• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Facile synthesis and in vivo bioimaging applications of porphyrin derivative-encapsulated polymer nanoparticles

    2022-09-16 05:25:16MengfeiHouWndiChenJunkiZhoDeshenDiMoYngChngqingYi
    Chinese Chemical Letters 2022年8期

    Mengfei Hou, Wndi Chen, Junki Zho, Deshen Di, Mo Yng, Chngqing Yi,?

    a Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China

    b State Key Laboratory of Oncology in South China, Collaborative Innovation Center For Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China

    c Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China

    ABSTRACT Fluorescence (FL) imaging guided photodynamic therapy (PDT) is becoming highly desirable for personalized therapy and precision medicine.In this study, fluorescent polymer nanoparticles TCPP@PEI/PGA were facilely synthesized through electrostatic interaction-mediated self-assembly of porphyrins tetra(4-carboxyphenyl)porphine (TCPP) and polyethylenimine (PEI), and subsequent surface modification with γpoly(glutamic acid) (γ-PGA).TCPP served a dual function as the FL imaging probe and the photosensitizer.The as-prepared TCPP@PEI/PGA nanoparticles showed excellent water-solubility and biocompatibility, while having outstanding capabilities of in vivo bioimaging and 1O2 generation.FL bioimaging of mice and effective killing of CT 26 cells as well as CT 26 tumor-bearing mice upon laser irradiation were successfully demonstrated when using TCPP@PEI/PGA as theranostic nanoprobes.This study provides a simple but robust method to design and synthesize porphyrin-based polymer nanoparticles for theranostics.

    Keywords:Porphyrins Fluorescence imaging Photodynamic therapy Theranostics

    Due to its noninvasive, effective antitumor, and low adverse effects, photodynamic therapy (PDT) is becoming attractive in cancer treatment [1–5].During PDT, photosensitizers (PS) are used to convert light into intracellular reactive oxygen species (ROS) to destroy tumor cells.However, the phototoxicity to normal tissues and high risk of tumor recurrence limits the clinical translation of PDT [6–8].In order to address this critical issue, theranostic probes which can realize imaging-guided therapy are attracting more and more research attentions, due to the features of guidance of external lights to precisely irradiate tumor lesion sites and subsequent monitoring of treatment outcomes simultaneously [9,10].Among various imaging methods, fluorescence imaging (FL) has shown great potential in the guidance of PDT as well as surgical operation, thanks to its capability of real-timein vivoimaging with subcellular resolution and single cell sensitivity [11–13].Therefore, effective PS agents which integrate the capabilities of FL imaging and photoinduced ROS generation are highly desirable for personalized therapy and precision medicine.

    Nowadays, porphyrins [14–16], BODIPY [17,18], Cyanine compound [19,20], are extensively used as effective PS agents for FL imaging-guided PDT.Especially, porphyrin derivatives are extensively used for FL imaging as well as PDT, owing to their excellent characteristics such as high vascular permeability for accumulation in tumor as well as long stokes shift [21,22].As a typical kind of porphyrins, tetra(4-carboxyphenyl)porphine (TCPP)demonstrates itself as both an excellent PS agent and a good FL imaging probe, by not only generating ROS under irradiation efficiently, but also exhibiting strong fluorescence emission in the near-infrared region [23,24].However, the poor water solubility and cell-membrane permeability greatly restrict the biomedical applications of TCPP, especially in FL imaging-guided PDT.Fortunately, it has been well-established that nanoparticles can transport organic molecules with poor water solubility and bad cell permeability into cells by neglecting their intrinsic properties [25–28].Particularly, polymer nanoparticle is becoming an appealing platform for the preparation of multifunctional nanotheranostic probes because the rational design can be easily realized by judicious incorporation of building blocks [29–33].For example, a simple amide coupling reaction was used to prepare TCPP-polyethylene glycol (PEG) based nanotheranostic probes for imaging-guided cancer therapy [34].Although various reported nanotheranostic probes exhibited excellent performance for cancer therapy, it is still compelling to develop simple but robust synthetic routes for the preparation of polymer nanotheranostics in a more efficient manner.

    Polyethylenimine (PEI) presents itself as an attractive building block for the synthesis of polymer nanoprobes because of its features such as excellent water solubility and cell-membrane permeability aroused by its large amount of amino groups and positive charges [31-33,35-38].More importantly, the electrostatic interaction between positively charged PEI and negatively charged TCPP can induce the self-assembly of PEI and TCPP to form polymer nanoparticles which can easily transport TCPP into cells by neglecting its intrinsic property.Therefore, a simple but robust synthetic route is successfully demonstrated to encapsulate TCPP into PEIbased nanotheranostic probes TCPP@PEI/PGA, and the potential of TCPP@PEI/PGA for FL imaging-guided PDT is initially evaluated using CT 26 cells and CT 26 tumor-bearing mice (Scheme 1).

    Scheme 1.Schematic illustration for the synthesis of TCPP@PEI/PGA nanoparticles and their applications in FL bioimaging in vivo and cell destruction in vitro.

