• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural landscape investigations on bendable plastic crystals of isonicotinamide polymorphs

    2022-09-16 05:25:12JintingLiJiqunLiHongjiLiuLiZhngYngLuZhengzhengZhou
    Chinese Chemical Letters 2022年8期

    Jinting Li, Jiqun Li, Hongji Liu, Li Zhng, Yng Lu, Zhengzheng Zhou,?

    aNMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Hygiene Inspection & Quarantine Science, School of Public Health, Southern Medical University, Guangzhou 510515, China

    b Beijing City Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100050, China

    ABSTRACT Three polymorphs (forms I, II and V) of isonicotinamide (INA) were mechanically flexible and exhibited one-dimensional (1D) plasticity.Anisotropic intermolecular interactions contribute to the plasticity of single crystals: weak dispersive interactions between slip planes such as 1D columns in forms I and II or 2D layers in form V were stabilized by strong hydrogen bonds, allowing the layer or column’s surface to glide smoothly without hindrance.The disparity of intermolecular interactions on plastic properties of INA polymorphic crystals was confirmed by energy framework analysis, nanoindentation tests and micro-Raman spectroscopy.The crystal which exhibits plastic property provides a promising application in pharmaceuticals and material sciences.

    Keywords:Isonicotinamide Polymorph Plasticity Slip plane Bending crystal

    Organic crystals with plastic or elastic properties, a kind of advanced functional materials, are future prospects for optical waveguides [1], organic electronics [2], muscle-mimetic biomaterials [3],sensors [4], bioinspired natural fibers [5,6], fine chemicals [7],pharmaceutical industry and other fields [8–11].It was first observed in hexachlorobenzene [12] and then other 16 bending crystals were explored by Reddy [13], which greatly enlarged the types of plastic bending crystals and proved the feasibility of finding new bending crystals.However, it should be noted that approximately>80% of organic compounds exist in different solid-state forms [14].Different polymorphs demonstrate potential different physicochemical properties such as dissolution, solubility,etc., but mechanical differences on bendable single crystals lack further investigations [15–18].At present, the mechanical behaviors of polymorphic compounds remained unexplored.

    Isonicotinamide (INA) is a popular coformer extensively employed as a partner molecule with active pharmaceutical ingredients (APIs) in cocrystal preparation.It was generally recognized as safe (GRAS) and presented high water solubility [19–22].So far,it has been reported that INA was capable of forming six polymorphs (Table S1 in Supporting information) [22].Forms I [23] and II [24] are more easily obtained regardless of the solvent type and form V [27] occurred when the methyl group was presented.However, forms III [25] and VI [28] were always obtained from a cocrystal of API with INA, and form IV [26] was obtained only as a mixture with form II.Hence, forms I, II and V were selected and prepared in the present study.The three polymorphs exhibit 1D plasticity, which provides a model to explain the relationship between the types of intermolecular interactions in the crystal structure calculated by energy framework and the difference of plasticity examined by nanoindentation tests among polymorphs.

    The cell parameters obtained from single crystal X-ray diffraction (SXRD) were found to be consistent with CIF documents deposited in Cambridge Crystallographic Data Center (CCDC), implying that single crystals of forms I (CSD refcode EHOWIH01) [23],II (CSD refcode EHOWIH02) [24] and V (CSD refcode EHOWIH05)[27] were successfully prepared (Table S2 in Supporting information).Single crystals of forms I and II both underwent irreversible plastic deformation when bent with a metal needle on(100)/(?100) faces with the largest area.Form V exhibits excellent plasticity when stress is applied on narrow faces (010)/(0?10) but not on the wider face (Fig.1).All the polymorphs exhibit 1D plasticity and were directly folded in half without fracture, which was not allowed to be twisted [17].

    Fig.1.Screenshots of irreversible plastic bending of INA forms I, II and V and deformed into special shapes.

    In form I (space groupP21/c witha=10.1756 (11),b=5.7319(6),c=10.034(1),β=98.169(1)°), N ?H···O (2.93(3))hydrogen-bonded dimers are interconnected alongcaxis by another N?H···O hydrogen-bonded dimer with NH2as donor and C=O as acceptor (2.93(3)) and expanded alongbaxis through N?H···O hydrogen-bonds and C?H···N weak interactions a centroid-to-centroid distance of 5.73.This generates a stable column-like structure with two-independent tapes staggered in arrangement through strong hydrogen bonds (Fig.2).Columns are formed parallel to (100) faces and extended throughaaxis with weaker interactions composed of C?H···N (between pyridine rings,3.42(3), 3.47(3)), resulting in some smooth slip planes between columns (Fig.S1 in Supporting information).When pressure is applied on (100) face, the internal columns slide along thecaxis and exhibit excellent plasticity.

