• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In situ synthesis of a spherical covalent organic framework as a stationary phase for capillary electrochromatography

    2022-09-23 04:12:18NingHeZhentoLiChngjunHuZilinChen
    Journal of Pharmaceutical Analysis 2022年4期

    Ning He ,Zhento Li ,Chngjun Hu ,Zilin Chen ,b,*

    a Department of Orthopedics Trauma and Microsurgery,Zhongnan Hospital of Wuhan University,School of Pharmaceutical Sciences,Wuhan University,Wuhan,430072,China

    b Key Laboratory of Combinatorial Biosynthesis and Drug Discovery,Ministry of Education,Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals,Wuhan,430071,China

    Keywords:Covalent organic frameworks In situ growth method Capillary electrochromatography Electrochromatographic separation

    ABSTRACT Covalent organic frameworks (COFs) are a novel type of crystalline porous organic polymer materials recently developed.It has several advantages in chromatographic separation field,such as high thermal stability,porosity,structural regularity,and large specific surface area.Here,a novel spherical COF 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 2,5-bis(2-propyn-1-yloxy)-1,4-benzenedicarboxaldehyde(BPTA) was developed as an electrochromatographic stationary phase for capillary electrochromatography separation.The COF TAPB-BPTA modified capillary column was fabricated via a facile in situ growth method at room temperature.The characterization results of scanning electron microscopy(SEM),Fourier transform infrared (FT-IR) spectroscopy,and X-ray diffraction (XRD) confirmed that COF TAPB-BPTA were successfully modified onto the capillary inner surface.The electrochromatography separation performance of the COF TAPB-BPTA modified capillary was investigated.The prepared column demonstrated outstanding separation performance toward alkylbenzenes,phenols,and chlorobenzenes compounds.Furthermore,the baseline separations of non-steroidal anti-inflammatory drugs (NSAIDs)and parabens with good efficiency and high resolution were achieved.Also,the prepared column possessed satisfactory precision of the intra-day runs(n =5),inter-day runs(n =3),and parallel columns(n =3),and the relative standard deviations (RSDs) of the retention times of tested alkylbenzenes were all less than 2.58%.Thus,this new COF-based stationary phase shows tremendous application potential in chromatographic separation field.

    1.Introduction

    Capillary electrophoresis (CE),a versatile analytical method,is used for separation and analysis in various fields,such as the separation of large biomolecules,neutral molecules,and small ions[1].CE has developed in different separation modes,such as capillary electrochromatography (CEC),capillary gel electrophoresis,capillary zone electrophoresis,and capillary electrophoresis in microchip [2],based on the different properties and detection requirements of analytes.CEC has high column efficiency of CE and high selectivity of high performance liquid chromatography(HPLC).Therefore,it has attracted extensive attention and developed rapidly.The CEC column,which is divided into three types:packed column,monolithic column,and open tubular (OT) column,is the essential component of CEC.In OT-CEC,the stationary phase is connected with the inner walls of the capillary by coating,physical adsorption,and chemical bonding.It shows great superiority of simple preparation,good permeability,good reproducibility,stable electroosmotic flow,and simple experiment.It has been successfully applied in various fields,including food analysis [3],drug analysis,and chiral separation [4-8].

    Exploring the appropriate stationary phases to apply in CEC is the core topic of OT-CEC.Recently,various porous or nanomaterials have been investigated as OT-CEC stationary phases[9,10],such as graphene oxide[10,11],magnetic nanoparticles[12],metal-organic frameworks (MOFs) [6,7,13],porous organic molecular cages [14]and covalent organic frameworks (COFs) [15-20].However,OT columns have a low phase ratio,which may result in poor separation performance.

    COFs are intriguing crystalline porous network materials that connect organic structural units through covalent bonds to form layered or network structures[21-24].In particular,they have the advantages of high thermal stability,porosity,structural regularity,designable structures,and large specific surface area [24,25].Therefore,COFs are widely applied in gas storage fields [26],photoelectrochemistry [24,27],adsorption [28],catalysis [29],biomedical application [30],and especially separation science[31-34].Various COFs have been introduced via different preparation methods as stationary phases for OT-CEC separation[15-20,35,36].Among them,the in situ room temperature synthesis technique is quite facile,green,and easy to control,which has recently sparked interest.For instance,Fu et al.[35]presented the in situ growth of COF 1,3,5-Tris-(4-formylphenyl)benzene(TFPB)-benzidine(BD)as a stationary phase for OT-CEC separation at room temperature.The obtained capillary column showed excellent performance in the separation of alkylbenzenes,chlorobenzenes,and phenolic compounds.Another work of our group[36] described the in situ room temperature synthesis of a COF 4,4′,4′′-(1,3,5-triazine-2,4,6-triyl)trianiline (Tz)-1,4-dihydroxyterephthalaldehyde (Da) onto the capillary inner surface for electrochromatographic separation of small neutral compounds,acidic and basic compounds,and food additives,etc.

    Here,a novel spherical COF 1,3,5-tris(4-aminophenyl)benzene(TAPB)-2,5-bis(2-propyn-1-yloxy)-1,4-benzenedicarboxaldehyde(BPTA) with good stability and porosity was used as the electrochromatographic stationary phase for OT-CEC.The results of scanning electron microscopy (SEM),Fourier transform infrared(FT-IR)spectra,and X-ray diffraction(XRD)showed that COF TAPBBPTA was successfully modified on the inner wall of the capillary.The CEC separation performance of the prepared TAPB-BPTA modified OT column was evaluated.The resulting columns showed prominent electrochromatographic separation performance toward alkylbenzenes,phenols,chlorobenzene compounds,nonsteroidal anti-inflammatory drugs,and parabens.The highest theoretical plate number was 1.78 × 105plates/m (for methylparaben).Additionally,the TAPB-BPTA modified column showed excellent repeatability and stability.

