• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Covalent organic nanospheres as a fiber coating for solid-phase microextraction of genotoxic impurities followed by analysis using GC-MS

    2022-09-23 04:12:12YanfangZhaoJingkunLiHanyiXieHuijuanLiXiangfengChen
    Journal of Pharmaceutical Analysis 2022年4期

    Yanfang Zhao ,Jingkun Li ,Hanyi Xie ,Huijuan Li ,Xiangfeng Chen ,*

    aSchool of Pharmaceutical Sciences,Qilu University of Technology (Shandong Academy of Sciences),Jinan,250014,China

    bShandong Analysis and Test Center,Qilu University of Technology (Shandong Academy of Sciences),Jinan,250014,China

    Keywords:Covalent organic nanospheres Solid-phase microextraction Genotoxic impurities Gas chromatography-mass spectrometry

    ABSTRACT Covalent organic nanospheres(CONs)were explored as a fiber coating for solid-phase microextraction of genotoxic impurities (GTIs) from active ingredients (AIs).CONs were synthesized by an easy solutionphase procedure at 25 °C.The obtained nanospheres exhibited a high specific surface area,good thermostability,high acid and alkali resistance,and favorable crystallinity and porosity.Two types of GTIs,alkyl halides (1-iodooctane,1-chlorobenzene,1-bromododecane,1,2-dichlorobenzene,1-bromooctane,1-chlorohexane,and 1,8-dibromooctane) and sulfonate esters (methyl p-toluenesulfonate and ethyl ptoluenesulfonate),were chosen as target molecules for assessing the performance of the coating.The prepared coating achieved high enhancement factors (5097-9799) for the selected GTIs.The strong affinity between CONs and GTIs was tentatively attributed to π-π and hydrophobicity interactions,large surface area of the CONs,and size-matching of the materials.Combined with gas chromatography-mass spectrometry(GC-MS),the established analytical method detected the GTIs in capecitabine and imatinib mesylate samples over a wide linear range (0.2-200 ng/g) with a low detection limit (0.04-2.0 ng/g),satisfactory recovery (80.03%-109.5%),and high repeatability (6.20%-14.8%) and reproducibility (6.20%-14.1%).Therefore,the CON-coated fibers are promising alternatives for the sensitive detection of GTIs in AI samples.

    1.Introduction

    Genotoxic impurities(GTIs)are found in active ingredients(AIs)synthesized by various pharmaceutical processes [1,2].As these impurities can directly damage DNA [3],the guidelines of many pharmaceutical regulatory agencies such as the U.S.Food and Drug Administration,the European Medicines Agency,and the United States Pharmacopeia have recently limited the levels of GTIs in medicines.These guidelines define a human daily intake level that exerts no adverse effects.The maximum acceptable intake,beyond which toxicological effects may arise,is 1.5 μg/day [4,5].Under these stringent guidelines and control strategies,pharmaceutical companies and regulatory communities are compelled to develop and identify sensitive analytical methods for controlling and monitoring trace-level impurities in AIs.Analytical methodologies for GTI detection must be highly selective because GTI structures are both complex and diverse.Thus so far,GTIs have been mainly analyzed using gas chromatography-mass spectrometry (GC-MS)[6]and liquid chromatography-mass spectrometry(LC-MS)[7].GCMS is an especially efficient analytical platform with excellent separation capability and high robustness.Chen et al.[8]reported a GC-MS method that detects high-boiling-point epoxide GTIs in drug substances.Liu et al.[9]determined trace levels of mutagenic alkyl toluenesulfonate impurities for controlling the quality safety of AIs.Scherer et al.[10] reported a GC-MS strategy with a low detection limit for analyzing leachable compounds.

    The complexity of AI composition and interference from matrix effects necessitates an advanced pretreatment approach.To meet the stringent requirements of GTI quantification in diverse pharmaceutical matrices,researchers have adopted traditional extraction and microextraction strategies.The traditional pretreatment techniques(direct dissolution and injection) generally lack the required sensitivity for analyzing certain GTIs.Among the microextraction techniques,solidphase microextraction (SPME) is recognized for its high analytical sensitivity and efficiency[11-13].Compared with traditional extraction,SPME is merited by higher thermal desorption [14,15],lower solventconsumption,lesswastegeneration,excellentsensitivity,anda simple operating procedure[16,17].

    Coating materials play an important role in SPME performance evaluations.SPME coatings have been fabricated from a variety of nanomaterials,including graphitic carbon nitrides[18],ionic liquids[19],metal-organic frameworks [20],molecularly imprinted polymers[21],and covalent organic frameworks(COFs)[22].A novel type of nanospherical material known as covalent organic nanosphere(CON) has emerged as an effective separation material in highresolution GC.CONs can be prepared via a facile and rapid process,whereas COFs usually need a long preparation time,sealed hightemperature resistant tube,and protective gas [23].In addition,CONs provide coincident morphology,outstanding dispersibility,and good chemical,thermal,and organic solvent stabilities [24].Considering the superior performance,abundant π elements,and hydrophobic characteristics of CONs,we hypothesized that CONbased adsorption substrates can improve the enrichment of compounds for low-concentration detection in AI analysis.

    Herein,microporous CONs were fabricated by a Schiff base reaction at room temperature and applied as a novel SPME coating for GTI extraction.The AI preparation procedures are extendible to genotoxic reagents,organic solvents,and catalysts.The performance of the CON coating was tested on two types of GTIs-alkyl halides (1-iodooctane,1-chlorobenzene,1-bromododecane,1,2-dichlorobenzene,1-bromooctane,1-chlorohexane,and 1,8-dibromooctane) and sulfonate esters (methylp-toluenesulfonate and ethylp-toluenesulfonate).The compounds in the capecitabine and imatinib mesylate samples were analyzed via GC-MS operated in the selected ion monitoring (SIM) mode.The possible adsorption mechanism was also investigated.In pharmaceutical laboratories,the GC-MS instrumentation is commonly used for quality-control testing and the investigation and detection of alkyl halides and sulfonate esters formed during capecitabine and imatinib mesylate production.