    In form II (space groupP21/c witha=15.735(3),b=7.9976(18),c=9.885(3),β=105.586(17)°), molecules run along thecaxis by N?H···O hydrogen bonds (2.95(2)) and C?H···O weak interactions (3.24(3)) and extend backward alongbaxis by N?H···N (between pyridine rings, 2.98(6)) hydrogen bonds and C?H···N (3.83(1)) weak interactions to form 2D tapes (Fig.2).Besides, two-independent tapes staggered in arrangement to extend alongaaxis are derived from weak interactions C?H···C (3.52(3);3.41(3)) to form a column-like structure.These columns are parallel to (100) faces, with the same columnar structure exposed on both sides.As a result, slip planes are formed parallel to the wider(100) face of the crystals (Fig.S2 in Supporting information).

    In form V (space groupP21/c witha=5.1923(11),b=9.466(3),c=12.259(3),β=91.217(7)°), molecules extend along thebaxis by forming dimers of N?H···O(2.94(2)) hydrogen bonds and C?H···O (between the pyridine ring and the neighboring carbonyl groups: 3.35(2)) short contacts mediated dimers and run alongcaxis by interconnecting through N?H···N hydrogenbonds (2.99(3)) to form a zigzag tape parallel to (102) plane (Fig.2).Meanwhile, the tapes expand alongaandcaxes with weak interactions C?H···O(3.37(3)) to produce independent 2D layers parallel to (001) face.Therefore, the slip planes (011) are formed intersecting (001) faces at 52.32° (Fig.S3 in Supporting information).

    1D plastically bendable crystals should have a slip plane as a prerequisite, and weakly interconnected molecular layers slide over other layers when mechanically stressed [15].Three crystal forms of INA possess the same space group but exhibit different intermolecular interactions.Weak interactions such as C?H···N and C?H···C between rigid one-dimensional (1D) columns or chains in forms I and II and two-dimensional (2D) layers generated by moderately strong interactions such as C?H···O in form V are possible as long as the column’s face is allowed to slip smoothly without obstruction [18,29].

    The energy framework was used to calculate the interlayer and intralayer energy of slip plane identified by attachment energy (Eatt) (Table 1) [30–35].The interlayer energy of sliding plane is always found less than the intralayer energy [29].The(100) plane in INA form I is found to have the lowest attachment energy and corresponds to the largest surface in the pre-dicted crystal morphology.The molecules within (100) plane are hydrogen-bonded (N?H···O, 2.93(3)), whereas weaker interactions C?H···N (3.42(3); 3.47(3)) are present between these planes (Fig.S1).Therefore, the total interlayer interaction energy(?86.2 kJ/mol) is lower than the total intralayer interaction energies (?91.8 kJ/mol), indicating that the molecules slide along (100)plane is energetically favorable (Tables S3 and S4 and Fig.S4 in Supporting information).The molecules in slip plane (100) identified byEatt in INA form II are interconnected through N?H···O hydrogen bonds (2.95(2)), while only weak contact C?H···C(3.52(3), 3.41(3)) interacted between layers (Fig.S2).The significantly smaller interlayer energies (?90.4 kJ/mol) than intralayer energies (?140.8 kJ/mol) imply that (100) sliding plane is also energetically feasible.For INA form V, within the (011) plane identified by Eatt molecules are interconnected through N?H···O(2.94(2)) hydrogen bonds, whereas weak interactions C?H···O(3.35(2); 3.37(3)) present between layers (Fig.S3).Therefore,the molecules stacking across (011) plane exhibit slightly weaker interaction energy (?113.4 kJ/mol) than the bonding energy within(011) plane (?121.2 kJ/mol), demonstrating comparable intra and interlayer intermolecular bonding energies.It indicated that interlayer energies of INA polymorphs decreased following the order of form I>form II>form V corresponding to the plasticity increased in the order of form I>form II>form V based on a Wang’s previous study [36].Additionally, the other three polymorphs of INA (III,IV and IV) may present plastic property if they could be prepared successfully according to the slip planes and energy calculation results (Tables S4-S6 and Figs.S5-S8 in Supporting information).

    Table 1 Total absolute intermolecular interaction energies between the intralayer and interlayer in the slip planes of three isonicotinamide polymorphs calculated by energy framework.

    Table 2 Nanoindentation elastic modulus (E) and hardness (H) on major crystal faces of three isonicotinamide polymorphs.

