• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tree-Indexed Markov Chains in Random Environment and Some of Their Strong Limit Properties?

    2022-09-17 02:13:46ZhiyanSHIBeiWANGWeiguoYANGZhongzhiWANG

    Zhiyan SHI Bei WANG Weiguo YANG Zhongzhi WANG

    Abstract In this paper, the authors first introduce the tree-indexed Markov chains in random environment, which takes values on a general state space. Then, they prove the existence of this stochastic process, and develop a class of its equivalent forms. Based on this property,some strong limit theorems including conditional entropy density are studied for the tree-indexed Markov chains in random environment.

    Keywords Random environment, Tree-indexed Markov chains, Strong limit theorem, Conditional entropy density

    1 Introduction

    Tree-indexed random process is one subfield of probability theory developed recently. Benjamini and Peres[3]gave the definition of tree-indexed Markov chains and studied the recurrence and the ray-recurrence of them. Berger and Ye[4]studied the existence of entropy rate for some stationary random fields on a homogenous tree. Ye and Berger [33–34], by using Pemantle’s result(see [23])and a combinational approach,obtained Shannon-McMillan theorem in probability for a PPG-invariant and ergodic random field on a homogenous tree. Yang and Liu [31]studied the strong law of large numbers and Shannon-McMillan theorem for Markov chain fields on trees (a particular case of tree-indexed Markov chains and PPG-invariant random fields).Yang [30] obtained the strong law of large numbers and the Shannon-McMillan theorem for tree-indexed Markov chains. Huang and Yang [17]studied the strong law of large numbers and Shannon-McMillian theorem for Markov chains indexed by a uniformly bounded tree. Dong,Yang and Bai[14]studied the strong law of large numbers and the Shannon-McMillan theorem for nonhomogeneous Markov chains indexed by a Cayley tree. Dembo, Mrters and Sheffield[13] studied large deviations of Markov chains indexed by random trees. Guyon [15] gave the definition of homogeneous bifurcating Markov chains indexed by a binary tree taking values in general state space which is the generalization of bifurcating autoregressive model and studied their limit theorems, and applied these results to detect cellular aging. Delmas and Marsalle[12] studied asymptotic results for bifurcating Markov chains indexed by Galton-Watson tree instead of a regular tree. Dang, Yang and Shi [11] studied the equivalent properties of discrete form of nonhomogeneous bifurcating Markov chains indexed by a binary tree, meanwhile the strong law of large numbers and the Shannon-McMillan theorem were studied for these Markov chains with finite state space. Peng, Yang and Shi [24] studied the strong law of large numbers and Shannon-McMillan theorem with a.e. convergence for finite Markov chains indexed by a spherically symmetric tree. Yang and Yang [29] established the generalized entropy ergodic theorem for nonhomogeneous Markov chains indexed by a Cayley tree. Shi and Yang [27] gave the definition of tree-indexed Markov chains in discrete random environment. Shi, Zhong and Fan [28] studied the strong law of large numbers and Shannon-McMillan theorem for Markov chains indexed by a Cayley tree in a Markovian environment on discrete state space. Shi,Wang et al. [26] have studied the generalized entropy ergodic theorem for non-homogeneous bifurcating Markov chains indexed by abbinary tree.

    The research on Markov chains in random environment has a quite long history. Nawrotzki[21–22] established its theoretical foundations. Cogburn [8–10] constructed a Hopf-chain, and used Hopf-chain theorem to develop a series of theorems for Markov chains in random environment which contains ergodic theorem, central limit theorem, periodic relationship between direct convergence and transfer functions and the existence of invariant probability measure.Hu and Hu [16] studied the equivalence theorems of Markov processes in random environment with continuous time parameter. Liu and Li et al. [18] investigated the strong limit theorems for the conditional entropy density for Markov chain in a bi-infinite random environment by constructing a nonnegative martingale.

    In this paper, the definition of tree-indexed Markov chains in random environment is proposed,where the state of random environment takes values in a general state space. Meanwhile,we give certain equivalent form of tree-indexed Markov chains in random environment,and verify the existence of this stochastic process on some probability space. Finally,some strong limit properties including a strong limit theorem of conditional entropy density are studied for the tree-indexed Markov chains in random environment.

    The rest of this paper is organized as follows. In Section 2, we describes some preliminaries, some concepts and properties of tree-indexed Markov chains in random environment are provided. In Section 3, we provide some equivalent properties and existence for tree-indexed Markov chains in random environment. In Section 4, we present some strong limit theorems for tree-indexed Markov chains in random environment. Finally, the proofs of some theorems(Theorems 3.1–3.2 and 4.1) are provided in Section 5.

    2 Preliminaries

    Let T be a locally finite and infinite tree, and for any two vertices σt ∈T, there exists a unique path σ =z1,z2,··· ,zm=t from σ to t, where z1,z2,··· ,zmare distinct and zi,zi+1are adjacent vertices. Thus the distance from σ to t is defined as m ?1, namely, the number of edges in the path connecting σ and t. In order to label the tree T, we select a vertex as root o.For any two vertices σ and t of tree T, we write σ ≤t if σ is on the unique path from root o to t. Let σ ∧t be the vertex satisfying σ ∧t ≤t and σ ∧t ≤σ.