    2.Experimental

    2.1.Chemicals and reagents

    The reagents and chemicals were of analytical grade or better.The standard solutions used in the experiment were prepared with methanol.Tris(4-aminophenyl) amine (TAPA,96%) and tris(4-formylphenyl) amine (TFPA,98%) were purchased from Tokyo Chemical Industry Co.,Ltd.(Tokyo,Japan).Glacial acetic acid(99.5%),N,N-dimethylformamide (DMF,99.8%),ethanol (99.5%),and hydrofluoric acid(40%)were obtained from Shanghai Macklin Biochemical Co.,Ltd.(Macklin,Shanghai,China).Chromatographic pure acetone,methanol,n-hexane,and dichloromethane were purchased from Tenia Company,Inc.(Phoenix,AZ,USA).Hydrochloric acid and sodium hydroxide were supplied by Kemal Chemical Reagent Co.,Ltd.(Tianjin,China).1-Iodooctane (98%),1-chlorobenzene (>99%),1-bromododecane (97%),1,2-dichlorobenzene (99%),1-bromooctane(99%),1-chlorohexane (99%),and 1,8-dibromooctane (98%) were purchased from Sigma-Aldrich Chemical Corp.(Milwaukee,WI,USA).Methylp-toluenesulfonate(98%)and ethylp-toluenesulfonate(98%)were purchased from Tokyo Chemical Industry Co.,Ltd.(Tokyo,Japan).Silicone sealant was bought from ABRO Industries Inc.(Berlin,Germany).

    2.2.Instrumentation

    The morphology of the solvent was observed by scanning electron microscopy (SEM) on a SWPRA?55 scanning electron microscope manufactured by Carl Zeiss Micro Imaging Co.,Ltd.(Jena,Germany).Transmission electron microscopy(TEM)was conducted on a JEM-2100 transmission electron microscope manufactured by JEOL Co.,Ltd.(Tokyo,Japan).Thermogravimetric analysis (TGA) of the CONs was performed on an STA 449F3 Simultaneous Thermal Analyzer (Netsch Co.,Ltd.,Selb,Germany) between 60 and 800°C under an N2flow rate of 10 mL/min.Powder X-ray diffraction(PXRD)data were recorded using a Bruker Smart Apex charged coupled device-based diffractometer (Bruker Co.,Ltd.,Karlsruhe,Germany).The N2adsorption-desorption isotherms (77 K) of the CONs were measured using a porosimeter (SAP 2460;Micromeritics Instruments Corporation,Norcross,GA,USA).Fourier transforminfrared (FTIR) spectroscopy was performed using a Nicolet iS5 Spectrometer obtained from Thermo Fisher Scientific Inc.(Waltham,MA,USA).Centrifugation was operated with a Multifuge X1R centrifuge obtained from Thermo Fisher Scientific Inc.

    2.3.GC-MS parameters

    All GTIs were analyzed using a single quadrupole GCMS-QP2020 NX gas chromatograph-mass spectrometer(Shimadzu,Tokyo,Japan)equipped with a split/splitless injection port and an electron ionization chamber.The carrier gas was helium(>99.999%)with the flow rate adjusted to 1.0 mL/min.The GTIs were chromatographically separated on a fused silica DB-5MS capillary column(length:30 m;inner diameter: 0.25 μm;film thickness: 0.25 μm).The oven temperature was first maintained at 40°C for 1 min and then increased at 10°C/min to 280°C,where it was maintained for 1 min.The source temperature was maintained at 230°C and the front injector temperature was adjusted to 280°C.The analytes were quantified in SIM mode.The peaks of each compound were identified by their retention time and the ratios of quantifier and qualifier ions(Table 1).The Henry's law constants of the analytes are presented in Table S1[25-29].

    Table 1Quantification and qualification of the ions of genotoxic impurities (GTIs) by GC-MS (selected ion monitoring mode).

    2.4.Fabrication of CON-coated SPME fiber

    The CONs were prepared via a known Schiff base reaction [30]with minor modifications.C3v-symmetric TFPA(116.1 mg)and TAPA(130.6 mg) were mixed and dispersed in 2 mL of DMF.Subsequently,25 mL of methanol was added to the mixed solution and the mixture was stirred for 10 min at 25°C.After injecting 10 μL of acetic acid,the mixture was left to further react for 30 min at room temperature.The resultant deep yellow solid was harvested by centrifugation at 7104gfor 10 min,washed three times with ethanol (20 mL/wash),and dried in a vacuum overnight at 25°C.

    The coating procedure(Fig.S1)was a slightly modified version of our previous procedure [31].Before fabricating the CON-coated SPME fiber,stainless steel wires were ultrasonically cleaned in acetone and methanol and then etched in hydrofluoric acid for 40 min.All of these procedures were conducted at room temperature.The etched stainless steel wires were then rinsed with deionized water and the CONs were immobilized on its surface using the silicone sealant coating method [32].In this process,the prepared stainless steel support was dipped in silicone sealant and then immersed for 10 min in 1 mL of an ethanol suspension containing 100 mg of CONs.Afterward,the fabricated CON-coated SPME fiberwas placed in a GC injector at 280°C for 3 h.The preparation and application of the CON-coated fiber are illustrated in Scheme 1.

    Scheme 1.Preparation of CON-coated fiber and its application.CONs:covalent organic nanospheres;GC-MS: gas chromatography-mass spectrometry;GTIs: genotoxic impurities;HS: headspace;SPME: solid-phase microextraction.