    Fig.1.Synthesis of TCPP@PEI/PGA nanoparticles.Optimization of PEI/TCPP ratios using FL intensity (A) and size (B) of as-prepared nanoparticles as the parameters.Insert:Photos of the suspensions containing as-prepared TCPP@PEI nanoparticles using different PEI/TCPP ratios in daylight (upper) and under UV irradiation (lower).(C) Optimization of synthesis time using FL intensity (λem = 672 nm) as the parameter.(D) Optimization of PGA/PEI ratios using zeta potential of as-prepared TCPP@PEI/PGA nanoparticles as the parameter.

    Their large amount of amino groups make PEI positively charged and highly hydrophilic.More importantly, the amino groups of PEI can interact with carboxylic groups of TCPP to form nanoparticlesviaelectrostatic interaction-induced self-assembly(Scheme 1), and thereafter improve the water solubility and cellmembrane permeability of TCPP.This can facilitate its biomedical applications, especially for FL imaging-guided PDT.From the perspectives of PDT and FL imaging, the as-prepared TCPP@PEI/PGA nanoparticles should have the strongest capability of1O2generation as well as the highest FL quantum yield (QY).And from the perspective ofin vivoapplication, nanoparticles with smaller diameter are advantageous.Therefore, the PEI/TCPP ratio and the reaction time for the nanoparticle synthesis were optimized at first.As shown in Fig.1A and Fig.S1 (Supporting information), along with the increase of the PEI/TCPP ratio, the amount of undissolved TCPP decreased and the FL intensity of the nanoparticle suspension increased.And when the PEI/TCPP ratio reached 10, all the TCPP completely reacted with PEI to form nanoparticles (Inset of Fig.1A).However, for the as-prepared TCPP@PEI/PGA nanoparticle,at the PEI/TCPP feed mass ratio of 6, its size minimized (Fig.1B)as well as its FL QY and1O2QY maximized (Table S1 in Supporting information).Considering that nanoparticles with smaller diameter, higher FL QY as well as1O2QY are beneficial toin vivobiomedical applications, the PEI/TCPP ratio of 6 was considered as the optimal experiment condition for the synthesis.And from Fig.1C, the FL intensity of the nanoparticle suspension was leveled off after reaction 5 h,i.e., the optimal reaction time for the synthesis.

    It has been well-documented that the excess of surface positive charge might also induce serious cytotoxicity.To address this issue, in this study, biocompatibleγ-PGA was modified onto the surface of TCPP@PEI nanoparticlesviaelectrostatic interaction between carboxylic groups ofγ-PGA and amino groups of PEI.As expected, along with the increase of the PGA/PEI ratio from 0 to 0.6,the zeta potential of the as-prepared nanoparticles decreased from~40.0 mV to ~6.0 mV (Fig.1D).Since a certain amount of surface positive charge can facilitate the entry of nanoparticles into cells without affecting cell activity, the PGA/PEI ratio of 0.6 was considered as the optimal experiment condition for the surface modification.

    As shown in TEM image, the as-prepared TCPP@PEI/PGA nanoparticles exhibited irregular sphericity (Fig.2A).DLS measurements revealed that the water-dispersed TCPP@PEI/PGA nanoparticles exhibited an uniform size distribution with a hydrodynamic diameter of 221 ± 28.3 nm (Fig.2B).And the surface modification withγ-PGA substantially decreased the zeta potential of TCPP@PEI/PGA nanoparticles to +5.91 mV.

    The successful synthesis of TCPP@PEI/PGA nanoparticles was validated by the UV–vis absorption spectra and FL spectra.As demonstrated in Fig.2C, TCPP exhibited the characteristic absorption peak at ~420 nm which was originated from the porphyrin moiety of TCPP, while all the other components for nanoparticle synthesis, PEI and PGA, barely had absorption at ~420 nm.However, both TCPP@PEI and TCPP@PEI/PGA nanoparticles exhibited the characteristic absorption of TCPP, indicating the successful encapsulation of TCPP into nanoparticles.Notably, TCPP@PEI/PGA nanoparticles also exhibited an absorption peak at ~660 nm (Inset of Fig.2C), which could facilitate the PDT because the laser with longer wavelength is beneficial forin vivoapplications.

    Similarly, as demonstrated in Fig.2D, TCPP exhibited the characteristic emission peaks at ~650 nm and ~710 nm upon excitation at 414 nm, while all the other components for nanoparticle synthesis, PEI and PGA, exhibited no emission behavior at the wavelength range of 600–780 nm.However, both TCPP@PEI and TCPP@PEI/PGA nanoparticles exhibited the characteristic emission peaks of TCPP, again indicating the successful encapsulation of TCPP into nanoparticles.Notably, compared with TCPP, a red shift of ~20 nm was observed in the wavelengths of emission peaks of TCPP@PEI nanoparticles and TCPP@PEI/PGA nanoparticles, possibly due to the abundant amino groups surrounding the TCPP [39,40].The excellent emission property makes TCPP@PEI/PGA nanoparticle suitable forin vivoFL bioimaging applications.Since the synthesis reproducibility of TCPP@PEI/PGA nanoparticles is quite important for its future applications, we analyzed the key parameters, such as size, surface potential as well as emission properties, of 3 different batches of TCPP@PEI/PGA nanoparticles which were synthesized by 3 different graduate students.As shown in Table S2 (Supporting information), 3 different batches of as-prepared TCPP@PEI/PGA nanoparticles exhibited the similar size distribution profile, surface potentials and emission features.The quite simple and straightforward synthesis protocol definitely contributes to its good synthesis reproducibility.