    Nanoindentation tests were employed to further examine the relationship between interlayer energy and plasticity and to quantify the mechanical properties of INA polymorphs.Since all three polymorphs are plate-like, the nanoindentation is performed on(100) faces of forms I, II and V.The representative load (P)versusdepth (h) curve is illustrated in Fig.3.The high value ofhmaxand the large residual depths are linked to excellent plastic behavior [37].At a peak load of 5 mN, the maximum depth of penetration (hmax) increased in the order of form I (~568 nm)>form II (~529 nm)>form V (~236 nm), confirming the highest plasticity of form I.The elastic modulus (E) and nanohardness (H) was then estimated fromP-hresponse using the standard Oliver-Pharr method [38].H values of polymorphs decreased in the order of form I>form II>form V (Table 2).Since H reflects the resistance to plastic deformation, the very smallest H value indicates that INA form I exhibits the best bending properties [10,39].FromP-hcurves, forms I and V indented in (100) faces are comparably smooth, probably due to the presence of parallel slip planes that readily accommodate the advance of indenter tip through facile slip page [18].Meanwhile, several pop-ins were observed in (100)face of form II with the largest elastic modulus value.Pop-ins here can be attributed to sudden stress release when the elastic limit is exceeded and discrete plastic displacement bursts to facilitate easier stress dissipation during indenter tip penetration [40,41].Verified by nanoindentation experiment, plastic properties of INA forms increased in the order of form I>form II>form V, consistent with decreased order of interlayer energies of INA polymorphs calculated from energy framework.Accordingly, form I exhibits the best plasticity among other polymorphs with the weakest interlayer bonding energies.

    Fig.2.Molecular packing in forms I, II and V viewed along (100), (010) and (001) faces.

    Fig.3.Representative load?depth (P?h) curves obtained from nanoindentation on(100) faces of forms I (black), II (red) and V (blue) crystals and arrows in form II curve indicate the “pop-in” events during loading.AFM diagrams of forms I, II and V.

    Fig.4.The microscopic images of the bent crystal and the area for the micro-Raman test in (a) and Raman spectra of straight and deformed crystals of forms I (b), II (c) and V (d).

    Micro-Raman spectra were conducted to gain insights into structural changes of bending at the molecular level [18,42].Raman peak between 970 and 1010 cm?1is the ring breathing mode of pyridine, including ring vibrations and ring bond stretching [43].Forms II and V provide a peak at 995–996 cm?1while form I shows a peak maximum at 1002 cm?1.The same 995–996 cm?1band in the outer arc demonstrates a blue shift with a broadening of up to 1002 cm?1because of fewer and weaker intermolecular interactions such as C?H···C in form II and C?H···O in form V produced between pyridine C?H groups and amide groups and carbonyl groups as molecules are farther apart.However, the band of 1002 cm?1in form I does not shift from the outer arc to the inner arc due to weak interactions C?H···N formed between pyridine groups that neutralize vibrations and bond stretching of the single pyridine ring when molecules expand (Fig.4).Thus, bending leads to significant changes in C?H···C, C?H···O, and C?H···N intermolecular weak interactions of the three INA forms.

    Fig.5.Plastic bending model of single crystals of INA forms I (a), II (b) and V (c).

    Additionally, the band at 1611 cm?1is ascribed to stretching vibration of amide N?H groups involved in forming hydrogenbonded N?H···O and N?H···N and weak interactions C?H···N with carbonyl groups and pyridine groups.The peak intensity at 1611 cm?1increased in the order of outer>inner>middle>straight,implying that the increase in peak intensity corresponds to a larger intermolecular distance in bent crystal.The shorter distance in the inner arc, when contraction occurs, and longer distance in the outer arc, when expansion occurs [18].Concurrently, we stated that the intensity of the middle region is the smallest among the other two mentioned above, implying that during crystal bending the molecules in the middle accumulated the most with the closest distance when subjected to compression and tension forces (Figs.S9-S11 in Supporting information).

    A schematic depiction of these events is displayed in Fig.5.The pyridine rings in form I are shown as blue balls, and N?H···O hydrogen bonds form between -CONH2groups represented by yellow right angle disks.They are connected in pairs and extend alongcaxis to produce a column-like structure in form I as viewed on the(100) face.The molecules formed in different directions are exhibited by blue and yellow disks, and they are stacked alongcaxisviaN?H···O hydrogen bonds to generate column-like structure in form II on (100) face, while alongbandcaxesviaN?H···O and N?H···N hydrogen bonds, they form zigzag tapes in form V on (010) face.Additionally, the white region between columns and tapes corresponds to C?H···N, C?H···C and C?H···O weak interactions, respectively.In short, the bending models depicted in Fig.5 are composed of columns and tapes, which were stabilizedviastrong hydrogen bonds and weaker interactions in the orthogonal direction.Weaker interactions play a lubricating role between these columns and tapes, thus forming slip planes parallel to the bending face.When subjected to stress, columns can slide more easily than classical stacking flat sheets structure of plastic crystals [44].Therefore,forms I and II composed of columns or chains are easy to slide and exhibit better plasticity than form V.Although forms I and II are both composed of columnar structures, the difference of pyridine ring orientation with two-independent 2D tapes to form a columnlike structure in form II is responsible for less favorable bending geometry of form II than form I [26].In addition, molecules in chains or tapes staggered in arrangement make some short-range movements to adapt the bending process, in which the intermolecular distance become longer in the outer arc as molecules stretch and closer in the inner arc as molecules gather.As a result, the bulk crystal demonstrates plastic bending rather than brittle behavior.