    2.5.Sample pretreatment

    Standard stock solutions of 1-iodooctane,1-chlorobenzene,1-bromododecane,1,2-dichlorobenzene,1-bromooctane,1-chlorohexane,1,8-dibromooctane,methyl methane sulfonate,and ethyl methane sulfonate were prepared by accurately dissolving weighed reference standards in methanol.The solutions were stored at -20°C until use.Capecitabine and imatinib mesylate were crushed into fine powders and stored at 4°C.A series of standard working solutions (0.2-100 ng/g) of GTIs were then prepared in water containing blank sample matrices.For real sample analysis,the actual samples were spiked with GTI standard solution.

    2.6.SPME procedure

    A mixture of deionized water (10 mL),analyte-free AI sample(50 mg),and a salting-out agent (NaCl) was placed in a 20-mL borosilicate headspace vial.The mixture in the vial was homogenized using a Teflon-coated magnetic stirrer bar.After stirring,the vial was sealed with silicon-polytetrafluoroethylene septa and preserved as the blank control group.The pH and ionic strength of the mixture solution were 7 and 7%,respectively.The stirring rate was set to 800 r/min.All experiments were performed in headspace SPME mode.Initially,the vials were placed in a constanttemperature magnetic stirrer (Xi'an Yima Optoelec Co.,Ltd.,Xi'an,China) and allowed to equilibrate at the targeted temperature for 10 min.The analytes were exposed to the CON-coated fiber for 35 min.The fiber was subsequently placed in the vials to adsorb the evaporated GTI molecules and then immediately placed in the GC injector at a desorption temperature of 280°C,where the GTIs were allowed to desorb for 5 min to prevent carry-over effects.

    3.Results and discussion

    3.1.Characterization of the adsorbent

    As shown in the SEM image (Fig.1A),the CONs were uniform spheres with a diameter of approximately 400 nm.The size of the CONs determined from the TEM image (Fig.1B) agreed with that obtained from the SEM image.In the FTIR spectrum(Fig.1C),the C=O bond at 1695 cm-1was attributed to TFPA and the characteristic bands at 3406 and 3337 cm-1were attributed to the N-H bonds of TAPA.The characteristic bands of C=C at 1588 cm-1and C=O at 1695 cm-1corresponded to free TAPA and TFPA,respectively.Results suggested the presence of π-π interactions between the CONs and analytes during the extraction process.The bonds at 1619 and 1269 cm-1were assigned to C=N and C-N bonds,respectively.The specific surface area(SSA)of the synthesized CONs,determined from the nitrogen adsorption-desorption isotherm,was 203.5 m2/g,and the pore size was 2.3 nm(Fig.1D).The high surface area and microporosity favored the adsorption capacity and compound capture of the samples.Before coating on the stainless steel support,the CON nanoparticles were analyzed by TGA(Fig.1E).No significant weight loss from the CON nanoparticles appeared until 470°C.At temperatures above 470°C,a major degradation stage appeared in the TGA curve,indicating the total collapse of the CON structure and the volatilization of other organic groups.The results confirmed the superior thermal stability of the CONs,which facilitated SPME in the GC injector.The TGA curve of the silicone sealant used to fix the CONs was repeatedly studied at elevated temperatures to check its reconditioning ability.The TGA curve in Fig.S2 confirmed the exceptional thermal stability of the silicone sealant.The structural ordering of the CONs was explored by PXRD.The wide-angle XRD of the product(Fig.1F)exhibited sharp peaks at 2θ =10°,23°,and 45°,indicating a well-crystallized structure.To test their chemical stability,the CONs were immersed in HCl(0.1 mol/L)and NaOH(10 mol/L)for 48 h and their PXRD data were recollected.The locations of the peaks remained unchanged,indicating that the CONs were retained after the acid and base treatments.These results indicated the satisfactory chemical stability of the CONs.These favorable features of the resultant CONs will benefit the subsequent detection of analytes in actual complex matrices.

    Fig.1.Characterizations of CONs.(A)Scanning electron microscopy(SEM)and(B)transmission electron microscopy(TEM)of CONs;(C)Fourier transform-infrared(FTIR)spectra of tris(4-aminophenyl) amine,tris(4-formylphenyl) amine,and CONs;(D) specific surface area and pore size (inset: the pore size distribution plot of CONs);(E) thermogravimetric analysis curves of CONs;(F) powder X-ray diffraction (PXRD) pattern of the as-synthesized CONs in HCl (0.1 mol/L) and NaOH (10 mol/L).

    3.2.Optimization of SPME

    The optimal stirring rate,pH,ionic strength,extraction and desorption temperatures,and extraction and desorption time were explored in the extraction procedures of pharmaceutical samples spiked with GTIs (20 ng/g).The best kinetic and thermodynamic parameters were obtained through the Box-Behnken design (BBD)using the analysis of variance [33].In a regression analysis,the quadratic model well fitted the BBD setup in the optimization process(confidence level >95%).Panels A-C of Figs.2 and S3 show the response surfaces obtained by plotting the ionic strength versus extraction temperature,ionic strength versus extraction time,extraction temperature versus extraction time,pH versus stirring rate,and pH versus ionic strength.To explore the potential of the CON-coated fiber,the final parameters were set as follows:extraction temperature 65°C;extraction time 35 min;ionic strength 7%;pH =7;and stirring rate 800 r/min.As desorption conditions are significant when assessing the CON-coated fiber,we investigated the effect of desorption temperature on the GTI signal intensity.As illustrated in Fig.2D,the signal was enhanced by 10%approximately,when the temperature increased from 200 to 280°C but did not further respond to temperatures above 280°C.Considering the thermal stability of the fibers,the optimal desorption temperature was determined as 280°C.

    Fig.2.Optimization of the experimental parameters: (A) ionic strength versus extraction temperature,(B) ionic strength versus extraction time,and (C) extraction time versus extraction temperature(stirring rate:800 r/min;pH =7;desorption time:5 min).(D) Effect of desorption temperature on GTI signal intensity (20 ng/g GTIs).