    Fig.2.Characterization of TCPP@PEI/PGA nanoparticles.(A) TEM image of TCPP@PEI/PGA nanoparticles.(B) Particle size distribution of TCPP@PEI/PGA nanoparticles.(C) The absorption spectra of TCPP, PEI, PGA, TCPP@PEI and TCPP@PEI/PGA nanoparticles.Insert: The enlarged absorption spectra of TCPP, TCPP@PEI and TCPP@PEI/PGA nanoparticles in the wavelength of 630–700 nm.(D) The fluorescence excitation spectrum of TCPP@PEI/PGA nanoparticles, and the emission spectra of TCPP, PEI, PGA, TCPP@PEI and TCPP@PEI/PGA nanoparticles.Insert: The photos of TCPP, PEI, PGA, TCPP@PEI and TCPP@PEI/PGA nanoparticles under UV irradiation.

    Fig.3.Biotoxicity of TCPP@PEI/PGA nanoparticles.(A) Cell viabilities of CT26 cells upon treatment with TCPP@PEI/PGA nanoparticles with or without laser irradiation(650 nm, 0.1 W/cm2, 10 min).(B) The time-dependent production of 1O2 in the presence of 0.48 mg/mL of TCPP@PEI/PGA nanoparticles (red curve), TCPP (blue curve) and water (black curve) under 10 min laser irradiation.(C) The concentration-dependent production of 1O2 in the presence of 0.48 mg/mL of TCPP@PEI/PGA nanoparticles under 10 min laser irradiation.(D) Hemolytic potential of TCPP@PEI/PGA nanoparticles to human red blood cells.(E) H&E staining of organs dissected from mice upon treatment with PBS and TCPP@PEI/PGA nanoparticles (0.80 mg/mL).

    The low cytotoxicity and good biocompatibility of TCPP@PEI/PGA nanoparticles were verified by the MTT assay,as evidenced by a high cell viability (~95%) even after being exposed to TCPP@PEI/PGA nanoparticles with a concentration as high as 1.20 mg/mL for 24 h (black bar of Fig.3A).However, when the TCPP@PEI/PGA nanoparticle-treated CT26 cells were irradiated with a 650 nm laser (energy density: 0.1 W/cm2) for 10 min, cell viability exhibited a concentration-dependent decrease (red bar of Fig.3A).More than 90% of CT 26 cells were destructed at dosage of 1.20 mg/mL of TCPP@PEI/PGA nanoparticle and 10 min laser irradiation, indicating the high efficiency of cell destruction.It is believed that singlet oxygen (1O2) generated by TCPP@PEI/PGA nanoparticle upon laser irradiation should be responsible for the efficient cell destruction.Experiment results confirmed the timedependent (red curve of Fig.3B) and concentration-dependent(Fig.3C) production of1O2in the presence of 0.48 mg/mL of TCPP@PEI/PGA nanoparticles and 10 min laser irradiation, suggesting that TCPP@PEI/PGA nanoparticle is also a good PS candidate for tumor cell destruction through PDT.Correlated well with Table S1, the encapsulation of TCPP into TCPP@PEI/PGA did not obviously affect the capability of1O2generation, as evidenced by that1O2QY of TCPP and TCPP@PEI/PGA were 24.3% and 22.8%,respectively.

    The good biocompatibility of TCPP@PEI/PGA nanoparticles was also verified by their low hemolytic efficiency when using human red blood cells as the model.As shown in Inset picture of Fig.3D, TCPP@PEI/PGA nanoparticles with various concentrations did not cause the red blood cells to rupture and thereafter release hemoglobin, presenting no visually red color of the solution.Correlated well with this bare eye observation, only ~3.0% of hemolytic efficiency was determined for TCPP@PEI/PGA nanoparticles with the concentrations up to 0.30 mg/mL (Fig.3D).All these results verified the excellent blood compatibility of TCPP@PEI/PGA nanoparticles.

    The potential biotoxicity of TCPP@PEI/PGA nanoparticles was evaluated using Balb/c mice.After being intravenous injected with TCPP@PEI/PGA nanoparticles, the mice were dissected to collect main organs including heart, kidneys, lungs, liver, and spleen for H&E staining.As shown in Fig.3E, compared to the PBS treated mice, all major organs of TCPP@PEI/PGA nanoparticle-treated mice exhibited negligible damage or inflammation.Again, this results further confirmed good biocompatibility and low biotoxicity of TCPP@PEI/PGA nanoparticles, laying a solid foundation for theirin vivobioimaging applications.