    2.Experimental

    2.1.Reagents and instrumentation

    2.1.1.Reagents and materials

    Propylparaben,chlorobenzene,1,2,4-trichlorobenzene,ethylbenzene,n-propylbenzene,n-butylbenzene,3-aminopropyltriethoxysilane (APTES),phenol,2,4-dimethylphenol,2,4-dichlorophenol and glutaraldehyde solution(25%,V/Vin water)were obtained from Aladdin Reagent Factory (Shanghai,China).Methylbenzene,1,2-dichlorobenzene,sodium hydroxide (NaOH),thiourea,1,4-dioxane,hydrochloric acid (HCl),sodium phosphate dibasic dodecahydrate(Na2HPO4·12H2O),and acetic acid(CH3COOH)were purchased from Sinopharm Group Chemical Reagent Co.,Ltd.(Shanghai,China).Methylparaben and TAPB were obtained from Bidepharm(Shanghai,China).Ethylparaben,ibuprofen,and BPTA were purchased from Mackin(Shanghai,China).Flurbiprofenwas purchased from HEOWNS(Tianjin,China).Diclofenac sodium was obtained from TCI(Shanghai,China).Phosphoric acid (H3PO4) was purchased from RHAWN(Shanghai,China).Acetonitrile and methanol were obtained from Tedia (Cincinnati,Ohio,USA).Fused silica capillaries (50 μm i.d.and 365 μm o.d.)were purchased from Ruifeng Chromatographic Devices(Yongnian,Hebei,China).

    2.1.2.Instrumentation

    All CEC separations were completed on an Agilent 7100 CE system (Waldbronn,Germany).The chromatographic workstation provided the data acquisition and treatment.The solutions through capillaries were pushed by a mechanical syringe pump (Longer Pump Company,Baoding,China).Ultrapure water was produced by a Milli-Q ultrapure water system (Waltham,MA,USA).Mettler-Toledo pH meter (Shanghai,China) was used to adjust the buffer pH values.A Carl Zeiss Ultra Plus Field (Oberkochen,Germany)acquired SEM images.FT-IR characterization was obtained from a Thermo NICOLET 5700 FT-IR spectrometer(Waltham,MA,USA).

    2.2.Sample solutions and CEC experiments

    The standard sample solutions of thiourea,methylbenzene,ethylbenzene,propylbenzene,butylbenzene,chlorobenzene,1,2-dichlorobenzene and 1,2,4-trichlorobenzene were prepared at 4.0 mg/mL.Ibuprofen,flurbiprofen,and diclofenac sodium were dissolved to a standard solution of 3.0 mg/mL,respectively.The standard solutions of methylparaben,ethylparaben,propylparaben,phenol,2,4-dimethylphenol,and 2,4-dichlorophenol were 3.0 mg/mL.All the analytes were dissolved in methanol.The phosphate buffer (PB;10 mM) was prepared by dissolving sodium phosphate dibasic dodecahydrate(Na2HPO4·12H2O)inultrapurewater.The pHvalues of PBwereadjustedfrom2.0to9.0byaddingphosphoricaciddiluent.All standard solutions were stored in a refrigerator at 4°C before use.

    The mobile phase was composed of different proportions of acetonitrile (ACN) and PB before CEC runs.The injected sample solutions were obtained by diluting the standard solutions of analytes with the mobile phase.The prepared capillary column was then flushed with the mobile phase to equilibrate it until the baseline becamestable.Thesamplesolutionwasthen injectedusing apressure injection,and the separationwas implemented with avoltage drive at 25°C.After each run,the prepared capillary column was washed by the mobile phase for 120 s.Finally,the daily CEC experiment was completed,and the prepared capillary column was washed with methanol for 0.5 h,then dried by N2steam for further use.

    2.3.Preparation of TAPB-BPTA modified capillary column

    Fig.1 shows the TAPB-BPTA modified capillary column preparation technique.First,the untreated capillary was rinsed with 1.0 M NaOH for 1 h,H2O for 0.5 h,1.0 M HCl for 1 h,H2O for 0.5 h,and methanol for 0.5 h to expose the silicon hydroxyl group inside the capillary.Then,the capillary was dried using N2steam for 1 h for further use.The capillary column was cut to about 80 cm before the subsequent steps.Then the capillary column was full of the APTES solution,which was prepared by diluting APTES in water(10%,V/V).After sealing both ends of the capillary,it was placed in 95°C water bathing for 0.5 h to obtain the amino group modified capillary.Then it was flushed with H2O for 1 h and dried using N2steam for subsequent steps.The glutaraldehyde solution,made up of glutaraldehyde solution(25%(V/V)in H2O)[37],was injected into the amino group modified capillary at 0.1 mL/h flow rate for 0.5 h at 25°C.The aldehyde group modified capillary was obtained and then flushed with H2O for 1 h and dried using N2steam for 1 h.Next,2.0 mg/mL TAPB in 1,4-dioxane was enclosed in the capillary.Then the capillary column was placed in a 150°C oil bath for 0.5 h.The TAPB modified capillary was rinsed with methanol for 1 h and dried using N2steam for 1 h for subsequent steps.The COF TAPBBPTA synthesized solution was prepared according to the previous research with some changes [38].TAPB (2.1 mg) and BTPA(2.18 mg) were accurately weighed out to be dissolved in 1 mL of ACN.It was rapidly injected into the TAPB modified capillary and sealed at both ends after adding 6 M of acetic acid (100 μL) as a catalyst.After reaction at room temperature for 24 h,the capillary was rinsed with methanol for 1 h to remove unreacted substances and dried using N2steam.Then the TAPB-BPTA modified capillary was obtained.A mechanical syringe pump completed the above steps of flushing the capillary with water or methanol with a 0.05 mL/h flow rate.Finally,the total length of the TAPB-BPTA modified capillary in the CEC experiment was 35 cm,and the effective length was 26.5 cm.