    Let t be any vertex of T and we write |t| as the distance from o to t. The expression|t|=n indicates that vertex t is on the nth level of T. Let Lndenote the set containing all the vertices on the nth level, anddenote the set of all the vertices from level m to level n. We denote the subtree of tree T by T(n), which contains the vertices from level 0 (the root o) to level n. If the root of a tree has N neighboring vertices and other vertices have N +1 neighboring vertices, we call this type of tree a Cayley tree and denote it by TC,N. That is, for any vertex t of Cayley tree TC,N, it has N neighboring vertices on the next level (see Figure 1). For any vertex t of T,we denote the predecessor of t by 1t,t is called the son of 1t. Let σ be any vertex,if σ ∧t ≤1t, we say σ is in the front of t. Let Tt={σ |σ ∧t ≤1t}denote the set of all vertices that are in front of t (see Figure 2).

    Let (?,F,P) be a probability space, and T be any tree, {Xt,t ∈T} be a tree-indexed stochastic process defined on(?,F,P). Consider a subgraph A of T,denote XA={Xt,t ∈A},let xAbe the realization of XA, and denote by |A| the number of vertices of A.

    Figure 1 Cayley tree TC,2.

    Figure 2 The vertices of Tt.

    We first introduce the definition of Markov chain indexed by tree as follows.

    Definition 2.1(see [14]) Let T be a locally finite and infinite tree, and χ ={1,2,···} be a discrete state space. Suppose that {Xt,t ∈T} is a collection of random variables defined on probability space(?,F,P) taking values in χ. Let p={p(x),x ∈χ} be a probability distribution on χ and {Pt=pt(x,y),t ∈T} be a collection of transition matrices. If for any t ∈T{o},

    and

    {Xt,t ∈T} will be called the tree-indexed nonhomogeneous Markov chains with initial distribution p and transition matrices {Pt,t ∈T} taking values in χ, or called nonhomogeneous Markov chains indexed by a tree with initial distribution p and transition matrices {Pt,t ∈T}taking values in χ. If Pthave nothing to do with t, {Xt,t ∈T} will be called the tree-indexed homogeneous Markov chains with initial distribution p and transition matrix {Pt=P,t ∈T}.

    Remark 2.1If we select a suitable regular conditional probability,(2.1)can be represented as follows:

    Remark 2.2Above definition is a natural generalization of the definition of homogenous Markov chains indexed by trees (see [3]).

    Let χ={1,2,···},A be σ-field produced by all subsets of χ, and (Θ,B) be a metric space,where B is Borel σ-field. Let ξT={ξt,t ∈T}and XT={Xt,t ∈T}be a collections of random variables on probability space (?,F,P) taking values in Θ and χ, respectively. Suppose pθ={p(θ;x),x ∈χ},θ ∈Θ, is a distribution with parameter θ and Pθ={p(θ;x,y),x,y ∈χ},θ ∈Θ,is a transition matrices with parameter θ defined on χ2. We assume that p(θ;x)are measurable on B for fixed x and p(θ;x,y) are also measurable on B for fixed x,y.

    In the following, we will provide the definition of tree-indexed Markov chains in random environment,which is closely related to the definition of Markov chains indexed by a tree defined by Definition 2.1 and the definition of Markov chains in single infinite random environment.Before doing this, we first review the definition of Markov chains in single infinite random environment.

    Definition 2.2(see [8]) Let= {Xn,n ≥0} and= {ξn,n ≥0} be two sequences of random variables taking values in χ and Θ, respectively. If

    and

    Similar to the definition of Markov chains in single infinite random environment and the definition of tree-indexed Markov chains, we will give the definition of tree-indexed Markov chains in random environment as follows.

    Definition 2.3Let ξT={ξt,t ∈T}and XT={Xt,t ∈T}be double tree-indexed stochastic processes on probability space (?,F,P) taking values in Θ and χ, respectively. If

    and

    XTwill be called tree-indexed Markov chains in random environment ξTdetermined by distributions pθwith parameter θ and transition matrices Pθwith parameter θ, or (XT,ξT) will be called tree-indexed Markov chains in random environment.

    Remark 2.3From Definition 2.3,it is easy to see that if(XT,ξT)is a tree-indexed Markov chain in random environment, let A be a subset of Ttwhich contains 1t, then

    Remark 2.4If Θ is a discrete set. The definition of tree-indexed Markov chains in random environment becomes the definition of tree-indexed Markov chains in discrete random environment (see [27]).

    Remark 2.5If ξTonly takes fixed point cT= {ct,t ∈T}, then XTis a nonhomogeneous Markov chain indexed by tree with initial distribution p(c0;x)and the transition matrices{Pt=p(c1t;x,y),t ∈T}. In fact, in this case, P(Xo=xo)=P(Xo=xo| →ξ) and p(ξo;xo)=p(co;xo)a.e.. Hence we have

    Since also

    So the above conclusion is true.

    If for any t ∈T,ct= c0, then XTis a homogeneous Markov chain indexed by trees with initial distribution p(c0;x) and the transition matrix {P =p(c0;x,y),t ∈T}.

    Remark 2.6If there is only one son for each vertex of the tree, and T is the nonnegative integer set N, the tree-indexed Markov chains in random environment will degenerate into Markov chains in single infinite random environment.

    3 Equivalent Properties and Existence

    In this section, we present the equivalent properties for tree-indexed Markov chains in random environment.

    Theorem 3.1Let T be a locally finite and infinite tree,and(XT,ξT)be double tree-indexed stochastic process defined on the probability space (?,F,P) taking values in (χ,Θ). Then the following four propositions are equivalent:

    (a)(XT,ξT)is a tree-indexed Markov chain in random environment defined as in Definition 2.3;

    (b) XTand ξTsatisfy (2.6) and

    (c) XTand ξTsatisfy (2.6) and

    (d) (XT,ξT)has the following finite dimensional distribution: For any m,n ∈N and t ∈T,Bt∈B,

    where PξTis a distribution of ξT.

