• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural landscape investigations on bendable plastic crystals of isonicotinamide polymorphs

    2022-09-16 05:25:12JintingLiJiqunLiHongjiLiuLiZhngYngLuZhengzhengZhou
    Chinese Chemical Letters 2022年8期

    Jinting Li, Jiqun Li, Hongji Liu, Li Zhng, Yng Lu, Zhengzheng Zhou,?

    aNMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Hygiene Inspection & Quarantine Science, School of Public Health, Southern Medical University, Guangzhou 510515, China

    b Beijing City Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100050, China

    ABSTRACT Three polymorphs (forms I, II and V) of isonicotinamide (INA) were mechanically flexible and exhibited one-dimensional (1D) plasticity.Anisotropic intermolecular interactions contribute to the plasticity of single crystals: weak dispersive interactions between slip planes such as 1D columns in forms I and II or 2D layers in form V were stabilized by strong hydrogen bonds, allowing the layer or column’s surface to glide smoothly without hindrance.The disparity of intermolecular interactions on plastic properties of INA polymorphic crystals was confirmed by energy framework analysis, nanoindentation tests and micro-Raman spectroscopy.The crystal which exhibits plastic property provides a promising application in pharmaceuticals and material sciences.

    Keywords:Isonicotinamide Polymorph Plasticity Slip plane Bending crystal

    Organic crystals with plastic or elastic properties, a kind of advanced functional materials, are future prospects for optical waveguides [1], organic electronics [2], muscle-mimetic biomaterials [3],sensors [4], bioinspired natural fibers [5,6], fine chemicals [7],pharmaceutical industry and other fields [8–11].It was first observed in hexachlorobenzene [12] and then other 16 bending crystals were explored by Reddy [13], which greatly enlarged the types of plastic bending crystals and proved the feasibility of finding new bending crystals.However, it should be noted that approximately>80% of organic compounds exist in different solid-state forms [14].Different polymorphs demonstrate potential different physicochemical properties such as dissolution, solubility,etc., but mechanical differences on bendable single crystals lack further investigations [15–18].At present, the mechanical behaviors of polymorphic compounds remained unexplored.

    Isonicotinamide (INA) is a popular coformer extensively employed as a partner molecule with active pharmaceutical ingredients (APIs) in cocrystal preparation.It was generally recognized as safe (GRAS) and presented high water solubility [19–22].So far,it has been reported that INA was capable of forming six polymorphs (Table S1 in Supporting information) [22].Forms I [23] and II [24] are more easily obtained regardless of the solvent type and form V [27] occurred when the methyl group was presented.However, forms III [25] and VI [28] were always obtained from a cocrystal of API with INA, and form IV [26] was obtained only as a mixture with form II.Hence, forms I, II and V were selected and prepared in the present study.The three polymorphs exhibit 1D plasticity, which provides a model to explain the relationship between the types of intermolecular interactions in the crystal structure calculated by energy framework and the difference of plasticity examined by nanoindentation tests among polymorphs.

    The cell parameters obtained from single crystal X-ray diffraction (SXRD) were found to be consistent with CIF documents deposited in Cambridge Crystallographic Data Center (CCDC), implying that single crystals of forms I (CSD refcode EHOWIH01) [23],II (CSD refcode EHOWIH02) [24] and V (CSD refcode EHOWIH05)[27] were successfully prepared (Table S2 in Supporting information).Single crystals of forms I and II both underwent irreversible plastic deformation when bent with a metal needle on(100)/(?100) faces with the largest area.Form V exhibits excellent plasticity when stress is applied on narrow faces (010)/(0?10) but not on the wider face (Fig.1).All the polymorphs exhibit 1D plasticity and were directly folded in half without fracture, which was not allowed to be twisted [17].

    Fig.1.Screenshots of irreversible plastic bending of INA forms I, II and V and deformed into special shapes.

    In form I (space groupP21/c witha=10.1756 (11),b=5.7319(6),c=10.034(1),β=98.169(1)°), N ?H···O (2.93(3))hydrogen-bonded dimers are interconnected alongcaxis by another N?H···O hydrogen-bonded dimer with NH2as donor and C=O as acceptor (2.93(3)) and expanded alongbaxis through N?H···O hydrogen-bonds and C?H···N weak interactions a centroid-to-centroid distance of 5.73.This generates a stable column-like structure with two-independent tapes staggered in arrangement through strong hydrogen bonds (Fig.2).Columns are formed parallel to (100) faces and extended throughaaxis with weaker interactions composed of C?H···N (between pyridine rings,3.42(3), 3.47(3)), resulting in some smooth slip planes between columns (Fig.S1 in Supporting information).When pressure is applied on (100) face, the internal columns slide along thecaxis and exhibit excellent plasticity.

