• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural landscape investigations on bendable plastic crystals of isonicotinamide polymorphs

    2022-09-16 05:25:12JintingLiJiqunLiHongjiLiuLiZhngYngLuZhengzhengZhou
    Chinese Chemical Letters 2022年8期

    Jinting Li, Jiqun Li, Hongji Liu, Li Zhng, Yng Lu, Zhengzheng Zhou,?

    aNMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Hygiene Inspection & Quarantine Science, School of Public Health, Southern Medical University, Guangzhou 510515, China

    b Beijing City Key Laboratory of Polymorphic Drugs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100050, China

    ABSTRACT Three polymorphs (forms I, II and V) of isonicotinamide (INA) were mechanically flexible and exhibited one-dimensional (1D) plasticity.Anisotropic intermolecular interactions contribute to the plasticity of single crystals: weak dispersive interactions between slip planes such as 1D columns in forms I and II or 2D layers in form V were stabilized by strong hydrogen bonds, allowing the layer or column’s surface to glide smoothly without hindrance.The disparity of intermolecular interactions on plastic properties of INA polymorphic crystals was confirmed by energy framework analysis, nanoindentation tests and micro-Raman spectroscopy.The crystal which exhibits plastic property provides a promising application in pharmaceuticals and material sciences.

    Keywords:Isonicotinamide Polymorph Plasticity Slip plane Bending crystal

    Organic crystals with plastic or elastic properties, a kind of advanced functional materials, are future prospects for optical waveguides [1], organic electronics [2], muscle-mimetic biomaterials [3],sensors [4], bioinspired natural fibers [5,6], fine chemicals [7],pharmaceutical industry and other fields [8–11].It was first observed in hexachlorobenzene [12] and then other 16 bending crystals were explored by Reddy [13], which greatly enlarged the types of plastic bending crystals and proved the feasibility of finding new bending crystals.However, it should be noted that approximately>80% of organic compounds exist in different solid-state forms [14].Different polymorphs demonstrate potential different physicochemical properties such as dissolution, solubility,etc., but mechanical differences on bendable single crystals lack further investigations [15–18].At present, the mechanical behaviors of polymorphic compounds remained unexplored.

    Isonicotinamide (INA) is a popular coformer extensively employed as a partner molecule with active pharmaceutical ingredients (APIs) in cocrystal preparation.It was generally recognized as safe (GRAS) and presented high water solubility [19–22].So far,it has been reported that INA was capable of forming six polymorphs (Table S1 in Supporting information) [22].Forms I [23] and II [24] are more easily obtained regardless of the solvent type and form V [27] occurred when the methyl group was presented.However, forms III [25] and VI [28] were always obtained from a cocrystal of API with INA, and form IV [26] was obtained only as a mixture with form II.Hence, forms I, II and V were selected and prepared in the present study.The three polymorphs exhibit 1D plasticity, which provides a model to explain the relationship between the types of intermolecular interactions in the crystal structure calculated by energy framework and the difference of plasticity examined by nanoindentation tests among polymorphs.

    The cell parameters obtained from single crystal X-ray diffraction (SXRD) were found to be consistent with CIF documents deposited in Cambridge Crystallographic Data Center (CCDC), implying that single crystals of forms I (CSD refcode EHOWIH01) [23],II (CSD refcode EHOWIH02) [24] and V (CSD refcode EHOWIH05)[27] were successfully prepared (Table S2 in Supporting information).Single crystals of forms I and II both underwent irreversible plastic deformation when bent with a metal needle on(100)/(?100) faces with the largest area.Form V exhibits excellent plasticity when stress is applied on narrow faces (010)/(0?10) but not on the wider face (Fig.1).All the polymorphs exhibit 1D plasticity and were directly folded in half without fracture, which was not allowed to be twisted [17].

    Fig.1.Screenshots of irreversible plastic bending of INA forms I, II and V and deformed into special shapes.

    In form I (space groupP21/c witha=10.1756 (11),b=5.7319(6),c=10.034(1),β=98.169(1)°), N ?H···O (2.93(3))hydrogen-bonded dimers are interconnected alongcaxis by another N?H···O hydrogen-bonded dimer with NH2as donor and C=O as acceptor (2.93(3)) and expanded alongbaxis through N?H···O hydrogen-bonds and C?H···N weak interactions a centroid-to-centroid distance of 5.73.This generates a stable column-like structure with two-independent tapes staggered in arrangement through strong hydrogen bonds (Fig.2).Columns are formed parallel to (100) faces and extended throughaaxis with weaker interactions composed of C?H···N (between pyridine rings,3.42(3), 3.47(3)), resulting in some smooth slip planes between columns (Fig.S1 in Supporting information).When pressure is applied on (100) face, the internal columns slide along thecaxis and exhibit excellent plasticity.

