• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Second Main Theorem of Nevanlinna Theory for Closed Subschemes in Subgeneral Position?

    2022-09-17 02:13:30GuangshengYU

    Guangsheng YU

    Abstract In this paper,by using Seshadri constants for subschemes,the author establishes a second main theorem of Nevanlinna theory for holomorphic curves intersecting closed subschemes in (weak) subgeneral position. As an application of his second main theorem,he obtain a Brody hyperbolicity result for the complement of nef effective divisors. He also give the corresponding Schmidt’s subspace theorem and arithmetic hyperbolicity result in Diophantine approximation.

    Keywords Second main theorem, In general position, Closed subscheme, Seshadri constant, Schmidt’s subspace theorem, Hyperbolicity

    1 Introduction

    In higher dimensional Nevanlinna theory, it mainly studies the second main theorem of holomorphic maps between complex manifolds intersecting subvarieties in the target manifold.Cartan[2]established the second main theorem for linearly non-degenerate holomorphic curves into complex projective space intersecting hyperplanes in general position, and Nochka [12]considered the case of subgeneral position. Ru [14–15] established second main theorems for algebraically non-degenerate holomorphic curves into complex projective varieties intersecting hypersurfaces in general position and there are many new developments (see [13, 16]).

    Recently, there are many developments in extending the second main theorem to arbitrary subschemes case. Ru and Wang [17] obtained the following second main theorem for holomorphic curves intersecting closed subschemes.

    Theorem 1.1(see[17]) Let X be a projective variety. Let Y1,··· ,Yqbe closed subschemes of X such that, for any x ∈X, there are at most m subschemes among Y1,··· ,Yqwhich contains x. Let A be a big Cartier divisor on X. Let f : C →X be a holomorphic curve with Zariski-dense image. Let

    where πj:→X is the blowing-up of X along Yj, with associated exceptional divisor Ej.Then for every ε>0,

    where “‖” means the estimate holds for all large r outside a set of finite Lebesgue measure.(Here we use some notations which will be explained later).

    When the closed subschemes Yj=yjare distinct points, the Seshadri constants ?yj(A) and βA,yjhave the following relation (see [11])

    where dim X =n. Then one may take m=1 in Theorem 1.1 and obtain the following inequality

    More generally, by using the definition of Seshadri constants for general closed subscheme(see Section 2), Heier and Levin [9] obtained the following result.

    Theorem 1.2(see [9, Theorem 1.3]) Let X be a projective variety of dimension n. Let Y1,··· ,Yqbe closed subschemes of X such that for every subset I ?{1,··· ,q} with#I ≤n+1,we have codim ∩Let A be an ample Cartier divisor on X. Let f :C →X be a holomorphic curve with Zariski-dense image. Then for every ε>0,

    Let Y be a closed subscheme of X of codimension codim Y in X. Note that the elements of the list obtained by repeating Y up to codim Y times still satisfy the condition in Theorem 1.2, then from Theorem 1.2 we have the following corollary.

    Corollary 1.1(see[9, Corollary 1.6]) Let X be a projective variety of dimension n. Let Y be a closed subscheme of X of codimension codim Y in X. Let A be an ample Cartier divisor on X. Let f :C →X be a holomorphic curve with Zariski-dense image. Then for every ε>0,

    They also compared the constant βA,Yand the Seshadri constant ?Y(A) (see [9, Theorem 4.2]) and obtained that

    under the assumption that X is smooth.

    Recently, He and Ru [7] give more general results.

    Theorem 1.3(see [7]) Let X be a projective variety of dimension n and let m ≥n be a positive integer. Let Y1,··· ,Yqbe closed subschemes of X such that for every subset I ?{1,··· ,q} with #I ≤m + 1 we have dim≤m ?#I, where we use the convention that dim ?= ?1. Let A be an ample Cartier divisor on X. Let f : C →X be a holomorphic curve with Zariski-dense image. Then for every ε>0,

    We note that, in [7, 9, 17], the conditions on the subschemes Y1,··· ,Yqare called in“(sub)general position”, but actually they are different. In this paper, in order to distinguish them, we call the subschemes in “weak (sub)general position” and “(sub)general position”.

    Let X be a projective variety of dimension n and let Y1,··· ,Yqbe closed subschemes of X.

    Definition 1.1(Subgeneral position) Let m be a positive integer.

    (a) The closed subschemes Y1,··· ,Yqare called in weak m-subgeneral position if, for any x ∈X, there are at most m subschemes among Y1,··· ,Yqwhich contains x. When m=n, the subschemes are called in weak general position.

    (b) The closed subschemes Y1,··· ,Yqare called in m-subgeneral position if for any subset I ?{1,··· ,q} with #I ≤m+1, we have dim≤m ?#I. When m = n, the subschemes are called in general position.

    Definition 1.1(a) is used in [17], Definition 1.1(b) is used in [7, 9].

    We also note that the condition in (a) is weaker than that in (b), since when #I = m+1, dimimplies thatmust be empty. When Y1,··· ,Yqare hypersurfaces, (a) is equivalent to (b).

    Motivated by the main theorem in [3], we give a second main theorem under“weak subgeneral position” condition.

