• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural landscape investigations on bendable plastic crystals of isonicotinamide polymorphs

    2022-09-16 05:25:12JintingLiJiqunLiHongjiLiuLiZhngYngLuZhengzhengZhou
    Chinese Chemical Letters 2022年8期

    Jinting Li, Jiqun Li, Hongji Liu, Li Zhng, Yng Lu, Zhengzheng Zhou,?

    aNMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Hygiene Inspection & Quarantine Science, School of Public Health, Southern Medical University, Guangzhou 510515, China

    b Beijing City Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100050, China

    ABSTRACT Three polymorphs (forms I, II and V) of isonicotinamide (INA) were mechanically flexible and exhibited one-dimensional (1D) plasticity.Anisotropic intermolecular interactions contribute to the plasticity of single crystals: weak dispersive interactions between slip planes such as 1D columns in forms I and II or 2D layers in form V were stabilized by strong hydrogen bonds, allowing the layer or column’s surface to glide smoothly without hindrance.The disparity of intermolecular interactions on plastic properties of INA polymorphic crystals was confirmed by energy framework analysis, nanoindentation tests and micro-Raman spectroscopy.The crystal which exhibits plastic property provides a promising application in pharmaceuticals and material sciences.

    Keywords:Isonicotinamide Polymorph Plasticity Slip plane Bending crystal

    Organic crystals with plastic or elastic properties, a kind of advanced functional materials, are future prospects for optical waveguides [1], organic electronics [2], muscle-mimetic biomaterials [3],sensors [4], bioinspired natural fibers [5,6], fine chemicals [7],pharmaceutical industry and other fields [8–11].It was first observed in hexachlorobenzene [12] and then other 16 bending crystals were explored by Reddy [13], which greatly enlarged the types of plastic bending crystals and proved the feasibility of finding new bending crystals.However, it should be noted that approximately>80% of organic compounds exist in different solid-state forms [14].Different polymorphs demonstrate potential different physicochemical properties such as dissolution, solubility,etc., but mechanical differences on bendable single crystals lack further investigations [15–18].At present, the mechanical behaviors of polymorphic compounds remained unexplored.

    Isonicotinamide (INA) is a popular coformer extensively employed as a partner molecule with active pharmaceutical ingredients (APIs) in cocrystal preparation.It was generally recognized as safe (GRAS) and presented high water solubility [19–22].So far,it has been reported that INA was capable of forming six polymorphs (Table S1 in Supporting information) [22].Forms I [23] and II [24] are more easily obtained regardless of the solvent type and form V [27] occurred when the methyl group was presented.However, forms III [25] and VI [28] were always obtained from a cocrystal of API with INA, and form IV [26] was obtained only as a mixture with form II.Hence, forms I, II and V were selected and prepared in the present study.The three polymorphs exhibit 1D plasticity, which provides a model to explain the relationship between the types of intermolecular interactions in the crystal structure calculated by energy framework and the difference of plasticity examined by nanoindentation tests among polymorphs.

    The cell parameters obtained from single crystal X-ray diffraction (SXRD) were found to be consistent with CIF documents deposited in Cambridge Crystallographic Data Center (CCDC), implying that single crystals of forms I (CSD refcode EHOWIH01) [23],II (CSD refcode EHOWIH02) [24] and V (CSD refcode EHOWIH05)[27] were successfully prepared (Table S2 in Supporting information).Single crystals of forms I and II both underwent irreversible plastic deformation when bent with a metal needle on(100)/(?100) faces with the largest area.Form V exhibits excellent plasticity when stress is applied on narrow faces (010)/(0?10) but not on the wider face (Fig.1).All the polymorphs exhibit 1D plasticity and were directly folded in half without fracture, which was not allowed to be twisted [17].

    Fig.1.Screenshots of irreversible plastic bending of INA forms I, II and V and deformed into special shapes.

    In form I (space groupP21/c witha=10.1756 (11),b=5.7319(6),c=10.034(1),β=98.169(1)°), N ?H···O (2.93(3))hydrogen-bonded dimers are interconnected alongcaxis by another N?H···O hydrogen-bonded dimer with NH2as donor and C=O as acceptor (2.93(3)) and expanded alongbaxis through N?H···O hydrogen-bonds and C?H···N weak interactions a centroid-to-centroid distance of 5.73.This generates a stable column-like structure with two-independent tapes staggered in arrangement through strong hydrogen bonds (Fig.2).Columns are formed parallel to (100) faces and extended throughaaxis with weaker interactions composed of C?H···N (between pyridine rings,3.42(3), 3.47(3)), resulting in some smooth slip planes between columns (Fig.S1 in Supporting information).When pressure is applied on (100) face, the internal columns slide along thecaxis and exhibit excellent plasticity.