    3.3.Comparison of CON-coated SPME fiber and commercial fibers

    To better demonstrate the advantages of CON-coated SPME fiber in the analysis of GTIs from AIs,the performance of the fiber was comparedwith those of three commerciallyavailable fibers,i.e.,100-μm polydimethylsiloxane (PDMS),65-μm polydimethylsiloxane divinylbenzene (PDMS-DVB),and 85-μm polyacrylate (PA).The enrichment factors(EFs)of all fibers were evaluated with the same working parameters.The CON-coated fiber was 10-μm thick(Fig.S4).In a previous study,the EFs were obtained by calculating the area ratio of the analytes’ peaks in the presence and absence of SPME [34].As described in Fig.3,the CON-coated fiber demonstrated better extraction performance for alkyl halides,sulfonate esters,and chlorobenzenes than the PA (2.00-9.43 fold),PDMS-DVB(1.88-4.60 fold),and PDMS(2.04-6.30 fold)fibers.

    Fig.3.Comparison of enrichment factors of different fibers (stirring rate: 800 r/min;pH =7;salt concentration: 7%;extraction temperature: 65 °C;extraction time:35 min;desorption temperature: 280 °C;time: 5 min).PA: polyacrylate;PDMS: polydimethylsiloxane;PDMS-DVB: polydimethylsiloxane divinylbenzene.

    3.4.Possible adsorption mechanisms

    The higher EFs of the CON-coated fibers than those of the existing fibers for alkyl halides,sulfonate esters,and chlorobenzenes presumably resulted from the highly conjugated structure of the CON surface.The delocalized π-electrons on the surface enhanced the π-π stacking interactions with the sulfonate esters and chlorobenzenes and increased the hydrophobic effect.The latter feature is important because hydrophobic interactions mainly govern the interaction between CONs and alkyl halides.Notably,high SSA of an adsorbent facilitates adsorption [35].Therefore,the high adsorption capacity of CON for GTIs may be attributed to its large SSA.Meanwhile,the size-matching effect along with high thermal stability significantly improved the GTI extraction by CONs.The adsorption between CONs and GTIs could be attributed to the synergistic effect of the hydrophobic interactions,π-π stacking,size-matching effect,and the excellent properties (large SSA and high thermal stability) of the CONs.

    3.5.Method validation

    The parameters of the methodologyare listed inTable 2.The limit of detection(LOD,signal tonoise(S/N)=3)rangedbetween 0.04 and 2.0 ng/g.The limit of quantification(LOQ,S/N =10)ranged from 0.15 to 7.0 ng/g.Furthermore,good linear correlation (R2:0.9921-0.9998)was obtained over a wide linear range(0.2-200 ng/g).The repeatability and reproducibility of the methodology were assessed by calculating the relative standard deviation (RSD) of multiple spiked blank samples.The repeatability was determined by six replicate tests of a single fiber.The inter-day RSD was from 6.20%to 14.3%,and the intra-day RSD was from 6.30% to 14.8%,respectively.Meanwhile,the reproducibility(ranging from 6.20%to 14.1%)was obtained from parallel investigations on six fibers.The accuracy was obtained from six runs of each compound at three concentrations within the calibration range of the established strategy.The results in Table S2 are the percentage differences from the actual (%DFA) results.The %DFA ranged from -4.68 to 6.66,confirming the satisfactory quantification of GTIs.In addition,after 60 cycles of reuse,the signals of all compounds decreased by only 4.10%-14.5%,confirming the sensitivity and precision of the analytical method.

    Fig.4.Sample chromatograms of capecitabine.1,1′,and 1′′:1-chlorobenzene;2,2′,and 2′′:1-chlorohexane;3,3′,and 3′′:1,2-dichlorobenzene;4,4′,and 4′′:1-bromooctane:5,5′,and 5′′:1-iodooctane;6,6′,and 6′′:methyl p-toluenesulfonate;7,7′,and 7′′: ethyl ptoluenesulfonate;8,8′,and 8′′:1,8-dibromooctane;and 9,9′,and 9′′:1-bromododecane.Sample was spiked at(a)50,(b)20,and(c)10 ng/g;(d)blank.Extraction conditions:salt content:7%;temperature:65 °C;time:35 min.Desorption was performed at 280 °C for 5 min.

    3.6.Real sample analysis

    To demonstrate the applicability of the resulting CON-coated fiber to GTI analysis in actual pharmaceutical samples,the developed method was applied to two AIs,imatinib mesylate and capecitabine.Sample chromatograms of capecitabine were showed in Fig.4.The recovery (Table 3) was assessed at 10,20,and 50 ng/g using the equation provided in the Supplementary data.Under the optimal SPME conditions,the recoveries of nine GTIs varied from 80.03%(1,2-dichlorobenzene in imatinib mesylate) to 109.5% (methylptoluenesulfonate in imatinib mesylate),which are acceptable [36].Considering the obtained results compared with those of previous reports(Table 4)[6,37-40],our method provided acceptable LODs,a wide linearity range,and satisfactory recovery.In addition,this method exhibited short extraction time and low organic solvent consumption.In future studies,the mechanism of interaction between CONsand the factors influencing their performance should be further investigated,the fiber-to-fiber reproducibility should be improved,and the effectiveness of CONs should be explored in the analyses of other GTIs in complex samples.

    Table 2Method validation summary.

    Table 3Results of the analysis of nine GTIs in real samples.

    Table 4Comparisons of different methods for the solid-phase microextraction(SPME) of GTIs.

