• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural landscape investigations on bendable plastic crystals of isonicotinamide polymorphs

    2022-09-16 05:25:12JintingLiJiqunLiHongjiLiuLiZhngYngLuZhengzhengZhou
    Chinese Chemical Letters 2022年8期

    Jinting Li, Jiqun Li, Hongji Liu, Li Zhng, Yng Lu, Zhengzheng Zhou,?

    aNMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Hygiene Inspection & Quarantine Science, School of Public Health, Southern Medical University, Guangzhou 510515, China

    b Beijing City Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100050, China

    ABSTRACT Three polymorphs (forms I, II and V) of isonicotinamide (INA) were mechanically flexible and exhibited one-dimensional (1D) plasticity.Anisotropic intermolecular interactions contribute to the plasticity of single crystals: weak dispersive interactions between slip planes such as 1D columns in forms I and II or 2D layers in form V were stabilized by strong hydrogen bonds, allowing the layer or column’s surface to glide smoothly without hindrance.The disparity of intermolecular interactions on plastic properties of INA polymorphic crystals was confirmed by energy framework analysis, nanoindentation tests and micro-Raman spectroscopy.The crystal which exhibits plastic property provides a promising application in pharmaceuticals and material sciences.

    Keywords:Isonicotinamide Polymorph Plasticity Slip plane Bending crystal

    Organic crystals with plastic or elastic properties, a kind of advanced functional materials, are future prospects for optical waveguides [1], organic electronics [2], muscle-mimetic biomaterials [3],sensors [4], bioinspired natural fibers [5,6], fine chemicals [7],pharmaceutical industry and other fields [8–11].It was first observed in hexachlorobenzene [12] and then other 16 bending crystals were explored by Reddy [13], which greatly enlarged the types of plastic bending crystals and proved the feasibility of finding new bending crystals.However, it should be noted that approximately>80% of organic compounds exist in different solid-state forms [14].Different polymorphs demonstrate potential different physicochemical properties such as dissolution, solubility,etc., but mechanical differences on bendable single crystals lack further investigations [15–18].At present, the mechanical behaviors of polymorphic compounds remained unexplored.

    Isonicotinamide (INA) is a popular coformer extensively employed as a partner molecule with active pharmaceutical ingredients (APIs) in cocrystal preparation.It was generally recognized as safe (GRAS) and presented high water solubility [19–22].So far,it has been reported that INA was capable of forming six polymorphs (Table S1 in Supporting information) [22].Forms I [23] and II [24] are more easily obtained regardless of the solvent type and form V [27] occurred when the methyl group was presented.However, forms III [25] and VI [28] were always obtained from a cocrystal of API with INA, and form IV [26] was obtained only as a mixture with form II.Hence, forms I, II and V were selected and prepared in the present study.The three polymorphs exhibit 1D plasticity, which provides a model to explain the relationship between the types of intermolecular interactions in the crystal structure calculated by energy framework and the difference of plasticity examined by nanoindentation tests among polymorphs.

    The cell parameters obtained from single crystal X-ray diffraction (SXRD) were found to be consistent with CIF documents deposited in Cambridge Crystallographic Data Center (CCDC), implying that single crystals of forms I (CSD refcode EHOWIH01) [23],II (CSD refcode EHOWIH02) [24] and V (CSD refcode EHOWIH05)[27] were successfully prepared (Table S2 in Supporting information).Single crystals of forms I and II both underwent irreversible plastic deformation when bent with a metal needle on(100)/(?100) faces with the largest area.Form V exhibits excellent plasticity when stress is applied on narrow faces (010)/(0?10) but not on the wider face (Fig.1).All the polymorphs exhibit 1D plasticity and were directly folded in half without fracture, which was not allowed to be twisted [17].

    Fig.1.Screenshots of irreversible plastic bending of INA forms I, II and V and deformed into special shapes.

    In form I (space groupP21/c witha=10.1756 (11),b=5.7319(6),c=10.034(1),β=98.169(1)°), N ?H···O (2.93(3))hydrogen-bonded dimers are interconnected alongcaxis by another N?H···O hydrogen-bonded dimer with NH2as donor and C=O as acceptor (2.93(3)) and expanded alongbaxis through N?H···O hydrogen-bonds and C?H···N weak interactions a centroid-to-centroid distance of 5.73.This generates a stable column-like structure with two-independent tapes staggered in arrangement through strong hydrogen bonds (Fig.2).Columns are formed parallel to (100) faces and extended throughaaxis with weaker interactions composed of C?H···N (between pyridine rings,3.42(3), 3.47(3)), resulting in some smooth slip planes between columns (Fig.S1 in Supporting information).When pressure is applied on (100) face, the internal columns slide along thecaxis and exhibit excellent plasticity.

