• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Facile synthesis and in vivo bioimaging applications of porphyrin derivative-encapsulated polymer nanoparticles

    2022-09-16 05:25:16MengfeiHouWndiChenJunkiZhoDeshenDiMoYngChngqingYi
    Chinese Chemical Letters 2022年8期

    Mengfei Hou, Wndi Chen, Junki Zho, Deshen Di, Mo Yng, Chngqing Yi,?

    a Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China

    b State Key Laboratory of Oncology in South China, Collaborative Innovation Center For Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China

    c Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China

    ABSTRACT Fluorescence (FL) imaging guided photodynamic therapy (PDT) is becoming highly desirable for personalized therapy and precision medicine.In this study, fluorescent polymer nanoparticles TCPP@PEI/PGA were facilely synthesized through electrostatic interaction-mediated self-assembly of porphyrins tetra(4-carboxyphenyl)porphine (TCPP) and polyethylenimine (PEI), and subsequent surface modification with γpoly(glutamic acid) (γ-PGA).TCPP served a dual function as the FL imaging probe and the photosensitizer.The as-prepared TCPP@PEI/PGA nanoparticles showed excellent water-solubility and biocompatibility, while having outstanding capabilities of in vivo bioimaging and 1O2 generation.FL bioimaging of mice and effective killing of CT 26 cells as well as CT 26 tumor-bearing mice upon laser irradiation were successfully demonstrated when using TCPP@PEI/PGA as theranostic nanoprobes.This study provides a simple but robust method to design and synthesize porphyrin-based polymer nanoparticles for theranostics.

    Keywords:Porphyrins Fluorescence imaging Photodynamic therapy Theranostics

    Due to its noninvasive, effective antitumor, and low adverse effects, photodynamic therapy (PDT) is becoming attractive in cancer treatment [1–5].During PDT, photosensitizers (PS) are used to convert light into intracellular reactive oxygen species (ROS) to destroy tumor cells.However, the phototoxicity to normal tissues and high risk of tumor recurrence limits the clinical translation of PDT [6–8].In order to address this critical issue, theranostic probes which can realize imaging-guided therapy are attracting more and more research attentions, due to the features of guidance of external lights to precisely irradiate tumor lesion sites and subsequent monitoring of treatment outcomes simultaneously [9,10].Among various imaging methods, fluorescence imaging (FL) has shown great potential in the guidance of PDT as well as surgical operation, thanks to its capability of real-timein vivoimaging with subcellular resolution and single cell sensitivity [11–13].Therefore, effective PS agents which integrate the capabilities of FL imaging and photoinduced ROS generation are highly desirable for personalized therapy and precision medicine.

    Nowadays, porphyrins [14–16], BODIPY [17,18], Cyanine compound [19,20], are extensively used as effective PS agents for FL imaging-guided PDT.Especially, porphyrin derivatives are extensively used for FL imaging as well as PDT, owing to their excellent characteristics such as high vascular permeability for accumulation in tumor as well as long stokes shift [21,22].As a typical kind of porphyrins, tetra(4-carboxyphenyl)porphine (TCPP)demonstrates itself as both an excellent PS agent and a good FL imaging probe, by not only generating ROS under irradiation efficiently, but also exhibiting strong fluorescence emission in the near-infrared region [23,24].However, the poor water solubility and cell-membrane permeability greatly restrict the biomedical applications of TCPP, especially in FL imaging-guided PDT.Fortunately, it has been well-established that nanoparticles can transport organic molecules with poor water solubility and bad cell permeability into cells by neglecting their intrinsic properties [25–28].Particularly, polymer nanoparticle is becoming an appealing platform for the preparation of multifunctional nanotheranostic probes because the rational design can be easily realized by judicious incorporation of building blocks [29–33].For example, a simple amide coupling reaction was used to prepare TCPP-polyethylene glycol (PEG) based nanotheranostic probes for imaging-guided cancer therapy [34].Although various reported nanotheranostic probes exhibited excellent performance for cancer therapy, it is still compelling to develop simple but robust synthetic routes for the preparation of polymer nanotheranostics in a more efficient manner.

    Polyethylenimine (PEI) presents itself as an attractive building block for the synthesis of polymer nanoprobes because of its features such as excellent water solubility and cell-membrane permeability aroused by its large amount of amino groups and positive charges [31-33,35-38].More importantly, the electrostatic interaction between positively charged PEI and negatively charged TCPP can induce the self-assembly of PEI and TCPP to form polymer nanoparticles which can easily transport TCPP into cells by neglecting its intrinsic property.Therefore, a simple but robust synthetic route is successfully demonstrated to encapsulate TCPP into PEIbased nanotheranostic probes TCPP@PEI/PGA, and the potential of TCPP@PEI/PGA for FL imaging-guided PDT is initially evaluated using CT 26 cells and CT 26 tumor-bearing mice (Scheme 1).

    Scheme 1.Schematic illustration for the synthesis of TCPP@PEI/PGA nanoparticles and their applications in FL bioimaging in vivo and cell destruction in vitro.