    The proof of this theorem can be found in Section 5.

    Remark 3.1From(d)of Theorem 3.1 and Kolmogorov’s extension theorem, there exists a tree-indexed Markov chain in random environment(XT,ξT) defined on some probability space(?,F,P) such that (3.3) holds. In Theorem 3.2, we also provide an alternative approach to prove the existence of tree-indexed Markov chains in random environment.

    Corollary 3.1If Θ is a countable set, (XT,ξT) is a tree-indexed Markov chain in discrete random environment if and only if

    ProofIf Θ is a countable set, from (d) of Theorem 3.1, (XT,ξT) is a tree-indexed Markov chain in discrete random environment if and only if

    Letting m=n in (3.5), (3.4) follows. The proof of necessity is complete.

    Next we prove sufficiency. Assume that (3.4) holds. For m ≤n,

    and

    Hence (3.5) holds in this case.

    For m>n,

    and

    In this case, (3.5) also holds. Thus we complete the proof.

    Corollary 3.2Let T be a local finite and infinite tree, and χ = {1,2,···} be a countable state space. Let {Xt,t ∈T} be a collection of random variables defined on probability space(?,F,P) taking values in χ. Then the following descriptions are equivalent:

    (a) {Xt,t ∈T} is a tree-indexed nonhomogeneous Markov chain defined as in Definition 2.1.

    (b) For any positive integer n, XTsatisfies (2.2) and

    (c) For any positive integer n, and for any xT(n)∈χT(n), we have

    ProofLet ξTtake a fixed point cT= {ct,t ∈T}, andpt(x,y),t ∈T. Since

    and

    Then (XT,ξT) is a tree-indexed Markov chain in random environment with initial distribution(c0;x) and transition matrices {Pt={(c1t;x,y)},t ∈T} if and only if XTis a tree-indexed Markov chain with the initial distribution p(x) and transition matrices {Pt= {pt(x,y)}}. By Theorem 3.1, this is equivalent to

    and

    This is also equivalent to (3.16) and

    Since (3.12) holds,

    and

    This corollary follows.

    ProofThe corollary is a special case of Theorem 3.1, where T is the set of nonnegative integers N.

    In this following, we will show the existence of tree-indexed Markov chains in random environment on some probability space.

    Let (χT,AT) and (ΘT,BT) be two measurable space. Define a function K(·,·),ΘT×AT→[0,1], satisfying (i). For any θT∈ΘT, K(θT,·) is a probability measure on AT. (ii). For any A ∈AT, K(·,A) is a measurable function about BT. We say that K(·,·) is a probability transition kernel from (ΘT,BT) to (χT,AT).

    Lemma 3.1There exists a probability transition kernel K(·,·) from (ΘT,BT) to (χT,AT),satisfying

    ProofBy Kolmorgrov existence theorem, it is easy to see that (3.23) can generate a probability measure on (χT,AT) denoted by K(θT,·). Meanwhile, it is easy to see that for any cylinder sets {XT(n)= xT(n)}, K(θT,XT(n)= xT(n)) is a measurable function on BT. Hence,for any A ∈AT, K(θT,A) is a measurable function on BTby monotone class theorem. Thus K(·,·) is a probability transition kernel from (ΘT,BT) to (χT,AT).

    Theorem 3.2Let (χT× ΘT,AT× BT) be a measurable space. Let m be a probability measure on (ΘT,BT), and K(·,·) be a probability transition kernel from (ΘT,BT) to (χT,AT)defined as in Lemma 3.1. Define an orbital process on (χT× ΘT,AT× BT) as following:XT(xT,θT)= xT,ξT(xT,θT) = θT(?ω = (xT,θT) ∈χT×ΘT), i.e., (XT(ω),ξT(ω)) = ω. Set a probability measure μPon (χT×ΘT,AT×BT), satisfying

    where C ∈AT×BT, and CθTis a section of C. Then (XT,ξT) is a tree-indexed Markov chain in random environment under the probability measure μP.

    The proof of this theorem is provided in Section 5.

    4 Some Strong Limit Theorems

    In this section, we will present some strong limit theorems of tree-indexed Markov chains in random environment.

    Lemma 4.1Let (XT,ξT) be a tree-indexed Markov chain in random environment defined as in Definition 2.3, and let f(θT;x,y) be a function such that for any (x,y) ∈χ2, f(·;x,y)is a Borel measurable functions on BT. Assume that, for any t ∈T{o}, the integral of f(ξT;X1t,Xt) exists. Then we have for any t ∈T{o},

    where Fn=σ{ξT,XT(n)}.

    ProofBy Definition 2.3, we have for any t ∈T{o},

    where BT={Bt,t ∈T} and {Bt∈B}. From (4.2) and the general method of measure theory,(4.1) follows.

    Theorem 4.1Let (XT,ξT) be a tree-indexed Markov chain in random environment as defined in Definition 2.3, and {gt(θT;x,y),t ∈T{o}} be a collection of ternary real-valued functions defined on ΘT×χ2such that for any x,y ∈χ,gt(·;x,y)are Borel measurable functions on BT. Let gt=gt(ξT;X1t,Xt). If there exists a constant b>0 such that

    where M is a positive constant and Fn=σ{ξT,XT(n)}. Then

    The proof of this theorem will be given in Section 5.