    4.Conclusion

    In conclusion,CONs were successfully implemented as SPME fiber adsorbents that preconcentrate the genotoxic impurities from AIs prior to analysis by GC-MS.The properties of CONs (high SSA,good thermostability,high acid and alkali resistance,favorable crystallinity,and porosity)boosted the enrichment performance of the fiber.Consequently,the fiber exhibited higher EFs(5097-9799)than commercially available PA and PDMS-coated SPME fibers for nine GTIs with different molecular structures.The proposed approach showed high sensitivity with a low detection limit(0.04-2.0 ng/g) and a wide linear range (0.2-200 ng/g).Furthermore,the methodology was successfully applied to GC-MS analysis of real AIs with acceptable recovery (80.03%-109.5%),good repeatability (6.20%-14.8%),and high reproducibility (6.20%-14.1%).The strong adsorption of GTIs on CONs was tentatively attributed to π-π interactions,hydrophobicity,large surface area,and the size-matching effect.The developed method based on the CON-coated fiber and GC-MS accurately analyzed the GTIs from real pharmaceutical samples.Therefore,the CON-coated fibers are potentially applicable to sensitive detection of GTIs in pharmaceutical samples.

    CRediT author statement

    Yanfang Zhao:Conceptualization,Methodology,Formal analysis,Writing -Original draft preparation;Jingkun Li:Conceptualization,Methodology,Formal analysis,Writing -Original draft preparation;Hanyi Xie:Investigation,Methodology,Formal analysis;Huijuan Li:Methodology,Formal analysis;Xiangfeng Chen:Conceptualization,Writing -Original draft preparation,Reviewing and Editing.

    Declaration of competing interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    This work was supported by the Key Research and Development Program of Shandong Province (Grant No.: 2019GSF111001),the National Natural Science Foundation of China (Grant No.:21906096),the Youth Science Funds of the Shandong Academy of Sciences (Grant No.: 2019QN009),the Youth Ph.D.Cooperation Funds of Qilu University of Technology (Shandong Academy of Sciences,Grant No.: 2018BSHZ0029),and the Program for Taishan Scholars of Shandong Province (Grant No.: tsqn202103099).

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.jpha.2021.12.002.