    Fig.1.Synthesis of TCPP@PEI/PGA nanoparticles.Optimization of PEI/TCPP ratios using FL intensity (A) and size (B) of as-prepared nanoparticles as the parameters.Insert:Photos of the suspensions containing as-prepared TCPP@PEI nanoparticles using different PEI/TCPP ratios in daylight (upper) and under UV irradiation (lower).(C) Optimization of synthesis time using FL intensity (λem = 672 nm) as the parameter.(D) Optimization of PGA/PEI ratios using zeta potential of as-prepared TCPP@PEI/PGA nanoparticles as the parameter.

    Their large amount of amino groups make PEI positively charged and highly hydrophilic.More importantly, the amino groups of PEI can interact with carboxylic groups of TCPP to form nanoparticlesviaelectrostatic interaction-induced self-assembly(Scheme 1), and thereafter improve the water solubility and cellmembrane permeability of TCPP.This can facilitate its biomedical applications, especially for FL imaging-guided PDT.From the perspectives of PDT and FL imaging, the as-prepared TCPP@PEI/PGA nanoparticles should have the strongest capability of1O2generation as well as the highest FL quantum yield (QY).And from the perspective ofin vivoapplication, nanoparticles with smaller diameter are advantageous.Therefore, the PEI/TCPP ratio and the reaction time for the nanoparticle synthesis were optimized at first.As shown in Fig.1A and Fig.S1 (Supporting information), along with the increase of the PEI/TCPP ratio, the amount of undissolved TCPP decreased and the FL intensity of the nanoparticle suspension increased.And when the PEI/TCPP ratio reached 10, all the TCPP completely reacted with PEI to form nanoparticles (Inset of Fig.1A).However, for the as-prepared TCPP@PEI/PGA nanoparticle,at the PEI/TCPP feed mass ratio of 6, its size minimized (Fig.1B)as well as its FL QY and1O2QY maximized (Table S1 in Supporting information).Considering that nanoparticles with smaller diameter, higher FL QY as well as1O2QY are beneficial toin vivobiomedical applications, the PEI/TCPP ratio of 6 was considered as the optimal experiment condition for the synthesis.And from Fig.1C, the FL intensity of the nanoparticle suspension was leveled off after reaction 5 h,i.e., the optimal reaction time for the synthesis.

    It has been well-documented that the excess of surface positive charge might also induce serious cytotoxicity.To address this issue, in this study, biocompatibleγ-PGA was modified onto the surface of TCPP@PEI nanoparticlesviaelectrostatic interaction between carboxylic groups ofγ-PGA and amino groups of PEI.As expected, along with the increase of the PGA/PEI ratio from 0 to 0.6,the zeta potential of the as-prepared nanoparticles decreased from~40.0 mV to ~6.0 mV (Fig.1D).Since a certain amount of surface positive charge can facilitate the entry of nanoparticles into cells without affecting cell activity, the PGA/PEI ratio of 0.6 was considered as the optimal experiment condition for the surface modification.

    As shown in TEM image, the as-prepared TCPP@PEI/PGA nanoparticles exhibited irregular sphericity (Fig.2A).DLS measurements revealed that the water-dispersed TCPP@PEI/PGA nanoparticles exhibited an uniform size distribution with a hydrodynamic diameter of 221 ± 28.3 nm (Fig.2B).And the surface modification withγ-PGA substantially decreased the zeta potential of TCPP@PEI/PGA nanoparticles to +5.91 mV.

    The successful synthesis of TCPP@PEI/PGA nanoparticles was validated by the UV–vis absorption spectra and FL spectra.As demonstrated in Fig.2C, TCPP exhibited the characteristic absorption peak at ~420 nm which was originated from the porphyrin moiety of TCPP, while all the other components for nanoparticle synthesis, PEI and PGA, barely had absorption at ~420 nm.However, both TCPP@PEI and TCPP@PEI/PGA nanoparticles exhibited the characteristic absorption of TCPP, indicating the successful encapsulation of TCPP into nanoparticles.Notably, TCPP@PEI/PGA nanoparticles also exhibited an absorption peak at ~660 nm (Inset of Fig.2C), which could facilitate the PDT because the laser with longer wavelength is beneficial forin vivoapplications.

    Similarly, as demonstrated in Fig.2D, TCPP exhibited the characteristic emission peaks at ~650 nm and ~710 nm upon excitation at 414 nm, while all the other components for nanoparticle synthesis, PEI and PGA, exhibited no emission behavior at the wavelength range of 600–780 nm.However, both TCPP@PEI and TCPP@PEI/PGA nanoparticles exhibited the characteristic emission peaks of TCPP, again indicating the successful encapsulation of TCPP into nanoparticles.Notably, compared with TCPP, a red shift of ~20 nm was observed in the wavelengths of emission peaks of TCPP@PEI nanoparticles and TCPP@PEI/PGA nanoparticles, possibly due to the abundant amino groups surrounding the TCPP [39,40].The excellent emission property makes TCPP@PEI/PGA nanoparticle suitable forin vivoFL bioimaging applications.Since the synthesis reproducibility of TCPP@PEI/PGA nanoparticles is quite important for its future applications, we analyzed the key parameters, such as size, surface potential as well as emission properties, of 3 different batches of TCPP@PEI/PGA nanoparticles which were synthesized by 3 different graduate students.As shown in Table S2 (Supporting information), 3 different batches of as-prepared TCPP@PEI/PGA nanoparticles exhibited the similar size distribution profile, surface potentials and emission features.The quite simple and straightforward synthesis protocol definitely contributes to its good synthesis reproducibility.