    In form II (space groupP21/c witha=15.735(3),b=7.9976(18),c=9.885(3),β=105.586(17)°), molecules run along thecaxis by N?H···O hydrogen bonds (2.95(2)) and C?H···O weak interactions (3.24(3)) and extend backward alongbaxis by N?H···N (between pyridine rings, 2.98(6)) hydrogen bonds and C?H···N (3.83(1)) weak interactions to form 2D tapes (Fig.2).Besides, two-independent tapes staggered in arrangement to extend alongaaxis are derived from weak interactions C?H···C (3.52(3);3.41(3)) to form a column-like structure.These columns are parallel to (100) faces, with the same columnar structure exposed on both sides.As a result, slip planes are formed parallel to the wider(100) face of the crystals (Fig.S2 in Supporting information).

    In form V (space groupP21/c witha=5.1923(11),b=9.466(3),c=12.259(3),β=91.217(7)°), molecules extend along thebaxis by forming dimers of N?H···O(2.94(2)) hydrogen bonds and C?H···O (between the pyridine ring and the neighboring carbonyl groups: 3.35(2)) short contacts mediated dimers and run alongcaxis by interconnecting through N?H···N hydrogenbonds (2.99(3)) to form a zigzag tape parallel to (102) plane (Fig.2).Meanwhile, the tapes expand alongaandcaxes with weak interactions C?H···O(3.37(3)) to produce independent 2D layers parallel to (001) face.Therefore, the slip planes (011) are formed intersecting (001) faces at 52.32° (Fig.S3 in Supporting information).

    1D plastically bendable crystals should have a slip plane as a prerequisite, and weakly interconnected molecular layers slide over other layers when mechanically stressed [15].Three crystal forms of INA possess the same space group but exhibit different intermolecular interactions.Weak interactions such as C?H···N and C?H···C between rigid one-dimensional (1D) columns or chains in forms I and II and two-dimensional (2D) layers generated by moderately strong interactions such as C?H···O in form V are possible as long as the column’s face is allowed to slip smoothly without obstruction [18,29].

    The energy framework was used to calculate the interlayer and intralayer energy of slip plane identified by attachment energy (Eatt) (Table 1) [30–35].The interlayer energy of sliding plane is always found less than the intralayer energy [29].The(100) plane in INA form I is found to have the lowest attachment energy and corresponds to the largest surface in the pre-dicted crystal morphology.The molecules within (100) plane are hydrogen-bonded (N?H···O, 2.93(3)), whereas weaker interactions C?H···N (3.42(3); 3.47(3)) are present between these planes (Fig.S1).Therefore, the total interlayer interaction energy(?86.2 kJ/mol) is lower than the total intralayer interaction energies (?91.8 kJ/mol), indicating that the molecules slide along (100)plane is energetically favorable (Tables S3 and S4 and Fig.S4 in Supporting information).The molecules in slip plane (100) identified byEatt in INA form II are interconnected through N?H···O hydrogen bonds (2.95(2)), while only weak contact C?H···C(3.52(3), 3.41(3)) interacted between layers (Fig.S2).The significantly smaller interlayer energies (?90.4 kJ/mol) than intralayer energies (?140.8 kJ/mol) imply that (100) sliding plane is also energetically feasible.For INA form V, within the (011) plane identified by Eatt molecules are interconnected through N?H···O(2.94(2)) hydrogen bonds, whereas weak interactions C?H···O(3.35(2); 3.37(3)) present between layers (Fig.S3).Therefore,the molecules stacking across (011) plane exhibit slightly weaker interaction energy (?113.4 kJ/mol) than the bonding energy within(011) plane (?121.2 kJ/mol), demonstrating comparable intra and interlayer intermolecular bonding energies.It indicated that interlayer energies of INA polymorphs decreased following the order of form I>form II>form V corresponding to the plasticity increased in the order of form I>form II>form V based on a Wang’s previous study [36].Additionally, the other three polymorphs of INA (III,IV and IV) may present plastic property if they could be prepared successfully according to the slip planes and energy calculation results (Tables S4-S6 and Figs.S5-S8 in Supporting information).

    Table 1 Total absolute intermolecular interaction energies between the intralayer and interlayer in the slip planes of three isonicotinamide polymorphs calculated by energy framework.

    Table 2 Nanoindentation elastic modulus (E) and hardness (H) on major crystal faces of three isonicotinamide polymorphs.