    In form II (space groupP21/c witha=15.735(3),b=7.9976(18),c=9.885(3),β=105.586(17)°), molecules run along thecaxis by N?H···O hydrogen bonds (2.95(2)) and C?H···O weak interactions (3.24(3)) and extend backward alongbaxis by N?H···N (between pyridine rings, 2.98(6)) hydrogen bonds and C?H···N (3.83(1)) weak interactions to form 2D tapes (Fig.2).Besides, two-independent tapes staggered in arrangement to extend alongaaxis are derived from weak interactions C?H···C (3.52(3);3.41(3)) to form a column-like structure.These columns are parallel to (100) faces, with the same columnar structure exposed on both sides.As a result, slip planes are formed parallel to the wider(100) face of the crystals (Fig.S2 in Supporting information).

    In form V (space groupP21/c witha=5.1923(11),b=9.466(3),c=12.259(3),β=91.217(7)°), molecules extend along thebaxis by forming dimers of N?H···O(2.94(2)) hydrogen bonds and C?H···O (between the pyridine ring and the neighboring carbonyl groups: 3.35(2)) short contacts mediated dimers and run alongcaxis by interconnecting through N?H···N hydrogenbonds (2.99(3)) to form a zigzag tape parallel to (102) plane (Fig.2).Meanwhile, the tapes expand alongaandcaxes with weak interactions C?H···O(3.37(3)) to produce independent 2D layers parallel to (001) face.Therefore, the slip planes (011) are formed intersecting (001) faces at 52.32° (Fig.S3 in Supporting information).

    1D plastically bendable crystals should have a slip plane as a prerequisite, and weakly interconnected molecular layers slide over other layers when mechanically stressed [15].Three crystal forms of INA possess the same space group but exhibit different intermolecular interactions.Weak interactions such as C?H···N and C?H···C between rigid one-dimensional (1D) columns or chains in forms I and II and two-dimensional (2D) layers generated by moderately strong interactions such as C?H···O in form V are possible as long as the column’s face is allowed to slip smoothly without obstruction [18,29].

    The energy framework was used to calculate the interlayer and intralayer energy of slip plane identified by attachment energy (Eatt) (Table 1) [30–35].The interlayer energy of sliding plane is always found less than the intralayer energy [29].The(100) plane in INA form I is found to have the lowest attachment energy and corresponds to the largest surface in the pre-dicted crystal morphology.The molecules within (100) plane are hydrogen-bonded (N?H···O, 2.93(3)), whereas weaker interactions C?H···N (3.42(3); 3.47(3)) are present between these planes (Fig.S1).Therefore, the total interlayer interaction energy(?86.2 kJ/mol) is lower than the total intralayer interaction energies (?91.8 kJ/mol), indicating that the molecules slide along (100)plane is energetically favorable (Tables S3 and S4 and Fig.S4 in Supporting information).The molecules in slip plane (100) identified byEatt in INA form II are interconnected through N?H···O hydrogen bonds (2.95(2)), while only weak contact C?H···C(3.52(3), 3.41(3)) interacted between layers (Fig.S2).The significantly smaller interlayer energies (?90.4 kJ/mol) than intralayer energies (?140.8 kJ/mol) imply that (100) sliding plane is also energetically feasible.For INA form V, within the (011) plane identified by Eatt molecules are interconnected through N?H···O(2.94(2)) hydrogen bonds, whereas weak interactions C?H···O(3.35(2); 3.37(3)) present between layers (Fig.S3).Therefore,the molecules stacking across (011) plane exhibit slightly weaker interaction energy (?113.4 kJ/mol) than the bonding energy within(011) plane (?121.2 kJ/mol), demonstrating comparable intra and interlayer intermolecular bonding energies.It indicated that interlayer energies of INA polymorphs decreased following the order of form I>form II>form V corresponding to the plasticity increased in the order of form I>form II>form V based on a Wang’s previous study [36].Additionally, the other three polymorphs of INA (III,IV and IV) may present plastic property if they could be prepared successfully according to the slip planes and energy calculation results (Tables S4-S6 and Figs.S5-S8 in Supporting information).

    Table 1 Total absolute intermolecular interaction energies between the intralayer and interlayer in the slip planes of three isonicotinamide polymorphs calculated by energy framework.

    Table 2 Nanoindentation elastic modulus (E) and hardness (H) on major crystal faces of three isonicotinamide polymorphs.