    Fig.2.Characterization of TCPP@PEI/PGA nanoparticles.(A) TEM image of TCPP@PEI/PGA nanoparticles.(B) Particle size distribution of TCPP@PEI/PGA nanoparticles.(C) The absorption spectra of TCPP, PEI, PGA, TCPP@PEI and TCPP@PEI/PGA nanoparticles.Insert: The enlarged absorption spectra of TCPP, TCPP@PEI and TCPP@PEI/PGA nanoparticles in the wavelength of 630–700 nm.(D) The fluorescence excitation spectrum of TCPP@PEI/PGA nanoparticles, and the emission spectra of TCPP, PEI, PGA, TCPP@PEI and TCPP@PEI/PGA nanoparticles.Insert: The photos of TCPP, PEI, PGA, TCPP@PEI and TCPP@PEI/PGA nanoparticles under UV irradiation.

    Fig.3.Biotoxicity of TCPP@PEI/PGA nanoparticles.(A) Cell viabilities of CT26 cells upon treatment with TCPP@PEI/PGA nanoparticles with or without laser irradiation(650 nm, 0.1 W/cm2, 10 min).(B) The time-dependent production of 1O2 in the presence of 0.48 mg/mL of TCPP@PEI/PGA nanoparticles (red curve), TCPP (blue curve) and water (black curve) under 10 min laser irradiation.(C) The concentration-dependent production of 1O2 in the presence of 0.48 mg/mL of TCPP@PEI/PGA nanoparticles under 10 min laser irradiation.(D) Hemolytic potential of TCPP@PEI/PGA nanoparticles to human red blood cells.(E) H&E staining of organs dissected from mice upon treatment with PBS and TCPP@PEI/PGA nanoparticles (0.80 mg/mL).

    The low cytotoxicity and good biocompatibility of TCPP@PEI/PGA nanoparticles were verified by the MTT assay,as evidenced by a high cell viability (~95%) even after being exposed to TCPP@PEI/PGA nanoparticles with a concentration as high as 1.20 mg/mL for 24 h (black bar of Fig.3A).However, when the TCPP@PEI/PGA nanoparticle-treated CT26 cells were irradiated with a 650 nm laser (energy density: 0.1 W/cm2) for 10 min, cell viability exhibited a concentration-dependent decrease (red bar of Fig.3A).More than 90% of CT 26 cells were destructed at dosage of 1.20 mg/mL of TCPP@PEI/PGA nanoparticle and 10 min laser irradiation, indicating the high efficiency of cell destruction.It is believed that singlet oxygen (1O2) generated by TCPP@PEI/PGA nanoparticle upon laser irradiation should be responsible for the efficient cell destruction.Experiment results confirmed the timedependent (red curve of Fig.3B) and concentration-dependent(Fig.3C) production of1O2in the presence of 0.48 mg/mL of TCPP@PEI/PGA nanoparticles and 10 min laser irradiation, suggesting that TCPP@PEI/PGA nanoparticle is also a good PS candidate for tumor cell destruction through PDT.Correlated well with Table S1, the encapsulation of TCPP into TCPP@PEI/PGA did not obviously affect the capability of1O2generation, as evidenced by that1O2QY of TCPP and TCPP@PEI/PGA were 24.3% and 22.8%,respectively.

    The good biocompatibility of TCPP@PEI/PGA nanoparticles was also verified by their low hemolytic efficiency when using human red blood cells as the model.As shown in Inset picture of Fig.3D, TCPP@PEI/PGA nanoparticles with various concentrations did not cause the red blood cells to rupture and thereafter release hemoglobin, presenting no visually red color of the solution.Correlated well with this bare eye observation, only ~3.0% of hemolytic efficiency was determined for TCPP@PEI/PGA nanoparticles with the concentrations up to 0.30 mg/mL (Fig.3D).All these results verified the excellent blood compatibility of TCPP@PEI/PGA nanoparticles.

    The potential biotoxicity of TCPP@PEI/PGA nanoparticles was evaluated using Balb/c mice.After being intravenous injected with TCPP@PEI/PGA nanoparticles, the mice were dissected to collect main organs including heart, kidneys, lungs, liver, and spleen for H&E staining.As shown in Fig.3E, compared to the PBS treated mice, all major organs of TCPP@PEI/PGA nanoparticle-treated mice exhibited negligible damage or inflammation.Again, this results further confirmed good biocompatibility and low biotoxicity of TCPP@PEI/PGA nanoparticles, laying a solid foundation for theirin vivobioimaging applications.