    Corollary 4.1Let(XT,ξT)be a tree-indexed Markov chain in random environment defined as Definition 2.3. Let Sn(y) be the number of y in set of random variables {Xt,t ∈T(n)}, and Sn(x,y) be the number of (x,y) in the set of random couples {(X1t,Xt),t ∈T(n){o}}, i.e.,where δx(·)is Kronecker δ function.Then for arbitrary x,y ∈χ, we have

    ProofFor any t ∈T{o},let gt(ξT;X1t,Xt)=δy(Xt)and gt(ξT;X1t,Xt)=δx(X1t)δy(Xt)be in Theorem 4.1, respectively. Obviously, gt(ξT;X1t,Xt) satisfies the conditions of Theorem 4.1. Noticing that

    E[δy(Xt)|F|t|?1]=p(ξ1t;X1t,y) a.e.

    and

    E[δx(X1t)δy(Xt)|F|t|?1]=δx(X1t)p(ξ1t;X1t,y) a.e.,

    thus (4.5) and (4.6) follow immediately by Theorem 4.1.

    Let T be a local finite and infinite tree, XTand ξTbe two tree-indexed stochastic processes taking values in χ and Θ, respectively. Denote

    Let

    fn(ω) is called the conditional entropy density of XT(n). If (XT,ξT) is a tree-indexed Markov chain in random environment defined as Definition 2.3, by (c) of Theorem 3.1, we have

    The entropy density is an important notion in information theory. Entropy density converging to a constant in a sense (L1convergence, convergence in probability, a.e. convergence) is called the Shannon-McMillan theorem,or the entropy theorem,or the asymptotic equipartition property(AEP for short)in information theory. Shannon [25] first proved the AEP for convergence in probability for stationary ergodic information sources with finite alphabet. McMillan[20] and Breiman [5] proved the AEP for stationary ergodic information sources with finite alphabet in L1and a.e. convergence, respectively, Chung [6] considered the case of countable alphabet. The AEP for general stochastic processes can be found, for example, in Barron [2]and Algoet and Cover [1]. Liu and Yang [19] proved the AEP for a class of nonhomogeneous Markov information sources. Yang and Liu[32]studied the AEP for mth-order nonhomogeneous Markov information source. Dang, Yang and Shi [11] studied the AEP for nonhomogeneous bifurcating Markov chains indexed by a binary tree with finite state space. Shi, Zhong and Fan[28] studied the AEP of tree-indexed Markov chain in Markovian environment on countable state space.

    In the following, let χ = {1,2,··· ,N}, we will give the strong limit theorem of the conditional entropy density for tree-indexed Markov chains in random environments.

    Theorem 4.2Let χ = {1,2,··· ,N}, and let (XT,ξT) be a tree-indexed Markov chain in random environment taking values in χ×Θ defined as in Definition 2.3, and fn(ω) be the conditional entropy density defined by (4.7). Then

    By Lemma 4.1 and Theorem 4.1, noticing that

    we have

    By (4.7) and (4.10), (4.8) follows directly.

    Remark 4.1If there is only one son for each vertex of the tree, the tree-indexed Markov chains in random environment will degenerate into Markov chains in single infinite random environment. Thus we can easily obtain the similar results of Markov chains in random environment(see [18, Theorem 3.1, Corollaries 3.2–3.3]).

    5 The Proofs

    In this section, we will prove Theorems 3.1–3.2 and 4.1.

    Proof of Theorem 3.1(a)?(b). Suppose that(2.6)and (2.7)are true. We just need to prove (3.1) holds. We have by the tower principle of conditional expectation and Remark 2.3,

    Thus, (3.1) follows.

    (b)?(c). Assume that(2.6)and(3.1)hold, we only need to prove(3.2)holds. Using (2.6),(3.1) and the tower principle of conditional expectation, we have

    It follows by (5.1) that (3.2) holds, thus the proof of (c) is completed.

    (c) ?(d). Suppose that (2.6) and (3.2) are true, we need to prove (3.3) holds. For any positive integers m,n, since

    where the last equality is established by integral transformation theorem (see [7, Theorem 3.2.2]), thus (d) follows.

    (d) ?(a). Assume that (3.3) is true, we need to prove (2.6) and (2.7) hold. Firstly, we prove (2.6) holds. In order to prove (2.6), we only need to prove that for any positive integer m,

    We have by (3.3) and integral transformation theorem,

    thus (5.2) holds, so we complete the proof of (2.6). Next, we will prove (2.7). Without loss of generality, we assume that t ∈Ln. To prove (2.7), we just need to prove that for any positive integers m and l,

    We discuss the following three situations: Case 1. If l < n, noticing that Tt∩T(l)= T(l), we have

    Since

    we have by (5.5),

    Combining(5.4)and(5.6),we obtain(5.3)for l

    On the other hand,

    We have by (5.8),

    By (5.7) and (5.9), we can easily get that (5.3) holds when l=n. Case 3. Let l>n. Since

    On the other hand,

    We have by (5.11),

    By (5.10) and (5.12), we conclude that (5.3) holds when l>n. Thus we complete the proof of(5.3), and (2.7) holds.

    Proof of Theorem 3.2To prove that(XT,ξT)is a tree-indexed Markov chain in random environment under the probability measureμP, according to(b) of Theorem 3.1, it is sufficient to prove the following two equations,

    Let m be an arbitrary positive integer, and Bt∈B for any t ∈T. Since

    where the second equation and the third equation are obtained by (3.2)and (3.1), respectively.Hence (5.13) is proved by (5.15). By (3.23)–(3.24), we see that for any positive integer m,

    Similarly, we have

    We have by (5.17),

    By (5.16) and (5.18), (5.14) holds. Thus we complete the proof of this theorem.