    Nanoindentation tests were employed to further examine the relationship between interlayer energy and plasticity and to quantify the mechanical properties of INA polymorphs.Since all three polymorphs are plate-like, the nanoindentation is performed on(100) faces of forms I, II and V.The representative load (P)versusdepth (h) curve is illustrated in Fig.3.The high value ofhmaxand the large residual depths are linked to excellent plastic behavior [37].At a peak load of 5 mN, the maximum depth of penetration (hmax) increased in the order of form I (~568 nm)>form II (~529 nm)>form V (~236 nm), confirming the highest plasticity of form I.The elastic modulus (E) and nanohardness (H) was then estimated fromP-hresponse using the standard Oliver-Pharr method [38].H values of polymorphs decreased in the order of form I>form II>form V (Table 2).Since H reflects the resistance to plastic deformation, the very smallest H value indicates that INA form I exhibits the best bending properties [10,39].FromP-hcurves, forms I and V indented in (100) faces are comparably smooth, probably due to the presence of parallel slip planes that readily accommodate the advance of indenter tip through facile slip page [18].Meanwhile, several pop-ins were observed in (100)face of form II with the largest elastic modulus value.Pop-ins here can be attributed to sudden stress release when the elastic limit is exceeded and discrete plastic displacement bursts to facilitate easier stress dissipation during indenter tip penetration [40,41].Verified by nanoindentation experiment, plastic properties of INA forms increased in the order of form I>form II>form V, consistent with decreased order of interlayer energies of INA polymorphs calculated from energy framework.Accordingly, form I exhibits the best plasticity among other polymorphs with the weakest interlayer bonding energies.

    Fig.2.Molecular packing in forms I, II and V viewed along (100), (010) and (001) faces.

    Fig.3.Representative load?depth (P?h) curves obtained from nanoindentation on(100) faces of forms I (black), II (red) and V (blue) crystals and arrows in form II curve indicate the “pop-in” events during loading.AFM diagrams of forms I, II and V.

    Fig.4.The microscopic images of the bent crystal and the area for the micro-Raman test in (a) and Raman spectra of straight and deformed crystals of forms I (b), II (c) and V (d).

    Micro-Raman spectra were conducted to gain insights into structural changes of bending at the molecular level [18,42].Raman peak between 970 and 1010 cm?1is the ring breathing mode of pyridine, including ring vibrations and ring bond stretching [43].Forms II and V provide a peak at 995–996 cm?1while form I shows a peak maximum at 1002 cm?1.The same 995–996 cm?1band in the outer arc demonstrates a blue shift with a broadening of up to 1002 cm?1because of fewer and weaker intermolecular interactions such as C?H···C in form II and C?H···O in form V produced between pyridine C?H groups and amide groups and carbonyl groups as molecules are farther apart.However, the band of 1002 cm?1in form I does not shift from the outer arc to the inner arc due to weak interactions C?H···N formed between pyridine groups that neutralize vibrations and bond stretching of the single pyridine ring when molecules expand (Fig.4).Thus, bending leads to significant changes in C?H···C, C?H···O, and C?H···N intermolecular weak interactions of the three INA forms.

    Fig.5.Plastic bending model of single crystals of INA forms I (a), II (b) and V (c).

    Additionally, the band at 1611 cm?1is ascribed to stretching vibration of amide N?H groups involved in forming hydrogenbonded N?H···O and N?H···N and weak interactions C?H···N with carbonyl groups and pyridine groups.The peak intensity at 1611 cm?1increased in the order of outer>inner>middle>straight,implying that the increase in peak intensity corresponds to a larger intermolecular distance in bent crystal.The shorter distance in the inner arc, when contraction occurs, and longer distance in the outer arc, when expansion occurs [18].Concurrently, we stated that the intensity of the middle region is the smallest among the other two mentioned above, implying that during crystal bending the molecules in the middle accumulated the most with the closest distance when subjected to compression and tension forces (Figs.S9-S11 in Supporting information).

    A schematic depiction of these events is displayed in Fig.5.The pyridine rings in form I are shown as blue balls, and N?H···O hydrogen bonds form between -CONH2groups represented by yellow right angle disks.They are connected in pairs and extend alongcaxis to produce a column-like structure in form I as viewed on the(100) face.The molecules formed in different directions are exhibited by blue and yellow disks, and they are stacked alongcaxisviaN?H···O hydrogen bonds to generate column-like structure in form II on (100) face, while alongbandcaxesviaN?H···O and N?H···N hydrogen bonds, they form zigzag tapes in form V on (010) face.Additionally, the white region between columns and tapes corresponds to C?H···N, C?H···C and C?H···O weak interactions, respectively.In short, the bending models depicted in Fig.5 are composed of columns and tapes, which were stabilizedviastrong hydrogen bonds and weaker interactions in the orthogonal direction.Weaker interactions play a lubricating role between these columns and tapes, thus forming slip planes parallel to the bending face.When subjected to stress, columns can slide more easily than classical stacking flat sheets structure of plastic crystals [44].Therefore,forms I and II composed of columns or chains are easy to slide and exhibit better plasticity than form V.Although forms I and II are both composed of columnar structures, the difference of pyridine ring orientation with two-independent 2D tapes to form a columnlike structure in form II is responsible for less favorable bending geometry of form II than form I [26].In addition, molecules in chains or tapes staggered in arrangement make some short-range movements to adapt the bending process, in which the intermolecular distance become longer in the outer arc as molecules stretch and closer in the inner arc as molecules gather.As a result, the bulk crystal demonstrates plastic bending rather than brittle behavior.