    In form II (space groupP21/c witha=15.735(3),b=7.9976(18),c=9.885(3),β=105.586(17)°), molecules run along thecaxis by N?H···O hydrogen bonds (2.95(2)) and C?H···O weak interactions (3.24(3)) and extend backward alongbaxis by N?H···N (between pyridine rings, 2.98(6)) hydrogen bonds and C?H···N (3.83(1)) weak interactions to form 2D tapes (Fig.2).Besides, two-independent tapes staggered in arrangement to extend alongaaxis are derived from weak interactions C?H···C (3.52(3);3.41(3)) to form a column-like structure.These columns are parallel to (100) faces, with the same columnar structure exposed on both sides.As a result, slip planes are formed parallel to the wider(100) face of the crystals (Fig.S2 in Supporting information).

    In form V (space groupP21/c witha=5.1923(11),b=9.466(3),c=12.259(3),β=91.217(7)°), molecules extend along thebaxis by forming dimers of N?H···O(2.94(2)) hydrogen bonds and C?H···O (between the pyridine ring and the neighboring carbonyl groups: 3.35(2)) short contacts mediated dimers and run alongcaxis by interconnecting through N?H···N hydrogenbonds (2.99(3)) to form a zigzag tape parallel to (102) plane (Fig.2).Meanwhile, the tapes expand alongaandcaxes with weak interactions C?H···O(3.37(3)) to produce independent 2D layers parallel to (001) face.Therefore, the slip planes (011) are formed intersecting (001) faces at 52.32° (Fig.S3 in Supporting information).

    1D plastically bendable crystals should have a slip plane as a prerequisite, and weakly interconnected molecular layers slide over other layers when mechanically stressed [15].Three crystal forms of INA possess the same space group but exhibit different intermolecular interactions.Weak interactions such as C?H···N and C?H···C between rigid one-dimensional (1D) columns or chains in forms I and II and two-dimensional (2D) layers generated by moderately strong interactions such as C?H···O in form V are possible as long as the column’s face is allowed to slip smoothly without obstruction [18,29].

    The energy framework was used to calculate the interlayer and intralayer energy of slip plane identified by attachment energy (Eatt) (Table 1) [30–35].The interlayer energy of sliding plane is always found less than the intralayer energy [29].The(100) plane in INA form I is found to have the lowest attachment energy and corresponds to the largest surface in the pre-dicted crystal morphology.The molecules within (100) plane are hydrogen-bonded (N?H···O, 2.93(3)), whereas weaker interactions C?H···N (3.42(3); 3.47(3)) are present between these planes (Fig.S1).Therefore, the total interlayer interaction energy(?86.2 kJ/mol) is lower than the total intralayer interaction energies (?91.8 kJ/mol), indicating that the molecules slide along (100)plane is energetically favorable (Tables S3 and S4 and Fig.S4 in Supporting information).The molecules in slip plane (100) identified byEatt in INA form II are interconnected through N?H···O hydrogen bonds (2.95(2)), while only weak contact C?H···C(3.52(3), 3.41(3)) interacted between layers (Fig.S2).The significantly smaller interlayer energies (?90.4 kJ/mol) than intralayer energies (?140.8 kJ/mol) imply that (100) sliding plane is also energetically feasible.For INA form V, within the (011) plane identified by Eatt molecules are interconnected through N?H···O(2.94(2)) hydrogen bonds, whereas weak interactions C?H···O(3.35(2); 3.37(3)) present between layers (Fig.S3).Therefore,the molecules stacking across (011) plane exhibit slightly weaker interaction energy (?113.4 kJ/mol) than the bonding energy within(011) plane (?121.2 kJ/mol), demonstrating comparable intra and interlayer intermolecular bonding energies.It indicated that interlayer energies of INA polymorphs decreased following the order of form I>form II>form V corresponding to the plasticity increased in the order of form I>form II>form V based on a Wang’s previous study [36].Additionally, the other three polymorphs of INA (III,IV and IV) may present plastic property if they could be prepared successfully according to the slip planes and energy calculation results (Tables S4-S6 and Figs.S5-S8 in Supporting information).

    Table 1 Total absolute intermolecular interaction energies between the intralayer and interlayer in the slip planes of three isonicotinamide polymorphs calculated by energy framework.

    Table 2 Nanoindentation elastic modulus (E) and hardness (H) on major crystal faces of three isonicotinamide polymorphs.