    The crystal packing of pyrazine-2-carboxamide [13] form I does conform to this bending model with stronger interactions, in which amide dimers are stacked along thecaxis (3.72) and weak N–H···N (2.46), C–H···O (2.49) and C–H···N (2.55) interactions are present in the other two orthogonal directions and it could be bent under stress (Fig.S12 in Supporting information).While the crystal structure of nicotinamide, with the same molecular weight but different positions of nitrogen atom on pyridine ring, does not conform to the bending model with three-dimensional networks of hydrogen bonds having comparable interactions, this may resist deformation and makes it as a stiff material exhibiting brittle fracture under compressive stress (Fig.S13 in Supporting information)[45].

    In conclusion, three INA polymorphs exhibited significant bending properties.The crystal packing with strong and weak interactions in the orthogonal direction of the slip plane is a prerequisite for crystals to exhibit bending mechanical behavior.The super plasticity of INA makes it a good cocrystal coformer to regulate the mechanical behavior of API with poor tabletability.It is a thriving field of chemical material sciences with extensive application prospect.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was sponsored by National Key R&D Program of China (No.2016YFC1000900), National Science and Technology Major Project of China (No.2018ZX09711001–001–013), National Natural Science Foundation of China (No.81703438).

    男女无遮挡免费网站观看| 一级毛片aaaaaa免费看小| 91精品国产九色| 亚洲欧美清纯卡通| 男男h啪啪无遮挡| 久久综合国产亚洲精品| 男女国产视频网站| 一级a做视频免费观看| 高清日韩中文字幕在线| 久久久久精品久久久久真实原创| 国产精品无大码| 国产精品一区二区性色av| 一个人看视频在线观看www免费| 老师上课跳d突然被开到最大视频| 国产视频内射| 美女cb高潮喷水在线观看| 天天躁日日操中文字幕| 超碰av人人做人人爽久久| 一级片'在线观看视频| 美女国产视频在线观看| 精品久久久久久久久亚洲| 免费观看在线日韩| 五月开心婷婷网| 赤兔流量卡办理| 