    The crystal packing of pyrazine-2-carboxamide [13] form I does conform to this bending model with stronger interactions, in which amide dimers are stacked along thecaxis (3.72) and weak N–H···N (2.46), C–H···O (2.49) and C–H···N (2.55) interactions are present in the other two orthogonal directions and it could be bent under stress (Fig.S12 in Supporting information).While the crystal structure of nicotinamide, with the same molecular weight but different positions of nitrogen atom on pyridine ring, does not conform to the bending model with three-dimensional networks of hydrogen bonds having comparable interactions, this may resist deformation and makes it as a stiff material exhibiting brittle fracture under compressive stress (Fig.S13 in Supporting information)[45].

    In conclusion, three INA polymorphs exhibited significant bending properties.The crystal packing with strong and weak interactions in the orthogonal direction of the slip plane is a prerequisite for crystals to exhibit bending mechanical behavior.The super plasticity of INA makes it a good cocrystal coformer to regulate the mechanical behavior of API with poor tabletability.It is a thriving field of chemical material sciences with extensive application prospect.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was sponsored by National Key R&D Program of China (No.2016YFC1000900), National Science and Technology Major Project of China (No.2018ZX09711001–001–013), National Natural Science Foundation of China (No.81703438).

    亚洲少妇的诱惑av| 日本黄色视频三级网站网址| 两个人视频免费观看高清| 亚洲 欧美 日韩 在线 免费| 久久久久国内视频| 一区二区三区高清视频在线| tocl精华| 人人妻,人人澡人人爽秒播| 免费一级毛片在线播放高清视频 | 97人妻天天添夜夜摸| 一二三四在线观看免费中文在| 国产欧美日韩一区二区三区在线| 国产精品乱码一区二三区的特点 | 久久人人精品亚洲av| 麻豆一二三区av精品| 中国美女看黄片| 日韩成人在线观看一区二区三区| 久久久久久久久免费视频了| 午夜精品久久久久久毛片777| 99久久精品国产亚洲精品| 欧美成人免费av一区二区三区| 非洲黑人性xxxx精品又粗又长| 亚洲男人天堂网一区| 夜夜躁狠狠躁天天躁| 