    Theorem 1.4Let X be a complex projective variety of dimension n and Y1,··· ,Yqbe closed subschemes of X. Let A be an ample Cartier divisor on X. Let f : C →X be a non-constant holomorphic curve such that f(C) /?Supp Yj, for j = 1,··· ,q. Assume that Y1,··· ,Yqare in weak m-subgeneral position. Then, for every ε>0,

    Remark 1.1If Y1,··· ,Yqare general divisors, then Theorem 1.4 is a generalization of [3,Corollary 1.2].

    Now we consider the case that Y1,··· ,Yqare divisors. As an application of Theorem 1.4,we can obtain a Brody hyperbolicity result for the complement of nef effective divisors, which is motivated by the work of Heier and Levin [8]. We first recall the definition of Brody hyperbolicity.

    Definition 1.2(Brody hyperbolic) A complex variety is said to be quasi-Brody hyperbolic if the union of all images of nonconstant holomorphic maps from C is not Zariski dense in it.A complex variety is said to be Brody hyperbolic if it admits no nonconstant holomorphic maps from C.

    Let X be a projective variety of dimension n. Let D1,··· ,Dqbe non-zero effective Cartier divisors in general position on X. For an ample divisor A on X, if there exist positive rational constants c1,··· ,cqsuch that for all j =1,··· ,q:

    A ?cjDjis Q-nef.

    Then (1.3) implies that

    In[8],by using(1.8)and choosing appropriate A and cj,Heier and Levin obtained the following result.

    If we use our Theorem 1.4 instead of Theorem 1.2,then we can obtain a hyperbolicity result under weak subgeneral poisition condition on the divisors.

    2 Preliminaries

    2.1 Seshadri constants

    The Seshadari constants have the following non-decreasing property.

    Proposition 2.1Let X be a projective variety and X′be a subvariety of X, denote by i : X′→X the inclusion map. Let A be a nef Cartier divisor on X and Y be a closed subscheme of X. Then we have

    2.2 Weil functions

    We briefly recall the basic definition of Weil functions, one can refer to[19]for more details.Let Y be a closed subscheme of a projective variety X. One can associate a Weil function λY: X Supp Y →R, well-defined up to O(1), which satisfies the following properties: If Y and Z are two closed subschemes of X, and φ:X′→X is a morphism of projective varieties,

    (i) λY∩Z=min{λY,λZ};

    (ii) λY+Z=λY+λZ;

    (iii) λY≤λZ, if Y ?Z;

    (iv) λY(φ(x))=λφ?Y(x).

    In particular,let D be a Cartier divisor on a complex projective variety X. A Weil function with respect to D is a function λD: (X SuppD) →R such that for all x ∈X there is an open neighborhood U of x in X, a nonzero rational function f on X with D|U= (f), and a continuous function α:U →R such that

    λD(x)=?log|f(x)|+α(x)

    for all x ∈(U SuppD). Note that a continuous fiber metric ‖·‖ on the line sheaf OX(D)determines a Weil function for D given by λD(x)=?log‖s(x)‖,where s is the rational section of OX(D) such that D = (s). An example of Weil function for the hyperplane H = {a0x0+···+anxn=0} in Pn(C) is given by

    where [x0,··· ,xn] are homogeneous coordinates for x. The Weil functions with respect to divisors satisfiy the following properties:

    (a) Functoriality: If λ is a Weil function for a Cartier divisor D on X, and if φ : X′→X is a morphism such that φ(X′)SuppD, then xλ(φ(x)) is a Weil function for the Cartier divisor φ?D on X′.

    (b) Additivity: If λ1and λ2are Weil functions for Cartier divisors D1and D2on X,respectively, then λ1+λ2is a Weil function for D1+D2.

    (c) Uniqueness: If both λ1and λ2are Weil functions for a Cartier divisor on X, then λ1=λ2+O(1).

    (d) Boundedness from below: If D is an effective divisor and λ is a Weil function for D,then λ is bounded from below.

    Let X be a projective variety, and let Y ?X be a closed subscheme.

    Lemma 2.1(see [19, Lemma 2.2]) There exist effective Cartier divisors D1,··· ,D?such that

    By Lemma 2.1, we can assume that Y = D1∩··· ∩D?, where D1,··· ,D?are effective Cartier divisors. This means that IY= ID1+···+ID?, where IY,ID1,··· ,ID?are the defining ideal sheaves in OX. We set

    Then we have λY:X Supp Y →R, which does not depend on the choice of Cartier divisors.

    2.3 Nevanlinna functions

    In this section, we briefly recall the definitions of characteristic function, proximity function and counting function in Nevanlinna theory.

    2.3.1 Characteristic function

    Let X be a complex projective variety and f : C →X be a holomorphic map. Let L →X be an ample line sheaf and ω be its Chern form. We define the characteristic function of f with respect to L by

    Since any line sheaf L can be written as L = L1?with L1, L2being both ample, we define Tf,L(r)=Tf,L1(r)?Tf,L2(r). A divisor D on X defines a line bundle O(D), we denote by Tf,D(r)=Tf,O(D)(r). If X =Pn(C)and L=OPn(C)(1), then we simply write Tf,OPn(C)(1)(r)as Tf(r).