成人综合一区亚洲| 熟妇人妻不卡中文字幕| 国产精品久久久久久久久免| 麻豆成人午夜福利视频| 好男人视频免费观看在线| 成人18禁高潮啪啪吃奶动态图 | 国产亚洲最大av| 日韩制服骚丝袜av| 2022亚洲国产成人精品| 国产精品一区二区性色av| 国产成人精品福利久久| 在线观看免费视频网站a站| 亚洲av不卡在线观看| 最近2019中文字幕mv第一页| 亚洲va在线va天堂va国产| 亚洲欧美日韩卡通动漫| 激情五月婷婷亚洲| 免费不卡的大黄色大毛片视频在线观看| 国产真实伦视频高清在线观看| 国产免费一级a男人的天堂| 女性生殖器流出的白浆| 少妇的逼水好多| 少妇精品久久久久久久| 妹子高潮喷水视频| 青青草视频在线视频观看| 欧美+日韩+精品| 在线精品无人区一区二区三 | 九草在线视频观看| 中文字幕亚洲精品专区| 国产亚洲最大av| 国产精品偷伦视频观看了| 久久久久久人妻| 亚洲精品乱久久久久久| 人妻夜夜爽99麻豆av| 亚洲精品自拍成人| 国产免费福利视频在线观看| 伦精品一区二区三区| 99热这里只有是精品50| 性色av一级| 最近手机中文字幕大全| 黄色怎么调成土黄色| 久久久久久伊人网av| 国产v大片淫在线免费观看| 国产免费一区二区三区四区乱码| 欧美少妇被猛烈插入视频| 日日撸夜夜添| 午夜福利在线在线| av天堂中文字幕网| 国产成人精品一,二区| 韩国高清视频一区二区三区| 卡戴珊不雅视频在线播放| 成人国产av品久久久| 一级二级三级毛片免费看| 蜜臀久久99精品久久宅男| 99精国产麻豆久久婷婷| 高清午夜精品一区二区三区| 亚洲av不卡在线观看| 亚洲精品日本国产第一区| 欧美zozozo另类| 噜噜噜噜噜久久久久久91| 中文精品一卡2卡3卡4更新| 在线观看一区二区三区| 午夜福利高清视频| 成人亚洲精品一区在线观看 | av天堂中文字幕网| 熟女av电影| 国产淫语在线视频| 亚洲国产精品国产精品| 性色av一级| a 毛片基地| 亚洲综合精品二区| 久久国产亚洲av麻豆专区| 亚洲欧洲日产国产| 黑人高潮一二区| 亚洲av成人精品一二三区| 国产极品天堂在线| 少妇的逼水好多| 久久精品国产亚洲网站| 18禁在线播放成人免费| 亚洲怡红院男人天堂| 蜜桃久久精品国产亚洲av| 成人漫画全彩无遮挡| 日日啪夜夜撸| 欧美老熟妇乱子伦牲交| 国产亚洲一区二区精品| 精品久久久久久久久av| 成人高潮视频无遮挡免费网站| 女的被弄到高潮叫床怎么办| 日韩成人av中文字幕在线观看| 精品人妻偷拍中文字幕| 另类亚洲欧美激情| 熟女人妻精品中文字幕| 免费大片18禁| 一区在线观看完整版| kizo精华| 欧美丝袜亚洲另类| 日本猛色少妇xxxxx猛交久久| 国产精品99久久久久久久久| 熟女人妻精品中文字幕| 亚洲精品久久午夜乱码| 一级毛片 在线播放| 亚洲av成人精品一二三区| 日韩欧美 国产精品| a级一级毛片免费在线观看| 中文字幕亚洲精品专区| 好男人视频免费观看在线| 肉色欧美久久久久久久蜜桃| 久热这里只有精品99| 日本黄色片子视频| 一区二区三区免费毛片| 亚洲一级一片aⅴ在线观看| 精品人妻视频免费看| 美女脱内裤让男人舔精品视频| 夜夜爽夜夜爽视频| 久久国产亚洲av麻豆专区| 亚洲精品,欧美精品| 精品亚洲乱码少妇综合久久| 国产精品嫩草影院av在线观看| 汤姆久久久久久久影院中文字幕| 亚洲三级黄色毛片| 啦啦啦啦在线视频资源| 亚洲精品日本国产第一区| 在线观看美女被高潮喷水网站| 日韩中文字幕视频在线看片 | 日韩大片免费观看网站| 一级毛片黄色毛片免费观看视频| 午夜免费男女啪啪视频观看| 亚洲人成网站在线播| 国产美女午夜福利| 99久久综合免费| 激情 狠狠 欧美| 亚洲精品色激情综合| 一区二区三区精品91| 免费大片黄手机在线观看| 联通29元200g的流量卡| 黄色视频在线播放观看不卡| 欧美zozozo另类| 午夜激情久久久久久久| 少妇被粗大猛烈的视频| 男女啪啪激烈高潮av片| 亚洲国产日韩一区二区| 精品一品国产午夜福利视频| 欧美日韩亚洲高清精品| av女优亚洲男人天堂| 插阴视频在线观看视频| 国产综合精华液| 国产精品女同一区二区软件| 我的女老师完整版在线观看| 久久99蜜桃精品久久| 国产精品.