    Encouraged by their good biocompatibility, the capabilities of TCPP@PEI/PGA nanoparticles forin vitroandin vivoFL bioimaging were demonstrated by the use of CT 26 cells, zebra fishes and Balb/c mice as models.The abundant surface amino groups of TCPP@PEI/PGA nanoparticles afforded themselves good cellmembrane permeability, because amino groups could arouse endosomolytic effect.Combined with their bright FL, TCPP@PEI/PGA nanoparticles are expected to be effective FL imaging probes.The good cell-membrane permeability of TCPP@PEI-PGA nanoparticles were validated by the red cellular fluorescence (Fig.4A).To reveal the location of TCPP@PEI/PGA nanoparticles in the cells after endocytosis, TCPP@PEI/PGA nanoparticle-treated cells were further treated with DAPI which could specifically stain the cell nuclei.Fig.4A clearly showed that TCPP@PEI/PGA nanoparticles were mainly localized in the cytoplasmic region of the cells, suggesting the efficient internalization and accumulation of TCPP@PEI/PGA nanoparticles in tumor cells.In addition, the intact morphology of TCPP@PEI/PGA nanoparticle-treated cells also confirmed the good biocompatibility of TCPP@PEI/PGA nanoparticles.

    The capabilities of TCPP@PEI/PGA nanoparticles forin vivoFL bioimaging were firstly evaluated using zebra fishes.Fig.4B clearly showed that zebra fishes can uptake TCPP@PEI/PGA nanoparticles without affecting their normal physiological behaviors, as evidenced by the obvious and bright red fluorescence at their esophagus.This result suggested that zebra fishes might uptake TCPP@PEI/PGA nanoparticlesviaswallowing behavior.Again, the good biocompatibility and the low biotoxicity of TCPP@PEI/PGA nanoparticles was also verified by that TCPP@PEI/PGA nanoparticle-treated zebra fishes exhibited the intact morphology without obvious lesion and/or teratogenesis.

    Balb/c mice were also used as model to evaluate the bioimaging capability of TCPP@PEI/PGA nanoparticles.All animal experiments were performed in compliance with the regulations of the Animal Ethical and Welfare Committee of Sun Yat-sen University.Fig.4C showed real-timein vivoimaging of mice at different time points after being intravenous injected with TCPP@PEI/PGA nanoparticles.1 h after tail vein injection, strong FL signals originated from TCPP@PEI/PGA nanoparticles could be clearly observed in kidney, and the intensity of FL signals in kidney decreased along with time (middle of Fig.4C).This result suggested that TCPP@PEI/PGA nanoparticles could be efficiently accumulated in kidney and renal excretion was the main elimination route for TCPP@PEI/PGA nanoparticles.In addition, 24 h after tail vein injection, the efficient accumulation of TCPP@PEI/PGA nanoparticles in liver was also confirmed (upper of Fig.4C), suggesting that nanoparticles could also be eliminated by enteron excretion.Through imaging of the single organ after dissection, the accumulation of TCPP@PEI/PGA nanoparticles in lung was also observed(lower of Fig.4C), possibly due to the reticuloendothelial system containing large amounts of phagocytosis in lung [41].It was also worthy to mention that FL signals were barely observed from the heart, and spleen.All imaging results revealed that the synergistic metabolism of TCPP@PEI/PGA nanoparticlesviakidney and liver.

    Encouraged by the excellent PDT efficiency of TCPP@PEI/PGA nanoparticlesin vitro, a preliminary anti-tumor study using CT 26 tumor-bearing mice was carried out to assess its feasibility as PDT agent for cancer therapyin vivo.As shown in Fig.S2 (Supporting information), tumor volume was significantly decreased after being treated with 100 μL TCPP@PEI/PGA (0.80 mg/mL) and laser irradiation under a 635 nm laser (25 mW/cm2) for 10 min.The results indicated that TCPP@PEI/PGA nanoparticles exhibited potential in tumor growth inhibition and FL imaging-guided phototherapy.

    Fig.4.Bioimaging applications of TCPP@PEI/PGA nanoparticles.(A) CLSM images of CT 26 cells incubated with and without TCPP@PEI/PGA nanoparticles.The nuclei were stained with DAPI (blue).(B) Bright-field and fluorescence images of zebra fishes upon treatment with and without TCPP@PEI/PGA nanoparticles.(C) In vivo FL imaging of mice after intravenous injection with TCPP@PEI/PGA nanoparticles at different time points, and ex vivo FL images examined at 24 h post-injection.

    In conclusion, a simple and robust synthetic route is successfully demonstrated to encapsulate the porphyrin derivative, TCPP,into PEI-based polymer nanotheranostics, TCPP@PEI/PGA nanoparticles, forin vivobioimaging applications.In the resultant nanotheranostics, TCPP serves a dual function as the FL imaging probe and the PS for PDT.In vitroandin vivoexperiments confirmed that TCPP@PEI/PGA nanoparticles exhibited excellent biocompatibility as well as efficient FL imaging capability.In addition,in vitroandin vivoexperiments validated that TCPP@PEI/PGA nanoparticles could also serve as an effective phototherapeutic agent for cancer cell killing and tumor growth inhibition by generating efficient1O2under a 650 nm laser irradiation.All the results validated that TCPP@PEI/PGA nanoparticles were high efficient theranostic probes forin vivoapplications.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The financial support from Shenzhen Basic Research Program(No.JCYJ20210324140004013), Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments (No.2020B1212060077), and Guangdong Natural Science Foundation(No.2020A1515010661) is gratefully acknowledged.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2022.01.049.