    The characteristic function satisfies the following properties:

    (a) Functoriality: If φ:X →X′is a morphism and if L is a line sheaf on X′, then

    (b) Additivity: If L1and L2are line sheaves on X, then

    (c) Positivity: If L is ample and f :C →X is non-constant, then

    (d) Base locus: If the image of f is not contained in the base locus of |D|, then Tf,D(r) is bounded from below.

    (e) Globally generated line sheaves: If L is a line sheaf on X, and is generated by its global sections, then Tf,L(r) is bounded from blow.

    2.3.2 Counting and proximity functions

    Let X be a projective variety and let Y ?X be a closed subscheme. For a holomorphic curve f :C →X with f(C)Supp Y, the proximity function of f with respect to Y is defined by

    The proximity function satisfies the following properties:

    (a) Functoriality: If φ : X →X′is a morphism and Y′is a closed subscheme on X′with φ ?f(C)/?Supp Y′, then

    mf(r,φ?Y′)=mφ?f(r,Y′)+O(1).

    (b) Additivity: If Y1and Y2are two closed subschemes on X, then

    mf(r,Y1+Y2)=mf(r,Y1)+mf(r,Y2)+O(1).

    (c) Boundedness from below: If D is an effective divisor, then mf(r,D) is bounded from below.

    Next, we introduce the definition of counting function Nf(r,Y) given by Yamanoi in [23].Assume that Y can be written as Y = D1∩···∩D?with D1,··· ,D?being effective Cartier divisors, then we set

    When f(C) ?Supp Di, we set ordzf?Di= +∞. The definition of ordzf?Y does not depend on the choice of the Cartier divisors D1,··· ,D?. We define the counting function by

    For a closed subscheme Y as above, consider the blowing up π :→X of X along Y, let f : C →X be a holomorphic curve and: C →be its holomorphic lifting. Let A be an ample divisor on X. By using the functoriality property of characteristic function, proximity function and counting function, we have

    2.3.3 First main theorem

    Let X be a complex projective variety and f : C →X be a holomorphic map. Let D be a divisor on X. By using Poincar-Lelong formula, we have the first main theorem,

    3 Proof of Theorem 1.4

    Proof of Theorem 3.1Denote by ρj:=codim Yj, j =1,··· ,q.

    Given z ∈C, we arrange {1,··· ,q} as {1(z),··· ,q(z)} so that

    Since Y1,··· ,Yqare in weak m-subgeneral position, we have

    The proof of the first inequality is similar to that of [21, Lemma 21.7] and is omitted here.

    For each 1 ≤j ≤q, we observe that according to Definition 1.1(b), the elements of the list obtained by repeating Yjup to ρjtimes, i.e., the closed subschemes Yj,1,Yj,2,··· ,Yj,ρwith Yj,?= Yjfor ? = 1,··· ,ρj, are in general position (of Definition 1.1(b)). Note that the union of all closed subschemes Yj,?(1 ≤j ≤q,1 ≤? ≤ρj) is a finite set, which may be denoted by{,··· ,}. We rewrite (3.3) as

    where the maximum is taken over all subsets K of {1,··· ,T} such that the closed subschemesu ∈K, are in general position.

    Now, we need the following general form of second main theorem given in [9].

    Theorem 3.2(see [9, Theorem 1.8]) Let X be a projective variety of dimension n. Let Y1,··· ,Yqbe closed subschemes of X. Let A be an ample Cartier divisor on X. Let f :C →X be a holomorphic curve with Zariski-dense image. Then for every ε>0,

    where the maximum is taken over all subsets J of {1,··· ,q} such that the closed subschemes Yj,j ∈J, are in general position.

    Then it follows from (3.4) and Theorem 3.2 that, for any given ε>0,

    This completes the proof of Theorem 3.1.

    Remark 3.1(1) If q =1, i.e., there is only one closed subscheme Y, we may take m =1,then (3.1) is exactly (1.4). If Y1,··· ,Yqare distinct points, then (1.2) can also be obtained from (3.1).

    (2) Recently, Ru and Wang [18] proved that, if Y1,··· ,Yqare intersecting properly on X(which is, by [10, Theorem 17.4], equivalent to in general position when X is smooth), then

    (Or see [22] for more general case.) This gives an improvement of Theorem 1.2 when X is smooth.

    By using similar method, one can obtain that, if Y1,··· ,Yqare in weak m-subgeneral position on X, then

    From Proposition 2.1, we have

    Combining (3.9)–(3.12), we have

    This completes our proof of Theorem 1.4.

    Remark 3.2Combining the proof of Theorem 1.4 and He-Ru’s result(see[7,Main Theorem(Analytic Part)]), one can also obtain a second main theorem for “non-constant” holomorphic curves as follows.

    Let X be a complex projective variety of dimension n and Y1,··· ,Yqbe closed subschemes of X. Let A be an ample Cartier divisor on X. Let f :C →X be a non-constant holomorphic curve. Assume that Y1,··· ,Yqare in m-subgeneral position. Then, for every ε>0,

    Though the coefficient on the right-hand side of (3.13)is smaller than that in Theorem 3.1,but in our theorem, the subschemes only need to be in weak m-subgeneral position and m can be smaller than n.

