• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sensitive detection of alkaline phosphatase based on terminal deoxynucleotidyl transferase and endonuclease IV-assisted exponential signal amplification

    2022-09-23 04:12:34WeiongYeLongjieLiZishnFengBohengTuZheHuXinjinXioTongboWu
    Journal of Pharmaceutical Analysis 2022年4期

    Weio ngYe ,Longjie Li ,Zishn Fe ng ,Boheng Tu ,Zhe Hu ,Xinjin Xio ,Tongbo Wu ,*

    a Department of Pharmaceutical Analysis,School of Pharmacy,Tongji Medical College,Huazhong University of Science and Technology,Wuhan,430030,China

    b Department of Biopharmaceutics,School of Life Science and Technology,Wuhan Polytechnic University,Wuhan,430023,China

    c Department of Translational Medicine,Institute of Reproductive Health,Tongji Medical College,Huazhong University of Science and Technology,Wuhan,430030,China

    Keywords:Alkaline phosphatase Terminal deoxynucleotidyl transferase Endonuclease IV Exponential amplification

    ABSTRACT Alkaline phosphatase (ALP) is widely expressed in human tissues.ALP plays an important role in the dephosphorylation of proteins and nucleic acids.Therefore,quantitative analysis of ALP plays a vital role in disease diagnosis and the development of biological detection methods.Terminal deoxynucleotidyl transferase (TdT) catalyzes continuous polymerization of deoxynucleotide triphosphates at the 3′-OH end of single-stranded DNA in the absence of a template.In this study,we developed a highly sensitive and selective method based on TdT and endonuclease IV (Endo IV) to quantify ALP activity.After ALP hydrolyzes the 3′-PO4 end of the substrate and generates 3′-OH,TdT can effectively elongate the 3′-OH end with deoxynucleotide adenine triphosphate(dATP)and produce a poly A tail,which can be detected by the poly T probes.Endo IV digests the AP site in poly T probes to generate a fluorescent signal and a new 3′-OH end,leading to the generation of exponential fluorescence signal amplification.The substrate for TdT elongation was optimized,and a limit of detection of 4.3×10-3 U/L was achieved for ALP by the optimized substrate structure.This method can also detect ALP in the cell lysate of a single cell.This work has potential applications in disease diagnosis and biomedical detection.

    1.Introduction

    Alkaline phosphatase (ALP) is widely present in the human intestine,liver,kidneys,bone,and other tissues.ALP plays an important role in the dephosphorylation of proteins and nucleic acids[1].As a valuable biomarker for pathological diagnosis,ALP activity is often used as an indicator for diagnosing liver dysfunction,diabetes,and other diseases [2,3].In environmental biology,monitoring ALP activity can help control phytoplankton population[4-6].ALP is also used as a signal generation tool in commonly used biological detection methods,such as immunohistochemistry staining and enzyme-linked immunosorbent assay (ELISA).When the ALPlabeled antibody binds to the antigen,ALP can catalyze the chromogenic reaction to reveal antigen-antibody binding [7,8].Applications in the above fields require accurate quantitative analysis of ALP.Thus,it is imperative to develop a simple,sensitive,and rapid method to detect ALP activity.

    The analytical methods for detecting ALP activity include fluorescence analysis,electrochemical biosensors,colorimetry,and chromatography[9-13].Among them,fluorescence analysis offers the advantages of high sensitivity,low cost,and easy operation.Fluorescence-based methods for ALP detection can be divided into two strategies.The first is based on the direct method,in which the ALP activity is directly reflected by the fluorescence difference between the initial phosphorylated substrate and the dephosphorylated substrate produced by ALP [14-17].However,the limit of detection (LOD) is not satisfactory in such methods.The second strategy is indirect methods based on dephosphorylated products to trigger subsequent reactions with fluorophore-labeled materials such as nanomaterials or DNA probes[18-21].Under this strategy,the reactant can trigger a change in the label to realize ALP activity analysis.This strategy is more stable and highly sensitive for generating fluorescence signals than the first strategy.However,the preparation of nanomaterials is complicated,which limits their widespread applications.For DNA probe-based methods,signal amplification is not easy to design,and time-consuming steps are involved to achieve high sensitivity.Thus,building fluorescence analytical methods compatible with high sensitivity and simple design remains a challenge.

    Terminal deoxynucleotidyl transferase (TdT) catalyzes the continuous polymerization of deoxynucleotide triphosphates(dNTPs) at the 3′-OH end of the single-stranded DNA in the absence of a template [22].Owing to its unique catalytic performance,TdT is often used as a tool enzyme for DNA nanostructure assembly and biological detection [23-25].As the reaction efficiency of TdT to the 3′-PO4end is relatively lower than that of the 3′-OH end,TdT could be used to detect ALP with the second strategy mentioned above.For example,TdT-mediated hemin/Gquadruplex DNAzyme nanowires were used to develop an electrochemical assay to detect ALP activity,with an LOD of 0.03 U/L[26].Furthermore,the TdT-mediated thymine-Hg2+-thymine structure was also used to determine ALP activity,with an LOD of 0.025 U/L [27].However,these methods require complicated reactants or toxic heavy metals.In this study,we developed a novel exponential amplification detection system based on TdT and endonuclease IV (Endo IV) for detecting ALP activity with higher sensitivity.