    Fig.1.Schematic procedure for the preparation of the covalent organic framework (COF) 1,3,5-tris(4-aminophenyl)benzene (TAPB)-2,5-bis(2-propyn-1-yloxy)-1,4-benzenedicarboxaldehyde (BPTA) modified capillary.APTES: 3-aminopropyltriethoxysilane;HAc: acetic acid;RT: room temperature.

    3.Results and discussion

    3.1.Characterizations

    The morphology of the synthesized TAPB-BPTA was examined by SEM,and the images are shown in Figs.2A and B.The SEM images of the polymer TAPB-BPTA particles showed small and uniform sphere,with a diameter of about 731.3 nm,which was consistent with the previously reported results[38].Figs.2C and D show the SEM images of the bare capillary and TAPB-BPTA modified capillary.The TAPB-BPTA modified capillary column showed a dense and uniform modified layer and an uneven surface compared with the bare capillary.The result confirmed the successful modification of TAPB-BPTA onto the capillary inner wall.

    Fig.2.Scanning electron microscopy (SEM) images of the as-synthesized COF TAPB-BPTA ((A) 10,000× and (B) 20,000×),(C) inner wall of bare capillary (50,000×),and (D) COF TAPB-BPTA modified capillary (50,000×).

    To confirm the successful modification of the TAPB-BPTA modified capillary,FT-IR and XRD were studied in detail.As shown in Fig.S1,a characteristic vibrational band of C=N at 1618 cm-1appeared in the FT-IR spectrum of the TAPB-BPTA modified capillary,confirming the successful formation of iminelinked TAPB-BPTA on the capillary.The XRD results of the COF TAPB-BPTA and TAPB-BPTA modified capillary are shown in Fig.S2.The TAPB-BPTA modified capillary exhibited a weak peak at 2.8°.Overall,it can be concluded that TAPB-BPTA was successfully synthesized and modified onto the inner surface of the capillary.

    3.2.Electroosmotic flow (EOF) evaluation experiment

    EOF is important in CEC separation since it acts as the driving power.In this experiment,the EOF trend of prepared columns was investigated when the pH of the mobile phase changed from 2.0 to 5.0 under a specific voltage.The EOF is calculated as μEOF=(Le×Lt)/(U×t0),whereLeandLtare the effective lengths and the total length of the column,respectively,Uis the token of the application voltage,andt0is the EOF marker thiourea migration time.As shown in Fig.S3,with the pH value increasing from 2.0 to 5.0,the anode EOF mobility of the TAPB-BPTA modified capillary column decreased gradually.Theoretically,the positive charge of amino and imino groups is not affected under these evaluation conditions.When pH >3,the uncovered hydroxyl group on the inner wall of the capillary begins to dissociate and take on a negative charge,resulting in cathodic EOF,which is partially offset by the anodic EOF generated by the amino groups.Therefore,with the increase of pH value,the degree of silanol dissociation increases,and the counteracting with reverse EOF increases,making the EOF of TAPB-BPTA modified capillary decrease.

    3.3.Retention behavior

    The TAPB-BPTA modified capillary column's retention mechanism was investigated.Thiourea (logP 1.05),toluene (logP 2.72),ethylbenzene (logP 3.23),propylbenzene (logP 3.73),and butylbenzene(logP 4.24)were selected as tested analytes.The calculation formula of retention factor (k) isk=(tr-t0)/t0,wheretrandt0represent the retention time of four alkylbenzenes and the retention time of the EOF marker thiourea,respectively.Thekof these four alkylbenzenes and the proportion of acetonitrile in the mobile phase are shown in Fig.S4.With the increased proportion of acetonitrile in the mobile phase from 25%to 50%,the retention factors of the four alkylbenzenes gradually decreased.Furthermore,it can be seen in Table S1 that the theoretical plates(N)increased,but the resolution decreased with the increase in acetonitrile content.Perspicuously,the increasing elution ability is due to the increase in acetonitrile content reduces resolutions and the decrease in peak broadening,and suggests a representative reversedphase retention behavior of the TAPB-BPTA modified capillary.

    3.4.Loading capacity

    The loading capacity of a newly prepared capillary is defined as the sample injection amount when the corresponding half-height peak width (W1/2) is increased by 10% compared to the W1/2of low sample volume [35,39].The loading capacity of the TAPBBPTA modified capillary was confirmed by injecting a series of toluene with different concentrations (0.2-1.2 mg/mL).Voltage injection was adopted to ensure the consistency of injection volume.Fig.S5 shows the relationship between the corresponding W1/2and toluene concentration.The W1/2of toluene at 0.9 mg/mL was 10.47% higher than the W1/2at 0.2 mg/mL.Therefore,the loading capacity of the TAPB-BPTA modified capillary column for toluene is 0.9 mg/mL,i.e.,68 pmol.The high loading capacity of the TAPB-BPTA modified capillary was probably because of the dense and uniform coating of TAPB-BPTA on the inner wall of the capillary,which offered a large surface area and sufficient interaction sites.