    4 Proof of Theorem 1.6

    In this section, we give the proof of Theorem 1.6 by using our second main theorem and the method of Heier and Levin [8].

    Proof of Theorem 1.6By assumption, for any proper subset T of the set of standard basis vectors {e1,··· ,er} ?Rr, at mostf the vectors P1,··· ,Pqare supported on T, then we may take

    to be (discontinuous) functions of κ ∈(0,1] with the following properties.

    (i) The function αj,i(κ) is identically equal to 0 if aj,i= 0. If, on the other hand, aj,i0,then αj,i(κ) takes on positive real values such that we have the limits

    (ii) The R-divisors Bj(κ)=αj,1(κ)E1+···+αj,r(κ)Erare such that

    unless both terms on the left are 0.

    For Q=(b1,··· ,br)∈Rrwith positive coordinates, define

    We need the following result in [8].

    and

    Then A′is Q-ample.

    We define positive rational numbers

    Note that

    We first deal with the general case r ≥3.

    Since

    we have

    Therefore,

    Here, for R-divisors F1and F2, we write F1≥F2if the difference F1?F2is a nef R-divisor.

    Finally, we find the inequalities

    where the last inequality is due to (4.6). Therefore, by?2δ >0,

    is Q-ample.

    When r =1, since q ≥rm(n+1)+1, we have

    Thus

    Then we have

    is Q-ample.

    When r =2, since q ≥rm(n+1)+1, we have

    Then the proof is the same as the case r ≥3 and we have

    is Q-ample.

    Now A′is an ample Q-divisor, there exists a positive integer N big enough such that NA′is an ample integral divisor. Set A:=NA′and cj:=for j =1,··· ,q.

    To summarize, there exist an ample divisor A and positive rational constants c1,··· ,cq,δ such that for all j =1,··· ,q:

    and

    If f is not constant, we may apply Theorem 1.4 to conclude that,

    5 Schmidt Subspace Theorem

    In this section,we introduce the counterpart in number theory of our main results according to Vojta’s dictionary which gives an analogue between Nevanlinna theory and Diophantine approximation. The line of reasoning is by now well known and we omit the details here.

    Let k be a number field. Denote by Mkthe set of places(i.e., equivalence classes of absolute values) of k and writefor the set of archimedean places of k.

    Let X be a projective variety defined over k,let L be a line sheaf on X and let Y be a closed subscheme on X. For every place v ∈Mk, we can associate the local Weil functions λL,vand λY,vwith respect to v, which have similar properties as the Weil function introduced in Section 2. For more details, please refer to [20, Section 1.3].

    Define

    and

    where S is a finite subset of Mkcontaining.

    Now, we state the counterparts of Theorems 3.1 and 1.4.

    Theorem 5.1Let X be a projective variety, defined over a number field k, of dimension n. Let Yjbe closed subschemes of codimension codim Yj(≥1) in X, j = 1,··· ,q. Let A be an ample Cartier divisor on X. Let S be a finite subset of Mkcontaining. Assume that Y1,··· ,Yqare in weak m-subgeneral position. Then, for every ε > 0, there exists a proper Zariski-closed subset Z ?X such that for all points x ∈X(k),

    Theorem 5.2Let X be a projective variety, defined over a number field k, and Y1,··· ,Yqbe proper closed subschemes of X in weak m-subgeneral position. Let A be an ample Cartier divisor on X. Let S be a finite subset of Mkcontaining. Then, for every ε>0, the set of points x ∈X(k)Supp Yjwith

    is a finite set.

    Now, using the method shown in [8], we give an application of this theorem.

    Definition 5.1(Arithmetically quasi-hyperbolic) Given a variety V =XD defined over a number field k.

    (i) We say that V is arithmetically quasi-hyperbolic if there exists a proper closed subset Z ?X such that for every number field k′?k, every finite set of places S of k′containing the archimedean places, and every set R of (k′-rational) (D,S)-integral points on X, the set R is finite.

    (ii) We say that XD is arithmetically hyperbolic if all sets of (D,S)-integral points on X are finite (i.e., one may take Z =?in the definition of quasi-hyperbolicity).

    For the notion of (D,S)-integral sets of points, please refer to [20, Section 1.4].

    In [8], Heier and Levin showed the following arithmetically quasi-hyperbolicity result as an application of [9, Corollary 1.4].

    then X D is arithmetically quasi-hyperbolic.

    As an application of Theorem 5.2,we have an arithmetically hyperbolicity result for divisors in weakly m-subgeneral position as follows.

    then X D is arithmetically hyperbolic.