    Nanoindentation tests were employed to further examine the relationship between interlayer energy and plasticity and to quantify the mechanical properties of INA polymorphs.Since all three polymorphs are plate-like, the nanoindentation is performed on(100) faces of forms I, II and V.The representative load (P)versusdepth (h) curve is illustrated in Fig.3.The high value ofhmaxand the large residual depths are linked to excellent plastic behavior [37].At a peak load of 5 mN, the maximum depth of penetration (hmax) increased in the order of form I (~568 nm)>form II (~529 nm)>form V (~236 nm), confirming the highest plasticity of form I.The elastic modulus (E) and nanohardness (H) was then estimated fromP-hresponse using the standard Oliver-Pharr method [38].H values of polymorphs decreased in the order of form I>form II>form V (Table 2).Since H reflects the resistance to plastic deformation, the very smallest H value indicates that INA form I exhibits the best bending properties [10,39].FromP-hcurves, forms I and V indented in (100) faces are comparably smooth, probably due to the presence of parallel slip planes that readily accommodate the advance of indenter tip through facile slip page [18].Meanwhile, several pop-ins were observed in (100)face of form II with the largest elastic modulus value.Pop-ins here can be attributed to sudden stress release when the elastic limit is exceeded and discrete plastic displacement bursts to facilitate easier stress dissipation during indenter tip penetration [40,41].Verified by nanoindentation experiment, plastic properties of INA forms increased in the order of form I>form II>form V, consistent with decreased order of interlayer energies of INA polymorphs calculated from energy framework.Accordingly, form I exhibits the best plasticity among other polymorphs with the weakest interlayer bonding energies.

    Fig.2.Molecular packing in forms I, II and V viewed along (100), (010) and (001) faces.

    Fig.3.Representative load?depth (P?h) curves obtained from nanoindentation on(100) faces of forms I (black), II (red) and V (blue) crystals and arrows in form II curve indicate the “pop-in” events during loading.AFM diagrams of forms I, II and V.

    Fig.4.The microscopic images of the bent crystal and the area for the micro-Raman test in (a) and Raman spectra of straight and deformed crystals of forms I (b), II (c) and V (d).

    Micro-Raman spectra were conducted to gain insights into structural changes of bending at the molecular level [18,42].Raman peak between 970 and 1010 cm?1is the ring breathing mode of pyridine, including ring vibrations and ring bond stretching [43].Forms II and V provide a peak at 995–996 cm?1while form I shows a peak maximum at 1002 cm?1.The same 995–996 cm?1band in the outer arc demonstrates a blue shift with a broadening of up to 1002 cm?1because of fewer and weaker intermolecular interactions such as C?H···C in form II and C?H···O in form V produced between pyridine C?H groups and amide groups and carbonyl groups as molecules are farther apart.However, the band of 1002 cm?1in form I does not shift from the outer arc to the inner arc due to weak interactions C?H···N formed between pyridine groups that neutralize vibrations and bond stretching of the single pyridine ring when molecules expand (Fig.4).Thus, bending leads to significant changes in C?H···C, C?H···O, and C?H···N intermolecular weak interactions of the three INA forms.

    Fig.5.Plastic bending model of single crystals of INA forms I (a), II (b) and V (c).

    Additionally, the band at 1611 cm?1is ascribed to stretching vibration of amide N?H groups involved in forming hydrogenbonded N?H···O and N?H···N and weak interactions C?H···N with carbonyl groups and pyridine groups.The peak intensity at 1611 cm?1increased in the order of outer>inner>middle>straight,implying that the increase in peak intensity corresponds to a larger intermolecular distance in bent crystal.The shorter distance in the inner arc, when contraction occurs, and longer distance in the outer arc, when expansion occurs [18].Concurrently, we stated that the intensity of the middle region is the smallest among the other two mentioned above, implying that during crystal bending the molecules in the middle accumulated the most with the closest distance when subjected to compression and tension forces (Figs.S9-S11 in Supporting information).