    3.5.OT-CEC separation performance

    Three series of neutral compounds,including alkylbenzenes,phenols,and chlorobenzenes,acted as model analytes in the CEC experiment to investigate the separation performance of the TAPBBPTA modified capillary.As shown in Fig.3,the methylbenzene(logP 2.720),ethylbenzene (logP 3.229),n-propylbenzene (logP 3.739),andn-butylbenzene (logP 4.248) were realized baseline separation and eluted in the order of the logP from small to large.Phenol (logP 1.540),2,4-dimethylphenol (logP 2.496),and 2,4-dichlorophenol (logP 3.095) were also separated by the TAPBBPTA modified capillary,as shown in Fig.4,which achieved not only good separation effect but also the elution sequence consistent with its logP-value.Meanwhile,the separation result of chlorobenzene (logP 2.843),1,2-dichlorobenzene (logP 3.444),and 1,2,4-trichlorobenzene (logP 4.102) is shown in Fig.5.It realized baseline separation,and the elution sequence was also consistent with its logP-value.Therefore,the separation of these three groups of neutral compounds by the TAPB-BPTA modified capillary was mainly due to the hydrophobic interactions between the analytes and the COF coating layer on the capillary inner wall.

    The TAPB-BPTA modified capillary was also used for drug separation and analysis.Ibuprofen (logP 3.502),flurbiprofen (logP 3.656),and diclofenac sodium (logP 4.120) are common nonsteroidal anti-inflammatory drugs(NSAIDs),and they also have some similarities in structure.Fig.6A shows the separation results of these three NSAIDs.The complete separation of ibuprofen,flurbiprofen,and diclofenac sodium was obtained within 10 min.It can be seen that ibuprofen and flurbiprofen have similar logP values.However,flurbiprofen was eluted later than ibuprofen.This was because flurbiprofen possessed more benzene rings than ibuprofen,thus enhancing the π-interaction between the COF coating layers.Hence,the separation of NSAIDs by the prepared column was mainly due to the π-interaction and hydrophobic interaction between analytes and the COF coating layer.

    Fig.3.Separation behavior of alkylbenzenes on the TAPB-BPTA modified capillary.Experimental conditions: mobile phase,40% acetonitrile (ACN) in pH 3.0 10 mM phosphate buffer (PB);applied voltage,-15 kV;pressure injection,40 mbar × 3 s;detection wavelength,214 nm.1: methylbenzene;2: ethylbenzene;3: n-propylbenzene;and 4: n-butylbenzene.

    Fig.4.Separation behavior of phenols on the TAPB-BPTA modified capillary.Experimental conditions: mobile phase,27.5% ACN in pH 3.0 10 mM PB;applied voltage,-15 kV;pressure injection,40 mbar × 4 s;detection wavelength,210 nm.1:phenol;2: 2,4-dimethylphenol;and 3: 2,4-dichlorophenol.

    Fig.5.Separation behavior of chlorobenzenes on the TAPB-BPTA modified capillary.Experimental conditions: mobile phase,42.5% ACN in pH 3.0 10 mM PB;applied voltage,-15 kV;pressure injection,50 mbar × 4 s;detection wavelength,210 nm.1:chlorobenzene;2: 1,2-dichlorobenzene;and 3: 1,2,4-trichlorobenzene.

    The TAPB-BPTA modified capillary can also be used to separate parabens.Taking methylparaben (logP 1.882),ethylparaben (logP 2.391),and propylparaben (logP 2.901) as separation targets,the separation result is shown in Fig.6B,in which full baseline separation was obtained.The highest column efficiency (N) for methylparaben was 178,260 plates/m,indicating high-efficiency and resolution.The elution sequence was as follows: methylparaben <ethylparaben <propylparaben,which was consistent with the hydrophobicity of the analysis object.Additionally,the last peaks in most figures appeared to be tail and broadening.From Table S2,we can see that the theoretical plate numbers and symmetry factors decreased with the increase in the retention of tested compounds.This was mainly due to the stronger interaction between the analytes and the COF coating layer,which could prolong elution times and resulted in peak tailing and broadening.The above results showed the good applicability of the TAPB-BPTA modified capillary.

    3.6.Reproducibility and stability

    Reproducibility and stability are two important evaluation parameters for the newly developed OT-CEC columns.In this study,the reproducibility and stability of the TAPB-BPTA modified column were estimated using the relative standard deviations(RSDs)of the retention times of four alkylbenzenes.As shown in Table 1,the intra-day(n=5)and inter-day(n=3)RSDs of the retention times of the four alkylbenzenes were between 0.43%-0.66% and 1.91%-2.58%,respectively.Three batches of OT columns prepared in parallel were used to evaluate their column-to-column reproducibility,and the RSDs of the four alkylbenzenes were in the range of 1.34%-1.57%.Furthermore,after 50 injections,the TAPB-BPTA modified capillary separation performance did not change significantly.As shown in Fig.S6 and Table S3,it can still achieve good separation performance toward four alkylbenzenes without obvious retention time and peak shape changes.These results showed that the TAPBBPTA modified capillary has good reproducibility and stability.

    Table 1Reproducibility and stability of the 1,3,5-tris(4-aminophenyl)benzene (TAPB)-2,5-bis(2-propyn-1-yloxy)-1,4-benzenedicarboxaldehyde (BPTA) modified capillary column.

    Table 2An overview of the reported methods for covalent organic frameworks (COFs)-based open tubular-capillary electrochromatography (OT-CEC) columns.

    Fig.6.Separation behavior of (A) non-steroidal anti-inflammatory drugs (NSAIDs) and (B) parabens on the TAPB-BPTA modified capillary.Experimental conditions: (A) mobile phase,30% ACN in pH 3.0 10 mM PB;applied voltage,-20 kV;pressure injection,50 mbar × 3 s;detection wavelength,230 nm.1: ibuprofen;2: flurbiprofen;and 3: diclofenac sodium.(B) Mobile phase,25% ACN in pH 3.0 10 mM PB;applied voltage,-15 kV;pressure injection,20 mbar × 3 s;detection wavelength,254 nm.1: methylparaben;2: ethylparaben;and 3: propylparaben.