    In form II (space groupP21/c witha=15.735(3),b=7.9976(18),c=9.885(3),β=105.586(17)°), molecules run along thecaxis by N?H···O hydrogen bonds (2.95(2)) and C?H···O weak interactions (3.24(3)) and extend backward alongbaxis by N?H···N (between pyridine rings, 2.98(6)) hydrogen bonds and C?H···N (3.83(1)) weak interactions to form 2D tapes (Fig.2).Besides, two-independent tapes staggered in arrangement to extend alongaaxis are derived from weak interactions C?H···C (3.52(3);3.41(3)) to form a column-like structure.These columns are parallel to (100) faces, with the same columnar structure exposed on both sides.As a result, slip planes are formed parallel to the wider(100) face of the crystals (Fig.S2 in Supporting information).

    In form V (space groupP21/c witha=5.1923(11),b=9.466(3),c=12.259(3),β=91.217(7)°), molecules extend along thebaxis by forming dimers of N?H···O(2.94(2)) hydrogen bonds and C?H···O (between the pyridine ring and the neighboring carbonyl groups: 3.35(2)) short contacts mediated dimers and run alongcaxis by interconnecting through N?H···N hydrogenbonds (2.99(3)) to form a zigzag tape parallel to (102) plane (Fig.2).Meanwhile, the tapes expand alongaandcaxes with weak interactions C?H···O(3.37(3)) to produce independent 2D layers parallel to (001) face.Therefore, the slip planes (011) are formed intersecting (001) faces at 52.32° (Fig.S3 in Supporting information).

    1D plastically bendable crystals should have a slip plane as a prerequisite, and weakly interconnected molecular layers slide over other layers when mechanically stressed [15].Three crystal forms of INA possess the same space group but exhibit different intermolecular interactions.Weak interactions such as C?H···N and C?H···C between rigid one-dimensional (1D) columns or chains in forms I and II and two-dimensional (2D) layers generated by moderately strong interactions such as C?H···O in form V are possible as long as the column’s face is allowed to slip smoothly without obstruction [18,29].

    The energy framework was used to calculate the interlayer and intralayer energy of slip plane identified by attachment energy (Eatt) (Table 1) [30–35].The interlayer energy of sliding plane is always found less than the intralayer energy [29].The(100) plane in INA form I is found to have the lowest attachment energy and corresponds to the largest surface in the pre-dicted crystal morphology.The molecules within (100) plane are hydrogen-bonded (N?H···O, 2.93(3)), whereas weaker interactions C?H···N (3.42(3); 3.47(3)) are present between these planes (Fig.S1).Therefore, the total interlayer interaction energy(?86.2 kJ/mol) is lower than the total intralayer interaction energies (?91.8 kJ/mol), indicating that the molecules slide along (100)plane is energetically favorable (Tables S3 and S4 and Fig.S4 in Supporting information).The molecules in slip plane (100) identified byEatt in INA form II are interconnected through N?H···O hydrogen bonds (2.95(2)), while only weak contact C?H···C(3.52(3), 3.41(3)) interacted between layers (Fig.S2).The significantly smaller interlayer energies (?90.4 kJ/mol) than intralayer energies (?140.8 kJ/mol) imply that (100) sliding plane is also energetically feasible.For INA form V, within the (011) plane identified by Eatt molecules are interconnected through N?H···O(2.94(2)) hydrogen bonds, whereas weak interactions C?H···O(3.35(2); 3.37(3)) present between layers (Fig.S3).Therefore,the molecules stacking across (011) plane exhibit slightly weaker interaction energy (?113.4 kJ/mol) than the bonding energy within(011) plane (?121.2 kJ/mol), demonstrating comparable intra and interlayer intermolecular bonding energies.It indicated that interlayer energies of INA polymorphs decreased following the order of form I>form II>form V corresponding to the plasticity increased in the order of form I>form II>form V based on a Wang’s previous study [36].Additionally, the other three polymorphs of INA (III,IV and IV) may present plastic property if they could be prepared successfully according to the slip planes and energy calculation results (Tables S4-S6 and Figs.S5-S8 in Supporting information).

    Table 1 Total absolute intermolecular interaction energies between the intralayer and interlayer in the slip planes of three isonicotinamide polymorphs calculated by energy framework.

    Table 2 Nanoindentation elastic modulus (E) and hardness (H) on major crystal faces of three isonicotinamide polymorphs.