    Proof of Theorem 4.1Given a constant r (|r|≤b). Let M0(r)=1 and

    Since

    By (3.1) and Lemma 4.1, we have

    By (5.20)–(5.21), we have E[Mn(r) | Fn?1] = Mn?1(r) for n ≥1. Noticing that E[Mn(r)] =E[Mn?1(r)] = ··· = E[M0(r)] = 1. So {Mn(r),Fn,n ≥0} is a nonnegative martingale. By the Doob martingale convergence theorem, Mn(r) a.e. converges to a finite nonnegative r.v.M∞(r) when |r|

    which implies

    We have by (5.19) and (5.22) that,

    Let 0

    we have

    By (4.3) and (5.24), for 0

    Letting r →0+in (5.25), we get

    If ?b

    Combining (5.26) and (5.27), we obtain

    Thus we complete the proof of Theorem 4.1.

    AcknowledgementsThe authors sincerely thank the editors and reviewers for their helpful and important comments, especially during the time with COVID19 pandemic.

    国产精品久久久av美女十八| 人妻丰满熟妇av一区二区三区 | 久久久精品国产亚洲av高清涩受| 中国美女看黄片| 日本a在线网址| cao死你这个sao货| 国产欧美日韩精品亚洲av| 巨乳人妻的诱惑在线观看| 91字幕亚洲| 久热爱精品视频在线9| 亚洲午夜精品一区,二区,三区| 中文字幕高清在线视频| 国产高清国产精品国产三级| 久久人妻av系列| 国产97色在线日韩免费| 99久久综合精品五月天人人| 精品一区二区三区四区五区乱码| 一级作爱视频免费观看| 1024视频免费在线观看| 国产不卡av网站在线观看| 日韩欧美国产一区二区入口| 在线观看免费视频日本深夜| 欧美日韩精品网址| 午夜91福利影院| 黑人操中国人逼视频| 热re99久久国产66热| 看片在线看免费视频| 黑人欧美特级aaaaaa片| 9色porny在线观看| 黑人欧美特级aaaaaa片| 国产精品一区二区免费欧美| xxxhd国产人妻xxx| 免费在线观看日本一区| 天天躁日日躁夜夜躁夜夜| 午夜日韩欧美国产| 在线国产一区二区在线| 亚洲欧美一区二区三区久久| 色播在线永久视频| 亚洲专区字幕在线| www日本在线高清视频| 精品久久久精品久久久| 色综合婷婷激情| 美国免费a级毛片| 无限看片的www在线观看| 亚洲午夜理论影院| 一级毛片高清免费大全| 亚洲专区字幕在线| 欧美不卡视频在线免费观看 | 久久精品国产亚洲av香蕉五月 | 日本撒尿小便嘘嘘汇集6| av福利片在线| 久久天堂一区二区三区四区| videos熟女内射| 国产日韩欧美亚洲二区| 日本欧美视频一区| 亚洲国产看品久久| 久久精品熟女亚洲av麻豆精品| 午夜福利视频在线观看免费| 国产又爽黄色视频| 日韩欧美三级三区| 90打野战视频偷拍视频| 久久人妻福利社区极品人妻图片| 国产精品 国内视频| 欧美成狂野欧美在线观看| 99精品久久久久人妻精品| 久久久精品国产亚洲av高清涩受| 91麻豆av在线| 久久久久视频综合| 午夜久久久在线观看| 丰满人妻熟妇乱又伦精品不卡| 校园春色视频在线观看| 国产aⅴ精品一区二区三区波| 欧美国产精品一级二级三级| 成人影院久久| 国产日韩一区二区三区精品不卡| 一级毛片精品| 免费一级毛片在线播放高清视频 | 久久久精品免费免费高清| 亚洲第一av免费看| 免费看a级黄色片| 国产xxxxx性猛交| 亚洲成人国产一区在线观看| 视频区欧美日本亚洲| 高清黄色对白视频在线免费看| av网站免费在线观看视频| 久久精品亚洲av国产电影网| 中国美女看黄片| 69精品国产乱码久久久| 老司机午夜十八禁免费视频| 一级片'在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 午夜久久久在线观看| 精品一区二区三区av网在线观看| av电影中文网址| 在线十欧美十亚洲十日本专区| 下体分泌物呈黄色| 亚洲精品中文字幕在线视频| 91字幕亚洲| 亚洲片人在线观看| 丰满的人妻完整版| videosex国产| 啪啪无遮挡十八禁网站| 国产av又大| 欧美丝袜亚洲另类 | 天天操日日干夜夜撸| a在线观看视频网站| 99久久国产精品久久久| 国产单亲对白刺激| 国产片内射在线| 91精品国产国语对白视频| 欧美+亚洲+日韩+国产| 搡老熟女国产l中国老女人| 一本大道久久a久久精品| 建设人人有责人人尽责人人享有的| 妹子高潮喷水视频| 国产精品久久久久久精品古装| 涩涩av久久男人的天堂| 在线观看免费视频网站a站| 亚洲,欧美精品.