    3.7.Comparison with other COFs-based OT-CEC columns

    The TAPB-BPTA modified capillary was compared with the capillary columns modified by other COFs reported recently,as shown in Table 2 [20,35,39-43].The in situ room temperature growth method was simple and easy to implement.The TAPB-BPTA modified capillary showed high column capacity and separation efficiency.What is more,the prepared OT columns were quite reproducible.This newly developed COF-based OT column has promising prospects in the chromatographic separation field.

    4.Conclusions

    A novel kind of COF TAPB-BPTA was successfully modified on the inner surface of the capillary via an in situ growth method at room temperature,and the TAPB-BPTA modified capillary was first used in electrochromatographic separation.The characterization results(SEM,FT-IR,and XRD) confirmed that the TAPB-BPTA was successfully modified on the capillary's inner surface.The dense and uniform TAPB-BPTA coating layer on the capillary's inner wall provided sufficient hydrophobic interactions and π-interactions with the target analytes.Therefore,a typical reverse-phase separation mechanism was obtained.The TAPB-BPTA modified capillary exhibited prominent separation performance toward various hydrophobic compounds.Additionally,the repeatability and stability of the TAPB-BPTA modified column were good.It shows great application potential in separation science.

    CRediT author statement

    Ning He:Investigation,Data curation,Writing -Original draft preparation;Zhentao Li:Conceptualization,Methodology;Changjun Hu:Visualization;Zilin Chen:Writing -Reviewing and Editing.

    Declaration of competing interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant Nos.: 82073808,81872828,and 81573384).

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.jpha.2022.06.005.