    Nanoindentation tests were employed to further examine the relationship between interlayer energy and plasticity and to quantify the mechanical properties of INA polymorphs.Since all three polymorphs are plate-like, the nanoindentation is performed on(100) faces of forms I, II and V.The representative load (P)versusdepth (h) curve is illustrated in Fig.3.The high value ofhmaxand the large residual depths are linked to excellent plastic behavior [37].At a peak load of 5 mN, the maximum depth of penetration (hmax) increased in the order of form I (~568 nm)>form II (~529 nm)>form V (~236 nm), confirming the highest plasticity of form I.The elastic modulus (E) and nanohardness (H) was then estimated fromP-hresponse using the standard Oliver-Pharr method [38].H values of polymorphs decreased in the order of form I>form II>form V (Table 2).Since H reflects the resistance to plastic deformation, the very smallest H value indicates that INA form I exhibits the best bending properties [10,39].FromP-hcurves, forms I and V indented in (100) faces are comparably smooth, probably due to the presence of parallel slip planes that readily accommodate the advance of indenter tip through facile slip page [18].Meanwhile, several pop-ins were observed in (100)face of form II with the largest elastic modulus value.Pop-ins here can be attributed to sudden stress release when the elastic limit is exceeded and discrete plastic displacement bursts to facilitate easier stress dissipation during indenter tip penetration [40,41].Verified by nanoindentation experiment, plastic properties of INA forms increased in the order of form I>form II>form V, consistent with decreased order of interlayer energies of INA polymorphs calculated from energy framework.Accordingly, form I exhibits the best plasticity among other polymorphs with the weakest interlayer bonding energies.

    Fig.2.Molecular packing in forms I, II and V viewed along (100), (010) and (001) faces.

    Fig.3.Representative load?depth (P?h) curves obtained from nanoindentation on(100) faces of forms I (black), II (red) and V (blue) crystals and arrows in form II curve indicate the “pop-in” events during loading.AFM diagrams of forms I, II and V.

    Fig.4.The microscopic images of the bent crystal and the area for the micro-Raman test in (a) and Raman spectra of straight and deformed crystals of forms I (b), II (c) and V (d).

    Micro-Raman spectra were conducted to gain insights into structural changes of bending at the molecular level [18,42].Raman peak between 970 and 1010 cm?1is the ring breathing mode of pyridine, including ring vibrations and ring bond stretching [43].Forms II and V provide a peak at 995–996 cm?1while form I shows a peak maximum at 1002 cm?1.The same 995–996 cm?1band in the outer arc demonstrates a blue shift with a broadening of up to 1002 cm?1because of fewer and weaker intermolecular interactions such as C?H···C in form II and C?H···O in form V produced between pyridine C?H groups and amide groups and carbonyl groups as molecules are farther apart.However, the band of 1002 cm?1in form I does not shift from the outer arc to the inner arc due to weak interactions C?H···N formed between pyridine groups that neutralize vibrations and bond stretching of the single pyridine ring when molecules expand (Fig.4).Thus, bending leads to significant changes in C?H···C, C?H···O, and C?H···N intermolecular weak interactions of the three INA forms.

    Fig.5.Plastic bending model of single crystals of INA forms I (a), II (b) and V (c).

    Additionally, the band at 1611 cm?1is ascribed to stretching vibration of amide N?H groups involved in forming hydrogenbonded N?H···O and N?H···N and weak interactions C?H···N with carbonyl groups and pyridine groups.The peak intensity at 1611 cm?1increased in the order of outer>inner>middle>straight,implying that the increase in peak intensity corresponds to a larger intermolecular distance in bent crystal.The shorter distance in the inner arc, when contraction occurs, and longer distance in the outer arc, when expansion occurs [18].Concurrently, we stated that the intensity of the middle region is the smallest among the other two mentioned above, implying that during crystal bending the molecules in the middle accumulated the most with the closest distance when subjected to compression and tension forces (Figs.S9-S11 in Supporting information).

    A schematic depiction of these events is displayed in Fig.5.The pyridine rings in form I are shown as blue balls, and N?H···O hydrogen bonds form between -CONH2groups represented by yellow right angle disks.They are connected in pairs and extend alongcaxis to produce a column-like structure in form I as viewed on the(100) face.The molecules formed in different directions are exhibited by blue and yellow disks, and they are stacked alongcaxisviaN?H···O hydrogen bonds to generate column-like structure in form II on (100) face, while alongbandcaxesviaN?H···O and N?H···N hydrogen bonds, they form zigzag tapes in form V on (010) face.Additionally, the white region between columns and tapes corresponds to C?H···N, C?H···C and C?H···O weak interactions, respectively.In short, the bending models depicted in Fig.5 are composed of columns and tapes, which were stabilizedviastrong hydrogen bonds and weaker interactions in the orthogonal direction.Weaker interactions play a lubricating role between these columns and tapes, thus forming slip planes parallel to the bending face.When subjected to stress, columns can slide more easily than classical stacking flat sheets structure of plastic crystals [44].Therefore,forms I and II composed of columns or chains are easy to slide and exhibit better plasticity than form V.Although forms I and II are both composed of columnar structures, the difference of pyridine ring orientation with two-independent 2D tapes to form a columnlike structure in form II is responsible for less favorable bending geometry of form II than form I [26].In addition, molecules in chains or tapes staggered in arrangement make some short-range movements to adapt the bending process, in which the intermolecular distance become longer in the outer arc as molecules stretch and closer in the inner arc as molecules gather.As a result, the bulk crystal demonstrates plastic bending rather than brittle behavior.