    As shown in Scheme 1,the phosphate group at the 3′end of the substrate can serve as the recognition site for ALP.When ALP hydrolyzes 3′-PO4and generates 3′-OH,TdT can effectively elongate the 3′-OH end with deoxynucleotide adenine triphosphate (dATP)in the solution and produce a poly A tail.The poly A tail serves as the “l(fā)anding platform” for poly T probes through T:A base pair hybridization.The poly T/poly A double-stranded DNA(dsDNA)is a preferred substrate for Endo IV,which cleaves the AP site in the middle of the poly T probe.As a result,the poly T probe breaks and dissociates from the poly A tail.The fluorophore (FAM) and the black hole quencher-1 (BHQ-1) labeled on two sides of the AP site in the probe separate from each other.Therefore,the fluorescence signal of FAM,which was initially quenched by BHQ-1,is released.As the hydrolysis of the AP site also generates a 3′-OH end,a new poly A tail can be elongated by TdT.Thus,one ALP generates multiple poly A tails after one TdT and Endo IV catalysis cycle.As the above process is repeated,exponential fluorescence signal amplification can be achieved.Compared to the previous TdT-based methods for ALP detection,our detection system offers the following advantages: use of fewer primary reactants as only two tool enzymes are used;a simpler preparation process,without involving organic compounds or having difficulty in synthesizing quantum dots;and reduced environmental pollution since no toxic heavy metals such as mercury ions are used.

    Scheme 1.A schematic illustration of TdT/Endo IV-assisted exponential amplification for ALP detection.ALP: alkaline phosphatase;TdT: terminal deoxynucleotidyl transferase;dATP: deoxynucleotide adenine triphosphate;Endo IV: endonuclease IV;FAM: fluorophore;BHQ-1: black hole quencher-1.

    2.Materials and methods

    2.1.Materials and reagents

    All oligonucleotides used in this study were synthesized and purified by Sangon Biotech Co.,Ltd.(Shanghai,China).ALP,TdT,bovine serum albumin (BSA),exonuclease III (Exo III),T7 exonuclease (T7 exo),deoxyribonuclease I (DNase I),uracil glycosylase (UDG),CutSmart reaction buffer (50 mM KAc,20 mM Tris-Ac,10 mM Mg(Ac)2,100 μg/mL BSA,pH 7.9,25°C),10 × TdT buffer (500 mM KAc,200 mM Tris-Ac,100 mM Mg(Ac)2,pH 7.9),and 2.5 mM CoCl2solution were purchased from New England Biolabs Inc.(Ipswich,MA,USA).dATP,agarose,loading buffer,DNA ladder mix,and nucleic acid dye GelRed were purchased from Sangon Biotech Co.,Ltd.(Shanghai,China).The concentration of DNA oligonucleotides was measured using a NanoDrop 2000 UV-vis spectrophotometer (Thermo Fisher Scientific,Waltham,MA,USA).The sequences of all oligonucleotides are listed in Table S1.

    2.2.Fluorescence monitoring

    Fluorescence was measured using a LineGene Mini FQD-16A(Bioer Technology Co.,Ltd.,Hangzhou,China) at 37°C.The fluorescence intensity was recorded every 20 s for 120 min,and the gain level was 8.The excitation and emission wavelengths were set to 485 and 582 nm,respectively.

    2.3.Feasibility verification and substrate optimization

    The reaction system consisting of 200 nM (final concentration for all reagents below) probe,100 nM substrate,100 U/mL TdT,1×TdT buffer,and 1 mM dATP was incubated at 37°C for 30 min.Subsequently,Endo IV (4 U/mL) was added,and the fluorescence intensity was recorded immediately.

    2.4.Assay of ALP activity

    The reaction system consisting of 200 nM probe,100 nM L008,1×CutSmart reaction buffer,and ALP at various concentrations(0,0.01,0.05,0.1,0.14,0.2,0.3,and 0.4 U/L)was incubated at 37°C for 30 min.Then,100 U/mL TdT,1 × TdT buffer,1 mM dATP,and the above solutions were incubated at 37°C for 30 min.Finally,Endo IV(4 U/mL) was added,and the fluorescence intensity was recorded immediately.

    2.5.Selectivity of the method

    Four enzymes (10 U/L T7 exo,10 U/L DNase I,10 U/L UDG,and 10 U/L Exo III) were chosen as the potential interfering enzymes,and 0.1 mg/mL BSA was selected as the interfering non-related protein with 1 U/L ALP in the same reaction.Fluorescence detection was performed under the conditions described above.

    2.6.ALP activity detection in biological samples

    Approximately 106HeLa cells were pelleted by centrifugation(3000 rpm,5 min,4°C) and resuspended in 90 μL lysis buffer(50 mM Tris-HCl,150 mM NaCl,1%NP-40,0.1%SDS,pH 7.4)on ice.To remove insoluble substances such as DNA,the mixture solution was centrifuged at 12,000 r/min for 30 min at 4°C.ALP activity was detected in biological samples using the ALP activity assay except that ALP was replaced by cell lysates prepared with different numbers of cells (with 0,1,2,4,10,25,and 50 cells).