    在线观看免费午夜福利视频| 日日摸夜夜添夜夜爱| 亚洲av成人精品一二三区| 国产精品国产三级专区第一集| 亚洲av在线观看美女高潮| 18禁观看日本| 91成人精品电影| 一个人免费看片子| 亚洲人成网站在线观看播放| 伊人亚洲综合成人网| 日韩制服骚丝袜av| av电影中文网址| 91字幕亚洲| 宅男免费午夜| 天天躁夜夜躁狠狠久久av| 狂野欧美激情性xxxx| 精品国产国语对白av| 悠悠久久av| 亚洲av美国av| 一区二区三区精品91| 高清av免费在线| 一本大道久久a久久精品| 99久久人妻综合| 欧美黑人欧美精品刺激| 最黄视频免费看| 色视频在线一区二区三区| 国产日韩欧美视频二区| 国产成人一区二区在线| 波多野结衣一区麻豆| 国产日韩一区二区三区精品不卡| 国产精品久久久久久精品电影小说| 韩国精品一区二区三区| 日韩熟女老妇一区二区性免费视频| 国产福利在线免费观看视频| 老鸭窝网址在线观看| 一级,二级,三级黄色视频| 国产有黄有色有爽视频| 满18在线观看网站| 成人三级做爰电影| 999久久久国产精品视频| 亚洲男人天堂网一区| 这个男人来自地球电影免费观看| 国产成人免费观看mmmm| 久久精品亚洲熟妇少妇任你| 男女无遮挡免费网站观看| 男女之事视频高清在线观看 | 91老司机精品| 一级黄片播放器| 国产av一区二区精品久久| 久久人妻福利社区极品人妻图片 | 老熟女久久久| 美女高潮到喷水免费观看| 亚洲天堂av无毛| 国产成人av激情在线播放| 丰满饥渴人妻一区二区三| 欧美黄色片欧美黄色片| 欧美日韩视频精品一区| 热re99久久国产66热| 美女视频免费永久观看网站| 国产在线免费精品| 十分钟在线观看高清视频www| 看免费av毛片| 黄色 视频免费看| 精品人妻熟女毛片av久久网站| 天天操日日干夜夜撸| 成人国语在线视频| 久久精品亚洲熟妇少妇任你| 国产精品久久久人人做人人爽| 中文字幕另类日韩欧美亚洲嫩草| 极品人妻少妇av视频| 国产成人a∨麻豆精品| 三上悠亚av全集在线观看| 岛国毛片在线播放| 国产精品亚洲av一区麻豆| 一本久久精品| 巨乳人妻的诱惑在线观看| 亚洲七黄色美女视频| 一级,二级,三级黄色视频| 欧美日韩视频精品一区| 又大又黄又爽视频免费| 国产精品一国产av| 国产一区二区在线观看av| 国产精品欧美亚洲77777| √禁漫天堂资源中文www| 国产成人a∨麻豆精品| 欧美精品啪啪一区二区三区 | 国产精品三级大全| 日本色播在线视频| 可以免费在线观看a视频的电影网站| 日本猛色少妇xxxxx猛交久久| av国产久精品久网站免费入址| 亚洲三区欧美一区| www.999成人在线观看| 一区在线观看完整版| 高清不卡的av网站| 国产日韩欧美在线精品| 亚洲人成电影观看| av国产精品久久久久影院| 在线亚洲精品国产二区图片欧美| 亚洲av美国av| 男人操女人黄网站| 高清不卡的av网站| 精品视频人人做人人爽| 69精品国产乱码久久久| 热re99久久国产66热| 在线观看人妻少妇| 男女边摸边吃奶| 亚洲av电影在线观看一区二区三区| 9热在线视频观看99| 热99久久久久精品小说推荐| 国产精品一国产av| 2021少妇久久久久久久久久久| 久久久久久久大尺度免费视频| 亚洲av美国av| 日本午夜av视频| 国产免费视频播放在线视频| tube8黄色片| 国产女主播在线喷水免费视频网站| 可以免费在线观看a视频的电影网站| 大片免费播放器 马上看| 九色亚洲精品在线播放| 欧美激情极品国产一区二区三区| 日韩一卡2卡3卡4卡2021年| 咕卡用的链子| 久热这里只有精品99| 超色免费av| 日日爽夜夜爽网站| 日韩精品免费视频一区二区三区| 一级,二级,三级黄色视频| 中文字幕最新亚洲高清| 嫩草影视91久久| 中文字幕人妻丝袜制服| 欧美久久黑人一区二区| 中文字幕亚洲精品专区| 男女免费视频国产| 久久99热这里只频精品6学生| 另类精品久久| 亚洲av日韩精品久久久久久密 | 午夜两性在线视频| 啦啦啦 在线观看视频| 美女主播在线视频| 亚洲精品日本国产第一区| 少妇被粗大的猛进出69影院| 亚洲人成电影免费在线| 亚洲国产最新在线播放| 亚洲精品久久成人aⅴ小说| 国产色视频综合| 精品卡一卡二卡四卡免费| 国产成人欧美| 久久毛片免费看一区二区三区| 国产又色又爽无遮挡免| 国产有黄有色有爽视频| 欧美国产精品一级二级三级| 乱人伦中国视频| 在线看a的网站| 国产日韩一区二区三区精品不卡| 成年av动漫网址| 老司机影院毛片| 菩萨蛮人人尽说江南好唐韦庄| 国产成人一区二区三区免费视频网站 | 精品久久蜜臀av无| 午夜激情久久久久久久| 国精品久久久久久国模美| 亚洲伊人色综图| 免费观看av网站的网址| 亚洲av电影在线进入| 99热网站在线观看| 99国产精品一区二区三区| 久久毛片免费看一区二区三区| 18在线观看网站| 日本av手机在线免费观看| 久久精品国产a三级三级三级| 成在线人永久免费视频| 久久久久精品国产欧美久久久 | 麻豆乱淫一区二区| 日韩熟女老妇一区二区性免费视频| 日本色播在线视频| 色婷婷久久久亚洲欧美| 国产亚洲欧美在线一区二区| 欧美少妇被猛烈插入视频| 久久久久久久国产电影| 欧美精品一区二区大全| 久久 成人 亚洲| 男女无遮挡免费网站观看| 国产精品成人在线| 曰老女人黄片| 五月开心婷婷网| 18禁裸乳无遮挡动漫免费视频| 国产高清国产精品国产三级| 女人爽到高潮嗷嗷叫在线视频| 男男h啪啪无遮挡| av不卡在线播放| 在线观看一区二区三区激情| 超色免费av| 丝袜美足系列| 国产不卡av网站在线观看| bbb黄色大片| 国产精品熟女久久久久浪| 国产午夜精品一二区理论片| 爱豆传媒免费全集在线观看| 每晚都被弄得嗷嗷叫到高潮| 1024视频免费在线观看| 不卡av一区二区三区| 亚洲第一青青草原| 又粗又硬又长又爽又黄的视频| 国产黄色视频一区二区在线观看| 看免费成人av毛片| 欧美人与性动交α欧美精品济南到| 