    Encouraged by their good biocompatibility, the capabilities of TCPP@PEI/PGA nanoparticles forin vitroandin vivoFL bioimaging were demonstrated by the use of CT 26 cells, zebra fishes and Balb/c mice as models.The abundant surface amino groups of TCPP@PEI/PGA nanoparticles afforded themselves good cellmembrane permeability, because amino groups could arouse endosomolytic effect.Combined with their bright FL, TCPP@PEI/PGA nanoparticles are expected to be effective FL imaging probes.The good cell-membrane permeability of TCPP@PEI-PGA nanoparticles were validated by the red cellular fluorescence (Fig.4A).To reveal the location of TCPP@PEI/PGA nanoparticles in the cells after endocytosis, TCPP@PEI/PGA nanoparticle-treated cells were further treated with DAPI which could specifically stain the cell nuclei.Fig.4A clearly showed that TCPP@PEI/PGA nanoparticles were mainly localized in the cytoplasmic region of the cells, suggesting the efficient internalization and accumulation of TCPP@PEI/PGA nanoparticles in tumor cells.In addition, the intact morphology of TCPP@PEI/PGA nanoparticle-treated cells also confirmed the good biocompatibility of TCPP@PEI/PGA nanoparticles.

    The capabilities of TCPP@PEI/PGA nanoparticles forin vivoFL bioimaging were firstly evaluated using zebra fishes.Fig.4B clearly showed that zebra fishes can uptake TCPP@PEI/PGA nanoparticles without affecting their normal physiological behaviors, as evidenced by the obvious and bright red fluorescence at their esophagus.This result suggested that zebra fishes might uptake TCPP@PEI/PGA nanoparticlesviaswallowing behavior.Again, the good biocompatibility and the low biotoxicity of TCPP@PEI/PGA nanoparticles was also verified by that TCPP@PEI/PGA nanoparticle-treated zebra fishes exhibited the intact morphology without obvious lesion and/or teratogenesis.

    Balb/c mice were also used as model to evaluate the bioimaging capability of TCPP@PEI/PGA nanoparticles.All animal experiments were performed in compliance with the regulations of the Animal Ethical and Welfare Committee of Sun Yat-sen University.Fig.4C showed real-timein vivoimaging of mice at different time points after being intravenous injected with TCPP@PEI/PGA nanoparticles.1 h after tail vein injection, strong FL signals originated from TCPP@PEI/PGA nanoparticles could be clearly observed in kidney, and the intensity of FL signals in kidney decreased along with time (middle of Fig.4C).This result suggested that TCPP@PEI/PGA nanoparticles could be efficiently accumulated in kidney and renal excretion was the main elimination route for TCPP@PEI/PGA nanoparticles.In addition, 24 h after tail vein injection, the efficient accumulation of TCPP@PEI/PGA nanoparticles in liver was also confirmed (upper of Fig.4C), suggesting that nanoparticles could also be eliminated by enteron excretion.Through imaging of the single organ after dissection, the accumulation of TCPP@PEI/PGA nanoparticles in lung was also observed(lower of Fig.4C), possibly due to the reticuloendothelial system containing large amounts of phagocytosis in lung [41].It was also worthy to mention that FL signals were barely observed from the heart, and spleen.All imaging results revealed that the synergistic metabolism of TCPP@PEI/PGA nanoparticlesviakidney and liver.

    Encouraged by the excellent PDT efficiency of TCPP@PEI/PGA nanoparticlesin vitro, a preliminary anti-tumor study using CT 26 tumor-bearing mice was carried out to assess its feasibility as PDT agent for cancer therapyin vivo.As shown in Fig.S2 (Supporting information), tumor volume was significantly decreased after being treated with 100 μL TCPP@PEI/PGA (0.80 mg/mL) and laser irradiation under a 635 nm laser (25 mW/cm2) for 10 min.The results indicated that TCPP@PEI/PGA nanoparticles exhibited potential in tumor growth inhibition and FL imaging-guided phototherapy.

    Fig.4.Bioimaging applications of TCPP@PEI/PGA nanoparticles.(A) CLSM images of CT 26 cells incubated with and without TCPP@PEI/PGA nanoparticles.The nuclei were stained with DAPI (blue).(B) Bright-field and fluorescence images of zebra fishes upon treatment with and without TCPP@PEI/PGA nanoparticles.(C) In vivo FL imaging of mice after intravenous injection with TCPP@PEI/PGA nanoparticles at different time points, and ex vivo FL images examined at 24 h post-injection.

    In conclusion, a simple and robust synthetic route is successfully demonstrated to encapsulate the porphyrin derivative, TCPP,into PEI-based polymer nanotheranostics, TCPP@PEI/PGA nanoparticles, forin vivobioimaging applications.In the resultant nanotheranostics, TCPP serves a dual function as the FL imaging probe and the PS for PDT.In vitroandin vivoexperiments confirmed that TCPP@PEI/PGA nanoparticles exhibited excellent biocompatibility as well as efficient FL imaging capability.In addition,in vitroandin vivoexperiments validated that TCPP@PEI/PGA nanoparticles could also serve as an effective phototherapeutic agent for cancer cell killing and tumor growth inhibition by generating efficient1O2under a 650 nm laser irradiation.All the results validated that TCPP@PEI/PGA nanoparticles were high efficient theranostic probes forin vivoapplications.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The financial support from Shenzhen Basic Research Program(No.JCYJ20210324140004013), Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments (No.2020B1212060077), and Guangdong Natural Science Foundation(No.2020A1515010661) is gratefully acknowledged.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2022.01.049.