    欧美日韩亚洲综合一区二区三区_| 香蕉国产在线看| aaaaa片日本免费| 怎么达到女性高潮| 激情视频va一区二区三区| 丁香欧美五月| 肉色欧美久久久久久久蜜桃| 日韩一卡2卡3卡4卡2021年| 青青草视频在线视频观看| 水蜜桃什么品种好| 一区福利在线观看| av网站免费在线观看视频| 亚洲人成伊人成综合网2020| netflix在线观看网站| 老熟妇仑乱视频hdxx| 美女高潮喷水抽搐中文字幕| 这个男人来自地球电影免费观看| 久久午夜综合久久蜜桃| 在线观看免费视频日本深夜| 人人妻人人爽人人添夜夜欢视频| 黄片大片在线免费观看| 青青草视频在线视频观看| 亚洲成人免费电影在线观看| 美女高潮喷水抽搐中文字幕| 欧美日韩福利视频一区二区| 脱女人内裤的视频| 每晚都被弄得嗷嗷叫到高潮| 欧美老熟妇乱子伦牲交| 久久久久国内视频| 天堂8中文在线网| 亚洲专区国产一区二区| 成年动漫av网址| 亚洲欧美一区二区三区黑人| 老司机午夜十八禁免费视频| 国产成+人综合+亚洲专区| av线在线观看网站| 免费观看人在逋| 热99re8久久精品国产| 国产精品一区二区免费欧美| 热re99久久精品国产66热6| 欧美黑人精品巨大| 超色免费av| 久久久国产一区二区| 热99国产精品久久久久久7| 欧美av亚洲av综合av国产av| 免费女性裸体啪啪无遮挡网站| av片东京热男人的天堂| 一本久久精品| 精品视频人人做人人爽| 99国产精品一区二区蜜桃av | 午夜成年电影在线免费观看| 亚洲一区中文字幕在线| 热99久久久久精品小说推荐| 如日韩欧美国产精品一区二区三区| 黑人欧美特级aaaaaa片| 国产无遮挡羞羞视频在线观看| 久久av网站| 久久精品亚洲av国产电影网| av国产精品久久久久影院| 婷婷成人精品国产| 一个人免费在线观看的高清视频| 热99re8久久精品国产| 色综合婷婷激情| 亚洲 国产 在线| 国产精品九九99| 99香蕉大伊视频| 窝窝影院91人妻| 女人被躁到高潮嗷嗷叫费观| 十八禁网站免费在线| 成人黄色视频免费在线看| 50天的宝宝边吃奶边哭怎么回事| 久久久久久久国产电影| 肉色欧美久久久久久久蜜桃| 欧美中文综合在线视频| 天堂俺去俺来也www色官网| 18禁国产床啪视频网站| 国产欧美日韩综合在线一区二区| 国产在视频线精品| 日韩欧美一区二区三区在线观看 | 一区在线观看完整版| 精品国产乱子伦一区二区三区| 999精品在线视频| 精品人妻熟女毛片av久久网站| 99riav亚洲国产免费| 91麻豆av在线| 中文字幕色久视频| 国产一区二区 视频在线| 久久 成人 亚洲| 少妇 在线观看| 啦啦啦免费观看视频1| 亚洲成人国产一区在线观看| 国产伦人伦偷精品视频| 波多野结衣一区麻豆| 狠狠狠狠99中文字幕| 黑丝袜美女国产一区| 亚洲av国产av综合av卡| 成人手机av| 最近最新免费中文字幕在线| 久久中文字幕人妻熟女| 欧美日韩成人在线一区二区| 啦啦啦视频在线资源免费观看| 老熟妇仑乱视频hdxx| 国产欧美亚洲国产| 18禁黄网站禁片午夜丰满| 亚洲成人手机| 一个人免费看片子| 欧美日韩成人在线一区二区| 久久精品国产综合久久久| 国产在线观看jvid| 十八禁人妻一区二区| 精品一区二区三区av网在线观看 | 国产亚洲精品久久久久5区| 亚洲精品国产一区二区精华液| 黄色视频在线播放观看不卡| 男女床上黄色一级片免费看| 日本撒尿小便嘘嘘汇集6| 午夜福利影视在线免费观看| 日韩精品免费视频一区二区三区| 成年人黄色毛片网站| 啦啦啦视频在线资源免费观看| 免费看a级黄色片| 男女之事视频高清在线观看| 色尼玛亚洲综合影院| 亚洲三区欧美一区| 久久国产精品大桥未久av| 老司机午夜福利在线观看视频 | 老司机靠b影院| 黄色视频不卡| 免费不卡黄色视频| 亚洲欧美激情在线| 国产免费现黄频在线看| √禁漫天堂资源中文www| 建设人人有责人人尽责人人享有的| 1024香蕉在线观看| 免费观看a级毛片全部| 国产av国产精品国产| 国产在线一区二区三区精| 天天添夜夜摸| 国产精品 欧美亚洲| 亚洲精品在线美女| 久久中文字幕人妻熟女| 国产人伦9x9x在线观看| 伊人久久大香线蕉亚洲五| 国产有黄有色有爽视频| 国产成人啪精品午夜网站| 超碰97精品在线观看| 成人亚洲精品一区在线观看| svipshipincom国产片| 激情视频va一区二区三区| 午夜福利免费观看在线| av网站在线播放免费| 天堂俺去俺来也www色官网| 亚洲中文av在线| 欧美一级毛片孕妇| 欧美亚洲日本最大视频资源| 一夜夜www| 久久久精品94久久精品| 18禁观看日本| av超薄肉色丝袜交足视频| 高清av免费在线| 两性午夜刺激爽爽歪歪视频在线观看 | 免费久久久久久久精品成人欧美视频| 男男h啪啪无遮挡| 黑人巨大精品欧美一区二区mp4| 欧美在线黄色| 中文字幕人妻熟女乱码| 激情在线观看视频在线高清 | 国产精品成人在线| 欧美 亚洲 国产 日韩一| 两个人免费观看高清视频| 久久精品亚洲av国产电影网| 高清欧美精品videossex| 国产av一区二区精品久久| 国产欧美日韩一区二区精品| av电影中文网址| 久久天堂一区二区三区四区| 十分钟在线观看高清视频www| 在线观看66精品国产| 女性生殖器流出的白浆| 美女扒开内裤让男人捅视频| 18禁观看日本| a级毛片在线看网站| 日日爽夜夜爽网站| 久久久精品免费免费高清| 欧美乱妇无乱码| 一本综合久久免费| 一二三四社区在线视频社区8| 桃花免费在线播放| 女人被躁到高潮嗷嗷叫费观| 久久精品国产亚洲av高清一级| 久久午夜综合久久蜜桃| 国产亚洲精品第一综合不卡| 欧美在线一区亚洲| 色综合婷婷激情| 欧美变态另类bdsm刘玥| 首页视频小说图片口味搜索| 黄色 视频免费看| 91av网站免费观看| 一级毛片女人18水好多| 在线观看人妻少妇| 这个男人来自地球电影免费观看| 久久精品亚洲熟妇少妇任你| 亚洲av日韩精品久久久久久密| 欧美中文综合在线视频| 