韩国产mv在线观看视频 | 精品国产三级普通话版| 狂野欧美激情性xxxx在线观看| 国产精品久久视频播放| 成人鲁丝片一二三区免费| 狠狠精品人妻久久久久久综合| 国产色爽女视频免费观看| 搞女人的毛片| 不卡视频在线观看欧美| 亚洲欧洲国产日韩| 成年人午夜在线观看视频 | 日本与韩国留学比较| 亚洲精品久久午夜乱码| 国产乱人偷精品视频| 亚洲电影在线观看av| 亚洲自偷自拍三级| 麻豆乱淫一区二区| 亚洲最大成人中文| eeuss影院久久| 免费观看无遮挡的男女| 国产成人a区在线观看| 麻豆久久精品国产亚洲av| 国产精品三级大全| 日本黄色片子视频| 全区人妻精品视频| 国产成人91sexporn| 男人和女人高潮做爰伦理| 国产激情偷乱视频一区二区| 国产不卡一卡二| 男女视频在线观看网站免费| 成年女人在线观看亚洲视频 | 久久这里只有精品中国| 能在线免费观看的黄片| 亚洲欧美日韩东京热| 精品国产三级普通话版| 一本一本综合久久| 国产成人午夜福利电影在线观看| 日本午夜av视频| 一区二区三区四区激情视频| 男女那种视频在线观看| 日韩人妻高清精品专区| 男女视频在线观看网站免费| 99久久精品一区二区三区| 91aial.com中文字幕在线观看| 成人无遮挡网站| 波多野结衣巨乳人妻| 久久精品国产自在天天线| 毛片女人毛片| 人妻一区二区av| 日韩制服骚丝袜av| 国产成人aa在线观看| 黄色一级大片看看| 舔av片在线| 亚洲图色成人| 国产黄色免费在线视频| 亚洲欧美清纯卡通| www.av在线官网国产| 天堂√8在线中文| 免费看日本二区| 日本黄大片高清| 一个人免费在线观看电影| 十八禁国产超污无遮挡网站| 26uuu在线亚洲综合色| 亚洲四区av| 一个人看视频在线观看www免费| 日韩三级伦理在线观看| 中文字幕制服av| 中文天堂在线官网| 亚洲综合精品二区| 亚洲精华国产精华液的使用体验| 亚洲精品乱久久久久久| 狠狠精品人妻久久久久久综合| 国产免费一级a男人的天堂| 免费观看性生交大片5| 日韩视频在线欧美| 国产成人免费观看mmmm| 极品教师在线视频| 国产亚洲5aaaaa淫片| videossex国产| 国产精品人妻久久久久久| 日韩制服骚丝袜av| 女的被弄到高潮叫床怎么办| 神马国产精品三级电影在线观看| 亚洲精品日本国产第一区| 国产精品不卡视频一区二区| 黄片wwwwww| 综合色av麻豆| 夜夜看夜夜爽夜夜摸| 久久久午夜欧美精品| 日韩不卡一区二区三区视频在线| 精品午夜福利在线看| 美女cb高潮喷水在线观看| 九九爱精品视频在线观看| 久久久久精品性色| 国产在线一区二区三区精| 久久精品夜夜夜夜夜久久蜜豆| 精品一区在线观看国产| 亚洲精品第二区| 伦精品一区二区三区| 久久国产乱子免费精品| 国精品久久久久久国模美| 精品久久久久久成人av| 免费av不卡在线播放| 免费电影在线观看免费观看| 99久国产av精品国产电影| 精品人妻一区二区三区麻豆| 成人亚洲精品一区在线观看 | 精品久久久噜噜| 亚洲av中文字字幕乱码综合| 日韩人妻高清精品专区| or卡值多少钱| 又爽又黄无遮挡网站| 岛国毛片在线播放| 黄片wwwwww| 欧美成人a在线观看| av黄色大香蕉| 午夜福利在线观看免费完整高清在| 国产亚洲91精品色在线| 亚洲国产色片| 国产精品人妻久久久久久| 日本午夜av视频| 