    The crystal packing of pyrazine-2-carboxamide [13] form I does conform to this bending model with stronger interactions, in which amide dimers are stacked along thecaxis (3.72) and weak N–H···N (2.46), C–H···O (2.49) and C–H···N (2.55) interactions are present in the other two orthogonal directions and it could be bent under stress (Fig.S12 in Supporting information).While the crystal structure of nicotinamide, with the same molecular weight but different positions of nitrogen atom on pyridine ring, does not conform to the bending model with three-dimensional networks of hydrogen bonds having comparable interactions, this may resist deformation and makes it as a stiff material exhibiting brittle fracture under compressive stress (Fig.S13 in Supporting information)[45].

    In conclusion, three INA polymorphs exhibited significant bending properties.The crystal packing with strong and weak interactions in the orthogonal direction of the slip plane is a prerequisite for crystals to exhibit bending mechanical behavior.The super plasticity of INA makes it a good cocrystal coformer to regulate the mechanical behavior of API with poor tabletability.It is a thriving field of chemical material sciences with extensive application prospect.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was sponsored by National Key R&D Program of China (No.2016YFC1000900), National Science and Technology Major Project of China (No.2018ZX09711001–001–013), National Natural Science Foundation of China (No.81703438).

    国产精品av久久久久免费| 9色porny在线观看| 亚洲色图av天堂| 自线自在国产av| 黄色女人牲交| 午夜福利在线观看吧| 性欧美人与动物交配| 一级毛片精品| 大型黄色视频在线免费观看| 黄色视频不卡| 超色免费av| av网站在线播放免费| 91在线观看av| 欧美成人午夜精品| 亚洲成人国产一区在线观看| 在线观看免费日韩欧美大片| 精品第一国产精品| 不卡一级毛片| 亚洲精品美女久久av网站| 一区二区三区精品91| 多毛熟女@视频| 在线十欧美十亚洲十日本专区| 男女午夜视频在线观看| 黄频高清免费视频| 久久精品国产99精品国产亚洲性色 | 成人三级黄色视频| 中文字幕人妻丝袜制服| 十分钟在线观看高清视频www| 精品一区二区三区av网在线观看| 久久婷婷成人综合色麻豆| 18禁国产床啪视频网站| 欧美精品一区二区免费开放| 怎么达到女性高潮| 嫩草影视91久久| 美女高潮喷水抽搐中文字幕| 成年人黄色毛片网站| www.