    国产伦理片在线播放av一区| 免费av中文字幕在线| 精品一区在线观看国产| 大片免费播放器 马上看| 亚洲精品日本国产第一区| 超碰97精品在线观看| 巨乳人妻的诱惑在线观看| 国产成人午夜福利电影在线观看| 天堂中文最新版在线下载| 国产精品偷伦视频观看了| 少妇被粗大猛烈的视频| 中国国产av一级| 国产免费视频播放在线视频| 国产 精品1| 伊人久久国产一区二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 汤姆久久久久久久影院中文字幕| 亚洲综合色惰| 亚洲av男天堂| 成年女人毛片免费观看观看9 | 亚洲av综合色区一区| 精品99又大又爽又粗少妇毛片| 男女无遮挡免费网站观看| 国产免费现黄频在线看| 精品国产乱码久久久久久小说| 丰满乱子伦码专区| 人人澡人人妻人| 人妻人人澡人人爽人人| 精品亚洲乱码少妇综合久久| 成年人免费黄色播放视频| av.在线天堂| 亚洲欧洲国产日韩| 日日爽夜夜爽网站| 婷婷成人精品国产| 91精品三级在线观看| 国产女主播在线喷水免费视频网站| 观看av在线不卡| 在线观看国产h片| av不卡在线播放| 熟妇人妻不卡中文字幕| 亚洲在久久综合| av网站免费在线观看视频| 精品国产一区二区久久| 免费不卡的大黄色大毛片视频在线观看| 最近中文字幕高清免费大全6| 国产精品99久久99久久久不卡 | 精品视频人人做人人爽| 久久av网站| 狠狠婷婷综合久久久久久88av| 看非洲黑人一级黄片| 国产亚洲最大av| 又黄又粗又硬又大视频| 亚洲图色成人| 热99久久久久精品小说推荐| 国产福利在线免费观看视频| 亚洲国产欧美在线一区| 色视频在线一区二区三区| 少妇 在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩一区二区视频在线观看视频在线| 性少妇av在线| 啦啦啦中文免费视频观看日本| 一边摸一边做爽爽视频免费| 国产不卡av网站在线观看| 久久精品国产亚洲av高清一级| 一区二区av电影网| 日本av手机在线免费观看| 欧美日韩精品网址| av在线老鸭窝| av.在线天堂| 国产一区二区在线观看av| 综合色丁香网| 777久久人妻少妇嫩草av网站| 涩涩av久久男人的天堂| 国产白丝娇喘喷水9色精品| 一区二区三区精品91| 免费在线观看黄色视频的| 国产视频首页在线观看| 国产精品嫩草影院av在线观看| 久久久久久人妻| 国产成人精品一,二区| 久久精品人人爽人人爽视色| 日韩精品有码人妻一区| 日本av手机在线免费观看| 亚洲欧美中文字幕日韩二区| 波多野结衣av一区二区av| 女性生殖器流出的白浆| 极品人妻少妇av视频| 男男h啪啪无遮挡| 丝袜在线中文字幕| 宅男免费午夜| 日韩一本色道免费dvd| 日韩av免费高清视频| 99久国产av精品国产电影| 精品人妻一区二区三区麻豆| 久久鲁丝午夜福利片| 街头女战士在线观看网站| 国产日韩一区二区三区精品不卡| 日韩 亚洲 欧美在线| 啦啦啦啦在线视频资源| 亚洲在久久综合| 中文欧美无线码| av天堂久久9| 国产精品99久久99久久久不卡 | 大香蕉久久网| 日韩精品有码人妻一区| xxxhd国产人妻xxx| 国产精品嫩草影院av在线观看| 国产在线一区二区三区精| 五月开心婷婷网| 女人精品久久久久毛片| 久久国内精品自在自线图片| 国产无遮挡羞羞视频在线观看| 国产午夜精品一二区理论片| 久久99精品国语久久久| 亚洲国产精品一区三区| 国产乱来视频区| 亚洲精品久久成人aⅴ小说| 寂寞人妻少妇视频99o| 日日撸夜夜添| 亚洲一区中文字幕在线| 久久毛片免费看一区二区三区| 一级片免费观看大全| 日韩中文字幕视频在线看片| 春色校园在线视频观看| 日韩电影二区| 人成视频在线观看免费观看| 亚洲国产欧美在线一区| av女优亚洲男人天堂| 精品视频人人做人人爽| 在线观看免费日韩欧美大片| 一二三四中文在线观看免费高清| 极品少妇高潮喷水抽搐| 欧美激情高清一区二区三区 | 又大又黄又爽视频免费| 大片免费播放器 马上看| 丝瓜视频免费看黄片| 国产精品.