    A schematic depiction of these events is displayed in Fig.5.The pyridine rings in form I are shown as blue balls, and N?H···O hydrogen bonds form between -CONH2groups represented by yellow right angle disks.They are connected in pairs and extend alongcaxis to produce a column-like structure in form I as viewed on the(100) face.The molecules formed in different directions are exhibited by blue and yellow disks, and they are stacked alongcaxisviaN?H···O hydrogen bonds to generate column-like structure in form II on (100) face, while alongbandcaxesviaN?H···O and N?H···N hydrogen bonds, they form zigzag tapes in form V on (010) face.Additionally, the white region between columns and tapes corresponds to C?H···N, C?H···C and C?H···O weak interactions, respectively.In short, the bending models depicted in Fig.5 are composed of columns and tapes, which were stabilizedviastrong hydrogen bonds and weaker interactions in the orthogonal direction.Weaker interactions play a lubricating role between these columns and tapes, thus forming slip planes parallel to the bending face.When subjected to stress, columns can slide more easily than classical stacking flat sheets structure of plastic crystals [44].Therefore,forms I and II composed of columns or chains are easy to slide and exhibit better plasticity than form V.Although forms I and II are both composed of columnar structures, the difference of pyridine ring orientation with two-independent 2D tapes to form a columnlike structure in form II is responsible for less favorable bending geometry of form II than form I [26].In addition, molecules in chains or tapes staggered in arrangement make some short-range movements to adapt the bending process, in which the intermolecular distance become longer in the outer arc as molecules stretch and closer in the inner arc as molecules gather.As a result, the bulk crystal demonstrates plastic bending rather than brittle behavior.

    The crystal packing of pyrazine-2-carboxamide [13] form I does conform to this bending model with stronger interactions, in which amide dimers are stacked along thecaxis (3.72) and weak N–H···N (2.46), C–H···O (2.49) and C–H···N (2.55) interactions are present in the other two orthogonal directions and it could be bent under stress (Fig.S12 in Supporting information).While the crystal structure of nicotinamide, with the same molecular weight but different positions of nitrogen atom on pyridine ring, does not conform to the bending model with three-dimensional networks of hydrogen bonds having comparable interactions, this may resist deformation and makes it as a stiff material exhibiting brittle fracture under compressive stress (Fig.S13 in Supporting information)[45].

    In conclusion, three INA polymorphs exhibited significant bending properties.The crystal packing with strong and weak interactions in the orthogonal direction of the slip plane is a prerequisite for crystals to exhibit bending mechanical behavior.The super plasticity of INA makes it a good cocrystal coformer to regulate the mechanical behavior of API with poor tabletability.It is a thriving field of chemical material sciences with extensive application prospect.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was sponsored by National Key R&D Program of China (No.2016YFC1000900), National Science and Technology Major Project of China (No.2018ZX09711001–001–013), National Natural Science Foundation of China (No.81703438).