    Nanoindentation tests were employed to further examine the relationship between interlayer energy and plasticity and to quantify the mechanical properties of INA polymorphs.Since all three polymorphs are plate-like, the nanoindentation is performed on(100) faces of forms I, II and V.The representative load (P)versusdepth (h) curve is illustrated in Fig.3.The high value ofhmaxand the large residual depths are linked to excellent plastic behavior [37].At a peak load of 5 mN, the maximum depth of penetration (hmax) increased in the order of form I (~568 nm)>form II (~529 nm)>form V (~236 nm), confirming the highest plasticity of form I.The elastic modulus (E) and nanohardness (H) was then estimated fromP-hresponse using the standard Oliver-Pharr method [38].H values of polymorphs decreased in the order of form I>form II>form V (Table 2).Since H reflects the resistance to plastic deformation, the very smallest H value indicates that INA form I exhibits the best bending properties [10,39].FromP-hcurves, forms I and V indented in (100) faces are comparably smooth, probably due to the presence of parallel slip planes that readily accommodate the advance of indenter tip through facile slip page [18].Meanwhile, several pop-ins were observed in (100)face of form II with the largest elastic modulus value.Pop-ins here can be attributed to sudden stress release when the elastic limit is exceeded and discrete plastic displacement bursts to facilitate easier stress dissipation during indenter tip penetration [40,41].Verified by nanoindentation experiment, plastic properties of INA forms increased in the order of form I>form II>form V, consistent with decreased order of interlayer energies of INA polymorphs calculated from energy framework.Accordingly, form I exhibits the best plasticity among other polymorphs with the weakest interlayer bonding energies.

    Fig.2.Molecular packing in forms I, II and V viewed along (100), (010) and (001) faces.

    Fig.3.Representative load?depth (P?h) curves obtained from nanoindentation on(100) faces of forms I (black), II (red) and V (blue) crystals and arrows in form II curve indicate the “pop-in” events during loading.AFM diagrams of forms I, II and V.

    Fig.4.The microscopic images of the bent crystal and the area for the micro-Raman test in (a) and Raman spectra of straight and deformed crystals of forms I (b), II (c) and V (d).

    Micro-Raman spectra were conducted to gain insights into structural changes of bending at the molecular level [18,42].Raman peak between 970 and 1010 cm?1is the ring breathing mode of pyridine, including ring vibrations and ring bond stretching [43].Forms II and V provide a peak at 995–996 cm?1while form I shows a peak maximum at 1002 cm?1.The same 995–996 cm?1band in the outer arc demonstrates a blue shift with a broadening of up to 1002 cm?1because of fewer and weaker intermolecular interactions such as C?H···C in form II and C?H···O in form V produced between pyridine C?H groups and amide groups and carbonyl groups as molecules are farther apart.However, the band of 1002 cm?1in form I does not shift from the outer arc to the inner arc due to weak interactions C?H···N formed between pyridine groups that neutralize vibrations and bond stretching of the single pyridine ring when molecules expand (Fig.4).Thus, bending leads to significant changes in C?H···C, C?H···O, and C?H···N intermolecular weak interactions of the three INA forms.

    Fig.5.Plastic bending model of single crystals of INA forms I (a), II (b) and V (c).

    Additionally, the band at 1611 cm?1is ascribed to stretching vibration of amide N?H groups involved in forming hydrogenbonded N?H···O and N?H···N and weak interactions C?H···N with carbonyl groups and pyridine groups.The peak intensity at 1611 cm?1increased in the order of outer>inner>middle>straight,implying that the increase in peak intensity corresponds to a larger intermolecular distance in bent crystal.The shorter distance in the inner arc, when contraction occurs, and longer distance in the outer arc, when expansion occurs [18].Concurrently, we stated that the intensity of the middle region is the smallest among the other two mentioned above, implying that during crystal bending the molecules in the middle accumulated the most with the closest distance when subjected to compression and tension forces (Figs.S9-S11 in Supporting information).

    A schematic depiction of these events is displayed in Fig.5.The pyridine rings in form I are shown as blue balls, and N?H···O hydrogen bonds form between -CONH2groups represented by yellow right angle disks.They are connected in pairs and extend alongcaxis to produce a column-like structure in form I as viewed on the(100) face.The molecules formed in different directions are exhibited by blue and yellow disks, and they are stacked alongcaxisviaN?H···O hydrogen bonds to generate column-like structure in form II on (100) face, while alongbandcaxesviaN?H···O and N?H···N hydrogen bonds, they form zigzag tapes in form V on (010) face.Additionally, the white region between columns and tapes corresponds to C?H···N, C?H···C and C?H···O weak interactions, respectively.In short, the bending models depicted in Fig.5 are composed of columns and tapes, which were stabilizedviastrong hydrogen bonds and weaker interactions in the orthogonal direction.Weaker interactions play a lubricating role between these columns and tapes, thus forming slip planes parallel to the bending face.When subjected to stress, columns can slide more easily than classical stacking flat sheets structure of plastic crystals [44].Therefore,forms I and II composed of columns or chains are easy to slide and exhibit better plasticity than form V.Although forms I and II are both composed of columnar structures, the difference of pyridine ring orientation with two-independent 2D tapes to form a columnlike structure in form II is responsible for less favorable bending geometry of form II than form I [26].In addition, molecules in chains or tapes staggered in arrangement make some short-range movements to adapt the bending process, in which the intermolecular distance become longer in the outer arc as molecules stretch and closer in the inner arc as molecules gather.As a result, the bulk crystal demonstrates plastic bending rather than brittle behavior.