久久久| 色吧在线观看| 777久久人妻少妇嫩草av网站| 考比视频在线观看| 免费观看a级毛片全部| 亚洲 欧美一区二区三区| 国产无遮挡羞羞视频在线观看| 1024香蕉在线观看| 大香蕉久久成人网| 天堂8中文在线网| 欧美日韩精品网址| 尾随美女入室| 国产欧美日韩综合在线一区二区| 91精品国产国语对白视频| 18禁观看日本| 亚洲人成77777在线视频| 精品一区二区三区四区五区乱码 | 大话2 男鬼变身卡| 大片电影免费在线观看免费| 最近2019中文字幕mv第一页| 男女边吃奶边做爰视频| 9热在线视频观看99| 亚洲国产毛片av蜜桃av| 一级毛片黄色毛片免费观看视频| 免费不卡的大黄色大毛片视频在线观看| 两个人看的免费小视频| 国产精品久久久久久精品古装| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费大片黄手机在线观看| 人妻 亚洲 视频| 青春草视频在线免费观看| 国产精品香港三级国产av潘金莲 | 少妇 在线观看| 韩国高清视频一区二区三区| 久久久国产欧美日韩av| 黄片小视频在线播放| 午夜福利在线观看免费完整高清在| 在线观看免费日韩欧美大片| 亚洲精品乱久久久久久| 亚洲,一卡二卡三卡| 欧美精品亚洲一区二区| 久久久久久久国产电影| 成人午夜精彩视频在线观看| 国产一区二区激情短视频 | 免费黄网站久久成人精品| 亚洲视频免费观看视频| 叶爱在线成人免费视频播放| 国产精品无大码| 日韩三级伦理在线观看| 久久精品国产综合久久久| 欧美日韩亚洲高清精品| 少妇的逼水好多| freevideosex欧美| 美女福利国产在线| 日韩电影二区| 亚洲色图 男人天堂 中文字幕| av国产精品久久久久影院| 亚洲美女搞黄在线观看| 国产女主播在线喷水免费视频网站| 国产视频首页在线观看| 久久人人97超碰香蕉20202| 美女脱内裤让男人舔精品视频| 十分钟在线观看高清视频www| 国产精品久久久久成人av| 午夜福利视频在线观看免费| 男的添女的下面高潮视频| 精品午夜福利在线看| 国产成人aa在线观看| 久久久欧美国产精品| a级毛片在线看网站| 国产视频首页在线观看| 男人舔女人的私密视频| 精品国产露脸久久av麻豆| 十分钟在线观看高清视频www| 国产精品熟女久久久久浪| 精品视频人人做人人爽| 观看av在线不卡| av电影中文网址| 久热这里只有精品99| 香蕉国产在线看| 99久久综合免费| 精品一区二区三卡| 午夜av观看不卡| 丝袜美足系列| 久久这里有精品视频免费| 日产精品乱码卡一卡2卡三| 啦啦啦中文免费视频观看日本| 亚洲第一av免费看| 欧美日韩一级在线毛片| 日韩一区二区三区影片| 制服丝袜香蕉在线| 亚洲色图综合在线观看| 日韩在线高清观看一区二区三区| 高清av免费在线| 亚洲国产成人一精品久久久| 免费高清在线观看视频在线观看| 女性被躁到高潮视频| 十八禁网站网址无遮挡| 亚洲国产欧美在线一区| 女的被弄到高潮叫床怎么办| 久久久久久久久久久久大奶| 久久久久久久久免费视频了| 自线自在国产av| 最近最新中文字幕大全免费视频 | 精品国产乱码久久久久久男人| 久久久国产一区二区| 99热全是精品| videosex国产| 国产精品欧美亚洲77777| 亚洲国产欧美日韩在线播放| 亚洲成色77777| 一级片免费观看大全| 欧美国产精品一级二级三级| 丝袜脚勾引网站| 日本欧美视频一区| 国产精品偷伦视频观看了| 国产片内射在线| 三上悠亚av全集在线观看| 最近最新中文字幕大全免费视频 | 久久久久国产网址| 一本大道久久a久久精品| 考比视频在线观看| 女人精品久久久久毛片| 9191精品国产免费久久| 国产伦理片在线播放av一区| 又粗又硬又长又爽又黄的视频| 青春草国产在线视频| 女性生殖器流出的白浆| 中文字幕人妻熟女乱码| 在现免费观看毛片| 国产精品二区激情视频| 日本猛色少妇xxxxx猛交久久| 女的被弄到高潮叫床怎么办| 亚洲人成77777在线视频| 夫妻午夜视频| 狠狠精品人妻久久久久久综合| 久久精品国产亚洲av高清一级| 国产成人av激情在线播放| 精品人妻一区二区三区麻豆| 亚洲精品,欧美精品| 一本久久精品| 十八禁网站网址无遮挡| xxx大片免费视频| 国产精品国产三级国产专区5o| 不卡视频在线观看欧美| 久久久精品国产亚洲av高清涩受| 嫩草影院入口| 秋霞伦理黄片| 免费在线观看黄色视频的| 成年人午夜在线观看视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 制服人妻中文乱码| 涩涩av久久男人的天堂| 亚洲熟女精品中文字幕| 中文乱码字字幕精品一区二区三区| 国产探花极品一区二区| 亚洲欧洲日产国产| 91成人精品电影| 免费高清在线观看视频在线观看| 国产人伦9x9x在线观看 | 亚洲av日韩在线播放| 亚洲情色 制服丝袜| 免费黄网站久久成人精品| 久久久久久久久久久久大奶| 久久韩国三级中文字幕| videos熟女内射| a级毛片在线看网站| 国产精品久久久久久av不卡| 国产成人午夜福利电影在线观看| 十分钟在线观看高清视频www| 韩国高清视频一区二区三区| av.