    一级毛片久久久久久久久女| 91在线观看av| 能在线免费观看的黄片| 亚洲综合色惰| 人妻制服诱惑在线中文字幕| 两人在一起打扑克的视频| 91麻豆精品激情在线观看国产| 熟女电影av网| 日韩大尺度精品在线看网址| 精品熟女少妇八av免费久了| 天堂√8在线中文| 91午夜精品亚洲一区二区三区 | 午夜福利在线观看吧| 香蕉av资源在线| 12—13女人毛片做爰片一| 中文字幕人妻熟人妻熟丝袜美| 免费观看的影片在线观看| 久久亚洲精品不卡| 精品福利观看| 热99re8久久精品国产| 18禁在线播放成人免费| 久久精品国产亚洲av香蕉五月| 伦理电影大哥的女人| 国产色婷婷99| aaaaa片日本免费| 久久久国产成人免费| 91在线精品国自产拍蜜月| 亚洲综合色惰| av欧美777| 在线a可以看的网站| 午夜视频国产福利| 欧美3d第一页| 日韩有码中文字幕| 一区二区三区四区激情视频 | 搞女人的毛片| 亚洲第一电影网av| 男人狂女人下面高潮的视频| 久久性视频一级片| 性插视频无遮挡在线免费观看| 国产亚洲欧美在线一区二区| 少妇人妻一区二区三区视频| 亚洲av五月六月丁香网| 日日夜夜操网爽| 国产69精品久久久久777片| 亚洲精品影视一区二区三区av| 亚洲激情在线av| 国产一级毛片七仙女欲春2| 在线播放无遮挡| 一级av片app| 精品熟女少妇八av免费久了| 亚洲中文字幕一区二区三区有码在线看| 久久久精品大字幕| 国产伦精品一区二区三区四那| 精品久久久久久,| 国产美女午夜福利| 亚洲av成人av| 成年版毛片免费区| 精品国内亚洲2022精品成人| 成年免费大片在线观看| 亚洲av熟女| 国产精品自产拍在线观看55亚洲| 色综合亚洲欧美另类图片| 国产av在哪里看| 国产午夜福利久久久久久| 国产精品一区二区三区四区免费观看 | 日本五十路高清| 欧美日韩瑟瑟在线播放| 真人做人爱边吃奶动态| av黄色大香蕉| 国产精品亚洲av一区麻豆| 好男人在线观看高清免费视频| 在线观看美女被高潮喷水网站 | 露出奶头的视频| 亚洲国产欧美人成| 久久婷婷人人爽人人干人人爱| 国产精品一区二区性色av| 国语自产精品视频在线第100页| 我的女老师完整版在线观看| 成人精品一区二区免费| 国产av一区在线观看免费| 狂野欧美白嫩少妇大欣赏| 热99re8久久精品国产| 他把我摸到了高潮在线观看| 此物有八面人人有两片| 日本黄大片高清| 午夜激情福利司机影院| 欧美成人一区二区免费高清观看| 色哟哟·www| 免费电影在线观看免费观看| 九九久久精品国产亚洲av麻豆| 久久欧美精品欧美久久欧美| 日本成人三级电影网站| 国产精品1区2区在线观看.| 精品久久久久久久人妻蜜臀av| 精品日产1卡2卡| 国产精华一区二区三区| 欧美zozozo另类| 深爱激情五月婷婷| 美女黄网站色视频| 一级a爱片免费观看的视频| 亚洲电影在线观看av| 久久久久国产精品人妻aⅴ院| 国内精品久久久久精免费| 精品久久久久久成人av| 美女 人体艺术 gogo| 久久性视频一级片| 亚洲七黄色美女视频| 国产一区二区在线av高清观看| 精品人妻视频免费看| 波多野结衣高清无吗| 亚洲精品在线美女| 少妇熟女aⅴ在线视频| 日韩欧美在线乱码| 亚洲人成网站高清观看| 亚洲精品乱码久久久v下载方式| 欧美黄色淫秽网站| 熟女人妻精品中文字幕| aaaaa片日本免费| 非洲黑人性xxxx精品又粗又长| 亚洲五月婷婷丁香| 亚洲欧美清纯卡通| 久久久久九九精品影院| 男插女下体视频免费在线播放| 99riav亚洲国产免费| 久久午夜福利片| 国产成人影院久久av| 中亚洲国语对白在线视频| 两个人视频免费观看高清| 国产精品女同一区二区软件 | 国产午夜精品久久久久久一区二区三区 | 蜜桃久久精品国产亚洲av| 色av中文字幕| 如何舔出高潮| 一级av片app| 亚洲久久久久久中文字幕| 国产精品伦人一区二区| 欧美成人免费av一区二区三区| 一本久久中文字幕| 欧美zozozo另类| 91久久精品国产一区二区成人| 国产精品久久视频播放| 黄色视频,在线免费观看| 亚洲最大成人av| a级毛片免费高清观看在线播放| 久久精品国产清高在天天线| 久久这里只有精品中国| 国产不卡一卡二| 一级a爱片免费观看的视频| 少妇人妻一区二区三区视频| 亚洲真实伦在线观看| 中文亚洲av片在线观看爽| 天天一区二区日本电影三级| 