    The crystal packing of pyrazine-2-carboxamide [13] form I does conform to this bending model with stronger interactions, in which amide dimers are stacked along thecaxis (3.72) and weak N–H···N (2.46), C–H···O (2.49) and C–H···N (2.55) interactions are present in the other two orthogonal directions and it could be bent under stress (Fig.S12 in Supporting information).While the crystal structure of nicotinamide, with the same molecular weight but different positions of nitrogen atom on pyridine ring, does not conform to the bending model with three-dimensional networks of hydrogen bonds having comparable interactions, this may resist deformation and makes it as a stiff material exhibiting brittle fracture under compressive stress (Fig.S13 in Supporting information)[45].

    In conclusion, three INA polymorphs exhibited significant bending properties.The crystal packing with strong and weak interactions in the orthogonal direction of the slip plane is a prerequisite for crystals to exhibit bending mechanical behavior.The super plasticity of INA makes it a good cocrystal coformer to regulate the mechanical behavior of API with poor tabletability.It is a thriving field of chemical material sciences with extensive application prospect.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was sponsored by National Key R&D Program of China (No.2016YFC1000900), National Science and Technology Major Project of China (No.2018ZX09711001–001–013), National Natural Science Foundation of China (No.81703438).

    午夜免费观看性视频| 黑人高潮一二区| 欧美日韩成人在线一区二区| 男女免费视频国产| 肉色欧美久久久久久久蜜桃| 国产成人精品在线电影| 91aial.com中文字幕在线观看| 国产一区二区三区av在线| 亚洲精品乱久久久久久| 视频中文字幕在线观看| 亚洲精品中文字幕在线视频| 久久久精品免费免费高清| 成人亚洲欧美一区二区av| 亚洲经典国产精华液单| 97人妻天天添夜夜摸| 亚洲精品日韩在线中文字幕| 国产精品一区二区在线观看99| 一级爰片在线观看| 免费黄色在线免费观看| 日韩 亚洲 欧美在线| 18禁动态无遮挡网站| 国产淫语在线视频| 中文字幕另类日韩欧美亚洲嫩草| av福利片在线| 2018国产大陆天天弄谢| 欧美日韩av久久| 