欧美成人一区二区免费高清观看| 观看免费一级毛片| 亚洲精品乱码久久久久久按摩| 爱豆传媒免费全集在线观看| 久久久久性生活片| 纵有疾风起免费观看全集完整版 | 欧美高清成人免费视频www| 美女国产视频在线观看| 高清毛片免费看| 久久99精品国语久久久| 国产黄色视频一区二区在线观看| 夜夜看夜夜爽夜夜摸| 欧美zozozo另类| 国产亚洲精品av在线| 国产成年人精品一区二区| 亚洲精品456在线播放app| 三级国产精品欧美在线观看| 六月丁香七月| 欧美激情久久久久久爽电影| 亚洲av一区综合| 国产淫语在线视频| 免费av毛片视频| 如何舔出高潮| 2021天堂中文幕一二区在线观| 老司机影院成人| 亚洲av二区三区四区| 有码 亚洲区| 极品少妇高潮喷水抽搐| av国产免费在线观看| 免费在线观看成人毛片| 亚洲激情五月婷婷啪啪| 精品人妻熟女av久视频| 欧美区成人在线视频| 日日干狠狠操夜夜爽| 国产又色又爽无遮挡免| av一本久久久久| 欧美97在线视频| 亚洲av成人精品一二三区| 又爽又黄无遮挡网站| 日韩精品青青久久久久久| 国产亚洲av嫩草精品影院| 黄色日韩在线| 一二三四中文在线观看免费高清| 尾随美女入室| 精品久久国产蜜桃| 国产探花在线观看一区二区| 亚洲av免费在线观看| 精品久久久久久成人av| 国内揄拍国产精品人妻在线| 国产亚洲一区二区精品| 久久99蜜桃精品久久| 国产麻豆成人av免费视频| 亚洲电影在线观看av| 嫩草影院入口| 岛国毛片在线播放| 国产免费视频播放在线视频 | av国产久精品久网站免费入址| 国产伦一二天堂av在线观看| 少妇的逼好多水| 中文在线观看免费www的网站| 亚洲欧洲国产日韩| 99热这里只有精品一区| 亚洲欧洲国产日韩| 久久久久久久国产电影| 日韩不卡一区二区三区视频在线| 狠狠精品人妻久久久久久综合| 国产真实伦视频高清在线观看| 国产麻豆成人av免费视频| 成人毛片60女人毛片免费| 能在线免费看毛片的网站| 国产毛片a区久久久久| 久久综合国产亚洲精品| 91狼人影院| 搡老乐熟女国产| av专区在线播放| 久久人人爽人人爽人人片va| 欧美97在线视频| 亚洲精品色激情综合| 日日啪夜夜爽| 九九久久精品国产亚洲av麻豆| 嘟嘟电影网在线观看| 国产黄频视频在线观看| 久久精品久久久久久久性| 22中文网久久字幕| 能在线免费观看的黄片| 亚洲精品日韩在线中文字幕| 午夜激情福利司机影院| 2022亚洲国产成人精品| 亚洲一区高清亚洲精品| 少妇人妻一区二区三区视频| 亚洲国产成人一精品久久久| 男人舔女人下体高潮全视频| 别揉我奶头 嗯啊视频| 日韩伦理黄色片| 嘟嘟电影网在线观看| 日本与韩国留学比较| 久久99热6这里只有精品| 天天躁夜夜躁狠狠久久av| 成人性生交大片免费视频hd| 边亲边吃奶的免费视频| 国产麻豆成人av免费视频| 午夜福利网站1000一区二区三区| 国产美女午夜福利| 亚洲精品日韩在线中文字幕| 久久久久性生活片| 美女大奶头视频| 99热这里只有是精品在线观看| 亚洲精品日韩在线中文字幕| 国产乱来视频区| 亚洲精品久久久久久婷婷小说| 乱系列少妇在线播放| 国产女主播在线喷水免费视频网站 | 国产大屁股一区二区在线视频| 国产伦精品一区二区三区视频9| 内地一区二区视频在线| www.