熟女人妻精品国产| 成人特级黄色片久久久久久久| 80岁老熟妇乱子伦牲交| 又大又爽又粗| 久久久久久久久免费视频了| 又紧又爽又黄一区二区| a级片在线免费高清观看视频| 亚洲精华国产精华精| 老司机福利观看| 中文字幕精品免费在线观看视频| avwww免费| 久久精品国产亚洲av高清一级| 日本撒尿小便嘘嘘汇集6| 亚洲精品av麻豆狂野| 老汉色∧v一级毛片| 国产精品二区激情视频| 国产精品美女特级片免费视频播放器 | 久久青草综合色| 亚洲中文字幕日韩| 美女高潮到喷水免费观看| 午夜精品久久久久久毛片777| 亚洲在线自拍视频| 亚洲全国av大片| 亚洲精品国产精品久久久不卡| 欧美色视频一区免费| 黑人欧美特级aaaaaa片| 纯流量卡能插随身wifi吗| 老汉色av国产亚洲站长工具| 免费不卡黄色视频| 亚洲午夜精品一区,二区,三区| av欧美777| av网站免费在线观看视频| 中出人妻视频一区二区| 一二三四在线观看免费中文在| 国产精品香港三级国产av潘金莲| 18禁裸乳无遮挡免费网站照片 | 免费看十八禁软件| 黄色怎么调成土黄色| 亚洲精品国产区一区二| 叶爱在线成人免费视频播放| 国产日韩一区二区三区精品不卡| 精品国产超薄肉色丝袜足j| 天堂动漫精品| 久久精品亚洲av国产电影网| 免费一级毛片在线播放高清视频 | 亚洲性夜色夜夜综合| 午夜老司机福利片| 色综合婷婷激情| 97碰自拍视频| 国产伦人伦偷精品视频| 日本三级黄在线观看| 一二三四在线观看免费中文在| 亚洲精品一二三| 桃红色精品国产亚洲av| 黄色怎么调成土黄色| 久久久久久人人人人人| 丝袜美腿诱惑在线| 黄色丝袜av网址大全| 中文亚洲av片在线观看爽| 欧美激情 高清一区二区三区| 香蕉国产在线看| 日韩大尺度精品在线看网址 | 淫秽高清视频在线观看| 精品午夜福利视频在线观看一区| 午夜两性在线视频| 亚洲人成77777在线视频| 99久久精品国产亚洲精品| 国产伦一二天堂av在线观看| 他把我摸到了高潮在线观看| 国产成人一区二区三区免费视频网站| 又黄又爽又免费观看的视频| 在线免费观看的www视频| 国产精品成人在线| 亚洲国产欧美网| 午夜影院日韩av| 一夜夜www| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品国产高清国产av| 精品人妻在线不人妻| 久久久久国内视频| 男男h啪啪无遮挡| 国产深夜福利视频在线观看| 99精品欧美一区二区三区四区| 99国产精品一区二区三区| 侵犯人妻中文字幕一二三四区| 伊人久久大香线蕉亚洲五| 亚洲视频免费观看视频| 国产精品av久久久久免费| 欧美日韩视频精品一区| 日本三级黄在线观看| 曰老女人黄片| 精品人妻1区二区| 美女高潮到喷水免费观看| 国产成人影院久久av| 熟女少妇亚洲综合色aaa.| 国产精品电影一区二区三区| 久久精品91蜜桃| 一级a爱片免费观看的视频| 丝袜美腿诱惑在线| 女警被强在线播放| 国产精品 欧美亚洲| 成人永久免费在线观看视频| 精品国产超薄肉色丝袜足j| 99re在线观看精品视频| 日本a在线网址| 美女 人体艺术 gogo| 精品久久久久久久久久免费视频 | 真人做人爱边吃奶动态| 欧美 亚洲 国产 日韩一| 热re99久久精品国产66热6| 日本免费一区二区三区高清不卡 | 亚洲成人国产一区在线观看| 亚洲性夜色夜夜综合| 夜夜爽天天搞| 一级作爱视频免费观看| 精品欧美一区二区三区在线| 黄片播放在线免费| 免费久久久久久久精品成人欧美视频| 亚洲欧美日韩高清在线视频| 黑人巨大精品欧美一区二区mp4| 亚洲成av片中文字幕在线观看| 国产成人一区二区三区免费视频网站| 国产视频一区二区在线看| 久久精品影院6| aaaaa片日本免费| 日韩精品中文字幕看吧| 99热只有精品国产| 夜夜夜夜夜久久久久| 成年版毛片免费区| 90打野战视频偷拍视频| 中文字幕最新亚洲高清| 美女大奶头视频| 日韩高清综合在线| 亚洲一区二区三区不卡视频| 久久中文看片网| 久久久精品国产亚洲av高清涩受| 国产亚洲精品久久久久久毛片| 琪琪午夜伦伦电影理论片6080| 久久草成人影院| 国产亚洲精品久久久久久毛片| 