    欧美性猛交╳xxx乱大交人| 欧美成人精品欧美一级黄| 成年女人在线观看亚洲视频 | 精品一区在线观看国产| 黄色视频在线播放观看不卡| 久久精品熟女亚洲av麻豆精品| 大陆偷拍与自拍| 97人妻精品一区二区三区麻豆| 国产av不卡久久| 亚洲国产最新在线播放| 91精品国产九色| 美女被艹到高潮喷水动态| 欧美日韩一区二区视频在线观看视频在线 | 99久久中文字幕三级久久日本| 亚洲,一卡二卡三卡| 少妇熟女欧美另类| 色5月婷婷丁香| 国产乱人视频| 国产成人精品婷婷| 水蜜桃什么品种好| 人妻 亚洲 视频| 永久免费av网站大全| 亚洲自偷自拍三级| 2021少妇久久久久久久久久久| 高清在线视频一区二区三区| 夜夜看夜夜爽夜夜摸| 国产伦精品一区二区三区视频9| 亚洲色图综合在线观看| 少妇熟女欧美另类| 亚洲精华国产精华液的使用体验| 国产精品成人在线| 国产综合精华液| 免费在线观看成人毛片| 看黄色毛片网站| 欧美精品人与动牲交sv欧美| 99九九线精品视频在线观看视频| 国产69精品久久久久777片| 免费av观看视频| 日韩人妻高清精品专区| 欧美国产精品一级二级三级 | 性色avwww在线观看| 亚洲久久久久久中文字幕| 亚洲国产日韩一区二区| 久久99热这里只有精品18| 天天躁日日操中文字幕| 亚洲精品乱码久久久v下载方式| 欧美激情久久久久久爽电影| 五月伊人婷婷丁香| av国产久精品久网站免费入址| 两个人的视频大全免费| 欧美另类一区| 熟女人妻精品中文字幕| 日韩成人伦理影院| 国产 一区精品| 久久综合国产亚洲精品| 亚洲国产成人一精品久久久| av天堂中文字幕网| 国产男人的电影天堂91| 亚洲国产色片| 日韩成人伦理影院| 3wmmmm亚洲av在线观看| 国产成人免费无遮挡视频| 中文字幕免费在线视频6| 成人高潮视频无遮挡免费网站| 亚洲精品久久久久久婷婷小说| 欧美少妇被猛烈插入视频| 最近2019中文字幕mv第一页| 日韩在线高清观看一区二区三区| 亚洲成人中文字幕在线播放| 好男人视频免费观看在线| 97在线人人人人妻| av在线蜜桃| 午夜激情久久久久久久| 少妇熟女欧美另类| 搞女人的毛片| 97人妻精品一区二区三区麻豆| 亚洲欧美日韩卡通动漫| 又黄又爽又刺激的免费视频.| 精品熟女少妇av免费看| 噜噜噜噜噜久久久久久91| 日韩一区二区三区影片| 熟女av电影| 中文欧美无线码| 日韩强制内射视频| 99久久精品国产国产毛片| 少妇人妻精品综合一区二区| 秋霞在线观看毛片| 免费看日本二区| 97在线人人人人妻| a级一级毛片免费在线观看| 色综合色国产| 日本-黄色视频高清免费观看| 亚洲精品久久久久久婷婷小说| 99久久精品热视频| 国产视频首页在线观看| 日韩欧美精品免费久久| 欧美日韩亚洲高清精品| 人人妻人人看人人澡| 欧美亚洲 丝袜 人妻 在线| 深爱激情五月婷婷| av黄色大香蕉| 男女边摸边吃奶| 国产精品爽爽va在线观看网站| 青春草国产在线视频| 特级一级黄色大片| 我的女老师完整版在线观看| 国产中年淑女户外野战色| 亚洲性久久影院| 欧美bdsm另类| 一区二区三区免费毛片| 联通29元200g的流量卡| 国产一区二区三区av在线| av在线播放精品| 久久精品国产a三级三级三级| 熟女电影av网| 久久影院123| 国产69精品久久久久777片| 精品酒店卫生间| 国产成人免费观看mmmm| 国产中年淑女户外野战色| 人人妻人人爽人人添夜夜欢视频 | 人妻制服诱惑在线中文字幕| 草草在线视频免费看| 高清欧美精品videossex| 成人一区二区视频在线观看| 2021天堂中文幕一二区在线观| 一区二区三区四区激情视频| 中文字幕久久专区| 亚洲精品成人久久久久久| 美女内射精品一级片tv| 男女那种视频在线观看| 亚洲成人精品中文字幕电影| 亚洲婷婷狠狠爱综合网| 国产午夜精品一二区理论片| 日本wwww免费看| 亚洲最大成人手机在线| 欧美+日韩+精品| 搡女人真爽免费视频火全软件| 婷婷色综合www| 日韩欧美一区视频在线观看 | 男的添女的下面高潮视频| 一级二级三级毛片免费看| 亚洲av不卡在线观看| 最近中文字幕2019免费版| 中文精品一卡2卡3卡4更新| 韩国av在线不卡| 久久鲁丝午夜福利片| 国产精品一及| 韩国高清视频一区二区三区| 国产精品久久久久久久电影| 日本av手机在线免费观看| 99久久人妻综合| 