色视频.com| 久久久久久久久久久丰满| 亚洲国产精品专区欧美| videos熟女内射| 国产成人免费观看mmmm| 国产色婷婷99| 2018国产大陆天天弄谢| 97超碰精品成人国产| av在线天堂中文字幕| 国产精品不卡视频一区二区| 69人妻影院| 亚洲,欧美,日韩| 久久99热这里只频精品6学生| 亚洲在久久综合| 校园人妻丝袜中文字幕| 网址你懂的国产日韩在线| 女人十人毛片免费观看3o分钟| 国产成人精品福利久久| 久久午夜福利片| 在线天堂最新版资源| 99久国产av精品国产电影| 国产一级毛片七仙女欲春2| 大香蕉97超碰在线| 成人毛片a级毛片在线播放| 水蜜桃什么品种好| 国产亚洲5aaaaa淫片| 女人被狂操c到高潮| 国产 一区精品| 建设人人有责人人尽责人人享有的 | 蜜臀久久99精品久久宅男| 18禁在线无遮挡免费观看视频| 国产精品不卡视频一区二区| 亚洲av免费在线观看| 欧美丝袜亚洲另类| 免费观看av网站的网址| 久久99热这里只频精品6学生| 精品久久久久久久人妻蜜臀av| 亚洲国产精品专区欧美| 国产精品一二三区在线看| 永久网站在线| 国产免费视频播放在线视频 | 精品久久国产蜜桃| 高清在线视频一区二区三区| 哪个播放器可以免费观看大片| 亚洲欧美中文字幕日韩二区| 成年版毛片免费区| 舔av片在线| 日韩电影二区| 亚州av有码| 亚洲精品乱码久久久v下载方式| 久久热精品热| 亚洲一区高清亚洲精品| 又大又黄又爽视频免费| 中文字幕人妻熟人妻熟丝袜美| 国产 亚洲一区二区三区 | av在线老鸭窝| 国产av不卡久久| 国产成人午夜福利电影在线观看| 两个人视频免费观看高清| 久久久久国产网址| 亚洲精品国产av成人精品| 亚洲欧美一区二区三区黑人 | 亚洲美女视频黄频| 乱码一卡2卡4卡精品| 国产成人精品婷婷| 欧美高清成人免费视频www| 一个人免费在线观看电影| 成人亚洲精品一区在线观看 | 国产成人精品婷婷| 中文字幕av在线有码专区| 欧美一区二区亚洲| av福利片在线观看| 午夜精品在线福利| 免费看a级黄色片| 欧美极品一区二区三区四区| 免费电影在线观看免费观看| 午夜免费观看性视频| 噜噜噜噜噜久久久久久91| 日韩,欧美,国产一区二区三区| 天天躁日日操中文字幕| 午夜福利在线观看免费完整高清在| 51国产日韩欧美| 街头女战士在线观看网站| 中文字幕免费在线视频6| 久久久成人免费电影| 青春草视频在线免费观看| 97在线视频观看| 亚洲在久久综合| 美女大奶头视频| 久热久热在线精品观看| 久久99热这里只有精品18| 欧美一级a爱片免费观看看| 欧美另类一区| 色综合色国产| 禁无遮挡网站| 亚洲精品,欧美精品| 丝瓜视频免费看黄片| 国产成年人精品一区二区| 国产又色又爽无遮挡免| 欧美激情在线99| 天堂中文最新版在线下载 | 18禁动态无遮挡网站| 国产成人91sexporn| av专区在线播放| 久久综合国产亚洲精品| 欧美区成人在线视频| 男人爽女人下面视频在线观看| 日本与韩国留学比较| 蜜桃久久精品国产亚洲av| 国产成人精品婷婷| 一个人看视频在线观看www免费| 美女内射精品一级片tv| 纵有疾风起免费观看全集完整版 | 精品人妻偷拍中文字幕| 一级av片app| 国产 亚洲一区二区三区 | 欧美潮喷喷水| 欧美日韩视频高清一区二区三区二| 国产白丝娇喘喷水9色精品| 亚洲欧美清纯卡通| 人人妻人人澡欧美一区二区| 伊人久久国产一区二区| 