91成年电影在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 动漫黄色视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 久久影院123| 午夜视频精品福利| 交换朋友夫妻互换小说| 成人精品一区二区免费| 美女大奶头视频| 超色免费av| 丝袜美足系列| 国产av一区二区精品久久| 午夜精品久久久久久毛片777| 又黄又粗又硬又大视频| 在线天堂中文资源库| 欧美一级毛片孕妇| 亚洲成人久久性| 免费女性裸体啪啪无遮挡网站| 亚洲欧洲精品一区二区精品久久久| 嫩草影视91久久| 一级片免费观看大全| 啦啦啦在线免费观看视频4| 亚洲国产精品sss在线观看 | 国产视频一区二区在线看| 亚洲人成77777在线视频| 男女高潮啪啪啪动态图| 午夜影院日韩av| 男人的好看免费观看在线视频 | 久久精品91无色码中文字幕| 亚洲欧美一区二区三区久久| 99在线人妻在线中文字幕| 人妻久久中文字幕网| 国产无遮挡羞羞视频在线观看| 男女下面进入的视频免费午夜 | 黄片小视频在线播放| 精品无人区乱码1区二区| 亚洲色图av天堂| 五月开心婷婷网| 久久伊人香网站| 嫩草影视91久久| 交换朋友夫妻互换小说| av网站在线播放免费| 久久久久国产精品人妻aⅴ院| 国产三级在线视频| 19禁男女啪啪无遮挡网站| 一级作爱视频免费观看| 中文字幕av电影在线播放| 亚洲精品在线观看二区| 欧美成人性av电影在线观看| 久久精品国产99精品国产亚洲性色 | 亚洲成av片中文字幕在线观看| 国产色视频综合| 免费在线观看日本一区| 激情视频va一区二区三区| 国产精品国产av在线观看| 日韩视频一区二区在线观看| 一级作爱视频免费观看| 国产成人免费无遮挡视频| 不卡一级毛片| 午夜福利在线免费观看网站| 狂野欧美激情性xxxx| 一二三四在线观看免费中文在| 免费在线观看完整版高清| 99精品久久久久人妻精品| 热re99久久国产66热| 一级a爱片免费观看的视频| 超色免费av| 夜夜躁狠狠躁天天躁| 国产男靠女视频免费网站| 亚洲精华国产精华精| 人妻丰满熟妇av一区二区三区| 日韩精品青青久久久久久| 国产蜜桃级精品一区二区三区| 成年人黄色毛片网站| 精品国产国语对白av| 亚洲欧美日韩无卡精品| 亚洲av熟女| 少妇的丰满在线观看| 在线av久久热| 久久草成人影院| 精品高清国产在线一区| 色哟哟哟哟哟哟| 日本欧美视频一区| 天天添夜夜摸| 国产欧美日韩综合在线一区二区| 在线播放国产精品三级| 亚洲专区字幕在线| 亚洲成av片中文字幕在线观看| av网站在线播放免费| 国产深夜福利视频在线观看| 欧美日韩福利视频一区二区| 丰满饥渴人妻一区二区三| 精品免费久久久久久久清纯| 欧美乱码精品一区二区三区| 国产精品爽爽va在线观看网站 | 精品福利永久在线观看| 搡老熟女国产l中国老女人| 欧美黄色片欧美黄色片| 级片在线观看| 精品一区二区三卡| 成年女人毛片免费观看观看9| 天天躁夜夜躁狠狠躁躁| 久久性视频一级片| 97人妻天天添夜夜摸| 亚洲人成77777在线视频| 精品一区二区三区av网在线观看| 欧美老熟妇乱子伦牲交| 自拍欧美九色日韩亚洲蝌蚪91| 韩国精品一区二区三区| 99精品久久久久人妻精品| 国产精品亚洲一级av第二区| 老鸭窝网址在线观看| 国产成+人综合+亚洲专区| 长腿黑丝高跟| 91老司机精品| 亚洲第一青青草原| 色尼玛亚洲综合影院| 国产成人系列免费观看| 国产单亲对白刺激| 亚洲美女黄片视频| 很黄的视频免费| 国产99白浆流出| 1024视频免费在线观看| 一二三四在线观看免费中文在| 51午夜福利影视在线观看| 午夜日韩欧美国产| 老汉色av国产亚洲站长工具| 成人影院久久| 婷婷精品国产亚洲av在线| 精品久久久久久久毛片微露脸| 90打野战视频偷拍视频| 日本三级黄在线观看| 亚洲av成人不卡在线观看播放网| 性色av乱码一区二区三区2| 久久人妻av系列| 99久久人妻综合| 一级,二级,三级黄色视频| 亚洲精品国产一区二区精华液| 色哟哟哟哟哟哟| 免费人成视频x8x8入口观看| 人妻丰满熟妇av一区二区三区| 亚洲自拍偷在线| 在线观看免费日韩欧美大片| 国产成人精品久久二区二区免费| 波多野结衣av一区二区av| 亚洲精品中文字幕一二三四区| e午夜精品久久久久久久| 