国产爽快片一区二区三区| 不卡视频在线观看欧美| 欧美精品人与动牲交sv欧美| 多毛熟女@视频| 中文字幕av电影在线播放| 亚洲av免费高清在线观看| 免费黄网站久久成人精品| 亚洲第一av免费看| 制服丝袜香蕉在线| 国产一区二区在线观看av| 日日爽夜夜爽网站| 青春草国产在线视频| 涩涩av久久男人的天堂| 插逼视频在线观看| 视频区图区小说| 日日爽夜夜爽网站| 黄色 视频免费看| 亚洲性久久影院| 亚洲欧美一区二区三区黑人 | 国产一区二区激情短视频 | 高清黄色对白视频在线免费看| 中文字幕人妻熟女乱码| 国产国拍精品亚洲av在线观看| 在现免费观看毛片| 在线观看人妻少妇| 国产成人精品无人区| 国产国语露脸激情在线看| 免费av中文字幕在线| 9热在线视频观看99| 国产在线一区二区三区精| 宅男免费午夜| 美女主播在线视频| 久久午夜综合久久蜜桃| 蜜桃国产av成人99| 99re6热这里在线精品视频| 男女下面插进去视频免费观看 | 国产欧美日韩一区二区三区在线| videosex国产| 99香蕉大伊视频| 一级片'在线观看视频| 久久国产亚洲av麻豆专区| 99热全是精品| 亚洲国产日韩一区二区| 国产一区二区三区av在线| 两个人看的免费小视频| 国产精品国产三级国产专区5o| 欧美精品高潮呻吟av久久| 亚洲第一区二区三区不卡| 黄片无遮挡物在线观看| 亚洲欧洲精品一区二区精品久久久 | 国产色婷婷99| 九九在线视频观看精品| 亚洲av成人精品一二三区| 18禁在线无遮挡免费观看视频| 韩国av在线不卡| 亚洲精华国产精华液的使用体验| 边亲边吃奶的免费视频| 日韩三级伦理在线观看| 韩国av在线不卡| 欧美97在线视频| 黑丝袜美女国产一区| 成人手机av| 久久青草综合色| 国产精品一区www在线观看| 日韩欧美一区视频在线观看| 午夜福利网站1000一区二区三区| 日韩av不卡免费在线播放| 不卡视频在线观看欧美| 欧美国产精品va在线观看不卡| 99久国产av精品国产电影| 搡女人真爽免费视频火全软件| a级毛片在线看网站| 你懂的网址亚洲精品在线观看| 亚洲精品美女久久久久99蜜臀 | 国产精品嫩草影院av在线观看| 亚洲精品456在线播放app| 丁香六月天网| 久久人人97超碰香蕉20202| 老女人水多毛片| 国产不卡av网站在线观看| 免费大片黄手机在线观看| 精品国产露脸久久av麻豆| 国产精品久久久久久久电影| 免费观看a级毛片全部| 国产高清不卡午夜福利| 99视频精品全部免费 在线| 狠狠婷婷综合久久久久久88av| 精品熟女少妇av免费看| 一级毛片黄色毛片免费观看视频| 天天躁夜夜躁狠狠久久av| 日本黄大片高清| 久久久亚洲精品成人影院| 成人国产麻豆网| 色哟哟·www| 成人18禁高潮啪啪吃奶动态图| 人人妻人人澡人人看| 最近最新中文字幕大全免费视频 | 韩国av在线不卡| 国产精品三级大全| av播播在线观看一区| 国产精品99久久99久久久不卡 | 97精品久久久久久久久久精品| 欧美日韩av久久| 有码 亚洲区| 七月丁香在线播放| 婷婷色综合大香蕉| 少妇高潮的动态图| 建设人人有责人人尽责人人享有的| 9热在线视频观看99| 国产免费一区二区三区四区乱码| 亚洲国产精品专区欧美| 国产有黄有色有爽视频| 在线观看人妻少妇| 丝瓜视频免费看黄片| 国产乱来视频区| 超碰97精品在线观看| 国产69精品久久久久777片| 在线观看www视频免费| 视频中文字幕在线观看| 校园人妻丝袜中文字幕| 日日撸夜夜添| 国产有黄有色有爽视频| 国产亚洲av片在线观看秒播厂| 春色校园在线视频观看| 丰满乱子伦码专区| 91在线精品国自产拍蜜月| 9热在线视频观看99| 久热久热在线精品观看| 久久久久久人人人人人| 久久这里有精品视频免费| 久久久久国产网址| 色网站视频免费| 这个男人来自地球电影免费观看 | 一级片'在线观看视频| 精品久久久久久电影网| 制服丝袜香蕉在线| kizo精华| 欧美成人午夜免费资源| 美国免费a级毛片| 少妇的逼好多水| 国产国拍精品亚洲av在线观看| 一级毛片我不卡| 三级国产精品片| 新久久久久国产一级毛片| 九草在线视频观看| 久久99一区二区三区| 成人毛片a级毛片在线播放| 纵有疾风起免费观看全集完整版| 一区二区三区精品91| 