欧美成狂野欧美在线观看| 亚洲国产精品999| 在线看a的网站| 亚洲综合色网址| 亚洲av综合色区一区| 国产精品av久久久久免费| 国产高清videossex| 欧美+亚洲+日韩+国产| 亚洲国产精品一区二区三区在线| 中文精品一卡2卡3卡4更新| 国产亚洲一区二区精品| av网站免费在线观看视频| 日日爽夜夜爽网站| 亚洲男人天堂网一区| av又黄又爽大尺度在线免费看| 亚洲欧美日韩另类电影网站| 老司机影院毛片| 国产精品欧美亚洲77777| 99久久人妻综合| 免费高清在线观看视频在线观看| 国产在视频线精品| 岛国毛片在线播放| 久久久久久久久免费视频了| 80岁老熟妇乱子伦牲交| 日韩中文字幕视频在线看片| 欧美+亚洲+日韩+国产| 视频在线观看一区二区三区| 日本欧美国产在线视频| 国产av精品麻豆| 久久人人爽av亚洲精品天堂| 久久精品aⅴ一区二区三区四区| 欧美人与性动交α欧美精品济南到| 又黄又粗又硬又大视频| 色94色欧美一区二区| av一本久久久久| 乱人伦中国视频| 免费人妻精品一区二区三区视频| 99九九在线精品视频| 深夜精品福利| 国产精品三级大全| 日韩视频在线欧美| av片东京热男人的天堂| 欧美+亚洲+日韩+国产| 国产精品国产三级专区第一集| 99久久99久久久精品蜜桃| 亚洲国产精品999| 亚洲综合色网址| 丝瓜视频免费看黄片| 亚洲精品日韩在线中文字幕| av在线播放精品| 每晚都被弄得嗷嗷叫到高潮| 精品一品国产午夜福利视频| cao死你这个sao货| 国产成人啪精品午夜网站| 久久精品国产a三级三级三级| 男的添女的下面高潮视频| 91精品伊人久久大香线蕉| 熟女av电影| 国产一区亚洲一区在线观看| 91成人精品电影| av福利片在线| 日韩一区二区三区影片| 亚洲精品自拍成人| 国产精品久久久久久精品电影小说| 黄色视频不卡| 欧美久久黑人一区二区| 国产91精品成人一区二区三区 | 肉色欧美久久久久久久蜜桃| 国产成人a∨麻豆精品| 欧美激情 高清一区二区三区| 精品久久久久久电影网| 日韩中文字幕欧美一区二区 | 久久久精品区二区三区| 这个男人来自地球电影免费观看| 午夜91福利影院| 亚洲视频免费观看视频| 精品欧美一区二区三区在线| 一个人免费看片子| 最新在线观看一区二区三区 | 99国产精品一区二区蜜桃av | 免费少妇av软件| 午夜av观看不卡| 亚洲精品av麻豆狂野| 久久精品熟女亚洲av麻豆精品| 免费观看a级毛片全部| 狂野欧美激情性bbbbbb| 男的添女的下面高潮视频| 亚洲欧美清纯卡通| 99国产综合亚洲精品| 国产99久久九九免费精品| av视频免费观看在线观看| 成人国语在线视频| 丝袜喷水一区| 国产极品粉嫩免费观看在线| 999久久久国产精品视频| 青草久久国产| 又黄又粗又硬又大视频| 亚洲第一av免费看| 成年美女黄网站色视频大全免费| 国产欧美日韩综合在线一区二区| 婷婷丁香在线五月| 人人妻,人人澡人人爽秒播 | 少妇 在线观看| 亚洲九九香蕉| 午夜福利影视在线免费观看| 国产三级黄色录像| 亚洲,一卡二卡三卡| 亚洲人成网站在线观看播放| 一级毛片电影观看| 国产免费又黄又爽又色| 一本—道久久a久久精品蜜桃钙片| 久久久精品区二区三区| 欧美精品一区二区免费开放| 超碰97精品在线观看| 男女边摸边吃奶| 亚洲欧美中文字幕日韩二区| 老鸭窝网址在线观看| 五月天丁香电影| 中文字幕人妻丝袜制服| 欧美性长视频在线观看| 日韩熟女老妇一区二区性免费视频| 亚洲欧洲精品一区二区精品久久久| 国产一区有黄有色的免费视频| 观看av在线不卡| 超碰97精品在线观看| 国产精品国产三级专区第一集| 在线 av 中文字幕| 国产成人精品无人区| 免费在线观看视频国产中文字幕亚洲 | 成年人免费黄色播放视频| 国产精品一区二区在线不卡| 欧美老熟妇乱子伦牲交| 91老司机精品| 成年人免费黄色播放视频| 亚洲精品久久午夜乱码| 国产一区二区三区综合在线观看| 欧美久久黑人一区二区| www.999成人在线观看| 青青草视频在线视频观看| 另类亚洲欧美激情| 亚洲av电影在线观看一区二区三区| 美女中出高潮动态图| 国产成人欧美在线观看 | av网站在线播放免费| 无遮挡黄片免费观看| 少妇人妻久久综合中文| 欧美av亚洲av综合av国产av| 一本—道久久a久久精品蜜桃钙片| 亚洲 国产 在线| 又大又黄又爽视频免费| 亚洲图色成人| 日韩大片免费观看网站| 男人添女人高潮全过程视频| 男女边吃奶边做爰视频| 亚洲成人国产一区在线观看 | 久久久久精品人妻al黑| 50天的宝宝边吃奶边哭怎么回事| 亚洲国产精品999| 国产精品 欧美亚洲| 老汉色∧v一级毛片| 国产成人精品在线电影| 视频区图区小说| 国产成人免费无遮挡视频| 国产真人三级小视频在线观看| 一级,二级,三级黄色视频| 精品一区二区三区av网在线观看 | 亚洲av国产av综合av卡| 中文字幕av电影在线播放| 久久精品aⅴ一区二区三区四区| 汤姆久久久久久久影院中文字幕| 国产99久久九九免费精品| 免费黄频网站在线观看国产| 十八禁人妻一区二区| 9191精品国产免费久久| 青春草视频在线免费观看| 香蕉国产在线看| 老司机亚洲免费影院| 啦啦啦 在线观看视频| 高清不卡的av网站| 色网站视频免费| 人妻人人澡人人爽人人| 大型av网站在线播放| 亚洲国产精品成人久久小说| 日韩一本色道免费dvd| 亚洲精品第二区| 国产黄频视频在线观看| 三上悠亚av全集在线观看| 国产成人av教育| 精品亚洲乱码少妇综合久久| 亚洲成国产人片在线观看| 久久国产精品男人的天堂亚洲| 女人精品久久久久毛片| 欧美97在线视频| 日本猛色少妇xxxxx猛交久久| 日韩视频在线欧美| av一本久久久久| 欧美黄色片欧美黄色片| 久久 成人 亚洲| 老司机影院毛片| 又黄又粗又硬又大视频| 天天躁夜夜躁狠狠久久av| 麻豆乱淫一区二区| 精品熟女少妇八av免费久了| 涩涩av久久男人的天堂| 国产激情久久老熟女| 国产午夜精品一二区理论片| 