亚洲av中文字字幕乱码综合| 天堂影院成人在线观看| 欧美3d第一页| 免费在线观看成人毛片| 日韩有码中文字幕| 午夜激情福利司机影院| 一本久久中文字幕| 老司机午夜十八禁免费视频| 中文字幕精品亚洲无线码一区| а√天堂www在线а√下载| or卡值多少钱| 一二三四社区在线视频社区8| 国产精品av视频在线免费观看| 精华霜和精华液先用哪个| 无遮挡黄片免费观看| 国产乱人视频| 国内少妇人妻偷人精品xxx网站| 日韩人妻高清精品专区| av天堂在线播放| 波多野结衣高清无吗| 每晚都被弄得嗷嗷叫到高潮| 在线观看免费视频日本深夜| 欧美激情国产日韩精品一区| 久久久久免费精品人妻一区二区| 国产探花在线观看一区二区| 国产精品人妻久久久久久| 国产成+人综合+亚洲专区| 亚洲最大成人中文| 亚洲va日本ⅴa欧美va伊人久久| 亚洲无线观看免费| 欧美绝顶高潮抽搐喷水| 亚洲,欧美,日韩| av福利片在线观看| 久久精品91蜜桃| 日韩欧美 国产精品| 国产男靠女视频免费网站| 五月伊人婷婷丁香| 国产精品av视频在线免费观看| 97超视频在线观看视频| 国产黄a三级三级三级人| 成年女人永久免费观看视频| 黄色视频,在线免费观看| 日本免费a在线| 最近中文字幕高清免费大全6 | 我的老师免费观看完整版| 免费看a级黄色片| 婷婷色综合大香蕉| 国产精品av视频在线免费观看| 我的女老师完整版在线观看| АⅤ资源中文在线天堂| a级毛片免费高清观看在线播放| 国产高清有码在线观看视频| 日韩av在线大香蕉| 九九在线视频观看精品| 日韩精品中文字幕看吧| 国产精品国产高清国产av| 激情在线观看视频在线高清| 三级男女做爰猛烈吃奶摸视频| 女同久久另类99精品国产91| 不卡一级毛片| 最好的美女福利视频网| 男女做爰动态图高潮gif福利片| 国产国拍精品亚洲av在线观看| 国产精品爽爽va在线观看网站| 久久久久久久精品吃奶| 桃红色精品国产亚洲av| 精品人妻熟女av久视频| 国产单亲对白刺激| 又黄又爽又刺激的免费视频.| 免费av观看视频| 在线观看免费视频日本深夜| 精品人妻偷拍中文字幕| 深夜a级毛片| 日韩欧美三级三区| 久久久久久国产a免费观看| 一区二区三区四区激情视频 | 能在线免费观看的黄片| 狂野欧美白嫩少妇大欣赏| 色av中文字幕| 夜夜躁狠狠躁天天躁| 韩国av一区二区三区四区| 国产探花极品一区二区| 黄色日韩在线| 三级国产精品欧美在线观看| 国产野战对白在线观看| av国产免费在线观看| 免费电影在线观看免费观看| 国产一区二区激情短视频| 亚洲无线在线观看| 欧美成人性av电影在线观看| 俺也久久电影网| 久久久久性生活片| 欧美另类亚洲清纯唯美| 久久人妻av系列| 麻豆一二三区av精品| 老司机深夜福利视频在线观看| 久久国产精品影院| 亚洲精品亚洲一区二区| 婷婷色综合大香蕉| 国产高清视频在线观看网站| 极品教师在线免费播放| 高清毛片免费观看视频网站| 精品无人区乱码1区二区| 日韩欧美在线二视频| 精品久久久久久久人妻蜜臀av| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久国产精品人妻aⅴ院| 成人av一区二区三区在线看| 国产免费一级a男人的天堂| 国产伦精品一区二区三区四那| 精品免费久久久久久久清纯| h日本视频在线播放| 精品午夜福利在线看| 精品人妻视频免费看| 中文字幕av成人在线电影| 久久国产乱子免费精品| 亚洲av成人av| 亚洲av熟女| av女优亚洲男人天堂| 亚洲avbb在线观看| 天堂网av新在线| 亚洲中文日韩欧美视频| 国产精品1区2区在线观看.| 日韩人妻高清精品专区| 18禁黄网站禁片免费观看直播| 天堂动漫精品| 一区二区三区四区激情视频 | 床上黄色一级片| 亚洲av一区综合| 给我免费播放毛片高清在线观看| 日日摸夜夜添夜夜添小说| 亚洲中文字幕一区二区三区有码在线看| 久久国产乱子免费精品| 十八禁网站免费在线| 亚洲欧美日韩卡通动漫| 国产淫片久久久久久久久 | 国产综合懂色| 欧美+日韩+精品| 欧美区成人在线视频| 国产男靠女视频免费网站| 精品国产三级普通话版| 成人特级av手机在线观看| 夜夜爽天天搞| 美女 人体艺术 gogo| 老女人水多毛片| 99久久九九国产精品国产免费| 在线观看av片永久免费下载| 91av网一区二区| АⅤ资源中文在线天堂| 国产精品久久视频播放| 