久久久| 亚洲精品一区蜜桃| 狂野欧美白嫩少妇大欣赏| 午夜老司机福利剧场| 亚洲内射少妇av| 国产一区二区三区av在线| 黄色配什么色好看| 亚洲国产毛片av蜜桃av| 国产精品久久久久久精品古装| 欧美xxxx黑人xx丫x性爽| 免费久久久久久久精品成人欧美视频 | 亚洲精华国产精华液的使用体验| 亚洲av不卡在线观看| 夜夜骑夜夜射夜夜干| 亚洲精品久久午夜乱码| 各种免费的搞黄视频| 男女免费视频国产| 小蜜桃在线观看免费完整版高清| 欧美丝袜亚洲另类| 啦啦啦视频在线资源免费观看| 爱豆传媒免费全集在线观看| 久久99热这里只有精品18| 蜜臀久久99精品久久宅男| 国产精品久久久久久久电影| 国产欧美亚洲国产| 高清视频免费观看一区二区| 久久亚洲国产成人精品v| 国产免费又黄又爽又色| 精品亚洲成国产av| 99久久人妻综合| 国产精品一区www在线观看| 国模一区二区三区四区视频| 精品久久久久久久久av| 久久久国产一区二区| 日韩av免费高清视频| 亚洲国产欧美在线一区| 国产欧美另类精品又又久久亚洲欧美| 国产一区二区三区av在线| 只有这里有精品99| 亚洲精品久久久久久婷婷小说| 永久免费av网站大全| 女人久久www免费人成看片| 一个人看视频在线观看www免费| 国产成人精品一,二区| 日本色播在线视频| av线在线观看网站| 亚洲,欧美,日韩| 精品一区二区三卡| 日本欧美视频一区| 国产91av在线免费观看| 久久精品久久久久久久性| 免费观看性生交大片5| 91久久精品国产一区二区三区| 18禁裸乳无遮挡动漫免费视频| 精品人妻视频免费看| 韩国高清视频一区二区三区| 国产色婷婷99| 国产精品蜜桃在线观看| 有码 亚洲区| 人人妻人人添人人爽欧美一区卜 | 视频中文字幕在线观看| 亚洲,一卡二卡三卡| 亚洲av电影在线观看一区二区三区| av在线播放精品| 欧美xxⅹ黑人| 一级毛片黄色毛片免费观看视频| 在线观看免费视频网站a站| 美女中出高潮动态图| 高清在线视频一区二区三区| 色吧在线观看| 菩萨蛮人人尽说江南好唐韦庄| 日本色播在线视频| 婷婷色麻豆天堂久久| 少妇丰满av| 久久ye,这里只有精品| 18禁在线无遮挡免费观看视频| 少妇猛男粗大的猛烈进出视频| 免费黄色在线免费观看| 建设人人有责人人尽责人人享有的 | 欧美日韩在线观看h| 丰满少妇做爰视频| 久久毛片免费看一区二区三区| 久久精品国产自在天天线| 久久6这里有精品| 大又大粗又爽又黄少妇毛片口| 欧美精品人与动牲交sv欧美| 国产精品女同一区二区软件| 欧美成人午夜免费资源| 插逼视频在线观看| 一边亲一边摸免费视频| 妹子高潮喷水视频| 2022亚洲国产成人精品| 在线观看美女被高潮喷水网站| 国产成人精品一,二区| 天天躁夜夜躁狠狠久久av| 王馨瑶露胸无遮挡在线观看| 人妻 亚洲 视频| 久久精品久久久久久噜噜老黄| 18禁裸乳无遮挡免费网站照片| 亚洲av中文字字幕乱码综合| 亚洲精品视频女| 国产成人a∨麻豆精品| 又爽又黄a免费视频| 这个男人来自地球电影免费观看 | 午夜福利影视在线免费观看| 精品酒店卫生间| 成人国产av品久久久| 亚洲成人一二三区av| h日本视频在线播放| 国产精品偷伦视频观看了| 亚洲国产高清在线一区二区三| 久久久久久久国产电影| 波野结衣二区三区在线| 2018国产大陆天天弄谢| 国产亚洲av片在线观看秒播厂| 大话2 男鬼变身卡| 深爱激情五月婷婷| 老熟女久久久| 欧美xxⅹ黑人| 一级毛片久久久久久久久女| 国产亚洲av片在线观看秒播厂| 亚洲激情五月婷婷啪啪| 毛片一级片免费看久久久久| 欧美激情国产日韩精品一区| 各种免费的搞黄视频| 欧美精品亚洲一区二区| 在线天堂最新版资源| 国产精品欧美亚洲77777| 91精品国产九色| 久久久久久九九精品二区国产| 18禁在线播放成人免费| 中文字幕久久专区| 欧美日韩在线观看h| 国产老妇伦熟女老妇高清| 尾随美女入室| 国产无遮挡羞羞视频在线观看| a 毛片基地| 91午夜精品亚洲一区二区三区| 欧美最新免费一区二区三区| 大香蕉久久网| www.av在线官网国产| 国产在线免费精品| 一个人免费看片子| 中文字幕制服av| 