欧美成人一区二区免费高清观看 | 每晚都被弄得嗷嗷叫到高潮| 免费不卡黄色视频| 黄频高清免费视频| 搡老妇女老女人老熟妇| 久久性视频一级片| 国产单亲对白刺激| 中文字幕久久专区| 久久人妻av系列| 午夜久久久久精精品| 久久草成人影院| 欧美黄色淫秽网站| 欧美日韩中文字幕国产精品一区二区三区 | 丰满人妻熟妇乱又伦精品不卡| 搡老妇女老女人老熟妇| 日韩欧美一区视频在线观看| 美国免费a级毛片| 国产色视频综合| 午夜福利,免费看| 成人永久免费在线观看视频| 男女下面插进去视频免费观看| 亚洲电影在线观看av| 如日韩欧美国产精品一区二区三区| 国产男靠女视频免费网站| 免费看a级黄色片| 日本 av在线| 日本精品一区二区三区蜜桃| 免费高清在线观看日韩| 又大又爽又粗| 日韩av在线大香蕉| 一本久久中文字幕| 日本a在线网址| 亚洲专区中文字幕在线| 日韩欧美国产在线观看| 亚洲精品久久国产高清桃花| 国产不卡一卡二| 精品国产超薄肉色丝袜足j| 制服人妻中文乱码| 18美女黄网站色大片免费观看| 色精品久久人妻99蜜桃| 久久精品国产清高在天天线| 宅男免费午夜| 大香蕉久久成人网| 成人精品一区二区免费| 欧美av亚洲av综合av国产av| 久久精品91无色码中文字幕| 人人澡人人妻人| 激情视频va一区二区三区| 欧美老熟妇乱子伦牲交| 波多野结衣一区麻豆| 精品国产乱子伦一区二区三区| 麻豆成人av在线观看| 亚洲少妇的诱惑av| 久久精品aⅴ一区二区三区四区| 悠悠久久av| 波多野结衣高清无吗| av视频免费观看在线观看| 91麻豆精品激情在线观看国产| 国产一区二区三区在线臀色熟女| 久久精品91无色码中文字幕| 欧美激情高清一区二区三区| 国产成人影院久久av| 成人三级做爰电影| 精品福利观看| 亚洲成av片中文字幕在线观看| 久9热在线精品视频| 国产精品永久免费网站| 国产精品 欧美亚洲| 自线自在国产av| 国语自产精品视频在线第100页| 亚洲专区国产一区二区| 波多野结衣高清无吗| 黑人巨大精品欧美一区二区蜜桃| 美女免费视频网站| 亚洲男人天堂网一区| 久久精品国产亚洲av高清一级| 久久久久九九精品影院| 性少妇av在线| 久久 成人 亚洲| 久久香蕉精品热| 国产私拍福利视频在线观看| 日本vs欧美在线观看视频| 成人永久免费在线观看视频| 亚洲激情在线av| 在线观看免费日韩欧美大片| 在线国产一区二区在线| 亚洲片人在线观看| 制服诱惑二区| 一本大道久久a久久精品| 男女下面进入的视频免费午夜 | 淫秽高清视频在线观看| 免费不卡黄色视频| 国产视频一区二区在线看| 91精品三级在线观看| 日韩有码中文字幕| 亚洲色图av天堂| 男女做爰动态图高潮gif福利片 | 妹子高潮喷水视频| 黑丝袜美女国产一区| 久久久久久亚洲精品国产蜜桃av| 亚洲av五月六月丁香网| 亚洲中文av在线| 亚洲成a人片在线一区二区| 超碰成人久久| 国产主播在线观看一区二区| 亚洲午夜理论影院| 日本欧美视频一区| 欧美色视频一区免费| 男男h啪啪无遮挡| 国产成人系列免费观看| 后天国语完整版免费观看| 真人做人爱边吃奶动态| 97人妻精品一区二区三区麻豆 | 99在线视频只有这里精品首页| 丁香六月欧美| 亚洲成人精品中文字幕电影| 午夜福利视频1000在线观看 | 免费看美女性在线毛片视频| 国内久久婷婷六月综合欲色啪| 亚洲 欧美 日韩 在线 免费| 久久中文字幕人妻熟女| 久久热在线av| 欧美日本亚洲视频在线播放| 满18在线观看网站| 久久人妻av系列| 男人舔女人的私密视频| 亚洲av熟女| 伦理电影免费视频| 免费看a级黄色片| av网站免费在线观看视频| 久久影院123| 欧美一区二区精品小视频在线| 中文字幕另类日韩欧美亚洲嫩草| 91大片在线观看| 男人舔女人的私密视频| 中国美女看黄片| 久久 成人 亚洲| 啦啦啦免费观看视频1| 免费看十八禁软件| 香蕉久久夜色| 婷婷六月久久综合丁香| 国产色视频综合| 国产亚洲精品av在线| 久久精品aⅴ一区二区三区四区| 欧美色视频一区免费| 香蕉久久夜色| 中文字幕人妻丝袜一区二区| 极品人妻少妇av视频| 手机成人av网站| 亚洲av成人av| 亚洲欧美精品综合久久99| 欧美成人午夜精品| 欧美日韩乱码在线| 99精品在免费线老司机午夜| 午夜福利一区二区在线看| tocl精华| 9热在线视频观看99| 亚洲熟妇熟女久久| 熟女少妇亚洲综合色aaa.