国产精品亚洲av一区麻豆| 真人做人爱边吃奶动态| 国产精品久久久久久久电影| 97人妻精品一区二区三区麻豆| 国产成人福利小说| 在线观看午夜福利视频| 极品教师在线视频| 美女被艹到高潮喷水动态| 在线十欧美十亚洲十日本专区| 午夜影院日韩av| 丰满乱子伦码专区| 亚洲成av人片免费观看| 亚洲精品456在线播放app | 老司机午夜福利在线观看视频| 免费在线观看日本一区| 亚洲第一区二区三区不卡| 一a级毛片在线观看| a级毛片a级免费在线| 午夜免费激情av| 尤物成人国产欧美一区二区三区| 日日摸夜夜添夜夜添av毛片 | 国产熟女xx| 成人毛片a级毛片在线播放| 日本精品一区二区三区蜜桃| a在线观看视频网站| 日本黄色片子视频| 亚洲中文日韩欧美视频| 91久久精品电影网| 亚洲熟妇中文字幕五十中出| 免费观看的影片在线观看| 中文字幕人妻熟人妻熟丝袜美| 成人欧美大片| 小说图片视频综合网站| 丰满的人妻完整版| 91在线精品国自产拍蜜月| 美女高潮的动态| 久久久久免费精品人妻一区二区| 人人妻,人人澡人人爽秒播| 男女视频在线观看网站免费| 亚洲天堂国产精品一区在线| 亚洲 国产 在线| 一个人观看的视频www高清免费观看| 乱码一卡2卡4卡精品| 免费无遮挡裸体视频| 久久人人精品亚洲av| 偷拍熟女少妇极品色| 色视频www国产| 在线播放无遮挡| 欧美+亚洲+日韩+国产| 九九热线精品视视频播放| 18禁黄网站禁片午夜丰满| 午夜日韩欧美国产| 又粗又爽又猛毛片免费看| 90打野战视频偷拍视频| x7x7x7水蜜桃| 少妇的逼水好多| 精品人妻偷拍中文字幕| 色综合站精品国产| 欧美日韩福利视频一区二区| 久久久久久久久中文| ponron亚洲| 国产高清视频在线观看网站| 国产精品嫩草影院av在线观看 | 嫩草影院新地址| 欧美高清性xxxxhd video| 久久精品91蜜桃| 五月玫瑰六月丁香| 国产人妻一区二区三区在| 免费在线观看日本一区| 在线观看一区二区三区| 国模一区二区三区四区视频| 欧美高清性xxxxhd video| 99国产精品一区二区三区| 此物有八面人人有两片| 亚洲狠狠婷婷综合久久图片| 国内精品久久久久久久电影| a级一级毛片免费在线观看| 日本黄大片高清| 国产亚洲欧美在线一区二区| 无人区码免费观看不卡| 丁香六月欧美| 国产乱人视频| 一级毛片久久久久久久久女| 老司机福利观看| 一级黄色大片毛片| 美女高潮喷水抽搐中文字幕| 日韩有码中文字幕| 人人妻人人看人人澡| 久久人人精品亚洲av| 99国产精品一区二区蜜桃av| 尤物成人国产欧美一区二区三区| 国产一级毛片七仙女欲春2| 九色成人免费人妻av| 国产淫片久久久久久久久 | 国产一区二区三区视频了| 麻豆国产97在线/欧美| x7x7x7水蜜桃| 亚洲国产精品合色在线| 日韩欧美一区二区三区在线观看| 一本久久中文字幕| 午夜精品一区二区三区免费看| 中文字幕av成人在线电影| 日韩欧美免费精品| 欧美另类亚洲清纯唯美| 成年女人看的毛片在线观看| 久久精品综合一区二区三区| 午夜激情福利司机影院| 国内精品一区二区在线观看| 国产精品一及| 亚洲成人久久爱视频| 特级一级黄色大片| 国产精品免费一区二区三区在线| 国产欧美日韩一区二区精品| 久久久久久久久中文| 美女免费视频网站| 久久久久九九精品影院| 国产精品野战在线观看| 欧美日本亚洲视频在线播放| 99久久无色码亚洲精品果冻| 高潮久久久久久久久久久不卡| av在线蜜桃| 中文字幕熟女人妻在线| 国产成人aa在线观看| 好看av亚洲va欧美ⅴa在| 精品国产三级普通话版| 亚洲精品久久国产高清桃花| 啦啦啦观看免费观看视频高清| 久久欧美精品欧美久久欧美| 综合色av麻豆| av国产免费在线观看| 十八禁人妻一区二区| 9191精品国产免费久久| 91麻豆精品激情在线观看国产| 久9热在线精品视频| 日韩国内少妇激情av| 久久中文看片网| 精品无人区乱码1区二区| 在线观看66精品国产| 综合色av麻豆| 精品人妻一区二区三区麻豆 | 俄罗斯特黄特色一大片| 精品久久久久久成人av| 国产爱豆传媒在线观看| 国产伦人伦偷精品视频| 淫妇啪啪啪对白视频| 精品人妻视频免费看| 成年人黄色毛片网站| 久久精品国产亚洲av涩爱 | 一级av片app| 动漫黄色视频在线观看| 少妇裸体淫交视频免费看高清| 久久国产精品人妻蜜桃| 深夜a级毛片| 国产淫片久久久久久久久 | 久久国产乱子伦精品免费另类| 日韩高清综合在线| 欧美+日韩+精品| 哪里可以看免费的av片| 欧美日韩亚洲国产一区二区在线观看| 一进一出抽搐gif免费好疼| 欧美日韩乱码在线| 国产精品一区二区免费欧美| 美女免费视频网站| 女同久久另类99精品国产91| 精品久久久久久久人妻蜜臀av| 69av精品久久久久久| 欧美激情在线99| 哪里可以看免费的av片| 亚洲 欧美 日韩 在线 免费| 一级a爱片免费观看的视频| 国产精品免费一区二区三区在线| 有码 亚洲区| 99国产综合亚洲精品| 免费大片18禁| 给我免费播放毛片高清在线观看| 亚洲欧美激情综合另类| 亚洲午夜理论影院| 美女免费视频网站| 我要搜黄色片| 国产成人av教育| 在线观看舔阴道视频| 色在线成人网| 日日干狠狠操夜夜爽| 亚洲欧美日韩东京热| 精品久久久久久久末码| 欧美精品啪啪一区二区三区| 天堂√8在线中文| 色视频www国产| 欧美日本视频| 97碰自拍视频| 久久人人爽人人爽人人片va | 99视频精品全部免费 在线| 日韩欧美精品v在线| a在线观看视频网站| 亚洲三级黄色毛片| 国产精品久久久久久久电影| 国产精品免费一区二区三区在线| 久久久色成人| 99视频精品全部免费 在线| 可以在线观看的亚洲视频| 欧美日本亚洲视频在线播放| 内地一区二区视频在线| 少妇的逼好多水| 国产精品亚洲美女久久久| 亚洲黑人精品在线| 我的老师免费观看完整版| 色视频www国产| 国产精品影院久久| 欧美成人一区二区免费高清观看| 国产高清三级在线| 麻豆成人av在线观看| 国产野战对白在线观看| 黄片小视频在线播放| 男人和女人高潮做爰伦理| 最近最新中文字幕大全电影3| 日韩精品青青久久久久久| 最近视频中文字幕2019在线8| 亚洲av成人精品一区久久| 久久精品国产自在天天线| 国产色爽女视频免费观看| 舔av片在线| 黄色日韩在线| 一进一出抽搐动态| avwww免费| 脱女人内裤的视频| 久久久色成人| av天堂中文字幕网| 深爱激情五月婷婷| 中出人妻视频一区二区| 一本综合久久免费| 身体一侧抽搐| 在线观看av片永久免费下载| 亚洲欧美日韩东京热| 内射极品少妇av片p| 在线国产一区二区在线| 两个人的视频大全免费| 深夜精品福利| 亚洲五月天丁香| 国产综合懂色| 亚洲色图av天堂| 亚洲激情在线av| 国产精品野战在线观看| 淫秽高清视频在线观看| 男女床上黄色一级片免费看| 在线a可以看的网站| 亚洲综合色惰| 校园春色视频在线观看| 欧美精品国产亚洲| 国产成+人综合+亚洲专区| 俺也久久电影网| 国产av在哪里看| 国产在视频线在精品| or卡值多少钱| 久久香蕉精品热| 免费在线观看亚洲国产| 日韩欧美一区二区三区在线观看| 国产精品电影一区二区三区| 啪啪无遮挡十八禁网站| 国产一区二区三区视频了| 18禁在线播放成人免费| 精品日产1卡2卡| 在线观看66精品国产| 欧美黑人欧美精品刺激| 麻豆成人午夜福利视频| 成人一区二区视频在线观看| 日韩中字成人| 精品欧美国产一区二区三| 亚洲,欧美,日韩| 国产精品,欧美在线| 热99re8久久精品国产| 日韩国内少妇激情av| 中文字幕av成人在线电影| 亚洲综合色惰| 亚洲国产精品成人综合色| 欧美日韩亚洲国产一区二区在线观看| av福利片在线观看| 成人三级黄色视频| 一边摸一边抽搐一进一小说| 好看av亚洲va欧美ⅴa在| 99久久精品热视频| 给我免费播放毛片高清在线观看| 窝窝影院91人妻| 午夜a级毛片| 国产精品久久视频播放| 小蜜桃在线观看免费完整版高清| 99在线人妻在线中文字幕| 老熟妇乱子伦视频在线观看| 一个人免费在线观看电影| 人妻丰满熟妇av一区二区三区| 五月伊人婷婷丁香| 成人av在线播放网站| 757午夜福利合集在线观看| 91午夜精品亚洲一区二区三区 | 欧美色视频一区免费| 怎么达到女性高潮| 18禁黄网站禁片免费观看直播| 欧美色视频一区免费| 99久久99久久久精品蜜桃| 亚洲精品成人久久久久久| 岛国在线免费视频观看| 欧美最黄视频在线播放免费| 日韩欧美三级三区| 欧美+日韩+精品| 久久久国产成人免费| 日韩中文字幕欧美一区二区| 搡老妇女老女人老熟妇| 国产激情偷乱视频一区二区| 亚洲av免费在线观看| 老司机午夜福利在线观看视频| 亚洲中文日韩欧美视频| 国产老妇女一区| 国产私拍福利视频在线观看| 又爽又黄无遮挡网站|