    3.Results and discussion

    3.1.Feasibility of the strategy for ALP detection

    We first compared the fluorescence signals in the following groups:1)probe only;2)probe and poly A strand;3)probe and 3′-OH strand (simulating the substrate after complete dephosphorylation by ALP);4)probe,substrate,and ALP;and 5)probe,substrate without ALP.As illustrated in Fig.1,the fluorescence signal increased very rapidly for groups 2(orange line)and 3(green line),indicating that the TdT/Endo IV-assisted signal amplification system worked well for the 3′-OH substrate.A significant fluorescence increase was observed in group 4 (blue line),but the fluorescence increase for group 5 (red line) was slight and similar to that of group 1 (black line).These results demonstrated the feasibility of the design for detecting ALP activity.

    Fig.1.Fluorescence responses of TdT/Endo IV-assisted amplification under different conditions.The poly A strand is 011-strand-poly A.The substrate is L007-strand-+6ntT.The phosphorylated strand is 007-strand-+6ntT.The sequences of the probe and other strands are shown in Table S1.The y-coordinate reflects the relative fluorescent intensity for the instrument LineGene Mini FQD-16A with a gain level of 8.ALP:alkaline phosphatase.

    Agarose gel electrophoresis was performed to demonstrate the proposed working mechanism.As shown in Fig.S1A,the band in lane 3 was more delayed than that in lane 2,proving that TdT could effectively elongate the substrate with 3′-OH (lane 3) rather than with 3′-PO4(lane 2).When ALP was added,3′-PO4was converted into 3′-OH,and TdT elongated the substrate to form a lagged band in lane 4.With further addition of Endo IV and the probe,the green fluorescence emitted by the hydrolyzed probe could be seen under UV light(Fig.S1B,lanes 5 and 6).This further verified that the poly A tail and the probe could form dsDNA after TdT worked,and Endo IV could digest the probe in dsDNA.Furthermore,lane 5 showed a lower migration rate to lane 6 because TdT in lane 6 was inactivated after 30 min of incubation at 37°C before Endo IV and the probe were added.Thus,in lane 6,the 3′-OH produced by Endo IV by cutting the probe could not be elongated by TdT.Thus,the band in lane 6 is similar to that in lane 4.The entire procedure in Scheme 1 is realized in lane 5.TdTcould use the 3′-OH produced by Endo IV to produce a larger poly A structure.

    We also performed corresponding fluorescence experiments for lanes 5 and 6 in the gel electrophoresis experiment to confirm the exponential amplification characteristics of our method.As shown in Fig.S2,for the experimental conditions in lane 5(active TdT),the fluorescence curve exhibited S-type exponential amplification(black line).For the experimental conditions in lane 6 (inactive TdT),the fluorescent signal increased linearly (red line).These results indicated the successful implementation of dual enzymaticassisted exponential amplification and the feasibility of the design for ALP activity detection.

    3.2.Optimization of the TdT/Endo IV-assisted exponential amplification

    To increase the sensitivity of the system,we evaluated and optimized the influencing factors of the system.It has been reported that TdT prefers single-stranded DNA(ssDNA)substrates to dsDNA substrates and that it has higher elongation efficiency with 3′-OH than 3′-PO4,which is conducive to detecting ALP[28].In our method,3′-OH-ended DNA,which is formed after ALP cleavage,generates the desired signal.TdT has little activity toward 3′-PO4-ended DNA to generate the background signal (noise).A more significant signal-to-noise ratio(S/N)would result in a better LOD.

    First,we optimized the structure of the substrate DNA strand,which had not been considered in previous studies [23-27].We systematically studied the effect of substrates with different 3′-end structures on the elongation efficiency of TdT.As shown in Fig.2A,we designed several structures such as ssDNA,hairpin dsDNA with a blunt end,and hairpin dsDNA with a sticky end.The 3′-end recessed with n bases is marked as 3′-n.The 3′-end protruded with n bases is marked as 3′+n.Fig.2B shows the signal differences of these structures in response to TdT/Endo IV-assisted exponential amplification (without ALP) with 3′-PO4(blue column) or 3′-OH(orange column),respectively.The orange column reflects the potential largest signal after ALP cleavage,and the orange column indicates the noise when ALP is absent.A larger S/N(3′-OH/3′-PO4,black line in Fig.2B) indicates a potentially better ALP detection sensitivity.For the commonly used ssDNA substrate for TdT elongation,the S/N ratio was 9.8.When dealing with dsDNA substrates with different structures,the S/N for most of them became smaller.However,to our surprise,the 3′+6 dsDNA showed a dramatic S/N increase to be 61.1 as the noise of 3′+6 dsDNA (3′-PO4substrate)decreased compared to the noise of other substrates.We tested the noise of 3′+6 and 3′+9 dsDNA with different sequences to determine the cause.As shown in Fig.S3,the noise changed significantly,even with a single-base difference at the 3′-end.The data shown in Fig.2B and Fig.S3 indicated that the length and sequence of the 3′protruded end in dsDNA affected the TdT elongation performance.The rules and mechanisms of this phenomenon are not clear and require further exploration.We selected 3′+6 dsDNA as a suitable substrate for ALP in the following experiments to obtain the best S/N in the substrates we tested.

    Fig.2.(A)A schematic depiction of the dsDNA structures with different 3′-end.(B)The rate of fluorescence increase for different dsDNA with 3′-OH(the signal,orange column)and 3′-PO4 (the noise,blue column).The signal to noise ratio (S/N,black line) was calculated for each column.