亚洲成国产人片在线观看| 免费不卡的大黄色大毛片视频在线观看| 久久久久久伊人网av| 男女边吃奶边做爰视频| 夜夜骑夜夜射夜夜干| 18+在线观看网站| 免费高清在线观看视频在线观看| 免费观看无遮挡的男女| 亚洲国产精品成人久久小说| 一区二区三区乱码不卡18| 欧美 亚洲 国产 日韩一| 狂野欧美激情性bbbbbb| 欧美成人精品欧美一级黄| 精品一品国产午夜福利视频| 亚洲激情五月婷婷啪啪| 人人澡人人妻人| 男女午夜视频在线观看 | av国产精品久久久久影院| 亚洲国产欧美日韩在线播放| 国产精品久久久久久久电影| 欧美国产精品一级二级三级| 麻豆精品久久久久久蜜桃| 国产精品一区二区在线观看99| 极品人妻少妇av视频| 久久ye,这里只有精品| 日韩欧美精品免费久久| 日韩免费高清中文字幕av| 曰老女人黄片| 亚洲精品第二区| 久久人人97超碰香蕉20202| 免费少妇av软件| 久久久久国产网址| 久久人妻熟女aⅴ| 制服诱惑二区| 精品一区二区免费观看| 视频中文字幕在线观看| 精品一区二区三区四区五区乱码 | 国产成人91sexporn| 国产福利在线免费观看视频| 日韩av在线免费看完整版不卡| 母亲3免费完整高清在线观看 | 欧美 亚洲 国产 日韩一| 99热这里只有是精品在线观看| 欧美 日韩 精品 国产| 最近的中文字幕免费完整| 国产精品一区www在线观看| 一本大道久久a久久精品| 国产 精品1| 少妇熟女欧美另类| 亚洲精品国产av蜜桃| 自线自在国产av| 久久国产精品男人的天堂亚洲 | 国产一区亚洲一区在线观看| 亚洲欧洲精品一区二区精品久久久 | 99热全是精品| 日韩电影二区| 女性生殖器流出的白浆| 精品人妻偷拍中文字幕| 各种免费的搞黄视频| 美女xxoo啪啪120秒动态图| 亚洲成人手机| 亚洲国产色片| 亚洲精品中文字幕在线视频| 少妇的逼水好多| 久久久国产精品麻豆| 大香蕉久久成人网| 高清av免费在线| 日韩三级伦理在线观看| 久久99蜜桃精品久久| 狠狠婷婷综合久久久久久88av| 免费大片黄手机在线观看| 成人综合一区亚洲| 黄色 视频免费看| 在现免费观看毛片| 亚洲精品国产av蜜桃| 欧美精品高潮呻吟av久久| 亚洲国产精品国产精品| 精品人妻熟女毛片av久久网站| 亚洲精品aⅴ在线观看| 国产精品国产三级专区第一集| 国产高清国产精品国产三级| 99久久精品国产国产毛片| 久久精品国产a三级三级三级| 在线观看免费视频网站a站| av天堂久久9| 国产精品久久久久成人av| 秋霞在线观看毛片| 亚洲,欧美,日韩| 日产精品乱码卡一卡2卡三| 亚洲精品色激情综合| av国产久精品久网站免费入址| 天堂俺去俺来也www色官网| 亚洲丝袜综合中文字幕| 免费高清在线观看日韩| 成人手机av| 国产高清国产精品国产三级| 少妇 在线观看| 男人添女人高潮全过程视频| 大香蕉久久网| 亚洲天堂av无毛| 日日爽夜夜爽网站| 国产亚洲一区二区精品| 日韩视频在线欧美| 九九在线视频观看精品| 国产成人精品婷婷| 老司机亚洲免费影院| 免费黄网站久久成人精品| 插逼视频在线观看| 热re99久久国产66热| 国产xxxxx性猛交| 精品久久久久久电影网| 国产精品国产三级国产专区5o| 国产成人精品无人区| 天美传媒精品一区二区| 国产精品久久久av美女十八| 桃花免费在线播放| 热re99久久精品国产66热6| 国产女主播在线喷水免费视频网站| 精品第一国产精品| 日韩成人伦理影院| 成人国产av品久久久| 五月开心婷婷网| av天堂久久9| 国产爽快片一区二区三区| 国产熟女欧美一区二区| 久久精品久久精品一区二区三区| 少妇精品久久久久久久| 99久久中文字幕三级久久日本| 国产乱来视频区| 一级片免费观看大全| 久久精品久久精品一区二区三区| 亚洲精品美女久久久久99蜜臀 | 亚洲情色 制服丝袜| 午夜免费观看性视频| 亚洲色图 男人天堂 中文字幕 | 亚洲国产成人一精品久久久| 赤兔流量卡办理| 另类精品久久| 日韩电影二区| 精品国产露脸久久av麻豆| 午夜av观看不卡| 久久精品久久精品一区二区三区| 在线亚洲精品国产二区图片欧美| 熟女av电影| 在线天堂最新版资源| 亚洲国产av新网站| 中文字幕精品免费在线观看视频 | 亚洲精品久久成人aⅴ小说| 久久国产精品大桥未久av| 