| 人人妻人人澡人人爽人人夜夜| а√天堂www在线а√下载 | 午夜免费鲁丝| av欧美777| 精品亚洲成国产av| 9191精品国产免费久久| 久久久久国产一级毛片高清牌| 男人的好看免费观看在线视频 | 日韩成人在线观看一区二区三区| 巨乳人妻的诱惑在线观看| 热99久久久久精品小说推荐| 国产一区二区激情短视频| 国产精品久久久久久人妻精品电影| 丝袜人妻中文字幕| 日本撒尿小便嘘嘘汇集6| 可以免费在线观看a视频的电影网站| 欧美丝袜亚洲另类 | 亚洲国产欧美一区二区综合| 男人的好看免费观看在线视频 | 丝瓜视频免费看黄片| 日韩精品免费视频一区二区三区| 国产欧美日韩精品亚洲av| 天堂中文最新版在线下载| 国产精品偷伦视频观看了| 人人妻人人澡人人看| 欧美另类亚洲清纯唯美| 国产1区2区3区精品| 国产精品乱码一区二三区的特点 | 男女下面插进去视频免费观看| 国产成人影院久久av| 精品无人区乱码1区二区| 午夜久久久在线观看| 丁香六月欧美| 一级a爱视频在线免费观看| 欧美+亚洲+日韩+国产| 国产欧美日韩一区二区三| 成年人免费黄色播放视频| 人成视频在线观看免费观看| 麻豆国产av国片精品| 99久久综合精品五月天人人| 怎么达到女性高潮| 热99国产精品久久久久久7| 999久久久精品免费观看国产| tube8黄色片| 国产不卡av网站在线观看| 亚洲av日韩精品久久久久久密| 老鸭窝网址在线观看| 欧美丝袜亚洲另类 | 日韩 欧美 亚洲 中文字幕| 久久精品aⅴ一区二区三区四区| 日本精品一区二区三区蜜桃| 午夜亚洲福利在线播放| 中亚洲国语对白在线视频| 亚洲人成电影免费在线| √禁漫天堂资源中文www| 亚洲成人手机| 久久久久国产精品人妻aⅴ院 | 国产一区二区激情短视频| 亚洲黑人精品在线| 中文欧美无线码| 国产成人av教育| 美女扒开内裤让男人捅视频| 欧美最黄视频在线播放免费 | 一级作爱视频免费观看| 成人18禁高潮啪啪吃奶动态图| 美女福利国产在线| 国产色视频综合| 成年女人毛片免费观看观看9 | 久热爱精品视频在线9| 亚洲精品一二三| 成人黄色视频免费在线看| 日日夜夜操网爽| 午夜精品国产一区二区电影| 国产成人精品在线电影| 亚洲一区高清亚洲精品| 欧美人与性动交α欧美软件| 日本欧美视频一区| 高清欧美精品videossex| 免费观看精品视频网站| 精品福利永久在线观看| 亚洲精华国产精华精| 国产极品粉嫩免费观看在线| 国产精品欧美亚洲77777| 午夜福利影视在线免费观看| 久久婷婷成人综合色麻豆| 国产淫语在线视频| 亚洲av电影在线进入| 国产熟女午夜一区二区三区| 国产成人免费观看mmmm| 黄色怎么调成土黄色| 麻豆成人av在线观看| 精品亚洲成国产av| 成人亚洲精品一区在线观看| 中亚洲国语对白在线视频| 亚洲欧美激情综合另类| 精品一区二区三区av网在线观看| 一边摸一边抽搐一进一出视频| 欧美亚洲日本最大视频资源| 精品国产美女av久久久久小说| 人人妻人人澡人人爽人人夜夜| 久久性视频一级片| 久久草成人影院| 啦啦啦视频在线资源免费观看| 午夜两性在线视频| 涩涩av久久男人的天堂| 宅男免费午夜| 精品免费久久久久久久清纯 | 精品久久蜜臀av无| 午夜日韩欧美国产| 国产精品综合久久久久久久免费 | 电影成人av| 操美女的视频在线观看| 亚洲中文日韩欧美视频| ponron亚洲| 高清视频免费观看一区二区| 成人手机av| av网站在线播放免费| 99久久99久久久精品蜜桃| 女人被狂操c到高潮| 精品国产国语对白av| 亚洲欧洲精品一区二区精品久久久| 国产成人精品久久二区二区免费| 欧美 亚洲 国产 日韩一| 久久久久久久国产电影| 精品人妻熟女毛片av久久网站| 免费女性裸体啪啪无遮挡网站| 欧美乱妇无乱码| 日本一区二区免费在线视频| 两个人看的免费小视频| 亚洲欧美激情在线| 丁香欧美五月| 久久久国产精品麻豆| 18在线观看网站| 人妻久久中文字幕网| 亚洲一区中文字幕在线| 在线视频色国产色| 久久中文字幕一级| 操出白浆在线播放| 法律面前人人平等表现在哪些方面| 在线观看舔阴道视频| 热re99久久精品国产66热6| 在线十欧美十亚洲十日本专区| 免费看十八禁软件| 国产高清videossex| 国产亚洲av高清不卡| 欧美日韩亚洲高清精品| 在线看a的网站| 亚洲 欧美一区二区三区| 亚洲伊人色综图| 国产成人精品无人区| 国精品久久久久久国模美| 亚洲精品久久成人aⅴ小说| 欧美日韩一级在线毛片| 天堂俺去俺来也www色官网| 日韩视频一区二区在线观看| 正在播放国产对白刺激| 国产成人系列免费观看| 