    We then optimized the substrate concentration(Fig.S4)and the enzyme concentration(Fig.S5)to achieve maximum detection.The optimized conditions for conducting further experiments were 100 nM substrate,4 U/mL Endo IV,100 U/mL TdT,30 min for ALP dephosphorylation,and 30 min for TdT elongation.

    3.3.Sensitivity of the method

    With the best experimental conditions,we tested the signal of the systemwith varying concentrations of ALP.As shown in Fig.3A,when the ALP concentration was increased,the fluorescence intensity also increased in exponential amplification curves.To determine the relationship between fluorescence intensity and ALP concentration,we chose the point of inflection (POI) values in each fluorescence curve for the quantitative detection of ALP in this assay.POI is defined as the number of fluorescence acquisition cycles (the fluorescence intensity was recorded at 20 s per cycle in the experiment) corresponding to the maximum slope in the sigmoidal curve.POI has been widely adopted in the EXPAR method for quantification [29].According to the linear regression(Fig.3B),POI and ALP concentration showed linear relation in the range of 0-0.4 U/L,and the LOD was 4.3×10-3U/L.The LOD is better than that in most previous reports(Table S2) [26,27,30-53].Our total detection time is approximately 80 min,which is acceptable for biological applications because of its high sensitivity.We also tested the stability and reproducibility of the proposed method.As shown in Table S3,the intraday relative standard deviations(RSD)were 1.6%-3.5%,and the interday RSD was 4.3%when measuring 0.1 U/L ALP.

    Fig.3.(A)Fluorescence responses of TdT/Endo IV-assisted amplification with different ALP concentrations from 0 to 0.4 U/L.(B)The linear regression of the POI with ALP ranging from 0 to 0.4 U/L(0,0.01,0.05,0.1,0.14,0.2,0.3,and 0.4).The LOD can be calculated to be 4.3×10-3 U/L by 3σ/K.TdT:terminal deoxynucleotidyl transferase;Endo IV:endonuclease IV;ALP: alkaline phosphatase;POI: point of inflection;LOD: limit of detection.

    3.4.Selectivity of the method

    To evaluate the selectivity of our detection system for ALP,we selected the widely existing nucleases(Exo III,T7 exo,and DNase I),enzyme (UDG),and protein (BSA).As shown in Fig.4A,all the interfering proteins,whose concentrations were ten times that of ALP,produced a small fluorescence signal slightly as compared to the control (without testing proteins).Thus,our system could detect ALP with high specificity.Next,we measured ALP activity in HeLa cell lysates.As shown in Fig.4B,our method could detect ALP activity in as low as only one cell.

    Fig.4.(A)Selectivity evaluation for the proposed methods.The ALP concentration was 1 U/L.The concentrations of DNase I,T7 exo,Exo III,UDG were 10 U/L.The concentration of BSA was 0.1 mg/mL.Control means that there were no tested proteins.(B) The POI of the fluorescence response curves of the ALP detection system to the HeLa cell lysate diluted with different cell numbers from 0 to 50(0,1,4,10,25,and 50).There was a statistical difference among the data sets in the groups for cell numbers with 0 and 1(t =2.599, P<0.05).ALP: alkaline phosphatase;DNase I: deoxyribonuclease I;T7 exo: T7 exonucleas;Exo III:exonuclease III;UDG: uracil glycosylase;BSA:bovine serum albumin;POI:point of inflection.

    4.Conclusion

    In summary,we constructed a novel ALP amplification detection system based on TdT and Endo IV.A good S/N ratio was obtained by optimizing the DNA substrate structure,and exponential amplification was achieved using TdT and Endo IV.The advantages of the method for ALP detection can be summarized as follows:first,the LOD of our method shows that it is one of the most sensitive detection methods.Second,a good LOD was obtained without complicated reaction design or the synthesis of organic compounds or nanomaterials.Third,our method shows good selectivity for nucleases,which are critical interferents in practical application in clinical or biological samples such as serum and cell lysate.However,our method has some limitations.As two enzymes were used,the cost and operational complexity increased to a certain extent.Nevertheless,this work has the potential to improve disease diagnosis and wider biomedical applications,such as evaluation of ALP activity in human serum or cell lysate,screening of ALP inhibitors,quantitative labeling,and ELISAs.

    CRediT author statement

    Weicong Ye:Methodology,Investigation,Writing -Original draft preparation;Longjie Li:Methodology,Investigation,Writing-Reviewing and Editing;Zishan Feng:Investigation;Bocheng Tu:Investigation;Zhe Hu:Investigation;Xianjin Xiao:Resources;Tongbo Wu:Supervision,Conceptualization,Funding acquisition,Writing -Reviewing and Editing.

    Declaration of competing interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (Grant No.: 21904045),the Fundamental Research Funds for the Central Universities (HUST: Grant No.: 2019kfyXJJS169),and Training Program of Innovation and Entrepreneurship for Undergraduates of Hubei Province(Grant No.:S202010487225).

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.jpha.2021.09.012.