三级国产精品欧美在线观看| 91在线精品国自产拍蜜月| 精品亚洲乱码少妇综合久久| 婷婷色麻豆天堂久久| 国产av国产精品国产| 国产精品麻豆人妻色哟哟久久| 国产乱人视频| 亚洲国产最新在线播放| 亚洲,欧美,日韩| 日本wwww免费看| 亚洲国产色片| av福利片在线观看| 国产综合精华液| 乱码一卡2卡4卡精品| 天天躁夜夜躁狠狠久久av| 美女xxoo啪啪120秒动态图| 亚洲精品乱码久久久v下载方式| 国产精品一区二区性色av| 久久久精品欧美日韩精品| 国产91av在线免费观看| 男的添女的下面高潮视频| 国产黄片视频在线免费观看| 久久精品熟女亚洲av麻豆精品| 国产真实伦视频高清在线观看| 欧美成人一区二区免费高清观看| 中国美白少妇内射xxxbb| 精品久久久久久电影网| 久久精品国产亚洲网站| 亚洲第一区二区三区不卡| 亚洲精品国产色婷婷电影| 亚洲不卡免费看| 国产高潮美女av| 久久久久久久精品精品| 免费人成在线观看视频色| 91aial.com中文字幕在线观看| 国产免费一区二区三区四区乱码| 亚洲精华国产精华液的使用体验| 黑人高潮一二区| 少妇裸体淫交视频免费看高清| 亚洲av在线观看美女高潮| 男的添女的下面高潮视频| 国产高清有码在线观看视频| 99久久精品一区二区三区| 亚洲精品成人久久久久久| 男人和女人高潮做爰伦理| 在线播放无遮挡| 久久久久久伊人网av| 99热全是精品| 麻豆久久精品国产亚洲av| 黄色怎么调成土黄色| tube8黄色片| 2021天堂中文幕一二区在线观| 插阴视频在线观看视频| 不卡视频在线观看欧美| 国国产精品蜜臀av免费| av黄色大香蕉| 国产一区二区在线观看日韩| 51国产日韩欧美| 成人亚洲精品一区在线观看 | av卡一久久| a级一级毛片免费在线观看| 亚洲欧美成人综合另类久久久| 亚洲欧美中文字幕日韩二区| 99视频精品全部免费 在线| 青春草亚洲视频在线观看| av黄色大香蕉| 精品国产乱码久久久久久小说| 久久久久网色| 欧美日韩综合久久久久久| 在线观看国产h片| videos熟女内射| 亚洲精品,欧美精品| 最后的刺客免费高清国语| 亚洲人成网站在线观看播放| 国产欧美另类精品又又久久亚洲欧美| 亚洲美女搞黄在线观看| 街头女战士在线观看网站| 99久久精品国产国产毛片| 久久久精品免费免费高清| freevideosex欧美| 久久久久久久久大av| 亚洲欧洲日产国产| 在线 av 中文字幕| 亚洲三级黄色毛片| 国产免费一级a男人的天堂| 一级片'在线观看视频| 中文乱码字字幕精品一区二区三区| 欧美97在线视频| 久久热精品热| 男女国产视频网站| 韩国高清视频一区二区三区| 亚洲,欧美,日韩| 亚洲美女视频黄频| 禁无遮挡网站| 亚洲欧美日韩东京热| 亚洲内射少妇av| 成年av动漫网址| 久久精品人妻少妇| av卡一久久| 91狼人影院| 亚洲精品色激情综合| 中文字幕制服av| 日韩人妻高清精品专区| 成年人午夜在线观看视频| 大香蕉久久网| 综合色丁香网| 免费看不卡的av| 国产精品人妻久久久影院| 狠狠精品人妻久久久久久综合| 男人舔奶头视频| 婷婷色综合www| 九草在线视频观看| 青青草视频在线视频观看| 欧美一级a爱片免费观看看| 少妇人妻 视频| 麻豆精品久久久久久蜜桃| 亚洲电影在线观看av| 国产黄片视频在线免费观看| 欧美老熟妇乱子伦牲交| 97在线视频观看| 国产 一区 欧美 日韩| 亚洲熟女精品中文字幕| 人妻系列 视频| av在线蜜桃| 好男人视频免费观看在线| 久久久久久久久久成人| av一本久久久久| 成人美女网站在线观看视频| 七月丁香在线播放| 亚洲国产精品国产精品| 久久精品久久久久久噜噜老黄| 99热全是精品| 亚洲精品视频女| 国产精品嫩草影院av在线观看| 成人亚洲精品一区在线观看 | 一级毛片我不卡| av在线亚洲专区| 少妇的逼好多水| 观看免费一级毛片| 精品一区二区免费观看| 一区二区三区免费毛片| 少妇的逼水好多| xxx大片免费视频| 精品亚洲乱码少妇综合久久| 一区二区av电影网| 特大巨黑吊av在线直播| 国产真实伦视频高清在线观看| 最近2019中文字幕mv第一页| 精品人妻偷拍中文字幕| 精品人妻熟女av久视频| 成人毛片a级毛片在线播放| 欧美日韩国产mv在线观看视频 | 日韩精品有码人妻一区| 蜜桃亚洲精品一区二区三区| 国产午夜精品久久久久久一区二区三区| 乱系列少妇在线播放| 