久久九九热精品免费| 超碰成人久久| 黑丝袜美女国产一区| xxx96com| 日韩欧美一区二区三区在线观看 | 国产精品一区二区在线不卡| 97人妻天天添夜夜摸| 久久久国产欧美日韩av| 国产精品美女特级片免费视频播放器 | 黄色女人牲交| 中出人妻视频一区二区| 国产深夜福利视频在线观看| 操出白浆在线播放| 国产一区二区三区视频了| 国产成人精品久久二区二区91| 真人做人爱边吃奶动态| 亚洲av成人av| 国产aⅴ精品一区二区三区波| 免费看a级黄色片| 欧美成狂野欧美在线观看| av不卡在线播放| 国产三级黄色录像| 黄色怎么调成土黄色| 国产高清激情床上av| av片东京热男人的天堂| 欧美+亚洲+日韩+国产| 黄片大片在线免费观看| 国产精品免费视频内射| cao死你这个sao货| 国产精品乱码一区二三区的特点 | 国产91精品成人一区二区三区| 成年女人毛片免费观看观看9 | 51午夜福利影视在线观看| 精品第一国产精品| 欧美午夜高清在线| √禁漫天堂资源中文www| 午夜影院日韩av| 亚洲人成电影免费在线| 欧美亚洲日本最大视频资源| 一区二区三区精品91| 激情在线观看视频在线高清 | 亚洲欧美精品综合一区二区三区| 在线看a的网站| 成人永久免费在线观看视频| 国产精品自产拍在线观看55亚洲 | 免费观看人在逋| 国产精品电影一区二区三区 | 精品卡一卡二卡四卡免费| 天堂动漫精品| 久久久久久久久免费视频了| 欧美黑人欧美精品刺激| 91大片在线观看| 人妻 亚洲 视频| 可以免费在线观看a视频的电影网站| 自线自在国产av| 两性夫妻黄色片| 在线观看免费视频日本深夜| 麻豆av在线久日| 岛国在线观看网站| 少妇裸体淫交视频免费看高清 | 高清欧美精品videossex| 午夜福利在线免费观看网站| 王馨瑶露胸无遮挡在线观看| 成在线人永久免费视频| 亚洲av成人一区二区三| 精品国产一区二区三区久久久樱花| 日日爽夜夜爽网站| 亚洲av日韩精品久久久久久密| 淫妇啪啪啪对白视频| 免费在线观看完整版高清| 免费av中文字幕在线| 欧美精品高潮呻吟av久久| 久久久精品国产亚洲av高清涩受| av天堂在线播放| 国产欧美日韩综合在线一区二区| 国产精品综合久久久久久久免费 | 国产精品二区激情视频| 久久人人爽av亚洲精品天堂| 国产av一区二区精品久久| 中出人妻视频一区二区| avwww免费| 精品久久蜜臀av无| 巨乳人妻的诱惑在线观看| 欧美黄色淫秽网站| 波多野结衣av一区二区av| 精品无人区乱码1区二区| 12—13女人毛片做爰片一| 超色免费av| 一二三四在线观看免费中文在| 大型av网站在线播放| 又黄又粗又硬又大视频| 国产伦人伦偷精品视频| 超碰成人久久| 亚洲黑人精品在线| 久久国产精品影院| 这个男人来自地球电影免费观看| 欧美日韩av久久| 国产欧美亚洲国产| 波多野结衣一区麻豆| 真人做人爱边吃奶动态| 亚洲成人免费av在线播放| 一夜夜www| 色婷婷av一区二区三区视频| 久久影院123| 一级a爱视频在线免费观看| 亚洲av美国av| 精品国产一区二区久久| 色婷婷久久久亚洲欧美| 国产一卡二卡三卡精品| 国产欧美日韩一区二区精品| 黑人操中国人逼视频| 成年动漫av网址| 欧美乱妇无乱码| 99久久99久久久精品蜜桃| 啦啦啦免费观看视频1| 国产色视频综合| 国产成人精品久久二区二区免费| 美女午夜性视频免费| 桃红色精品国产亚洲av| 亚洲午夜理论影院| 成在线人永久免费视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲av第一区精品v没综合| 国产免费男女视频| 久久精品国产亚洲av高清一级| av不卡在线播放| 男女下面插进去视频免费观看| 久久久久国产精品人妻aⅴ院 | 日本黄色视频三级网站网址 | 极品少妇高潮喷水抽搐| 国产精品亚洲av一区麻豆| 91成人精品电影| 欧美黄色淫秽网站| av欧美777| 欧美中文综合在线视频| 免费在线观看完整版高清| 久久久久国产一级毛片高清牌| 欧美日韩黄片免| 免费女性裸体啪啪无遮挡网站| 大片电影免费在线观看免费| 一边摸一边抽搐一进一出视频| 人妻一区二区av| 亚洲欧美激情综合另类| 国产精品免费视频内射| 国产免费现黄频在线看| 国产精品久久电影中文字幕 | 大香蕉久久网| 成人国语在线视频| 侵犯人妻中文字幕一二三四区| 久久久国产精品麻豆| 高清av免费在线| ponron亚洲| 一级片免费观看大全| 丁香六月欧美| 久久精品aⅴ一区二区三区四区| 欧美日韩一级在线毛片| 国产乱人伦免费视频| 国产午夜精品久久久久久| 精品午夜福利视频在线观看一区| 久久婷婷成人综合色麻豆| 满18在线观看网站| 怎么达到女性高潮| 亚洲片人在线观看| 免费在线观看亚洲国产| 精品少妇一区二区三区视频日本电影| 国产精品av久久久久免费| xxx96com| 精品国产一区二区三区四区第35| 一区在线观看完整版| 亚洲欧美精品综合一区二区三区| 亚洲熟妇熟女久久| 色婷婷av一区二区三区视频| 