    欧美丝袜亚洲另类 | 国产成人一区二区三区免费视频网站| www.熟女人妻精品国产| 久久久久国产精品人妻aⅴ院 | 一级片'在线观看视频| 脱女人内裤的视频| 日韩免费av在线播放| 91麻豆精品激情在线观看国产 | 国产成人欧美在线观看 | 欧美精品人与动牲交sv欧美| 美女扒开内裤让男人捅视频| 老司机在亚洲福利影院| 80岁老熟妇乱子伦牲交| 久久精品成人免费网站| 高清av免费在线| 欧美乱色亚洲激情| 色在线成人网| 亚洲人成77777在线视频| 别揉我奶头~嗯~啊~动态视频| 伦理电影免费视频| 一二三四在线观看免费中文在| 国产真人三级小视频在线观看| 国产免费现黄频在线看| av片东京热男人的天堂| 无限看片的www在线观看| 99国产极品粉嫩在线观看| 亚洲精品国产精品久久久不卡| 中文欧美无线码| 国产片内射在线| 下体分泌物呈黄色| 精品国产美女av久久久久小说| cao死你这个sao货| 色尼玛亚洲综合影院| 激情在线观看视频在线高清 | av天堂久久9| 亚洲精品一卡2卡三卡4卡5卡| 久久狼人影院| 丝袜人妻中文字幕| 淫妇啪啪啪对白视频| 国产亚洲精品久久久久久毛片 | 99精品在免费线老司机午夜| 亚洲 国产 在线| 亚洲精品国产精品久久久不卡| 国产精品偷伦视频观看了| 又大又爽又粗| 久久香蕉激情| 9色porny在线观看| 丰满饥渴人妻一区二区三| 亚洲精品一二三| 1024视频免费在线观看| 久久热在线av| 精品国产超薄肉色丝袜足j| 91麻豆精品激情在线观看国产 | 精品国产超薄肉色丝袜足j| 午夜免费观看网址| 一区在线观看完整版| 黄色怎么调成土黄色| 久久香蕉精品热| 黄色女人牲交| 国产精品偷伦视频观看了| 亚洲情色 制服丝袜| 日韩中文字幕欧美一区二区| 亚洲熟妇熟女久久| 极品人妻少妇av视频| 国产成人精品久久二区二区免费| 99久久人妻综合| 国产男女超爽视频在线观看| 色综合欧美亚洲国产小说| 在线十欧美十亚洲十日本专区| 波多野结衣av一区二区av| 香蕉丝袜av| 久久久久久亚洲精品国产蜜桃av| a级毛片黄视频| 成年动漫av网址| cao死你这个sao货| 91老司机精品| 韩国精品一区二区三区| 51午夜福利影视在线观看| 精品午夜福利视频在线观看一区| 亚洲色图av天堂| 欧美黑人精品巨大| 欧美日韩视频精品一区| 久久国产亚洲av麻豆专区| 亚洲 国产 在线| 国产av精品麻豆| e午夜精品久久久久久久| 午夜福利影视在线免费观看| 亚洲片人在线观看| 久久久久国内视频| 日日摸夜夜添夜夜添小说| 日韩制服丝袜自拍偷拍| 久久人妻熟女aⅴ| 91麻豆av在线| 日本黄色视频三级网站网址 | av电影中文网址| 日韩成人在线观看一区二区三区| а√天堂www在线а√下载 | 中文字幕另类日韩欧美亚洲嫩草| 欧美国产精品一级二级三级| 亚洲国产欧美日韩在线播放| 少妇裸体淫交视频免费看高清 | 国产日韩一区二区三区精品不卡| 天天躁夜夜躁狠狠躁躁| 18禁美女被吸乳视频| 国产男女内射视频| 身体一侧抽搐| 女性生殖器流出的白浆| 一区二区日韩欧美中文字幕| 亚洲性夜色夜夜综合| 99热网站在线观看| 久久精品亚洲熟妇少妇任你| 他把我摸到了高潮在线观看| 午夜老司机福利片| 欧美精品亚洲一区二区| 午夜91福利影院| 黑人巨大精品欧美一区二区mp4| av在线播放免费不卡| 欧美日本中文国产一区发布| 狂野欧美激情性xxxx| 色老头精品视频在线观看| 热99久久久久精品小说推荐| 国产极品粉嫩免费观看在线| 757午夜福利合集在线观看| 久久精品国产亚洲av香蕉五月 | 乱人伦中国视频| 免费观看人在逋| 美女扒开内裤让男人捅视频| 久久香蕉精品热| 捣出白浆h1v1| 成年女人毛片免费观看观看9 | 久久人妻福利社区极品人妻图片| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲一区二区精品| 叶爱在线成人免费视频播放| 亚洲欧洲精品一区二区精品久久久| 久久久久久免费高清国产稀缺| 亚洲中文av在线| 两人在一起打扑克的视频| 激情在线观看视频在线高清 | 黑人操中国人逼视频| 亚洲国产精品sss在线观看 | 久99久视频精品免费| 韩国av一区二区三区四区| 国产一区在线观看成人免费| 国产熟女午夜一区二区三区| 欧美性长视频在线观看| 人妻一区二区av| 三级毛片av免费| 欧美日韩瑟瑟在线播放| 亚洲成人国产一区在线观看| 极品人妻少妇av视频| 色老头精品视频在线观看| 在线免费观看的www视频| 