国产av码专区亚洲av| 国产免费视频播放在线视频| 少妇高潮的动态图| 国产成人免费无遮挡视频| 亚洲性久久影院| 精品一区在线观看国产| 国产伦精品一区二区三区四那| 黑人高潮一二区| 中文字幕人妻熟人妻熟丝袜美| 少妇被粗大猛烈的视频| 中文字幕亚洲精品专区| 精品人妻视频免费看| 亚洲精品第二区| 亚洲av欧美aⅴ国产| 禁无遮挡网站| 全区人妻精品视频| 插阴视频在线观看视频| 亚洲电影在线观看av| 亚洲婷婷狠狠爱综合网| 国产高清不卡午夜福利| 一区二区三区乱码不卡18| 久久女婷五月综合色啪小说 | 亚洲性久久影院| 国产视频首页在线观看| a级一级毛片免费在线观看| 午夜激情久久久久久久| 久久精品熟女亚洲av麻豆精品| 国产一区亚洲一区在线观看| 亚洲在线观看片| 一本色道久久久久久精品综合| 日本三级黄在线观看| 只有这里有精品99| 2021少妇久久久久久久久久久| 51国产日韩欧美| 人妻少妇偷人精品九色| 国产精品国产av在线观看| 日韩精品有码人妻一区| av国产久精品久网站免费入址| 男女无遮挡免费网站观看| 寂寞人妻少妇视频99o| 成人国产麻豆网| 亚洲av成人精品一区久久| 一区二区av电影网| 欧美3d第一页| 哪个播放器可以免费观看大片| 成人鲁丝片一二三区免费| 日日啪夜夜撸| 麻豆乱淫一区二区| 日韩欧美精品v在线| 三级国产精品片| 男人舔奶头视频| 午夜爱爱视频在线播放| 在线看a的网站| 一级毛片我不卡| 插逼视频在线观看| 国产亚洲精品久久久com| 国产老妇女一区| 六月丁香七月| 成人亚洲欧美一区二区av| 欧美成人一区二区免费高清观看| 夜夜看夜夜爽夜夜摸| 亚洲欧美清纯卡通| 午夜福利网站1000一区二区三区| 精品久久久久久久末码| 99视频精品全部免费 在线| 精品久久久精品久久久| 亚洲国产高清在线一区二区三| 午夜福利视频1000在线观看| 国产女主播在线喷水免费视频网站| 久久久色成人| 人妻夜夜爽99麻豆av| 亚洲国产色片| 亚洲精品久久久久久婷婷小说| 麻豆乱淫一区二区| 精华霜和精华液先用哪个| 国产一级毛片在线| 日韩中字成人| 97在线人人人人妻| 欧美精品国产亚洲| 国产又色又爽无遮挡免| 校园人妻丝袜中文字幕| 一个人看的www免费观看视频| 国产免费一区二区三区四区乱码| 亚洲国产高清在线一区二区三| 毛片女人毛片| 日韩一本色道免费dvd| 亚洲精品成人av观看孕妇| freevideosex欧美| 国产v大片淫在线免费观看| 欧美bdsm另类| 国产大屁股一区二区在线视频| 亚州av有码| 亚洲美女搞黄在线观看| 男女啪啪激烈高潮av片| 有码 亚洲区| 成年免费大片在线观看| 免费av不卡在线播放| 亚洲国产欧美人成| 丝瓜视频免费看黄片| 亚洲真实伦在线观看| 免费观看的影片在线观看| 国产毛片a区久久久久| 国产视频首页在线观看| 国产一区有黄有色的免费视频| 久久精品久久久久久噜噜老黄| 韩国av在线不卡| 在线天堂最新版资源| 日韩成人av中文字幕在线观看| 欧美潮喷喷水| 七月丁香在线播放| 特大巨黑吊av在线直播| 国产乱人视频| 99久国产av精品国产电影| 免费av不卡在线播放| 搡老乐熟女国产| 蜜桃久久精品国产亚洲av| 嫩草影院新地址| 新久久久久国产一级毛片| 看非洲黑人一级黄片| 五月天丁香电影| 欧美+日韩+精品| 丰满人妻一区二区三区视频av| 免费黄色在线免费观看| 日本免费在线观看一区| 亚洲精品久久午夜乱码| av黄色大香蕉| 男女下面进入的视频免费午夜| 麻豆乱淫一区二区| 制服丝袜香蕉在线| 亚洲高清免费不卡视频| 熟女av电影| 久久ye,这里只有精品| videos熟女内射| 国产精品久久久久久精品电影| 欧美极品一区二区三区四区| 22中文网久久字幕| 禁无遮挡网站| 亚洲色图av天堂| 色视频在线一区二区三区| 午夜免费男女啪啪视频观看| 国产精品人妻久久久影院| 伊人久久国产一区二区| 91aial.com中文字幕在线观看| 国产中年淑女户外野战色| 午夜福利网站1000一区二区三区| 国产黄片视频在线免费观看| 欧美变态另类bdsm刘玥| 亚洲av.av天堂| 特大巨黑吊av在线直播| 婷婷色综合大香蕉| 国产精品久久久久久久久免| 中文欧美无线码| 精品人妻熟女av久视频| 成年女人看的毛片在线观看| 一个人观看的视频www高清免费观看| 