97在线人人人人妻| 别揉我奶头~嗯~啊~动态视频| 国产精品久久久久成人av| 欧美老熟妇乱子伦牲交| 亚洲精品国产一区二区精华液| 成人av一区二区三区在线看| 久久天躁狠狠躁夜夜2o2o| 啦啦啦视频在线资源免费观看| 成年动漫av网址| 国产极品粉嫩免费观看在线| 国产精品国产高清国产av | 精品熟女少妇八av免费久了| 欧美日韩av久久| 19禁男女啪啪无遮挡网站| 操美女的视频在线观看| 国产成人欧美| 亚洲国产精品一区二区三区在线| 成人精品一区二区免费| 国产欧美日韩一区二区三| 一区二区av电影网| 亚洲精品中文字幕在线视频| 久久久久国内视频| 香蕉久久夜色| 国产在线免费精品| 91大片在线观看| videos熟女内射| 欧美精品一区二区免费开放| 欧美精品亚洲一区二区| 久久久国产精品麻豆| 色尼玛亚洲综合影院| 97在线人人人人妻| 波多野结衣一区麻豆| 激情在线观看视频在线高清 | 日本撒尿小便嘘嘘汇集6| 亚洲中文字幕日韩| 国产成人精品无人区| 精品高清国产在线一区| 日本黄色日本黄色录像| 精品第一国产精品| 精品一区二区三卡| 十分钟在线观看高清视频www| 国产一区二区三区视频了| 久久久久久久精品吃奶| 热re99久久国产66热| 蜜桃在线观看..| 国产区一区二久久| 久久人人97超碰香蕉20202| 亚洲精华国产精华精| netflix在线观看网站| 高清视频免费观看一区二区| 欧美国产精品一级二级三级| 十八禁高潮呻吟视频| 欧美日韩成人在线一区二区| 欧美日韩av久久| 人人妻人人澡人人爽人人夜夜| 多毛熟女@视频| videos熟女内射| 69精品国产乱码久久久| 久久久精品区二区三区| 日韩大码丰满熟妇| 不卡av一区二区三区| 日韩三级视频一区二区三区| 正在播放国产对白刺激| 女人高潮潮喷娇喘18禁视频| 亚洲五月婷婷丁香| 国产精品免费视频内射| 亚洲av日韩在线播放| 亚洲 欧美一区二区三区| 欧美黑人精品巨大| 夜夜夜夜夜久久久久| 久久久久久久大尺度免费视频| 欧美激情高清一区二区三区| 日本av手机在线免费观看| 少妇精品久久久久久久| 最新的欧美精品一区二区| 在线播放国产精品三级| 久久精品亚洲av国产电影网| 黄色a级毛片大全视频| 三上悠亚av全集在线观看| 亚洲av电影在线进入| 亚洲人成伊人成综合网2020| 色老头精品视频在线观看| 在线永久观看黄色视频| 亚洲一卡2卡3卡4卡5卡精品中文| 我要看黄色一级片免费的| 久久av网站| 久久久精品国产亚洲av高清涩受| 免费日韩欧美在线观看| 黄色视频不卡| 免费久久久久久久精品成人欧美视频| 飞空精品影院首页| 满18在线观看网站| 久久人妻av系列| 精品人妻1区二区| 国产成人影院久久av| 午夜福利视频精品| 日韩 欧美 亚洲 中文字幕| 国产欧美日韩一区二区精品| 免费日韩欧美在线观看| 亚洲久久久国产精品| 99热国产这里只有精品6| 国产成人精品久久二区二区免费| 精品亚洲成国产av| 久久人妻熟女aⅴ| 黑人猛操日本美女一级片| 飞空精品影院首页| 国产精品免费一区二区三区在线 | 超碰97精品在线观看| 美女高潮到喷水免费观看| 精品久久蜜臀av无| 中文亚洲av片在线观看爽 | 91av网站免费观看| 青青草视频在线视频观看| 亚洲国产成人一精品久久久| 一夜夜www| 久久青草综合色| 国产亚洲精品第一综合不卡| 99国产精品一区二区蜜桃av | 一本综合久久免费| av在线播放免费不卡| 18禁黄网站禁片午夜丰满| 一边摸一边抽搐一进一出视频| 国产伦理片在线播放av一区| 亚洲人成伊人成综合网2020| 国产精品国产高清国产av | 国产一区二区激情短视频| 国产精品 欧美亚洲| 日韩欧美国产一区二区入口| 1024视频免费在线观看| 9191精品国产免费久久| 国产av一区二区精品久久| 麻豆国产av国片精品| 我要看黄色一级片免费的| 天天影视国产精品| 老鸭窝网址在线观看| 国产亚洲精品一区二区www | 日本精品一区二区三区蜜桃| 99久久国产精品久久久| 精品卡一卡二卡四卡免费| 久久亚洲精品不卡| 黄色片一级片一级黄色片| 在线观看免费视频日本深夜| 亚洲精品美女久久av网站| 91麻豆av在线| 国产一区二区三区视频了| 女人久久www免费人成看片| 夜夜夜夜夜久久久久| 日韩中文字幕欧美一区二区| 亚洲av电影在线进入| 黑人猛操日本美女一级片| 日韩制服丝袜自拍偷拍| 中亚洲国语对白在线视频| 久久青草综合色| 日本五十路高清| 国产成人精品无人区| 啦啦啦视频在线资源免费观看| 久久天堂一区二区三区四区| 99热网站在线观看| 精品福利观看| 一二三四社区在线视频社区8| 在线观看免费午夜福利视频| 午夜福利影视在线免费观看| 亚洲精品一二三| 亚洲精品乱久久久久久| 国产无遮挡羞羞视频在线观看| 免费观看av网站的网址| svipshipincom国产片| 国产在线一区二区三区精| 18在线观看网站| 我的亚洲天堂| 免费看a级黄色片| 久久香蕉激情| 黄色成人免费大全| 一区福利在线观看| 日韩一卡2卡3卡4卡2021年| 水蜜桃什么品种好| 亚洲性夜色夜夜综合| 青青草视频在线视频观看| 精品人妻1区二区| 最近最新免费中文字幕在线| netflix在线观看网站| 亚洲第一青青草原| 久久这里只有精品19| 黑人巨大精品欧美一区二区mp4| 国产精品自产拍在线观看55亚洲 | 青青草视频在线视频观看| 狠狠精品人妻久久久久久综合| 色精品久久人妻99蜜桃| 老司机深夜福利视频在线观看| 国产午夜精品久久久久久| av网站在线播放免费| 亚洲国产成人一精品久久久| 久久精品91无色码中文字幕| 少妇猛男粗大的猛烈进出视频| 国产精品香港三级国产av潘金莲| 成人手机av| 色老头精品视频在线观看| 国产一区二区三区在线臀色熟女 | 国产欧美日韩精品亚洲av| 国产区一区二久久| 欧美+亚洲+日韩+国产| 嫁个100分男人电影在线观看| 亚洲欧美一区二区三区久久| 天堂动漫精品| 亚洲精品国产色婷婷电影| 