国产一区二区亚洲精品在线观看| 大香蕉久久网| 高清欧美精品videossex| 亚洲真实伦在线观看| 国产久久久一区二区三区| 亚洲av成人av| 日韩国内少妇激情av| 最近手机中文字幕大全| 日日啪夜夜撸| 精品久久久久久久久久久久久| 国产成人福利小说| 一个人看视频在线观看www免费| 亚洲欧美清纯卡通| 国产精品国产三级专区第一集| 精品99又大又爽又粗少妇毛片| 国产成年人精品一区二区| av在线亚洲专区| 插阴视频在线观看视频| 日韩一本色道免费dvd| 欧美 日韩 精品 国产| 色吧在线观看| 国产成人一区二区在线| 能在线免费看毛片的网站| 男人舔奶头视频| 日本三级黄在线观看| 高清av免费在线| 久久久久国产网址| 久久久久精品性色| 美女主播在线视频| 亚洲三级黄色毛片| 亚洲aⅴ乱码一区二区在线播放| 大话2 男鬼变身卡| 特大巨黑吊av在线直播| 久久久国产一区二区| 十八禁网站网址无遮挡 | 国产真实伦视频高清在线观看| 尤物成人国产欧美一区二区三区| 激情五月婷婷亚洲| 亚洲av二区三区四区| 久久精品夜色国产| 日本wwww免费看| 欧美变态另类bdsm刘玥| 国产免费视频播放在线视频 | 亚洲精品国产av蜜桃| 亚洲av成人av| 国产毛片a区久久久久| 国产老妇伦熟女老妇高清| 久久国产乱子免费精品| 国产探花在线观看一区二区| av在线播放精品| 成人毛片a级毛片在线播放| 狠狠精品人妻久久久久久综合| 又粗又硬又长又爽又黄的视频| 国内精品一区二区在线观看| 国内精品宾馆在线| 哪个播放器可以免费观看大片| 欧美97在线视频| 国产黄片视频在线免费观看| 精品熟女少妇av免费看| 干丝袜人妻中文字幕| 国产精品一区二区三区四区久久| 久久久久国产网址| 亚洲欧美一区二区三区国产| 亚洲av成人精品一二三区| 秋霞伦理黄片| or卡值多少钱| 久久鲁丝午夜福利片| 亚洲成色77777| 欧美激情在线99| 伦理电影大哥的女人| 卡戴珊不雅视频在线播放| 亚洲成人av在线免费| 精品一区二区三区视频在线| 亚洲精品久久久久久婷婷小说| 亚洲av不卡在线观看| 色吧在线观看| 国产精品人妻久久久久久| 色播亚洲综合网| 国产精品久久久久久久电影| 久久久久精品性色| 午夜福利网站1000一区二区三区| 水蜜桃什么品种好| 日产精品乱码卡一卡2卡三| 久久久久久久大尺度免费视频| 免费播放大片免费观看视频在线观看| 久久久久久久久久久丰满| 久久久久久久久大av| 观看免费一级毛片| 日韩av免费高清视频| 日日摸夜夜添夜夜添av毛片| 日本爱情动作片www.在线观看| 国产av码专区亚洲av| 亚洲精品成人av观看孕妇| 五月伊人婷婷丁香| 又爽又黄a免费视频| 国产av不卡久久| 99re6热这里在线精品视频| 丝袜美腿在线中文| 插逼视频在线观看| 国产黄色视频一区二区在线观看| 国产三级在线视频| 久热久热在线精品观看| 国产麻豆成人av免费视频| 日韩中字成人| 久久久久久久久久久丰满| 2018国产大陆天天弄谢| 欧美人与善性xxx| 欧美zozozo另类| 大话2 男鬼变身卡| 99热6这里只有精品| 亚洲精品日韩av片在线观看| 特大巨黑吊av在线直播| 国产av不卡久久| 国产成人freesex在线| 在线观看免费高清a一片| 日本黄大片高清| 麻豆av噜噜一区二区三区| 亚洲熟女精品中文字幕| 亚洲国产精品国产精品|