亚洲精品久久午夜乱码| 国产男女超爽视频在线观看| 国产老妇伦熟女老妇高清| 久久久亚洲精品成人影院| 亚洲欧美日韩另类电影网站| 婷婷色综合大香蕉| 91成人精品电影| 午夜激情久久久久久久| 熟女av电影| 亚洲 欧美一区二区三区| 国产亚洲欧美在线一区二区| 无限看片的www在线观看| 久久精品国产亚洲av高清一级| 色婷婷久久久亚洲欧美| 国产精品国产三级专区第一集| 欧美成人午夜精品| 免费在线观看黄色视频的| av线在线观看网站| 精品久久蜜臀av无| 91麻豆精品激情在线观看国产 | 国产亚洲一区二区精品| 免费在线观看黄色视频的| 97在线人人人人妻| 亚洲国产中文字幕在线视频| 欧美日韩亚洲综合一区二区三区_| 99久久99久久久精品蜜桃| 肉色欧美久久久久久久蜜桃| 免费日韩欧美在线观看| 超色免费av| 国产欧美日韩一区二区三区在线| 亚洲国产av影院在线观看| 午夜福利视频在线观看免费| 久久久精品94久久精品| 欧美日本中文国产一区发布| 日韩免费高清中文字幕av| 永久免费av网站大全| 午夜两性在线视频| 久久久精品国产亚洲av高清涩受| 新久久久久国产一级毛片| 2018国产大陆天天弄谢| 国产一卡二卡三卡精品| 真人做人爱边吃奶动态| 性色av乱码一区二区三区2| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲伊人久久精品综合| 久久精品熟女亚洲av麻豆精品| 免费av中文字幕在线| 99re6热这里在线精品视频| 午夜福利视频精品| 国产女主播在线喷水免费视频网站| 国产精品一区二区精品视频观看| 大香蕉久久成人网| 亚洲av成人不卡在线观看播放网 | 国产在视频线精品| 日韩一本色道免费dvd| 美女视频免费永久观看网站| 最新在线观看一区二区三区 | 99热网站在线观看| 国产av一区二区精品久久| 日本av手机在线免费观看| 国产男女超爽视频在线观看| 国产精品一区二区精品视频观看| 成人手机av| 亚洲av在线观看美女高潮| 亚洲国产欧美在线一区| 男女床上黄色一级片免费看| 国语对白做爰xxxⅹ性视频网站| 夫妻性生交免费视频一级片| 欧美日韩精品网址| 在线观看免费午夜福利视频| 日韩视频在线欧美| 日本av手机在线免费观看| 亚洲九九香蕉| 午夜两性在线视频| 少妇人妻久久综合中文| 亚洲人成网站在线观看播放| 午夜福利视频精品| av网站免费在线观看视频| 欧美亚洲日本最大视频资源| 日本wwww免费看| 亚洲精品久久成人aⅴ小说| 国产欧美日韩综合在线一区二区| 乱人伦中国视频| 国产成人啪精品午夜网站| 捣出白浆h1v1| 我要看黄色一级片免费的| 国产精品国产三级专区第一集| 黄色 视频免费看| 各种免费的搞黄视频| 国产不卡av网站在线观看| 亚洲中文日韩欧美视频| a级毛片在线看网站| 每晚都被弄得嗷嗷叫到高潮| 精品久久蜜臀av无| 一二三四社区在线视频社区8| 91精品国产国语对白视频| 老汉色av国产亚洲站长工具| 不卡av一区二区三区| 欧美精品一区二区免费开放| 天天躁狠狠躁夜夜躁狠狠躁| 人人澡人人妻人| 中文字幕另类日韩欧美亚洲嫩草| 老司机在亚洲福利影院| 美女主播在线视频| 精品国产一区二区三区四区第35| 国产日韩一区二区三区精品不卡| 视频区欧美日本亚洲| 中文乱码字字幕精品一区二区三区| 日韩大码丰满熟妇| 每晚都被弄得嗷嗷叫到高潮| 一级片'在线观看视频| 十八禁网站网址无遮挡| www日本在线高清视频| 成人手机av| tube8黄色片| 青青草视频在线视频观看| 少妇裸体淫交视频免费看高清 | 十八禁高潮呻吟视频| 男女边吃奶边做爰视频| 国产免费现黄频在线看| 水蜜桃什么品种好| 在线观看免费午夜福利视频| 午夜福利乱码中文字幕| 真人做人爱边吃奶动态| 一级,二级,三级黄色视频| 丝瓜视频免费看黄片| www.熟女人妻精品国产| 亚洲成色77777| 亚洲欧美日韩另类电影网站| 两人在一起打扑克的视频| 久久亚洲国产成人精品v| av电影中文网址| 青草久久国产| 国产xxxxx性猛交| 一区二区三区四区激情视频| 交换朋友夫妻互换小说| 狠狠精品人妻久久久久久综合| 国产男人的电影天堂91| 国产一区二区激情短视频 | 精品视频人人做人人爽| 少妇猛男粗大的猛烈进出视频| 亚洲av日韩在线播放| 飞空精品影院首页| 午夜久久久在线观看| 色94色欧美一区二区| 亚洲精品成人av观看孕妇| 国产成人免费观看mmmm| 中文字幕人妻丝袜一区二区| 国产片特级美女逼逼视频| bbb黄色大片| 国产精品国产av在线观看| 欧美日韩国产mv在线观看视频| 欧美xxⅹ黑人| 精品福利观看| 久久性视频一级片| 美女视频免费永久观看网站| 美女主播在线视频| 成人国产一区最新在线观看 | 亚洲欧美色中文字幕在线| 我的亚洲天堂| 亚洲黑人精品在线| 亚洲精品一区蜜桃| 国产精品一区二区免费欧美 | 精品欧美一区二区三区在线| 黄色视频不卡| 又紧又爽又黄一区二区| av片东京热男人的天堂| 精品少妇黑人巨大在线播放| 亚洲自偷自拍图片 自拍| av福利片在线| 免费看不卡的av| 一本久久精品| av福利片在线| 国产又色又爽无遮挡免| 欧美 亚洲 国产 日韩一| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩 欧美 亚洲 中文字幕| 中文字幕高清在线视频| 国产黄频视频在线观看| 日韩视频在线欧美| 大片免费播放器 马上看| 成人手机av| 一区福利在线观看| 一级毛片我不卡| 国产精品一国产av| 人妻 亚洲 视频| 婷婷色综合www| 国产极品粉嫩免费观看在线| 国产91精品成人一区二区三区 | 男男h啪啪无遮挡| 大香蕉久久成人网| 精品视频人人做人人爽| 丰满少妇做爰视频| 男人操女人黄网站| 欧美变态另类bdsm刘玥| 免费在线观看视频国产中文字幕亚洲 | bbb黄色大片| 黄片小视频在线播放| 手机成人av网站| 视频区图区小说| 黄片小视频在线播放|