    高清av免费在线| 免费不卡的大黄色大毛片视频在线观看| 高清黄色对白视频在线免费看 | 国产免费视频播放在线视频| 老司机亚洲免费影院| 高清在线视频一区二区三区| 黄色日韩在线| 少妇丰满av| 18禁在线播放成人免费| 久久精品国产亚洲网站| h视频一区二区三区| 肉色欧美久久久久久久蜜桃| 久久久久久久久大av| 久久人人爽av亚洲精品天堂| 亚洲精品中文字幕在线视频 | 国产一区亚洲一区在线观看| 高清欧美精品videossex| 蜜桃久久精品国产亚洲av| 尾随美女入室| 国产精品国产三级专区第一集| 色哟哟·www| 一级毛片我不卡| 天美传媒精品一区二区| 99久久精品热视频| a级毛色黄片| 少妇被粗大猛烈的视频| 国产免费一区二区三区四区乱码| 国产国拍精品亚洲av在线观看| 我要看日韩黄色一级片| 久久人人爽av亚洲精品天堂| 久久6这里有精品| 精品少妇内射三级| 国产精品熟女久久久久浪| 下体分泌物呈黄色| 少妇人妻精品综合一区二区| 免费看日本二区| 蜜桃久久精品国产亚洲av| 精品视频人人做人人爽| 国产精品99久久久久久久久| 五月开心婷婷网| 精品少妇黑人巨大在线播放| 99九九在线精品视频 | 另类精品久久| 久久久久久久大尺度免费视频| 国产黄色视频一区二区在线观看| 99热全是精品| 国产片特级美女逼逼视频| 国产精品熟女久久久久浪| 97精品久久久久久久久久精品| 欧美丝袜亚洲另类| 香蕉精品网在线| 久久精品国产亚洲av天美| 日本91视频免费播放| 免费人成在线观看视频色| 赤兔流量卡办理| 国产精品人妻久久久久久| .国产精品久久| 欧美精品一区二区大全| 婷婷色综合大香蕉| 菩萨蛮人人尽说江南好唐韦庄| 一级片'在线观看视频| 亚洲美女视频黄频| 亚洲精品日韩av片在线观看| 美女主播在线视频| 日本wwww免费看| 有码 亚洲区| 美女xxoo啪啪120秒动态图| 国内精品宾馆在线| 欧美精品亚洲一区二区| 免费看av在线观看网站| 久久精品国产鲁丝片午夜精品| 精品人妻一区二区三区麻豆| 少妇裸体淫交视频免费看高清| 国产亚洲91精品色在线| 伦理电影免费视频| 国产黄片视频在线免费观看| 日韩成人av中文字幕在线观看| 嫩草影院新地址| 18禁在线播放成人免费| 国产成人免费无遮挡视频| 一本一本综合久久| 国产中年淑女户外野战色| 亚洲美女搞黄在线观看| 中文字幕久久专区| 国产伦精品一区二区三区四那| 成年人免费黄色播放视频 | 免费观看a级毛片全部| 美女国产视频在线观看| 男女边吃奶边做爰视频| 久久午夜综合久久蜜桃| 亚洲人成网站在线播| 国产精品.久久久| 极品人妻少妇av视频| 亚洲欧美清纯卡通| 少妇的逼水好多| 国产精品成人在线| 男男h啪啪无遮挡| 中文字幕人妻熟人妻熟丝袜美| 日本免费在线观看一区| 国产亚洲最大av| 建设人人有责人人尽责人人享有的| 麻豆成人av视频| 哪个播放器可以免费观看大片| 国产免费视频播放在线视频| 男人添女人高潮全过程视频| 欧美精品一区二区免费开放| 王馨瑶露胸无遮挡在线观看| 大又大粗又爽又黄少妇毛片口| 天天操日日干夜夜撸| 久久ye,这里只有精品| 色视频www国产| 看免费成人av毛片| 一本—道久久a久久精品蜜桃钙片| 亚洲四区av| 夜夜爽夜夜爽视频| 国产真实伦视频高清在线观看| 亚洲欧美日韩卡通动漫| 亚洲国产精品国产精品| 国产永久视频网站| 久久国产亚洲av麻豆专区| 亚洲国产精品国产精品| 三级国产精品欧美在线观看| 观看美女的网站| 狠狠精品人妻久久久久久综合| 成人亚洲精品一区在线观看| 国产亚洲午夜精品一区二区久久| 18禁动态无遮挡网站| 国产av精品麻豆| xxx大片免费视频| 国产黄色视频一区二区在线观看| 看十八女毛片水多多多| 一边亲一边摸免费视频| 国产91av在线免费观看| 91久久精品电影网| 久久韩国三级中文字幕| 精品一品国产午夜福利视频| 大话2 男鬼变身卡| 亚洲av男天堂| 少妇被粗大猛烈的视频| 久久婷婷青草| 成人综合一区亚洲| 黄色一级大片看看| 午夜日本视频在线| 黑人高潮一二区| 王馨瑶露胸无遮挡在线观看| 伊人久久国产一区二区| 日本-黄色视频高清免费观看| 一区在线观看完整版| 国产综合精华液| 一区在线观看完整版| 永久网站在线| 日韩av在线免费看完整版不卡| av免费观看日本| 免费播放大片免费观看视频在线观看| 高清av免费在线| 美女福利国产在线| 亚洲国产色片| 在线亚洲精品国产二区图片欧美 | 热99国产精品久久久久久7| 国产欧美日韩一区二区三区在线 | 久久久久国产网址| 日日啪夜夜撸| 日本猛色少妇xxxxx猛交久久| 最后的刺客免费高清国语| 女的被弄到高潮叫床怎么办| 国产又色又爽无遮挡免| 国产av码专区亚洲av| 九色成人免费人妻av| 99热这里只有是精品在线观看| 国产黄片美女视频| 国产日韩一区二区三区精品不卡 | 欧美一级a爱片免费观看看| 国产极品天堂在线| 午夜福利视频精品| 久久毛片免费看一区二区三区| 欧美日韩精品成人综合77777| 大香蕉97超碰在线| 内射极品少妇av片p| 久久久久久伊人网av| 人妻少妇偷人精品九色| 亚洲成色77777| 午夜久久久在线观看| 晚上一个人看的免费电影| 久久人妻熟女aⅴ| 青春草亚洲视频在线观看| 内地一区二区视频在线| 2022亚洲国产成人精品| 久久国内精品自在自线图片| 99国产精品免费福利视频| 18禁裸乳无遮挡动漫免费视频| 97精品久久久久久久久久精品| 大香蕉久久网| 国产精品一区二区在线不卡| 久久久久久久久久久丰满| 交换朋友夫妻互换小说| 一级毛片我不卡| 18+在线观看网站| 亚洲欧洲国产日韩| 99热全是精品| 亚洲精品aⅴ在线观看| av国产精品久久久久影院| 97在线人人人人妻| 亚洲国产欧美在线一区| 国产精品国产三级国产av玫瑰| 亚洲成人手机| 国产欧美日韩一区二区三区在线 | 久久精品熟女亚洲av麻豆精品| 亚洲av日韩在线播放| av又黄又爽大尺度在线免费看| 性色avwww在线观看| 99久久人妻综合| 国产男女超爽视频在线观看| 精品国产一区二区久久| 91精品伊人久久大香线蕉| 久热久热在线精品观看| 亚洲无线观看免费| 亚洲自偷自拍三级| 色视频www国产| 国产精品久久久久久久电影| 国产高清有码在线观看视频| 亚洲人成网站在线观看播放| 国产欧美另类精品又又久久亚洲欧美| 丝瓜视频免费看黄片| 亚洲精品日韩在线中文字幕| 亚洲四区av| 久久鲁丝午夜福利片| 日韩av免费高清视频| 亚洲人成网站在线播| 亚洲激情五月婷婷啪啪| 最后的刺客免费高清国语| 色5月婷婷丁香| 亚洲精品乱久久久久久| 免费黄网站久久成人精品| 亚洲精品亚洲一区二区| 色婷婷久久久亚洲欧美| 人体艺术视频欧美日本| 男男h啪啪无遮挡| 久久久欧美国产精品| 亚洲国产精品专区欧美| 欧美3d第一页| 男女边摸边吃奶| 亚洲va在线va天堂va国产| 国产成人一区二区在线| 男女国产视频网站| 亚洲三级黄色毛片| 中国三级夫妇交换| 乱人伦中国视频| 国产极品天堂在线| 亚洲人与动物交配视频| 亚洲欧美精品自产自拍| 一区二区三区免费毛片| 免费看光身美女| 免费不卡的大黄色大毛片视频在线观看| 美女视频免费永久观看网站| 男女啪啪激烈高潮av片| 99久久综合免费| 如何舔出高潮| 国产国拍精品亚洲av在线观看| 成人无遮挡网站| 老女人水多毛片| 成年美女黄网站色视频大全免费 | 夜夜看夜夜爽夜夜摸| 亚洲国产欧美在线一区| 曰老女人黄片| a级一级毛片免费在线观看| 在线看a的网站| 国产亚洲午夜精品一区二区久久| 最近的中文字幕免费完整| 久热这里只有精品99| 亚洲真实伦在线观看| 少妇裸体淫交视频免费看高清| 欧美日韩亚洲高清精品| 国产白丝娇喘喷水9色精品| 少妇人妻 视频| 高清欧美精品videossex| 亚洲丝袜综合中文字幕| 在线观看免费日韩欧美大片 | 香蕉精品网在线| 国产精品久久久久久精品古装| 蜜桃在线观看..| 边亲边吃奶的免费视频| 一级a做视频免费观看| 三级国产精品片| 国产成人freesex在线| 少妇人妻 视频| 国产精品久久久久成人av| 成年女人在线观看亚洲视频| 国产精品国产三级专区第一集| 我要看日韩黄色一级片| 亚洲av不卡在线观看| 老司机影院毛片| 高清av免费在线| a级毛色黄片| 大香蕉久久网| 国产成人精品婷婷| 热re99久久精品国产66热6| 欧美最新免费一区二区三区| 一本—道久久a久久精品蜜桃钙片| av卡一久久| 色吧在线观看| 国产免费视频播放在线视频| 成年av动漫网址| 久久久久久久久久人人人人人人| 日本与韩国留学比较| 国产成人免费无遮挡视频| 在线观看人妻少妇| 久久99蜜桃精品久久| 久久久久网色| 看十八女毛片水多多多| 国产精品一区二区在线不卡| 在线观看人妻少妇| 欧美日韩在线观看h| 亚洲国产色片| 成人美女网站在线观看视频| 国产女主播在线喷水免费视频网站| 