亚洲美女视频黄频| 亚洲国产最新在线播放| 婷婷成人精品国产| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日本欧美国产在线视频| 欧美激情 高清一区二区三区| 久久久久久伊人网av| 免费久久久久久久精品成人欧美视频 | 中国国产av一级| 亚洲丝袜综合中文字幕| 免费av中文字幕在线| 99久久人妻综合| 99香蕉大伊视频| 下体分泌物呈黄色| av网站免费在线观看视频| 久久精品久久精品一区二区三区| 欧美激情国产日韩精品一区| 最近最新中文字幕免费大全7| 精品99又大又爽又粗少妇毛片| 久久久久精品人妻al黑| 国产精品久久久久久久电影| 日韩成人伦理影院| a级毛片在线看网站| 国产成人91sexporn| 午夜福利视频精品| 热re99久久精品国产66热6| 色5月婷婷丁香| 精品福利永久在线观看| 日韩大片免费观看网站| 卡戴珊不雅视频在线播放| 亚洲成人一二三区av| 国产男女超爽视频在线观看| 婷婷色综合大香蕉| 国产精品女同一区二区软件| 韩国av在线不卡| 考比视频在线观看| 日韩av不卡免费在线播放| 夫妻午夜视频| 国产精品一二三区在线看| 亚洲,欧美,日韩| 一区在线观看完整版| av在线播放精品| 国产精品熟女久久久久浪| 国产成人精品一,二区| 精品国产一区二区三区久久久樱花| 天天躁夜夜躁狠狠久久av| 久久热在线av| 日日爽夜夜爽网站| 在现免费观看毛片| 久久精品aⅴ一区二区三区四区 | 久久 成人 亚洲| 80岁老熟妇乱子伦牲交| 久久99精品国语久久久| 综合色丁香网| 热re99久久精品国产66热6| 你懂的网址亚洲精品在线观看| 日本猛色少妇xxxxx猛交久久| 三级国产精品片| 天堂中文最新版在线下载| 男女边吃奶边做爰视频| 热re99久久国产66热| 国产亚洲精品久久久com| 超碰97精品在线观看| 亚洲精华国产精华液的使用体验| 国产熟女欧美一区二区| 国产亚洲午夜精品一区二区久久| 少妇 在线观看| 日本91视频免费播放| 久久久久久久久久久免费av| 汤姆久久久久久久影院中文字幕| 久久午夜综合久久蜜桃| 久久久久国产精品人妻一区二区| 亚洲成av片中文字幕在线观看 | 成人免费观看视频高清| 精品国产国语对白av| 人妻一区二区av| 天美传媒精品一区二区| 欧美老熟妇乱子伦牲交| 日本av手机在线免费观看| av视频免费观看在线观看| 欧美精品av麻豆av| 日韩精品免费视频一区二区三区 | 超碰97精品在线观看| 国产女主播在线喷水免费视频网站| a 毛片基地| 精品国产露脸久久av麻豆| 国内精品宾馆在线| 精品国产露脸久久av麻豆| 免费日韩欧美在线观看| 熟女电影av网| 黄色视频在线播放观看不卡| 国产福利在线免费观看视频| 麻豆乱淫一区二区| 国产精品 国内视频| 日韩一区二区三区影片| 日韩一本色道免费dvd| a级毛色黄片| 人成视频在线观看免费观看| 日韩一区二区三区影片| 最新的欧美精品一区二区| 青春草国产在线视频| 国产永久视频网站| 三级国产精品片| 国产精品 国内视频| 国产精品一二三区在线看| 久久免费观看电影| 免费日韩欧美在线观看| av.在线天堂| 啦啦啦视频在线资源免费观看| 国产男女超爽视频在线观看| 亚洲精品av麻豆狂野| 亚洲成人av在线免费| 久久99热这里只频精品6学生| 亚洲经典国产精华液单| 久久97久久精品| 国产高清不卡午夜福利| 久久久久久久精品精品| 人人妻人人澡人人爽人人夜夜| 久久久久久久精品精品| 国产av码专区亚洲av| 精品少妇内射三级| 亚洲国产精品一区二区三区在线| 国语对白做爰xxxⅹ性视频网站| 国产免费一级a男人的天堂| 咕卡用的链子| 久久国产精品大桥未久av| 在现免费观看毛片| 2022亚洲国产成人精品| 国产亚洲一区二区精品| 久久久久久久大尺度免费视频| 亚洲精品乱码久久久久久按摩| 蜜桃国产av成人99| 男人操女人黄网站| av在线app专区| www.