在线观看一区二区三区激情| 热99re8久久精品国产| 少妇 在线观看| 精品国产一区二区三区久久久樱花| 久久人人爽av亚洲精品天堂| 国产一卡二卡三卡精品| av片东京热男人的天堂| 老司机靠b影院| 欧美成狂野欧美在线观看| 麻豆乱淫一区二区| 亚洲七黄色美女视频| 午夜福利视频精品| 亚洲美女黄片视频| 99精品欧美一区二区三区四区| 人人妻人人爽人人添夜夜欢视频| 精品久久蜜臀av无| 亚洲精品中文字幕在线视频| 日韩大码丰满熟妇| 99国产精品一区二区三区| 一二三四社区在线视频社区8| 在线播放国产精品三级| 亚洲 国产 在线| 日本av免费视频播放| 亚洲成人免费电影在线观看| 51午夜福利影视在线观看| 免费一级毛片在线播放高清视频 | 日韩视频一区二区在线观看| 桃花免费在线播放| 亚洲精品国产区一区二| 亚洲七黄色美女视频| 精品国产国语对白av| 手机成人av网站| 捣出白浆h1v1| 国产精品久久电影中文字幕 | 丝袜在线中文字幕| 久久精品成人免费网站| 欧美日韩精品网址| 一级片免费观看大全| 超碰成人久久| 亚洲av日韩精品久久久久久密| 久久人妻av系列| 亚洲第一av免费看| 欧美黄色淫秽网站| 女人高潮潮喷娇喘18禁视频| 在线观看免费日韩欧美大片| 热99国产精品久久久久久7| 欧美午夜高清在线| 国产97色在线日韩免费| 三上悠亚av全集在线观看| 69精品国产乱码久久久| 亚洲精品一卡2卡三卡4卡5卡| 国产有黄有色有爽视频| 一区二区三区乱码不卡18| 国产男女超爽视频在线观看| 久久影院123| 无遮挡黄片免费观看| 热99re8久久精品国产| 韩国精品一区二区三区| 又大又爽又粗| 欧美精品啪啪一区二区三区| 欧美日韩亚洲综合一区二区三区_| 少妇猛男粗大的猛烈进出视频| 国产在线视频一区二区| 丰满人妻熟妇乱又伦精品不卡| 国产精品久久久av美女十八| 老司机午夜十八禁免费视频| 狠狠精品人妻久久久久久综合| 久久九九热精品免费| 精品福利观看| 亚洲av第一区精品v没综合| 午夜福利视频精品| 黄色视频不卡| 丰满人妻熟妇乱又伦精品不卡| 欧美在线黄色| 亚洲成a人片在线一区二区| 狠狠精品人妻久久久久久综合| 久久久国产成人免费| 久久久久网色| 久久人妻熟女aⅴ| 亚洲av成人一区二区三| 啦啦啦 在线观看视频| 国产成人av激情在线播放| 一本一本久久a久久精品综合妖精| 黄色怎么调成土黄色| 岛国毛片在线播放| 亚洲精品av麻豆狂野| a级片在线免费高清观看视频| 亚洲国产中文字幕在线视频| 欧美av亚洲av综合av国产av| av片东京热男人的天堂| 人人妻,人人澡人人爽秒播| 视频区图区小说| 亚洲 国产 在线| 午夜老司机福利片| 国产欧美日韩一区二区三区在线| 久久久久视频综合| 亚洲av美国av| 精品国产国语对白av| 久久天躁狠狠躁夜夜2o2o| 亚洲专区中文字幕在线| 国产成人啪精品午夜网站| 啦啦啦 在线观看视频| 欧美国产精品va在线观看不卡| 成人手机av| 亚洲成人免费av在线播放| 91大片在线观看| 国产精品自产拍在线观看55亚洲 | 久久久精品免费免费高清| 免费一级毛片在线播放高清视频 | 美女视频免费永久观看网站| 欧美黄色淫秽网站| 欧美在线黄色| 国产激情久久老熟女| 欧美日韩精品网址| 老熟女久久久| 国产成人欧美在线观看 | 在线亚洲精品国产二区图片欧美| 亚洲色图 男人天堂 中文字幕| 三上悠亚av全集在线观看| 日本vs欧美在线观看视频| 国产精品麻豆人妻色哟哟久久| 亚洲avbb在线观看| 亚洲视频免费观看视频| 国产99久久九九免费精品| 成在线人永久免费视频| 欧美激情久久久久久爽电影 | 国产精品一区二区免费欧美| 19禁男女啪啪无遮挡网站| 丰满少妇做爰视频| 精品免费久久久久久久清纯 | 超碰97精品在线观看| 在线观看免费日韩欧美大片| 国产亚洲一区二区精品| 国产色视频综合| 老司机靠b影院| 免费在线观看黄色视频的| 亚洲伊人色综图| 成人国产av品久久久| 精品久久久久久电影网| 国产免费av片在线观看野外av| 王馨瑶露胸无遮挡在线观看| 亚洲一区二区三区欧美精品| 人人妻,人人澡人人爽秒播| 正在播放国产对白刺激| 国产有黄有色有爽视频| 蜜桃国产av成人99| 亚洲avbb在线观看| 午夜福利免费观看在线| 中文亚洲av片在线观看爽 | 亚洲va日本ⅴa欧美va伊人久久| 后天国语完整版免费观看| 巨乳人妻的诱惑在线观看| 啦啦啦在线免费观看视频4| 大型av网站在线播放| 午夜视频精品福利| 色尼玛亚洲综合影院| 大陆偷拍与自拍| 999久久久精品免费观看国产| 可以免费在线观看a视频的电影网站| 一二三四社区在线视频社区8| a级毛片黄视频| 99热国产这里只有精品6| 日韩欧美一区二区三区在线观看 | 少妇 在线观看| 桃花免费在线播放| 老汉色av国产亚洲站长工具| 777久久人妻少妇嫩草av网站| 日韩一卡2卡3卡4卡2021年| 久久av网站| 欧美激情久久久久久爽电影 | 久久久精品免费免费高清| 日日爽夜夜爽网站| 国产成人精品久久二区二区91| 91字幕亚洲| 最新美女视频免费是黄的| 亚洲精品中文字幕一二三四区 | 一级片'在线观看视频| 女性生殖器流出的白浆| 中文亚洲av片在线观看爽 | 成年版毛片免费区| 性少妇av在线| 91精品三级在线观看| 欧美激情久久久久久爽电影 | 亚洲国产看品久久| 国产成人免费无遮挡视频| 视频在线观看一区二区三区| 波多野结衣av一区二区av| av国产精品久久久久影院| 1024视频免费在线观看| 亚洲国产毛片av蜜桃av| 久久国产亚洲av麻豆专区| 18在线观看网站| 久久国产精品男人的天堂亚洲| 成人精品一区二区免费| 大香蕉久久成人网| 成年动漫av网址| 女人爽到高潮嗷嗷叫在线视频| tocl精华| 少妇被粗大的猛进出69影院| 搡老熟女国产l中国老女人| 午夜精品久久久久久毛片777| av欧美777| 国产在视频线精品| 在线观看免费午夜福利视频| 18禁国产床啪视频网站| 天天躁日日躁夜夜躁夜夜|