少妇裸体淫交视频免费看高清| 精品久久久噜噜| 最新的欧美精品一区二区| 久久影院123| 国产爽快片一区二区三区| 国产精品一区二区三区四区免费观看| 91aial.com中文字幕在线观看| 偷拍熟女少妇极品色| 国产无遮挡羞羞视频在线观看| 日日摸夜夜添夜夜添av毛片| 精品国产乱码久久久久久小说| 最近手机中文字幕大全| 久久久精品免费免费高清| 午夜av观看不卡| 一区二区三区免费毛片| 少妇精品久久久久久久| 久久热精品热| 一区二区三区四区激情视频| 丁香六月天网| 美女大奶头黄色视频| 精品国产国语对白av| 少妇的逼水好多| 女人精品久久久久毛片| 丝袜喷水一区| xxx大片免费视频| 久久久国产欧美日韩av| 免费高清在线观看视频在线观看| 一个人看视频在线观看www免费| 免费播放大片免费观看视频在线观看| 99久久精品国产国产毛片| 亚洲人成网站在线观看播放| 26uuu在线亚洲综合色| 欧美 亚洲 国产 日韩一| 亚洲精品一二三| 菩萨蛮人人尽说江南好唐韦庄| 日韩 亚洲 欧美在线| 一个人看视频在线观看www免费| 久久久久视频综合| 亚洲欧美一区二区三区国产| 免费大片黄手机在线观看| 日韩三级伦理在线观看| 国产69精品久久久久777片| 人体艺术视频欧美日本| 久久午夜综合久久蜜桃| 国产91av在线免费观看| 91久久精品电影网| 久久韩国三级中文字幕| 久久久久国产网址| 六月丁香七月| 日本免费在线观看一区| 男人爽女人下面视频在线观看| 国产成人精品无人区| 日本欧美国产在线视频| 中文天堂在线官网| 一级黄片播放器| 国产免费一级a男人的天堂| 精品少妇久久久久久888优播| 高清不卡的av网站| 人妻少妇偷人精品九色| 建设人人有责人人尽责人人享有的| 久久久久国产网址| 亚洲欧洲精品一区二区精品久久久 | 99热6这里只有精品| 欧美区成人在线视频| 久久ye,这里只有精品| 国产亚洲av片在线观看秒播厂| av播播在线观看一区| 女性被躁到高潮视频| www.av在线官网国产| 精品一区在线观看国产| 中文在线观看免费www的网站| 日本av免费视频播放| 欧美日韩av久久| 亚洲经典国产精华液单| 噜噜噜噜噜久久久久久91| 涩涩av久久男人的天堂| 黄片无遮挡物在线观看| 中文乱码字字幕精品一区二区三区| 女性生殖器流出的白浆| 亚洲精品国产色婷婷电影| 久久久a久久爽久久v久久| 日本午夜av视频| 少妇 在线观看| 中文字幕人妻丝袜制服| 国产av国产精品国产| 18+在线观看网站| av又黄又爽大尺度在线免费看| 免费黄网站久久成人精品| 免费人妻精品一区二区三区视频| 久久国内精品自在自线图片| 亚洲经典国产精华液单| 视频中文字幕在线观看| 国产欧美日韩精品一区二区| 国产精品秋霞免费鲁丝片| 另类精品久久| 一级,二级,三级黄色视频| 中文字幕精品免费在线观看视频 | 免费观看无遮挡的男女| 亚洲人成网站在线观看播放| 爱豆传媒免费全集在线观看| 国产91av在线免费观看| 91aial.com中文字幕在线观看| 国产 精品1| 国产av码专区亚洲av| 在线观看免费高清a一片| a级片在线免费高清观看视频| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久久伊人网av| 18禁动态无遮挡网站| 汤姆久久久久久久影院中文字幕| 中文乱码字字幕精品一区二区三区| 99视频精品全部免费 在线| 青青草视频在线视频观看| 国产亚洲av片在线观看秒播厂| 国产亚洲5aaaaa淫片| 热99国产精品久久久久久7| 亚洲经典国产精华液单| 一级毛片电影观看| 乱码一卡2卡4卡精品| 在线观看免费日韩欧美大片 | 中文字幕人妻丝袜制服| 国产日韩一区二区三区精品不卡 | 在线免费观看不下载黄p国产| 老司机影院毛片| 美女xxoo啪啪120秒动态图| 午夜影院在线不卡| 欧美精品一区二区免费开放| 亚洲欧美中文字幕日韩二区| .