久久精品国产亚洲av天美| 天堂俺去俺来也www色官网| 中文字幕亚洲精品专区| 亚洲成人一二三区av| 在线亚洲精品国产二区图片欧美 | 搡老乐熟女国产| 精华霜和精华液先用哪个| 日韩av在线免费看完整版不卡| 午夜免费男女啪啪视频观看| 国产视频内射| 91久久精品国产一区二区成人| 男女下面进入的视频免费午夜| 国产精品一区二区三区四区免费观看| 亚洲图色成人| av女优亚洲男人天堂| 精品一区在线观看国产| 亚洲av中文av极速乱| 中国美白少妇内射xxxbb| 免费黄网站久久成人精品| videossex国产| 精品久久国产蜜桃| 男女啪啪激烈高潮av片| 蜜桃在线观看..| 久热久热在线精品观看| 成人18禁高潮啪啪吃奶动态图 | 日产精品乱码卡一卡2卡三| 日本免费在线观看一区| 三级经典国产精品| 日日摸夜夜添夜夜添av毛片| 一个人免费看片子| 高清毛片免费看| 亚洲国产精品成人久久小说| 国产av国产精品国产| 久久ye,这里只有精品| 欧美精品国产亚洲| 亚洲精品色激情综合| 26uuu在线亚洲综合色| 蜜臀久久99精品久久宅男| 极品少妇高潮喷水抽搐| 最近手机中文字幕大全| 国产亚洲最大av| 2018国产大陆天天弄谢| 我的女老师完整版在线观看| 国产永久视频网站| 人体艺术视频欧美日本| 亚洲人成网站高清观看| 美女高潮的动态| 国产免费视频播放在线视频| av免费在线看不卡| 国产女主播在线喷水免费视频网站| kizo精华| 九九爱精品视频在线观看| 大片免费播放器 马上看| 亚洲av.av天堂| 欧美精品人与动牲交sv欧美| 亚洲精品国产av蜜桃| 高清av免费在线| 日韩av不卡免费在线播放| 色5月婷婷丁香| 欧美精品亚洲一区二区| 狂野欧美激情性xxxx在线观看| 国产精品成人在线| 不卡视频在线观看欧美| 大陆偷拍与自拍| 26uuu在线亚洲综合色| 日本vs欧美在线观看视频 | 黄片无遮挡物在线观看| 一级片'在线观看视频| 午夜老司机福利剧场| 黄色视频在线播放观看不卡| 18禁动态无遮挡网站| 下体分泌物呈黄色| 国产 一区 欧美 日韩| 免费看光身美女| 亚洲精品日韩在线中文字幕| 99久久中文字幕三级久久日本| 在线观看免费高清a一片| 干丝袜人妻中文字幕| 欧美日本视频| 亚洲最大成人中文| 只有这里有精品99| av一本久久久久| a 毛片基地| 日韩视频在线欧美| 网址你懂的国产日韩在线| 亚洲精品,欧美精品| 国国产精品蜜臀av免费| 免费观看的影片在线观看| 国产一级毛片在线| 日韩在线高清观看一区二区三区| 22中文网久久字幕| 菩萨蛮人人尽说江南好唐韦庄| 久久6这里有精品| 国产精品久久久久久久久免| 成年女人在线观看亚洲视频| 最近中文字幕2019免费版| 午夜福利在线观看免费完整高清在| 男女下面进入的视频免费午夜| 久久青草综合色| 久久久色成人| 国产91av在线免费观看| 成人午夜精彩视频在线观看| 日韩欧美 国产精品| 高清av免费在线| av女优亚洲男人天堂| 一级爰片在线观看| 亚洲色图av天堂| 国产高潮美女av| 在线观看三级黄色| 成人无遮挡网站| 亚洲不卡免费看| 三级经典国产精品| 国产免费一级a男人的天堂| 亚洲成人中文字幕在线播放| 18禁裸乳无遮挡动漫免费视频| 搡老乐熟女国产| 亚洲欧美中文字幕日韩二区| 联通29元200g的流量卡| 日韩在线高清观看一区二区三区| 免费大片黄手机在线观看| 身体一侧抽搐| 中文欧美无线码| 国产成人精品婷婷| 日本欧美国产在线视频| 丝袜喷水一区| 九九在线视频观看精品| 国产成人精品久久久久久| 亚州av有码| 亚洲国产最新在线播放| av线在线观看网站| 国产免费又黄又爽又色| 永久网站在线| 一级毛片 在线播放| 亚洲va在线va天堂va国产| 久久精品久久久久久久性| 欧美日本视频| av免费观看日本| 国产视频首页在线观看| 亚洲欧美一区二区三区国产| 赤兔流量卡办理| 91午夜精品亚洲一区二区三区| 91久久精品国产一区二区三区| 欧美精品亚洲一区二区| 老熟女久久久| 国产黄片美女视频| 99热网站在线观看| 大香蕉97超碰在线| tube8黄色片| 大陆偷拍与自拍| 久久久久精品久久久久真实原创| 亚洲成人手机| 