看免费av毛片| 大型黄色视频在线免费观看| 91麻豆精品激情在线观看国产 | 日韩免费高清中文字幕av| 天堂俺去俺来也www色官网| 精品国产一区二区三区四区第35| 俄罗斯特黄特色一大片| 免费在线观看黄色视频的| 99精品在免费线老司机午夜| 成人特级黄色片久久久久久久| 亚洲精品美女久久久久99蜜臀| 91国产中文字幕| 国产av一区在线观看免费| 少妇 在线观看| 亚洲精品粉嫩美女一区| 91老司机精品| 欧美老熟妇乱子伦牲交| 成人18禁高潮啪啪吃奶动态图| 91成人精品电影| 欧美日韩福利视频一区二区| 亚洲中文字幕日韩| tocl精华| 超碰97精品在线观看| 99riav亚洲国产免费| 美女国产高潮福利片在线看| 99精国产麻豆久久婷婷| 搡老熟女国产l中国老女人| 久久久久久大精品| 国产成人免费无遮挡视频| 国产亚洲欧美在线一区二区| 搡老乐熟女国产| 精品人妻在线不人妻| 亚洲欧美精品综合久久99| 自线自在国产av| av福利片在线| 身体一侧抽搐| 国产色视频综合| 一二三四在线观看免费中文在| 亚洲aⅴ乱码一区二区在线播放 | 中文欧美无线码| 欧美不卡视频在线免费观看 | 欧美日韩精品网址| 夜夜爽天天搞| 国产精品一区二区精品视频观看| 一边摸一边抽搐一进一小说| 国产精品久久久久成人av| 国产精品九九99| 国产精品野战在线观看 | netflix在线观看网站| 久久精品aⅴ一区二区三区四区| 欧美日韩福利视频一区二区| 两个人看的免费小视频| 亚洲免费av在线视频| 一区在线观看完整版| 国产99久久九九免费精品| 人人妻,人人澡人人爽秒播| 51午夜福利影视在线观看| 99久久99久久久精品蜜桃| 午夜福利,免费看| 亚洲情色 制服丝袜| 亚洲视频免费观看视频| 黄色怎么调成土黄色| 国产精品一区二区三区四区久久 | 国产精品av久久久久免费| 欧美日韩国产mv在线观看视频| 亚洲性夜色夜夜综合| 咕卡用的链子| 久久久久久久精品吃奶| 亚洲av五月六月丁香网| 高清毛片免费观看视频网站 | 午夜亚洲福利在线播放| 亚洲一区中文字幕在线| 一个人观看的视频www高清免费观看 | 搡老乐熟女国产| 国产一卡二卡三卡精品| 精品国产乱子伦一区二区三区| 亚洲成av片中文字幕在线观看| 国产精品一区二区免费欧美| 亚洲中文av在线| 国产成人精品久久二区二区免费| 国产伦人伦偷精品视频| 国产乱人伦免费视频| 一级片免费观看大全| 在线观看66精品国产| 成人手机av| 在线观看www视频免费| 国产av又大| ponron亚洲| 国产欧美日韩综合在线一区二区| 午夜影院日韩av| 成年女人毛片免费观看观看9| 国产又色又爽无遮挡免费看| 午夜成年电影在线免费观看| 精品乱码久久久久久99久播| 欧美最黄视频在线播放免费 | 91麻豆av在线| 国产免费av片在线观看野外av| 男女高潮啪啪啪动态图| 欧美黑人欧美精品刺激| 夜夜躁狠狠躁天天躁| 亚洲精品美女久久久久99蜜臀| 国产成人免费无遮挡视频| 国产精品日韩av在线免费观看 | 亚洲成人免费av在线播放| 狂野欧美激情性xxxx| 日韩 欧美 亚洲 中文字幕| 久久伊人香网站| 亚洲激情在线av| 脱女人内裤的视频| 久久久久久大精品| 老司机亚洲免费影院| 人成视频在线观看免费观看| 一级a爱视频在线免费观看| 91国产中文字幕| 色哟哟哟哟哟哟| 国产精品秋霞免费鲁丝片| 成人三级黄色视频| 高清在线国产一区| 国产欧美日韩精品亚洲av| 麻豆一二三区av精品| 少妇裸体淫交视频免费看高清 | 深夜精品福利| 男男h啪啪无遮挡| 男女之事视频高清在线观看| 777久久人妻少妇嫩草av网站| 91国产中文字幕| 国产成人欧美| 女人被狂操c到高潮| 午夜a级毛片| 久久午夜综合久久蜜桃| 欧美激情极品国产一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 少妇裸体淫交视频免费看高清 | 十八禁网站免费在线| 久久影院123| 国产成年人精品一区二区 | 亚洲一码二码三码区别大吗| 亚洲人成网站在线播放欧美日韩| 如日韩欧美国产精品一区二区三区| 精品电影一区二区在线| 在线av久久热| 宅男免费午夜| 久久人人爽av亚洲精品天堂| 成人亚洲精品一区在线观看| 国产精品乱码一区二三区的特点 | 国产成人啪精品午夜网站| 另类亚洲欧美激情| 欧美久久黑人一区二区| 