国产精品久久| 午夜免费鲁丝| 另类亚洲欧美激情| 欧美精品国产亚洲| 久久久久久久久久久丰满| 精华霜和精华液先用哪个| 秋霞在线观看毛片| 高清黄色对白视频在线免费看 | 国产男女超爽视频在线观看| 久久综合国产亚洲精品| av专区在线播放| 各种免费的搞黄视频| 黑人巨大精品欧美一区二区蜜桃 | 少妇丰满av| 内地一区二区视频在线| 国产成人精品婷婷| 欧美人与善性xxx| 亚洲婷婷狠狠爱综合网| 中文天堂在线官网| 91精品国产九色| 久久久久久久久大av| 久久婷婷青草| 99九九线精品视频在线观看视频| 人人妻人人澡人人爽人人夜夜| 在现免费观看毛片| 亚洲欧美精品专区久久| 国产乱人偷精品视频| 少妇的逼好多水| 欧美+日韩+精品| 男男h啪啪无遮挡| 九九在线视频观看精品| 最后的刺客免费高清国语| 欧美最新免费一区二区三区| 欧美日本中文国产一区发布| 97在线视频观看| 在线观看人妻少妇| 久久精品国产自在天天线| 最近的中文字幕免费完整| 日本免费在线观看一区| 99久久综合免费| 只有这里有精品99| 水蜜桃什么品种好| 亚洲av欧美aⅴ国产| 热99国产精品久久久久久7| 国产av码专区亚洲av| 亚洲高清免费不卡视频| 久久久久国产网址| 青青草视频在线视频观看| 中国美白少妇内射xxxbb| 夫妻午夜视频| 精品一品国产午夜福利视频| 精品午夜福利在线看| 亚洲av成人精品一区久久| 最近最新中文字幕免费大全7| 亚洲不卡免费看| 视频区图区小说| 黑人巨大精品欧美一区二区蜜桃 | 亚洲av福利一区| 国产精品99久久99久久久不卡 | 精品人妻一区二区三区麻豆| 草草在线视频免费看| 久久精品国产a三级三级三级| 久久精品国产自在天天线| 特大巨黑吊av在线直播| 日本午夜av视频| 极品教师在线视频| 观看av在线不卡| 在线亚洲精品国产二区图片欧美 | 久久久久视频综合| 又黄又爽又刺激的免费视频.| 爱豆传媒免费全集在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲自偷自拍三级| 久久久a久久爽久久v久久| 免费不卡的大黄色大毛片视频在线观看| 久久久国产欧美日韩av| 丰满人妻一区二区三区视频av| 国产高清三级在线| 国产国拍精品亚洲av在线观看| 在线观看免费视频网站a站| av天堂久久9| 国产精品99久久久久久久久| 国精品久久久久久国模美| 夫妻性生交免费视频一级片| 人妻人人澡人人爽人人| 亚洲国产精品一区二区三区在线| 老司机亚洲免费影院| 免费看不卡的av| 精品酒店卫生间| 高清不卡的av网站| 大香蕉久久网| 日日摸夜夜添夜夜爱| 日韩,欧美,国产一区二区三区| 我要看日韩黄色一级片| 亚洲精华国产精华液的使用体验| 我要看日韩黄色一级片| 国产成人一区二区在线| 色视频在线一区二区三区| 久久鲁丝午夜福利片| 少妇猛男粗大的猛烈进出视频| 亚洲成色77777| 日本爱情动作片www.在线观看| av有码第一页| 亚洲国产最新在线播放| 免费在线观看成人毛片| 黄色一级大片看看| 久久国产亚洲av麻豆专区| 三级经典国产精品| 亚洲国产最新在线播放| 亚洲国产精品一区二区三区在线| 最近的中文字幕免费完整| 如日韩欧美国产精品一区二区三区 | 日韩在线高清观看一区二区三区| 国产日韩一区二区三区精品不卡 | 午夜视频国产福利| 一级二级三级毛片免费看| 国产一区二区三区综合在线观看 | 91久久精品电影网| 人妻系列 视频| 精华霜和精华液先用哪个| 欧美精品国产亚洲| 国产欧美日韩一区二区三区在线 | 久久久久久久久久人人人人人人| 美女内射精品一级片tv| 肉色欧美久久久久久久蜜桃| 亚洲精品第二区| 久久精品国产自在天天线| 极品少妇高潮喷水抽搐| 高清av免费在线| 乱人伦中国视频| 少妇高潮的动态图| 美女cb高潮喷水在线观看| 日韩av不卡免费在线播放| 如何舔出高潮| 亚洲精品色激情综合| 亚洲精华国产精华液的使用体验| 亚洲,一卡二卡三卡| 亚洲第一区二区三区不卡| 久久精品国产亚洲网站| 69精品国产乱码久久久| 一个人免费看片子| √禁漫天堂资源中文www| 亚洲在久久综合| 一区二区三区乱码不卡18| 人妻夜夜爽99麻豆av| 亚洲精品成人av观看孕妇| 久久精品久久久久久噜噜老黄| 亚洲第一av免费看| 美女xxoo啪啪120秒动态图| 免费av不卡在线播放| 中文乱码字字幕精品一区二区三区| 黄片无遮挡物在线观看| 涩涩av久久男人的天堂| 亚洲精品国产成人久久av| 女人久久www免费人成看片| 国内精品宾馆在线| 中文欧美无线码| 在线观看人妻少妇| 国产精品一区二区在线不卡| 国产精品一区二区在线观看99| 国产 精品1| 久久精品国产自在天天线| 亚洲三级黄色毛片| 久久青草综合色| 亚洲电影在线观看av| 韩国高清视频一区二区三区| 亚洲av男天堂| 在线播放无遮挡| 能在线免费看毛片的网站| 亚洲av欧美aⅴ国产| 狠狠精品人妻久久久久久综合| 亚洲内射少妇av|