久久久久久久国产电影| a级一级毛片免费在线观看| av视频免费观看在线观看| 欧美日韩综合久久久久久| 边亲边吃奶的免费视频| 国产成人精品婷婷| 在线 av 中文字幕| 男女无遮挡免费网站观看| 亚洲av二区三区四区| 丰满人妻一区二区三区视频av| 18禁裸乳无遮挡免费网站照片| 99热这里只有是精品50| 国产av精品麻豆| 亚洲国产精品专区欧美| 一本一本综合久久| 国产深夜福利视频在线观看| 国产熟女欧美一区二区| 一本色道久久久久久精品综合| 精品一区二区三区视频在线| 夜夜爽夜夜爽视频| 久久热精品热| 97在线视频观看| 亚洲av综合色区一区| 十八禁网站网址无遮挡 | 亚洲美女黄色视频免费看| 亚洲天堂av无毛| 亚洲,一卡二卡三卡| 老熟女久久久| 亚洲无线观看免费| 国产熟女欧美一区二区| 国产欧美另类精品又又久久亚洲欧美| 少妇人妻一区二区三区视频| 国产精品久久久久久av不卡| 亚洲图色成人| 肉色欧美久久久久久久蜜桃| 亚洲怡红院男人天堂| 久久久色成人| 午夜免费男女啪啪视频观看| 久久国产乱子免费精品| 超碰av人人做人人爽久久| 纯流量卡能插随身wifi吗| 国产av精品麻豆| 男女边吃奶边做爰视频| 国产精品一二三区在线看| 久久久精品免费免费高清| 少妇人妻一区二区三区视频| 欧美zozozo另类| 久久久久性生活片| 免费人成在线观看视频色| 亚洲av欧美aⅴ国产| 久久久久网色| 男女免费视频国产| 国内精品宾馆在线| 大陆偷拍与自拍| 久久午夜福利片| 人人妻人人澡人人爽人人夜夜| 一区二区三区四区激情视频| 91狼人影院| 欧美日韩视频高清一区二区三区二| 欧美老熟妇乱子伦牲交| 久久久久人妻精品一区果冻| 另类亚洲欧美激情| av一本久久久久| 蜜桃在线观看..| 激情 狠狠 欧美| 80岁老熟妇乱子伦牲交| 国产精品欧美亚洲77777| 免费人成在线观看视频色| 国产亚洲欧美精品永久| 久久国产精品男人的天堂亚洲 | 九色成人免费人妻av| 秋霞伦理黄片| 免费久久久久久久精品成人欧美视频 | 国产综合精华液| 99国产精品免费福利视频| 国产精品女同一区二区软件| 色5月婷婷丁香| 久久综合国产亚洲精品| 在线精品无人区一区二区三 | 成人美女网站在线观看视频| 大码成人一级视频| 亚洲人成网站高清观看| 国产欧美另类精品又又久久亚洲欧美| 国产精品99久久99久久久不卡 | 欧美zozozo另类| 国产成人精品一,二区| 久久国产乱子免费精品| 黄色怎么调成土黄色| 女的被弄到高潮叫床怎么办| 午夜视频国产福利| 亚洲av成人精品一二三区| 狂野欧美激情性bbbbbb| 成人亚洲精品一区在线观看 | 中文字幕人妻熟人妻熟丝袜美| 日韩av在线免费看完整版不卡| 亚洲aⅴ乱码一区二区在线播放| 夜夜爽夜夜爽视频| 国产一区二区三区av在线| 国产亚洲欧美精品永久| av卡一久久| 在线观看人妻少妇| 国产亚洲5aaaaa淫片| 日日摸夜夜添夜夜爱| 国产av一区二区精品久久 | 国产精品一区二区在线观看99| 777米奇影视久久| 国产成人a∨麻豆精品| 天堂俺去俺来也www色官网| 网址你懂的国产日韩在线| 五月伊人婷婷丁香| 舔av片在线| 亚洲av成人精品一区久久| 国产精品偷伦视频观看了| 国产在视频线精品| 97超碰精品成人国产| 日日啪夜夜撸| 久久97久久精品| 国产欧美日韩精品一区二区| 精华霜和精华液先用哪个| 偷拍熟女少妇极品色| 97在线人人人人妻| 免费高清在线观看视频在线观看| 在线观看免费高清a一片| 国产午夜精品一二区理论片| 日韩精品有码人妻一区| 五月天丁香电影| h视频一区二区三区| 搡女人真爽免费视频火全软件| 97精品久久久久久久久久精品| 欧美+日韩+精品| 又粗又硬又长又爽又黄的视频| 精品99又大又爽又粗少妇毛片| 男人舔奶头视频| 夜夜骑夜夜射夜夜干| 久久久久国产网址| 噜噜噜噜噜久久久久久91| 极品少妇高潮喷水抽搐| av免费观看日本| 狂野欧美白嫩少妇大欣赏| 精品酒店卫生间| 亚洲av电影在线观看一区二区三区| 热re99久久精品国产66热6| 高清黄色对白视频在线免费看 | 亚洲av在线观看美女高潮| av播播在线观看一区| 我要看黄色一级片免费的| 成年女人在线观看亚洲视频|