一二三四在线观看免费中文在| 国产精品自产拍在线观看55亚洲 | 亚洲片人在线观看| 亚洲国产精品一区二区三区在线| 色综合欧美亚洲国产小说| 女人被躁到高潮嗷嗷叫费观| 亚洲七黄色美女视频| 99久久99久久久精品蜜桃| 亚洲精品国产精品久久久不卡| 黑人欧美特级aaaaaa片| 午夜福利一区二区在线看| e午夜精品久久久久久久| 久久人人97超碰香蕉20202| 后天国语完整版免费观看| 久久香蕉精品热| 亚洲五月天丁香| 757午夜福利合集在线观看| 视频区欧美日本亚洲| 国产精品一区二区在线不卡| 久久精品熟女亚洲av麻豆精品| 日韩有码中文字幕| 成年版毛片免费区| 黄色视频,在线免费观看| 丁香六月欧美| 亚洲精品国产精品久久久不卡| 91精品国产国语对白视频| 一二三四社区在线视频社区8| 国内久久婷婷六月综合欲色啪| 国产xxxxx性猛交| 精品国产一区二区久久| www.自偷自拍.com| 69精品国产乱码久久久| 国产99白浆流出| a级毛片在线看网站| 欧美日韩瑟瑟在线播放| 丝袜美腿诱惑在线| 在线观看舔阴道视频| 日韩熟女老妇一区二区性免费视频| xxx96com| 久久亚洲精品不卡| 高潮久久久久久久久久久不卡| 黄色视频,在线免费观看| 午夜福利影视在线免费观看| 露出奶头的视频| 窝窝影院91人妻| 99国产精品免费福利视频| 国产亚洲欧美精品永久| 亚洲精品在线观看二区| 一级作爱视频免费观看| 欧美日韩黄片免| 日韩大码丰满熟妇| 757午夜福利合集在线观看| www.999成人在线观看| 两个人看的免费小视频| 国产精品国产av在线观看| 女人被狂操c到高潮| 亚洲 国产 在线| 欧美色视频一区免费| 久久久久久免费高清国产稀缺| 在线观看午夜福利视频| 欧美人与性动交α欧美软件| 丝袜美腿诱惑在线| 精品久久久精品久久久| 欧美日韩中文字幕国产精品一区二区三区 | 校园春色视频在线观看| 一a级毛片在线观看| 美女扒开内裤让男人捅视频| 精品国产一区二区三区四区第35| 欧美一级毛片孕妇| 天天躁狠狠躁夜夜躁狠狠躁| 很黄的视频免费| 91字幕亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 成人av一区二区三区在线看| 操出白浆在线播放| 少妇粗大呻吟视频| 精品国产一区二区久久| 涩涩av久久男人的天堂| 精品久久久久久电影网| 黑人巨大精品欧美一区二区蜜桃| 精品熟女少妇八av免费久了| 日韩免费av在线播放| 99精品久久久久人妻精品| 悠悠久久av| 欧美日韩成人在线一区二区| 中文亚洲av片在线观看爽 | 欧美日韩av久久| 天天操日日干夜夜撸| 女同久久另类99精品国产91| 18禁黄网站禁片午夜丰满| 久久狼人影院| 亚洲色图综合在线观看| 午夜亚洲福利在线播放| 久久久精品区二区三区| 久久草成人影院| 欧美午夜高清在线| 欧洲精品卡2卡3卡4卡5卡区| 另类亚洲欧美激情| av一本久久久久| 亚洲精品久久成人aⅴ小说| 丰满人妻熟妇乱又伦精品不卡| 日韩成人在线观看一区二区三区| 久久久久视频综合| 久久久国产欧美日韩av| 女人精品久久久久毛片| 村上凉子中文字幕在线| 欧美成人免费av一区二区三区 | 国产精品自产拍在线观看55亚洲 | 久久久国产精品麻豆| 咕卡用的链子| 免费女性裸体啪啪无遮挡网站| 免费日韩欧美在线观看| 久久精品国产亚洲av高清一级| 久久久久国产精品人妻aⅴ院 | www日本在线高清视频| 亚洲欧美一区二区三区黑人| 女性被躁到高潮视频| 久久亚洲真实| 麻豆乱淫一区二区| 一区在线观看完整版| 欧美亚洲日本最大视频资源| 国产极品粉嫩免费观看在线| 成人av一区二区三区在线看| 久99久视频精品免费| 国产日韩欧美亚洲二区| 人妻久久中文字幕网| av在线播放免费不卡| 正在播放国产对白刺激| 人人妻人人爽人人添夜夜欢视频| 少妇猛男粗大的猛烈进出视频| 黄色视频,在线免费观看| 欧美精品啪啪一区二区三区| 最近最新中文字幕大全免费视频| 国产精品免费视频内射| 国产精品偷伦视频观看了| 午夜精品国产一区二区电影| e午夜精品久久久久久久| 一级a爱片免费观看的视频| 法律面前人人平等表现在哪些方面| 国产精品国产av在线观看| 亚洲在线自拍视频| 免费高清在线观看日韩| 欧美乱色亚洲激情| 亚洲五月天丁香| 每晚都被弄得嗷嗷叫到高潮| 国产成人一区二区三区免费视频网站| 国产野战对白在线观看| 人妻久久中文字幕网| av视频免费观看在线观看| 国产精品一区二区在线不卡| 捣出白浆h1v1| 亚洲欧美一区二区三区久久| 最近最新中文字幕大全免费视频| 久热爱精品视频在线9| 午夜精品久久久久久毛片777| 国产亚洲精品第一综合不卡| 大片电影免费在线观看免费| 久久天堂一区二区三区四区| 日日摸夜夜添夜夜添小说| 亚洲专区中文字幕在线| 亚洲第一av免费看| 制服人妻中文乱码| 女警被强在线播放| 在线观看免费视频日本深夜| videosex国产| 国产精品电影一区二区三区 | 欧美日韩乱码在线|