国产毛片在线视频| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩av不卡免费在线播放| 久久久色成人| 高清午夜精品一区二区三区| 久久6这里有精品| 91精品一卡2卡3卡4卡| 男女边吃奶边做爰视频| 免费少妇av软件| 国产成人91sexporn| 晚上一个人看的免费电影| 只有这里有精品99| 简卡轻食公司| 全区人妻精品视频| 国产成人a∨麻豆精品| 亚洲欧美成人精品一区二区| 国产乱人视频| 一区二区三区免费毛片| 精品视频人人做人人爽| 九九久久精品国产亚洲av麻豆| 亚洲精品中文字幕在线视频 | 我要看日韩黄色一级片| 免费少妇av软件| 丰满人妻一区二区三区视频av| 高清毛片免费看| 亚洲成人中文字幕在线播放| 性色av一级| 天天躁夜夜躁狠狠久久av| 亚洲最大成人手机在线| 国产有黄有色有爽视频| 国产成人免费无遮挡视频| 一个人看视频在线观看www免费| 噜噜噜噜噜久久久久久91| 成人欧美大片| 亚洲自偷自拍三级| 久久精品国产亚洲av天美| 亚洲天堂av无毛| 天堂俺去俺来也www色官网| 日韩一本色道免费dvd| 久久久色成人| 永久网站在线| 国产在视频线精品| 亚洲,欧美,日韩| 欧美性感艳星| 国产午夜精品一二区理论片| 一边亲一边摸免费视频| 亚洲精品乱码久久久v下载方式| 99热国产这里只有精品6| 成人二区视频| 男人舔奶头视频| 欧美性猛交╳xxx乱大交人| 久久久欧美国产精品| 国产精品爽爽va在线观看网站| 99久久精品一区二区三区| 国产一区亚洲一区在线观看| 亚洲天堂国产精品一区在线| 精华霜和精华液先用哪个| 18禁动态无遮挡网站| 少妇人妻一区二区三区视频| 99热全是精品| 成人毛片60女人毛片免费| 久久国内精品自在自线图片| 国产av码专区亚洲av| 色播亚洲综合网| www.av在线官网国产| 国产av国产精品国产| 天天一区二区日本电影三级| 欧美性感艳星| 欧美人与善性xxx| 搡老乐熟女国产| 国产欧美日韩精品一区二区| 久久久久久久久大av| av在线app专区| 久久久成人免费电影| 亚洲精品一区蜜桃| 又大又黄又爽视频免费| 亚洲av不卡在线观看| 日本wwww免费看| 伊人久久国产一区二区| 国产精品一及| 国产 一区 欧美 日韩| 我的女老师完整版在线观看| 国产 一区 欧美 日韩| 亚洲av.av天堂| 丝袜喷水一区| 搡女人真爽免费视频火全软件| 久久精品国产a三级三级三级| 精品一区二区免费观看| 精品人妻一区二区三区麻豆| 亚洲av.av天堂| 亚洲av成人精品一区久久| 日韩三级伦理在线观看| 黄色欧美视频在线观看| 一本色道久久久久久精品综合| 亚洲久久久久久中文字幕| 国产伦精品一区二区三区视频9| 免费看av在线观看网站| 欧美日韩视频精品一区| 欧美成人精品欧美一级黄| 99热国产这里只有精品6| 亚洲图色成人| 色吧在线观看| 国产成人精品一,二区| 精品午夜福利在线看| a级一级毛片免费在线观看| 搡老乐熟女国产| 十八禁网站网址无遮挡 | 成人亚洲欧美一区二区av| 最近手机中文字幕大全| 中文天堂在线官网| 国产亚洲一区二区精品| 少妇被粗大猛烈的视频| 乱码一卡2卡4卡精品| 黑人高潮一二区| 成人一区二区视频在线观看| 日本猛色少妇xxxxx猛交久久| 国产精品国产av在线观看| 深爱激情五月婷婷| 麻豆成人av视频| 国产成人免费无遮挡视频| 国产男女超爽视频在线观看| 91在线精品国自产拍蜜月| 国产男女超爽视频在线观看| 亚洲av免费高清在线观看| 日韩av不卡免费在线播放| 男人狂女人下面高潮的视频| 26uuu在线亚洲综合色| 18禁动态无遮挡网站| 亚洲精品乱久久久久久| 久久久精品免费免费高清| 校园人妻丝袜中文字幕| www.av在线官网国产| 性色avwww在线观看| 午夜福利高清视频| 欧美xxxx性猛交bbbb| 欧美日韩在线观看h| 蜜桃亚洲精品一区二区三区| 18禁裸乳无遮挡动漫免费视频 | 一级片'在线观看视频| 午夜免费男女啪啪视频观看| 在线观看国产h片| 伊人久久精品亚洲午夜| 国产成人a∨麻豆精品| 全区人妻精品视频| 人妻少妇偷人精品九色| 亚洲精品久久久久久婷婷小说| 国产精品久久久久久精品古装| 久久久久精品久久久久真实原创| 直男gayav资源| av又黄又爽大尺度在线免费看| 成年女人在线观看亚洲视频 | 欧美高清性xxxxhd video|