| 亚洲电影在线观看av| 大陆偷拍与自拍| 日韩欧美在线二视频| 女同久久另类99精品国产91| 国产精品自产拍在线观看55亚洲| 国产精品一区二区在线不卡| 最好的美女福利视频网| 成人手机av| 国产成+人综合+亚洲专区| 男女做爰动态图高潮gif福利片 | 好男人电影高清在线观看| 性色av乱码一区二区三区2| 久久热在线av| 午夜a级毛片| 后天国语完整版免费观看| 日韩国内少妇激情av| 欧美老熟妇乱子伦牲交| 亚洲av电影不卡..在线观看| 亚洲精品在线观看二区| 国产欧美日韩一区二区精品| 国产乱人伦免费视频| 国产亚洲欧美在线一区二区| 九色国产91popny在线| 久久欧美精品欧美久久欧美| 又大又爽又粗| 精品久久久精品久久久| 天堂√8在线中文| 性欧美人与动物交配| 午夜激情av网站| 久久久久久国产a免费观看| 亚洲欧美精品综合久久99| 老司机靠b影院| 亚洲一码二码三码区别大吗| 久久久久久久久中文| 他把我摸到了高潮在线观看| 成年女人毛片免费观看观看9| 成人特级黄色片久久久久久久| 国产精品爽爽va在线观看网站 | 国产1区2区3区精品| 成人三级黄色视频| 国产国语露脸激情在线看| 在线十欧美十亚洲十日本专区| 长腿黑丝高跟| 国产精品永久免费网站| 最好的美女福利视频网| 欧美日韩一级在线毛片| 国产精品亚洲一级av第二区| а√天堂www在线а√下载| 亚洲 欧美一区二区三区| 午夜a级毛片| 美女 人体艺术 gogo| 欧美精品亚洲一区二区| or卡值多少钱| 看免费av毛片| 亚洲国产看品久久| 免费在线观看亚洲国产| 国产99白浆流出| 大陆偷拍与自拍| √禁漫天堂资源中文www| 亚洲自偷自拍图片 自拍| 亚洲全国av大片| 午夜a级毛片| 欧美日韩乱码在线| 亚洲第一欧美日韩一区二区三区| 黄色毛片三级朝国网站| 老熟妇仑乱视频hdxx| 欧美激情 高清一区二区三区| 18禁裸乳无遮挡免费网站照片 | 美女 人体艺术 gogo| 亚洲av成人一区二区三| 国产精品综合久久久久久久免费 | 国产精品美女特级片免费视频播放器 | 久久午夜综合久久蜜桃| 一区二区三区激情视频| 亚洲视频免费观看视频| 亚洲人成电影观看| 国产99久久九九免费精品| 一进一出抽搐gif免费好疼| 露出奶头的视频| 成人三级做爰电影| 国产精品国产高清国产av| 两个人免费观看高清视频| 黄色女人牲交| 长腿黑丝高跟| 老司机午夜十八禁免费视频| 少妇熟女aⅴ在线视频| 亚洲激情在线av| 中文字幕人妻熟女乱码| 久久精品亚洲熟妇少妇任你| 男人的好看免费观看在线视频 | 天天躁狠狠躁夜夜躁狠狠躁| 日本a在线网址| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美精品综合一区二区三区| 亚洲第一青青草原| 热99re8久久精品国产| 久久 成人 亚洲| 丁香欧美五月| 亚洲五月婷婷丁香| 午夜日韩欧美国产| 在线观看一区二区三区| 久久午夜亚洲精品久久| 日日摸夜夜添夜夜添小说| 国产99白浆流出| 黄色视频不卡| 亚洲免费av在线视频| 成年版毛片免费区| www.999成人在线观看| www国产在线视频色| 亚洲欧美激情在线| 国产欧美日韩精品亚洲av| 亚洲五月天丁香| 精品国产乱子伦一区二区三区| 午夜精品国产一区二区电影| 成在线人永久免费视频| 校园春色视频在线观看| 日本黄色视频三级网站网址| 国产三级黄色录像| 日本vs欧美在线观看视频| 精品卡一卡二卡四卡免费| 国产xxxxx性猛交| 1024视频免费在线观看| 久久午夜综合久久蜜桃| 亚洲专区中文字幕在线| 国产精品精品国产色婷婷| 亚洲欧美激情综合另类| 成人国产综合亚洲| 黄片小视频在线播放| 免费在线观看黄色视频的| 国产伦一二天堂av在线观看| 久久久国产欧美日韩av| 69av精品久久久久久| 日日爽夜夜爽网站| 女生性感内裤真人,穿戴方法视频| 9色porny在线观看| 国产一卡二卡三卡精品| 国产精品永久免费网站| 老汉色∧v一级毛片| 亚洲狠狠婷婷综合久久图片| 久99久视频精品免费| 亚洲在线自拍视频| 悠悠久久av| 亚洲人成77777在线视频| 欧美中文综合在线视频| 不卡一级毛片| 国内毛片毛片毛片毛片毛片| 成人18禁在线播放| 国产亚洲精品久久久久久毛片| 久久久水蜜桃国产精品网| 日韩欧美国产在线观看| 亚洲,欧美精品.