久久久精品欧美日韩精品| 老司机深夜福利视频在线观看| 亚洲国产精品一区二区三区在线| 国产精品亚洲一级av第二区| 国产极品粉嫩免费观看在线| 国产不卡一卡二| 亚洲欧洲精品一区二区精品久久久| 99国产精品免费福利视频| 麻豆一二三区av精品| 免费女性裸体啪啪无遮挡网站| 侵犯人妻中文字幕一二三四区| 午夜福利在线观看吧| 一进一出抽搐gif免费好疼 | av欧美777| 黄片播放在线免费| 国产一区二区激情短视频| 99国产精品一区二区三区| 大型av网站在线播放| 欧美精品亚洲一区二区| 久9热在线精品视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产中文字幕在线视频| 人人妻人人爽人人添夜夜欢视频| 午夜福利影视在线免费观看| а√天堂www在线а√下载| 亚洲 欧美 日韩 在线 免费| 黄色片一级片一级黄色片| 婷婷精品国产亚洲av在线| 精品日产1卡2卡| 欧美黄色片欧美黄色片| 午夜福利影视在线免费观看| 一边摸一边抽搐一进一小说| 神马国产精品三级电影在线观看 | 美女高潮喷水抽搐中文字幕| 精品高清国产在线一区| 亚洲黑人精品在线| 99久久久亚洲精品蜜臀av| www国产在线视频色| 国产主播在线观看一区二区| 91精品国产国语对白视频| 99精国产麻豆久久婷婷| 亚洲熟女毛片儿| 99精品久久久久人妻精品| 无遮挡黄片免费观看| 国产日韩一区二区三区精品不卡| 91成年电影在线观看| 黄色 视频免费看| 久久久精品国产亚洲av高清涩受| 亚洲国产精品sss在线观看 | 国产主播在线观看一区二区| 亚洲在线自拍视频| 欧美日韩亚洲综合一区二区三区_| 国产精品免费视频内射| 国产国语露脸激情在线看| 丁香欧美五月| 国产99久久九九免费精品| 亚洲九九香蕉| 动漫黄色视频在线观看| 免费不卡黄色视频| 国产欧美日韩一区二区三| 美女福利国产在线| 免费看十八禁软件| 乱人伦中国视频| 欧美日韩亚洲国产一区二区在线观看| 国产精品一区二区三区四区久久 | 精品无人区乱码1区二区| 美女午夜性视频免费| 我的亚洲天堂| 一夜夜www| 夜夜看夜夜爽夜夜摸 | 韩国精品一区二区三区| 美女扒开内裤让男人捅视频| 午夜福利,免费看| 欧美人与性动交α欧美软件| 一边摸一边抽搐一进一小说| 国产野战对白在线观看| 中文字幕最新亚洲高清| 一个人免费在线观看的高清视频| 国产视频一区二区在线看| 国产成人一区二区三区免费视频网站| 国产蜜桃级精品一区二区三区| 一区二区三区国产精品乱码| 高清黄色对白视频在线免费看| 国产亚洲精品久久久久久毛片| 欧美丝袜亚洲另类 | 日韩av在线大香蕉| 日本免费一区二区三区高清不卡 | 亚洲午夜精品一区,二区,三区| 香蕉国产在线看| 亚洲少妇的诱惑av| 午夜成年电影在线免费观看| 日韩视频一区二区在线观看| 久久国产精品影院| 性少妇av在线| 亚洲视频免费观看视频| 又黄又粗又硬又大视频| 这个男人来自地球电影免费观看| 国产亚洲精品第一综合不卡| 国产高清国产精品国产三级| 叶爱在线成人免费视频播放| 午夜两性在线视频| 成人国语在线视频| 亚洲成av片中文字幕在线观看| 色老头精品视频在线观看| 久99久视频精品免费| 另类亚洲欧美激情| 精品久久久精品久久久| 波多野结衣一区麻豆| av在线播放免费不卡| 午夜日韩欧美国产| 亚洲人成电影观看| 亚洲国产精品999在线| 高潮久久久久久久久久久不卡| 国产伦人伦偷精品视频| 女人被躁到高潮嗷嗷叫费观| 午夜久久久在线观看| 国产精品日韩av在线免费观看 | 日韩欧美一区二区三区在线观看| 一级毛片高清免费大全| 午夜免费激情av| 亚洲少妇的诱惑av| 亚洲精品国产色婷婷电影| 久久久精品欧美日韩精品| 午夜两性在线视频| 在线av久久热| 女生性感内裤真人,穿戴方法视频| 一本大道久久a久久精品| 在线观看免费午夜福利视频| 精品一品国产午夜福利视频| 搡老熟女国产l中国老女人| 亚洲一区二区三区欧美精品| 成人三级黄色视频| 黄色怎么调成土黄色| 色精品久久人妻99蜜桃| 99久久人妻综合| 精品一区二区三区av网在线观看| 99国产精品一区二区蜜桃av| 成人国产一区最新在线观看| 法律面前人人平等表现在哪些方面| 叶爱在线成人免费视频播放| 身体一侧抽搐| 国产片内射在线| 淫秽高清视频在线观看| 亚洲一区二区三区色噜噜 |