亚洲精华国产精华精| 精品久久久久久电影网| 国产午夜精品久久久久久| 国产精品九九99| 午夜福利在线观看吧| 久久草成人影院| 国产在视频线精品| 成人av一区二区三区在线看| 在线永久观看黄色视频| 亚洲国产精品一区二区三区在线| 日本vs欧美在线观看视频| av国产精品久久久久影院| 国产精品亚洲一级av第二区| 日韩欧美一区视频在线观看| 51午夜福利影视在线观看| 十分钟在线观看高清视频www| 亚洲成人手机| 国产高清视频在线播放一区| 亚洲精品美女久久久久99蜜臀| 免费看十八禁软件| 欧美精品av麻豆av| 激情在线观看视频在线高清 | 日韩欧美免费精品| 日韩有码中文字幕| 一级毛片女人18水好多| 91av网站免费观看| 久久久久久久久久久久大奶| 国产国语露脸激情在线看| 9色porny在线观看| 亚洲欧美日韩另类电影网站| 精品一品国产午夜福利视频| 最近最新中文字幕大全免费视频| 桃红色精品国产亚洲av| 婷婷丁香在线五月| 在线观看舔阴道视频| 韩国精品一区二区三区| 19禁男女啪啪无遮挡网站| 欧美乱妇无乱码| 9色porny在线观看| 天堂俺去俺来也www色官网| 国产精品久久久人人做人人爽| 久久久久久久精品吃奶| 大片电影免费在线观看免费| 国产精品久久久久成人av| 精品亚洲成a人片在线观看| 黑丝袜美女国产一区| 日本撒尿小便嘘嘘汇集6| 亚洲av片天天在线观看| 日韩欧美国产一区二区入口| 国产精品一区二区在线观看99| www.精华液| 一进一出抽搐gif免费好疼 | www.熟女人妻精品国产| 黑人巨大精品欧美一区二区蜜桃| 国产精品久久视频播放| 在线观看免费高清a一片| 亚洲精品久久成人aⅴ小说| 日本一区二区免费在线视频| 成年版毛片免费区| 久久中文字幕人妻熟女| 欧美最黄视频在线播放免费 | 深夜精品福利| 国产成人啪精品午夜网站| 纯流量卡能插随身wifi吗| 亚洲av熟女| 日日夜夜操网爽| 久久亚洲精品不卡| 亚洲成国产人片在线观看| 精品一区二区三区视频在线观看免费 | 亚洲 国产 在线| a级毛片在线看网站| 久久 成人 亚洲| 一区二区日韩欧美中文字幕| 狂野欧美激情性xxxx| 飞空精品影院首页| 亚洲国产欧美一区二区综合| 欧美日韩国产mv在线观看视频| 欧美午夜高清在线| 99久久综合精品五月天人人| 人人妻,人人澡人人爽秒播| 久久久久国内视频| 亚洲午夜精品一区,二区,三区| 日韩三级视频一区二区三区| 色综合欧美亚洲国产小说| 一边摸一边抽搐一进一出视频| 国产男靠女视频免费网站| 啦啦啦 在线观看视频| 69精品国产乱码久久久| 脱女人内裤的视频| 亚洲熟女毛片儿| 国产蜜桃级精品一区二区三区 | 国产成人欧美| 久久久久久久精品吃奶| 又黄又粗又硬又大视频| 露出奶头的视频| 91大片在线观看| 国产精品久久久av美女十八| 国产熟女午夜一区二区三区| 黄色成人免费大全| 叶爱在线成人免费视频播放| 国产成人精品久久二区二区免费| 91精品三级在线观看| 精品午夜福利视频在线观看一区| 18禁观看日本| 最新的欧美精品一区二区| 欧美乱色亚洲激情| 99精国产麻豆久久婷婷| 国产成人免费无遮挡视频| 久久精品国产清高在天天线| 一级片'在线观看视频| 国产精品影院久久| 视频区图区小说| 亚洲三区欧美一区| 一级片免费观看大全| 99久久99久久久精品蜜桃| 99精品欧美一区二区三区四区| 成人三级做爰电影| 国产亚洲精品第一综合不卡| 美女 人体艺术 gogo| 国产亚洲精品久久久久久毛片 | 欧美日韩av久久| 90打野战视频偷拍视频| 亚洲 欧美一区二区三区| 国产高清激情床上av| 色婷婷av一区二区三区视频| 韩国精品一区二区三区| 在线观看免费午夜福利视频| 激情视频va一区二区三区| 亚洲av日韩在线播放| 真人做人爱边吃奶动态| 亚洲成av片中文字幕在线观看| 国产精品免费大片| 国产不卡一卡二| 日韩一卡2卡3卡4卡2021年| 国产成人欧美| 亚洲色图 男人天堂 中文字幕| 手机成人av网站| 精品国产一区二区三区久久久樱花| 我的亚洲天堂| 亚洲av美国av| 国产人伦9x9x在线观看| 80岁老熟妇乱子伦牲交| 夫妻午夜视频| 久久精品熟女亚洲av麻豆精品| 在线av久久热| 亚洲国产欧美日韩在线播放| 亚洲精品自拍成人| 777久久人妻少妇嫩草av网站| 中文字幕人妻丝袜制服| 美国免费a级毛片| 国产欧美亚洲国产| 9色porny在线观看| 亚洲片人在线观看| 欧美中文综合在线视频| 久久精品aⅴ一区二区三区四区| 18禁裸乳无遮挡动漫免费视频| 