在线天堂| 综合色丁香网| 精品一区二区三卡| 菩萨蛮人人尽说江南好唐韦庄| 曰老女人黄片| 亚洲经典国产精华液单| 国产精品 欧美亚洲| 蜜桃国产av成人99| 大话2 男鬼变身卡| 看免费av毛片| 少妇的逼水好多| 成人国产av品久久久| 日韩一卡2卡3卡4卡2021年| 欧美精品亚洲一区二区| 熟女电影av网| 亚洲成人手机| 人妻一区二区av| 国产成人免费观看mmmm| 久久人人爽人人片av| 精品酒店卫生间| 男女国产视频网站| 久久久国产欧美日韩av| 又大又黄又爽视频免费| 最近2019中文字幕mv第一页| 在线天堂最新版资源| 成人18禁高潮啪啪吃奶动态图| 国产爽快片一区二区三区| 成年人免费黄色播放视频| 日韩av免费高清视频| 三上悠亚av全集在线观看| av网站免费在线观看视频| 亚洲国产日韩一区二区| 人人澡人人妻人| 亚洲精品一二三| 有码 亚洲区| 久久狼人影院| 有码 亚洲区| 男人添女人高潮全过程视频| 少妇的丰满在线观看| 久久久久久人妻| 国产女主播在线喷水免费视频网站| 青青草视频在线视频观看| 久久国产精品男人的天堂亚洲| 欧美日韩精品成人综合77777| 美女国产高潮福利片在线看| 亚洲久久久国产精品| 久久久精品94久久精品| 蜜桃在线观看..| 97在线视频观看| 一区福利在线观看| 丰满乱子伦码专区| 黄片小视频在线播放| 亚洲精品国产色婷婷电影| 成年动漫av网址| 亚洲内射少妇av| 国产色婷婷99| 97在线视频观看| 人妻 亚洲 视频| 国产精品欧美亚洲77777| 一区二区日韩欧美中文字幕| 免费av中文字幕在线| 80岁老熟妇乱子伦牲交| 久久影院123| 熟女av电影| 青春草亚洲视频在线观看| 亚洲人成网站在线观看播放| 9色porny在线观看| 成年人免费黄色播放视频| 亚洲色图综合在线观看| 人人妻人人澡人人爽人人夜夜| 丝袜美足系列| av.在线天堂| 2021少妇久久久久久久久久久| 日本-黄色视频高清免费观看| 2021少妇久久久久久久久久久| 日本-黄色视频高清免费观看| 不卡av一区二区三区| 午夜福利在线观看免费完整高清在| 国产精品久久久久成人av| 亚洲欧美精品自产自拍| 欧美日韩精品网址| av在线观看视频网站免费| 韩国高清视频一区二区三区| 中文字幕人妻熟女乱码| 日日啪夜夜爽| 国产男人的电影天堂91| 另类亚洲欧美激情| 国产日韩一区二区三区精品不卡| 日本黄色日本黄色录像| 毛片一级片免费看久久久久| 在线天堂最新版资源| 2021少妇久久久久久久久久久| 亚洲国产精品一区二区三区在线| 国产精品免费视频内射| 欧美亚洲 丝袜 人妻 在线| 亚洲精品在线美女| 又大又黄又爽视频免费| 日本91视频免费播放| 国产精品亚洲av一区麻豆 | 色网站视频免费| 一本大道久久a久久精品| 大话2 男鬼变身卡| 亚洲欧美日韩另类电影网站| 国产 一区精品| 国产精品蜜桃在线观看| 日本vs欧美在线观看视频| 一个人免费看片子| 国产男女内射视频| 久久av网站| 久久97久久精品| 午夜福利在线免费观看网站| 一本久久精品| 老鸭窝网址在线观看| 欧美成人午夜精品| 精品国产乱码久久久久久小说| 国产深夜福利视频在线观看| 久久久久国产一级毛片高清牌| 午夜福利乱码中文字幕| 青青草视频在线视频观看| 九草在线视频观看| 精品国产国语对白av| 欧美成人精品欧美一级黄| 观看av在线不卡| 99久久人妻综合| 色吧在线观看| 久热这里只有精品99| 成人漫画全彩无遮挡| 久久精品国产亚洲av涩爱| 亚洲,一卡二卡三卡| 久久久久久久久久人人人人人人| 男人爽女人下面视频在线观看| 日韩av不卡免费在线播放| 国产综合精华液| 午夜福利,免费看| av国产精品久久久久影院| 夫妻性生交免费视频一级片| 亚洲精品国产av成人精品| 成人毛片60女人毛片免费| 秋霞在线观看毛片| 美女主播在线视频| 国产亚洲av片在线观看秒播厂| 国产一区亚洲一区在线观看| 在线观看一区二区三区激情| 搡老乐熟女国产| 黄色配什么色好看| 高清欧美精品videossex| 男女下面插进去视频免费观看| 亚洲五月色婷婷综合| 国产精品国产三级专区第一集| 女人被躁到高潮嗷嗷叫费观| 亚洲一级一片aⅴ在线观看| 精品一品国产午夜福利视频| 