| 久久久久精品国产欧美久久久| 久久国产精品男人的天堂亚洲| 欧美色欧美亚洲另类二区 | 啪啪无遮挡十八禁网站| 精品久久久久久久人妻蜜臀av | 婷婷丁香在线五月| 国产在线观看jvid| 国产区一区二久久| 不卡一级毛片| 18美女黄网站色大片免费观看| 亚洲国产精品合色在线| 国产精品日韩av在线免费观看 | 中文字幕人妻丝袜一区二区| 人妻丰满熟妇av一区二区三区| 精品乱码久久久久久99久播| 国产高清videossex| 婷婷六月久久综合丁香| 日韩欧美国产在线观看| 亚洲男人天堂网一区| 最新美女视频免费是黄的| 久久精品aⅴ一区二区三区四区| 自拍欧美九色日韩亚洲蝌蚪91| 国产三级在线视频| 桃色一区二区三区在线观看| 99国产极品粉嫩在线观看| 久久久精品国产亚洲av高清涩受| 亚洲少妇的诱惑av| 国产单亲对白刺激| av在线播放免费不卡| 精品日产1卡2卡| 久久久国产欧美日韩av| 亚洲欧美精品综合久久99| 国产在线观看jvid| 亚洲精品国产一区二区精华液| 亚洲国产看品久久| 精品久久久久久成人av| 男女下面进入的视频免费午夜 | 亚洲在线自拍视频| 黄色视频不卡| 国产亚洲精品综合一区在线观看 | 亚洲男人天堂网一区| 九色国产91popny在线| 宅男免费午夜| 啦啦啦观看免费观看视频高清 | 欧美 亚洲 国产 日韩一| 黄频高清免费视频| 免费无遮挡裸体视频| 高清黄色对白视频在线免费看| 免费在线观看视频国产中文字幕亚洲| 久久久久久久精品吃奶| 又紧又爽又黄一区二区| 欧美成狂野欧美在线观看| 夜夜看夜夜爽夜夜摸| 给我免费播放毛片高清在线观看| 欧美日韩黄片免| 欧美乱妇无乱码| 亚洲电影在线观看av| 亚洲成av人片免费观看| 亚洲国产欧美日韩在线播放| 国产麻豆69| 日韩精品青青久久久久久| 国内精品久久久久久久电影| 国产成人系列免费观看| svipshipincom国产片| 亚洲激情在线av| 欧美久久黑人一区二区| 国产一区二区激情短视频| 窝窝影院91人妻| 成人亚洲精品一区在线观看| 又黄又粗又硬又大视频| 久久亚洲真实| 精品国产亚洲在线| 久久久国产成人免费| 天天躁夜夜躁狠狠躁躁| 欧美色欧美亚洲另类二区 | 高清在线国产一区| 亚洲成av片中文字幕在线观看| 欧美最黄视频在线播放免费| videosex国产| 免费在线观看视频国产中文字幕亚洲| 母亲3免费完整高清在线观看| 亚洲专区国产一区二区| 国产av又大| 天天躁夜夜躁狠狠躁躁| 成人国语在线视频| 久久精品aⅴ一区二区三区四区| 级片在线观看| 深夜精品福利| 久久 成人 亚洲| 成在线人永久免费视频| 色老头精品视频在线观看| 中亚洲国语对白在线视频| 久久香蕉精品热| 一区在线观看完整版| 嫩草影视91久久| 性欧美人与动物交配| 日韩精品免费视频一区二区三区| 最近最新中文字幕大全电影3 | av在线天堂中文字幕| 国产伦一二天堂av在线观看| cao死你这个sao货| 久久精品91蜜桃| 欧美日韩福利视频一区二区| 人人妻人人澡欧美一区二区 | 国产成年人精品一区二区| 亚洲精品av麻豆狂野| 黑丝袜美女国产一区| 91大片在线观看| 中文字幕人妻丝袜一区二区| 亚洲av成人一区二区三| 日韩av在线大香蕉| 国产午夜福利久久久久久| 国产欧美日韩综合在线一区二区| 欧美av亚洲av综合av国产av| 伦理电影免费视频| 亚洲精品粉嫩美女一区| 欧美乱码精品一区二区三区| 一级片免费观看大全| 日本黄色视频三级网站网址| 亚洲精品中文字幕一二三四区| 欧美日韩瑟瑟在线播放| 免费看十八禁软件| 999久久久国产精品视频| 亚洲免费av在线视频| 精品一品国产午夜福利视频| 夜夜躁狠狠躁天天躁| 露出奶头的视频| 色婷婷久久久亚洲欧美| 男人的好看免费观看在线视频 | 亚洲 欧美 日韩 在线 免费| 精品国产一区二区久久| 国产精品久久久av美女十八| 正在播放国产对白刺激| 女性生殖器流出的白浆| 少妇熟女aⅴ在线视频| www.www免费av| 亚洲国产欧美日韩在线播放| 成人国语在线视频| 