天天躁夜夜躁狠狠躁躁| 女警被强在线播放| 中文字幕制服av| 嫁个100分男人电影在线观看| a级毛片黄视频| 狠狠婷婷综合久久久久久88av| 黄色毛片三级朝国网站| av有码第一页| 男男h啪啪无遮挡| 中文字幕人妻丝袜一区二区| 久久久久久久久免费视频了| 日本精品一区二区三区蜜桃| 人人妻人人添人人爽欧美一区卜| 91精品三级在线观看| 成人18禁高潮啪啪吃奶动态图| 久久久精品免费免费高清| 可以免费在线观看a视频的电影网站| 精品电影一区二区在线| 一进一出抽搐动态| 精品电影一区二区在线| 视频区图区小说| 少妇粗大呻吟视频| 波多野结衣一区麻豆| 一边摸一边做爽爽视频免费| 桃红色精品国产亚洲av| 在线观看www视频免费| 天堂中文最新版在线下载| 乱人伦中国视频| 亚洲人成电影观看| 国产亚洲精品久久久久久毛片 | 亚洲国产精品合色在线| 日韩三级视频一区二区三区| 国产激情欧美一区二区| 在线观看免费视频网站a站| 亚洲色图 男人天堂 中文字幕| 一二三四在线观看免费中文在| 久久人妻福利社区极品人妻图片| 又黄又粗又硬又大视频| 亚洲av日韩在线播放| 超碰成人久久| cao死你这个sao货| 一级a爱视频在线免费观看| 欧美在线一区亚洲| 黄色成人免费大全| 亚洲人成电影观看| 亚洲精品中文字幕在线视频| 一级作爱视频免费观看| 纯流量卡能插随身wifi吗| 制服诱惑二区| 飞空精品影院首页| 国产国语露脸激情在线看| 午夜精品国产一区二区电影| 很黄的视频免费| 大型黄色视频在线免费观看| 日本vs欧美在线观看视频| 久久精品国产a三级三级三级| 午夜老司机福利片| 国产高清视频在线播放一区| 性色av乱码一区二区三区2| 成人18禁高潮啪啪吃奶动态图| av中文乱码字幕在线| 亚洲五月天丁香| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品中文字幕在线视频| 久久人妻福利社区极品人妻图片| 伦理电影免费视频| 老熟女久久久| 国产精品久久视频播放| 91老司机精品| 国产精品香港三级国产av潘金莲| 国产欧美日韩一区二区精品| 亚洲自偷自拍图片 自拍| 欧美黑人欧美精品刺激| 亚洲成a人片在线一区二区| 国产精品1区2区在线观看. | 亚洲熟女精品中文字幕| av免费在线观看网站| 捣出白浆h1v1| xxx96com| 欧美激情极品国产一区二区三区| 国产成人免费无遮挡视频| 女性生殖器流出的白浆| 一本综合久久免费| 免费观看人在逋| 欧美性长视频在线观看| 精品国产一区二区三区久久久樱花| netflix在线观看网站| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品粉嫩美女一区| 99久久99久久久精品蜜桃| 国产av精品麻豆| 国产成+人综合+亚洲专区| 51午夜福利影视在线观看| 国产精品国产高清国产av | 欧美 日韩 精品 国产| 成人黄色视频免费在线看| 美国免费a级毛片| a级片在线免费高清观看视频| 成人18禁高潮啪啪吃奶动态图| 日本精品一区二区三区蜜桃| 看片在线看免费视频| 国产免费现黄频在线看| 高清欧美精品videossex| 亚洲欧美一区二区三区黑人| 国产精品98久久久久久宅男小说| 国产精品成人在线| 自线自在国产av| 国产区一区二久久| 精品一品国产午夜福利视频| 精品第一国产精品| 啦啦啦 在线观看视频| 色综合婷婷激情| 日韩欧美免费精品| 亚洲精品一卡2卡三卡4卡5卡| 欧美亚洲 丝袜 人妻 在线| 激情视频va一区二区三区| 麻豆国产av国片精品| 亚洲专区中文字幕在线| 国产单亲对白刺激| 一区二区日韩欧美中文字幕| 黄色a级毛片大全视频| 国产一区二区激情短视频| 91在线观看av| 久久99一区二区三区| 久久国产精品影院| 99香蕉大伊视频| 午夜免费成人在线视频| 欧美成人免费av一区二区三区 | 国产成人免费观看mmmm| 亚洲片人在线观看| 国产成人av激情在线播放| 亚洲中文av在线| 亚洲一区二区三区不卡视频| 亚洲五月天丁香| 亚洲精品在线美女| 精品国产一区二区久久| 91av网站免费观看| 无限看片的www在线观看| 亚洲黑人精品在线| 国产精品久久久久久精品古装| 欧美日韩一级在线毛片| 日韩成人在线观看一区二区三区| 高清在线国产一区| 19禁男女啪啪无遮挡网站| 91九色精品人成在线观看| 满18在线观看网站| 精品国产亚洲在线| 极品人妻少妇av视频| 美女午夜性视频免费| 国产高清国产精品国产三级| 久久久久久久午夜电影 | 一级a爱片免费观看的视频| 日韩欧美在线二视频 | 一本综合久久免费| 亚洲一区二区三区欧美精品| 免费在线观看影片大全网站| 国产精品亚洲av一区麻豆| avwww免费| 最近最新中文字幕大全电影3 | 91大片在线观看| 19禁男女啪啪无遮挡网站| 美国免费a级毛片| 一级片免费观看大全| 999精品在线视频| 99热网站在线观看| 黄色女人牲交| 真人做人爱边吃奶动态| 国产成人精品无人区| 国产亚洲一区二区精品| 性少妇av在线| 国产主播在线观看一区二区| xxxhd国产人妻xxx| 免费女性裸体啪啪无遮挡网站| av免费在线观看网站| 麻豆国产av国片精品| 村上凉子中文字幕在线| 搡老乐熟女国产| 五月开心婷婷网| 老司机深夜福利视频在线观看| 亚洲五月天丁香| 女人被躁到高潮嗷嗷叫费观| 亚洲成国产人片在线观看| 亚洲视频免费观看视频| 一级毛片高清免费大全| 在线看a的网站| 国产亚洲精品久久久久久毛片 | av欧美777| 搡老乐熟女国产| 成人亚洲精品一区在线观看| 老司机在亚洲福利影院| 精品熟女少妇八av免费久了| 美女午夜性视频免费| 精品一区二区三区av网在线观看| 极品教师在线免费播放| 一二三四在线观看免费中文在| av福利片在线| av在线播放免费不卡| 我的亚洲天堂| 午夜亚洲福利在线播放| 精品国产超薄肉色丝袜足j| 操美女的视频在线观看| 亚洲片人在线观看| 免费一级毛片在线播放高清视频 | 黑丝袜美女国产一区| 亚洲精品一卡2卡三卡4卡5卡| av福利片在线| avwww免费| 久热这里只有精品99| 久久久久精品国产欧美久久久| 在线天堂中文资源库| 在线十欧美十亚洲十日本专区| 久久九九热精品免费| 国产男靠女视频免费网站| 国产片内射在线| 露出奶头的视频| 国产精品98久久久久久宅男小说| 国产成人av教育| 日韩欧美一区视频在线观看| 少妇猛男粗大的猛烈进出视频| 交换朋友夫妻互换小说| 女人被躁到高潮嗷嗷叫费观| 大片电影免费在线观看免费| 亚洲精品粉嫩美女一区| 成年版毛片免费区| 18禁黄网站禁片午夜丰满| 亚洲精品久久成人aⅴ小说| 啦啦啦视频在线资源免费观看| 69av精品久久久久久| 亚洲国产欧美日韩在线播放| av网站在线播放免费| 国产欧美亚洲国产| 精品福利观看| 国产国语露脸激情在线看| 日韩欧美一区视频在线观看| 欧美精品av麻豆av| 国产精品二区激情视频| 日日爽夜夜爽网站| 90打野战视频偷拍视频| 真人做人爱边吃奶动态| 国产精品自产拍在线观看55亚洲 | 一二三四社区在线视频社区8| 精品久久久久久久久久免费视频 | 成人国产一区最新在线观看| 性少妇av在线| 搡老岳熟女国产| 国产男女内射视频| 国产精品国产av在线观看| 黑人欧美特级aaaaaa片| 亚洲成av片中文字幕在线观看| 日日摸夜夜添夜夜添小说| 亚洲人成77777在线视频| 欧美人与性动交α欧美软件| 欧美在线一区亚洲| 午夜两性在线视频| 中文字幕人妻熟女乱码| 国产日韩欧美亚洲二区| 欧美一级毛片孕妇| 国产蜜桃级精品一区二区三区 | 欧美黄色片欧美黄色片| 黄色毛片三级朝国网站| 狠狠婷婷综合久久久久久88av| 亚洲国产精品合色在线| 国产极品粉嫩免费观看在线| 国产淫语在线视频| 看片在线看免费视频| 视频在线观看一区二区三区| 亚洲精品在线观看二区| 国产日韩一区二区三区精品不卡| 天堂中文最新版在线下载| 少妇粗大呻吟视频| 国产精品永久免费网站| 丝袜美腿诱惑在线| 黄色 视频免费看| 美女扒开内裤让男人捅视频| 一个人免费在线观看的高清视频| 成人特级黄色片久久久久久久| 亚洲第一欧美日韩一区二区三区| 欧美日本中文国产一区发布| av免费在线观看网站| 在线观看免费午夜福利视频| 久热这里只有精品99| 天天躁日日躁夜夜躁夜夜| 欧美乱妇无乱码| 日韩成人在线观看一区二区三区| 91老司机精品| а√天堂www在线а√下载 | 免费久久久久久久精品成人欧美视频| 一个人免费在线观看的高清视频| 久久久精品区二区三区| 熟女少妇亚洲综合色aaa.| 国产一区二区三区在线臀色熟女 | 天堂√8在线中文| 亚洲精品一卡2卡三卡4卡5卡| 最新在线观看一区二区三区| 十八禁网站免费在线| 国产精品98久久久久久宅男小说| 国产97色在线日韩免费| 国产欧美亚洲国产| 女同久久另类99精品国产91| 日本撒尿小便嘘嘘汇集6| 国产精品二区激情视频| 国产乱人伦免费视频| av片东京热男人的天堂| 99国产精品免费福利视频| 欧美不卡视频在线免费观看 | 又黄又粗又硬又大视频|