国产精品女同一区二区软件| 亚洲人成77777在线视频| 性色avwww在线观看| 午夜福利在线观看免费完整高清在| 最近2019中文字幕mv第一页| 美女主播在线视频| 国产精品久久久av美女十八| 亚洲国产精品一区三区| 国产精品一区二区在线观看99| 我要看黄色一级片免费的| 高清黄色对白视频在线免费看| 国产精品免费视频内射| 26uuu在线亚洲综合色| 黑人巨大精品欧美一区二区蜜桃| 自拍欧美九色日韩亚洲蝌蚪91| 1024香蕉在线观看| 99久久综合免费| 午夜福利网站1000一区二区三区| 亚洲三区欧美一区| 日韩一卡2卡3卡4卡2021年| 国产精品香港三级国产av潘金莲 | 免费久久久久久久精品成人欧美视频| 欧美+日韩+精品| 丝袜美足系列| 电影成人av| 亚洲国产欧美日韩在线播放| 久久久久视频综合| 久久av网站| av国产久精品久网站免费入址| 亚洲一码二码三码区别大吗| 麻豆精品久久久久久蜜桃| 欧美bdsm另类| 久久狼人影院| 亚洲 欧美一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 麻豆乱淫一区二区| 性少妇av在线| 午夜免费男女啪啪视频观看| 日日摸夜夜添夜夜爱| 国产av码专区亚洲av| 最近2019中文字幕mv第一页| 成人国产麻豆网| 日韩电影二区| 国产av国产精品国产| 一级毛片黄色毛片免费观看视频| 日韩一区二区三区影片| 日本vs欧美在线观看视频| 考比视频在线观看| 嫩草影院入口| 日韩av在线免费看完整版不卡| 午夜精品国产一区二区电影| 亚洲av福利一区| 国产伦理片在线播放av一区| 国语对白做爰xxxⅹ性视频网站| 午夜日本视频在线| 欧美成人午夜免费资源| 国产精品免费大片| 成年人免费黄色播放视频| 色婷婷久久久亚洲欧美| 免费观看a级毛片全部| 午夜影院在线不卡| 我的亚洲天堂| 中文字幕另类日韩欧美亚洲嫩草| 亚洲三区欧美一区| 日本vs欧美在线观看视频| 赤兔流量卡办理| 精品少妇内射三级| 1024视频免费在线观看| 丝瓜视频免费看黄片| 日韩av免费高清视频| 国产欧美亚洲国产| 成年人午夜在线观看视频| 观看av在线不卡| 在线观看一区二区三区激情| 校园人妻丝袜中文字幕| 最近最新中文字幕大全免费视频 | 免费在线观看视频国产中文字幕亚洲 | √禁漫天堂资源中文www| 在线精品无人区一区二区三| 免费日韩欧美在线观看| 观看av在线不卡| 男女无遮挡免费网站观看| 国精品久久久久久国模美| 欧美精品一区二区大全| 男人舔女人的私密视频| 一级毛片电影观看| 国产成人精品在线电影| 亚洲精品第二区| 搡女人真爽免费视频火全软件| 国产av一区二区精品久久| 午夜日韩欧美国产| 18在线观看网站| 丁香六月天网| 国产一区二区 视频在线| av.在线天堂| 国产成人欧美| 亚洲内射少妇av| videosex国产| 久久人人爽人人片av| 一级毛片 在线播放| 尾随美女入室| 欧美国产精品va在线观看不卡| 国产一区二区三区av在线| 国产免费又黄又爽又色| 一区二区三区四区激情视频| 老鸭窝网址在线观看| 久久精品国产a三级三级三级| 国产片内射在线| 叶爱在线成人免费视频播放| 亚洲成人一二三区av| 777米奇影视久久| 国产在线视频一区二区| 人妻少妇偷人精品九色| 国产一区二区在线观看av| 亚洲第一青青草原| 国产精品久久久久成人av| 美女主播在线视频| av视频免费观看在线观看| 午夜老司机福利剧场| 国产一区二区三区av在线| 男女无遮挡免费网站观看| 精品少妇内射三级| 久久99精品国语久久久| 欧美在线黄色| 在线观看免费高清a一片| 亚洲精品自拍成人| 波多野结衣av一区二区av| av在线播放精品| 亚洲激情五月婷婷啪啪| 极品少妇高潮喷水抽搐| 人人妻人人添人人爽欧美一区卜| 成人毛片a级毛片在线播放| 伊人久久大香线蕉亚洲五| 国产片内射在线| 免费观看在线日韩| 久久久久久人人人人人| 伦理电影免费视频| 成年美女黄网站色视频大全免费| 久久久久久久大尺度免费视频| 色哟哟·www| 叶爱在线成人免费视频播放| 国产一级毛片在线| 久久久精品94久久精品| av.在线天堂| 国产爽快片一区二区三区| 青春草亚洲视频在线观看| 亚洲av日韩在线播放| av线在线观看网站| 黑人欧美特级aaaaaa片| 国产福利在线免费观看视频| 亚洲av在线观看美女高潮| 日韩成人av中文字幕在线观看| 天天躁夜夜躁狠狠久久av| 男女午夜视频在线观看| 啦啦啦在线免费观看视频4|