午夜免费观看网址| 看黄色毛片网站| 日本a在线网址| 国产亚洲精品久久久久久毛片| 操出白浆在线播放| 国产xxxxx性猛交| 久久国产精品人妻蜜桃| 19禁男女啪啪无遮挡网站| 韩国av一区二区三区四区| 亚洲aⅴ乱码一区二区在线播放 | 色婷婷久久久亚洲欧美| 给我免费播放毛片高清在线观看| 亚洲精品一区av在线观看| 成人三级做爰电影| 99国产精品免费福利视频| 在线观看舔阴道视频| 国产成人精品无人区| 在线观看www视频免费| 国产国语露脸激情在线看| 啦啦啦免费观看视频1| 国产精品一区二区在线不卡| 成人免费观看视频高清| 国产精品国产高清国产av| 给我免费播放毛片高清在线观看| 日本五十路高清| 美女 人体艺术 gogo| 成人国产一区最新在线观看| 久久久久国产一级毛片高清牌| 免费av毛片视频| 男男h啪啪无遮挡| 亚洲国产精品成人综合色| 欧美亚洲日本最大视频资源| 亚洲免费av在线视频| 亚洲激情在线av| 在线国产一区二区在线| 色精品久久人妻99蜜桃| 97碰自拍视频| 日本在线视频免费播放| 午夜福利免费观看在线| 一二三四在线观看免费中文在| 免费在线观看黄色视频的| 国产真人三级小视频在线观看| 夜夜躁狠狠躁天天躁| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产高清在线一区二区三 | 久久伊人香网站| 美女高潮到喷水免费观看| 欧美绝顶高潮抽搐喷水| 久久午夜亚洲精品久久| 国产精品久久久av美女十八| 高潮久久久久久久久久久不卡| 国产精品二区激情视频| 久久青草综合色| 深夜精品福利| 国产高清videossex| 在线观看免费视频网站a站| av片东京热男人的天堂| 乱人伦中国视频| 国产97色在线日韩免费| 欧美在线黄色| 99久久综合精品五月天人人| 日本欧美视频一区| 日韩欧美在线二视频| 久久中文看片网| 久久久久久久久免费视频了| 99国产精品免费福利视频| 免费在线观看日本一区| 国产成年人精品一区二区| 人人澡人人妻人| 91精品三级在线观看| 日韩大尺度精品在线看网址 | 亚洲情色 制服丝袜| 欧美黄色片欧美黄色片| 9色porny在线观看| 国产91精品成人一区二区三区| 老司机福利观看| 久久狼人影院| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕人成人乱码亚洲影| 欧美另类亚洲清纯唯美| 一a级毛片在线观看| 国产激情久久老熟女| avwww免费| 色综合欧美亚洲国产小说| 国产在线观看jvid| 亚洲一区高清亚洲精品| 国产一区在线观看成人免费| 熟女少妇亚洲综合色aaa.| 久久亚洲精品不卡| 国产精品一区二区免费欧美| 国产伦人伦偷精品视频| 国产99白浆流出| 精品日产1卡2卡| 亚洲精品国产精品久久久不卡| 国产精品99久久99久久久不卡| 很黄的视频免费| 他把我摸到了高潮在线观看| 一本综合久久免费| 欧美色视频一区免费| 亚洲片人在线观看| 9191精品国产免费久久| 成人手机av| 日韩 欧美 亚洲 中文字幕| 99国产精品99久久久久| 国产成人影院久久av| 在线视频色国产色| 亚洲色图综合在线观看| 午夜福利在线观看吧| 久久人人精品亚洲av| 看免费av毛片| 国产伦人伦偷精品视频| 午夜视频精品福利| 国产激情久久老熟女| 黑丝袜美女国产一区| 欧美日韩黄片免| 午夜成年电影在线免费观看| 国产精品精品国产色婷婷| 999精品在线视频| 欧洲精品卡2卡3卡4卡5卡区| 黄色视频,在线免费观看| 亚洲精品中文字幕在线视频| 精品午夜福利视频在线观看一区| 视频区欧美日本亚洲| 成人特级黄色片久久久久久久| 精品午夜福利视频在线观看一区| videosex国产| 激情视频va一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| videosex国产| 亚洲精品在线美女| 免费久久久久久久精品成人欧美视频| 亚洲人成77777在线视频| 欧美日韩黄片免| 久久伊人香网站| 国产伦人伦偷精品视频| 好男人电影高清在线观看| 精品第一国产精品| 极品教师在线免费播放| 每晚都被弄得嗷嗷叫到高潮| 级片在线观看| 亚洲av熟女| 国产男靠女视频免费网站| 久久青草综合色|