色视频.com| 日韩电影二区| 日本猛色少妇xxxxx猛交久久| 亚洲国产精品999| 国产精品秋霞免费鲁丝片| tube8黄色片| 女人精品久久久久毛片| 欧美变态另类bdsm刘玥| 精品一区在线观看国产| 亚洲,欧美,日韩| 美女xxoo啪啪120秒动态图| 久久精品人人爽人人爽视色| 男男h啪啪无遮挡| 高清黄色对白视频在线免费看| 国产亚洲精品久久久com| 国产黄色免费在线视频| 国产精品国产三级国产专区5o| 国产极品粉嫩免费观看在线| 飞空精品影院首页| 精品久久蜜臀av无| 丝袜喷水一区| 国产视频首页在线观看| 午夜视频国产福利| 观看美女的网站| 亚洲精华国产精华液的使用体验| 亚洲国产成人一精品久久久| 五月伊人婷婷丁香| 亚洲第一av免费看| 久久久国产一区二区| 伦精品一区二区三区| 亚洲av电影在线观看一区二区三区| 成人免费观看视频高清| 在线观看免费高清a一片| 亚洲第一区二区三区不卡| 我要看黄色一级片免费的| 寂寞人妻少妇视频99o| 日韩成人av中文字幕在线观看| 尾随美女入室| 亚洲国产欧美在线一区| 亚洲精品国产av蜜桃| 亚洲国产精品一区二区三区在线| 9色porny在线观看| 亚洲av在线观看美女高潮| 国产精品国产三级专区第一集| 欧美 亚洲 国产 日韩一| 寂寞人妻少妇视频99o| 老司机亚洲免费影院| 母亲3免费完整高清在线观看 | 国产精品国产三级国产专区5o| 国产成人精品久久久久久| 国产亚洲一区二区精品| 黄片无遮挡物在线观看| 少妇精品久久久久久久| 丰满迷人的少妇在线观看| 不卡视频在线观看欧美| www日本在线高清视频| 高清黄色对白视频在线免费看| 丰满饥渴人妻一区二区三| 哪个播放器可以免费观看大片| 国产精品麻豆人妻色哟哟久久| 日韩中文字幕视频在线看片| 午夜福利,免费看| 日本爱情动作片www.在线观看| 熟女电影av网| 中文乱码字字幕精品一区二区三区| 午夜av观看不卡| 国产欧美日韩一区二区三区在线| 少妇的逼好多水| 赤兔流量卡办理| 亚洲成人手机| 欧美日韩一区二区视频在线观看视频在线| 久久99热6这里只有精品| 国产精品 国内视频| 久久久久久人妻| 国产一区二区在线观看av| 久久久欧美国产精品| 成人漫画全彩无遮挡| 99国产综合亚洲精品| 最近手机中文字幕大全| 男女下面插进去视频免费观看 | 日韩av在线免费看完整版不卡| 午夜精品国产一区二区电影| 精品久久久久久电影网| 亚洲欧美成人精品一区二区| 看免费av毛片| 亚洲国产精品一区二区三区在线| 下体分泌物呈黄色| 成人国产麻豆网| 国产乱人偷精品视频| 制服人妻中文乱码| 久久女婷五月综合色啪小说| 欧美国产精品va在线观看不卡| 日本色播在线视频| 国产在线一区二区三区精| 成人影院久久| 不卡视频在线观看欧美| 丝袜脚勾引网站| 这个男人来自地球电影免费观看 | 2018国产大陆天天弄谢| 国产欧美亚洲国产| 91精品伊人久久大香线蕉| 免费大片黄手机在线观看| 久久99热这里只频精品6学生| 免费高清在线观看日韩| 建设人人有责人人尽责人人享有的| 国产熟女午夜一区二区三区| 新久久久久国产一级毛片| 精品久久蜜臀av无| 岛国毛片在线播放| 国产精品女同一区二区软件| 国产免费福利视频在线观看| 丝袜在线中文字幕| 日本vs欧美在线观看视频| 色5月婷婷丁香| 久久国产亚洲av麻豆专区| 亚洲一区二区三区欧美精品| 国产无遮挡羞羞视频在线观看| 亚洲精品乱久久久久久| h视频一区二区三区| 国产精品女同一区二区软件| 天堂中文最新版在线下载| 欧美成人午夜精品| av又黄又爽大尺度在线免费看| 欧美变态另类bdsm刘玥| 最近手机中文字幕大全| 99视频精品全部免费 在线| 蜜桃国产av成人99| 高清av免费在线| 亚洲在久久综合| 久久久久精品性色| av在线观看视频网站免费| 国产精品久久久av美女十八| av一本久久久久| 在线天堂最新版资源| 亚洲欧美中文字幕日韩二区| 精品国产一区二区久久| 国产高清三级在线| 国产日韩一区二区三区精品不卡| av.在线天堂| 亚洲五月色婷婷综合| 国产精品国产三级国产av玫瑰| 国产av一区二区精品久久| 日韩免费高清中文字幕av| 国产精品久久久久久久电影| 纯流量卡能插随身wifi吗| 欧美少妇被猛烈插入视频| 九草在线视频观看| 一级黄片播放器| 哪个播放器可以免费观看大片| 欧美变态另类bdsm刘玥| 欧美日韩视频高清一区二区三区二| 欧美精品一区二区大全| 在线观看www视频免费| 国产成人91sexporn| 久久鲁丝午夜福利片| 99久久精品国产国产毛片| 人人妻人人澡人人看|