• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Facile synthesis and in vivo bioimaging applications of porphyrin derivative-encapsulated polymer nanoparticles

    2022-09-16 05:25:16MengfeiHouWndiChenJunkiZhoDeshenDiMoYngChngqingYi
    Chinese Chemical Letters 2022年8期

    Mengfei Hou, Wndi Chen, Junki Zho, Deshen Di, Mo Yng, Chngqing Yi,?

    a Guangdong Provincial Engineering and Technology Center of Advanced and Portable Medical Devices, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China

    b State Key Laboratory of Oncology in South China, Collaborative Innovation Center For Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China

    c Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China

    ABSTRACT Fluorescence (FL) imaging guided photodynamic therapy (PDT) is becoming highly desirable for personalized therapy and precision medicine.In this study, fluorescent polymer nanoparticles TCPP@PEI/PGA were facilely synthesized through electrostatic interaction-mediated self-assembly of porphyrins tetra(4-carboxyphenyl)porphine (TCPP) and polyethylenimine (PEI), and subsequent surface modification with γpoly(glutamic acid) (γ-PGA).TCPP served a dual function as the FL imaging probe and the photosensitizer.The as-prepared TCPP@PEI/PGA nanoparticles showed excellent water-solubility and biocompatibility, while having outstanding capabilities of in vivo bioimaging and 1O2 generation.FL bioimaging of mice and effective killing of CT 26 cells as well as CT 26 tumor-bearing mice upon laser irradiation were successfully demonstrated when using TCPP@PEI/PGA as theranostic nanoprobes.This study provides a simple but robust method to design and synthesize porphyrin-based polymer nanoparticles for theranostics.

    Keywords:Porphyrins Fluorescence imaging Photodynamic therapy Theranostics

    Due to its noninvasive, effective antitumor, and low adverse effects, photodynamic therapy (PDT) is becoming attractive in cancer treatment [1–5].During PDT, photosensitizers (PS) are used to convert light into intracellular reactive oxygen species (ROS) to destroy tumor cells.However, the phototoxicity to normal tissues and high risk of tumor recurrence limits the clinical translation of PDT [6–8].In order to address this critical issue, theranostic probes which can realize imaging-guided therapy are attracting more and more research attentions, due to the features of guidance of external lights to precisely irradiate tumor lesion sites and subsequent monitoring of treatment outcomes simultaneously [9,10].Among various imaging methods, fluorescence imaging (FL) has shown great potential in the guidance of PDT as well as surgical operation, thanks to its capability of real-timein vivoimaging with subcellular resolution and single cell sensitivity [11–13].Therefore, effective PS agents which integrate the capabilities of FL imaging and photoinduced ROS generation are highly desirable for personalized therapy and precision medicine.

    Nowadays, porphyrins [14–16], BODIPY [17,18], Cyanine compound [19,20], are extensively used as effective PS agents for FL imaging-guided PDT.Especially, porphyrin derivatives are extensively used for FL imaging as well as PDT, owing to their excellent characteristics such as high vascular permeability for accumulation in tumor as well as long stokes shift [21,22].As a typical kind of porphyrins, tetra(4-carboxyphenyl)porphine (TCPP)demonstrates itself as both an excellent PS agent and a good FL imaging probe, by not only generating ROS under irradiation efficiently, but also exhibiting strong fluorescence emission in the near-infrared region [23,24].However, the poor water solubility and cell-membrane permeability greatly restrict the biomedical applications of TCPP, especially in FL imaging-guided PDT.Fortunately, it has been well-established that nanoparticles can transport organic molecules with poor water solubility and bad cell permeability into cells by neglecting their intrinsic properties [25–28].Particularly, polymer nanoparticle is becoming an appealing platform for the preparation of multifunctional nanotheranostic probes because the rational design can be easily realized by judicious incorporation of building blocks [29–33].For example, a simple amide coupling reaction was used to prepare TCPP-polyethylene glycol (PEG) based nanotheranostic probes for imaging-guided cancer therapy [34].Although various reported nanotheranostic probes exhibited excellent performance for cancer therapy, it is still compelling to develop simple but robust synthetic routes for the preparation of polymer nanotheranostics in a more efficient manner.

    Polyethylenimine (PEI) presents itself as an attractive building block for the synthesis of polymer nanoprobes because of its features such as excellent water solubility and cell-membrane permeability aroused by its large amount of amino groups and positive charges [31-33,35-38].More importantly, the electrostatic interaction between positively charged PEI and negatively charged TCPP can induce the self-assembly of PEI and TCPP to form polymer nanoparticles which can easily transport TCPP into cells by neglecting its intrinsic property.Therefore, a simple but robust synthetic route is successfully demonstrated to encapsulate TCPP into PEIbased nanotheranostic probes TCPP@PEI/PGA, and the potential of TCPP@PEI/PGA for FL imaging-guided PDT is initially evaluated using CT 26 cells and CT 26 tumor-bearing mice (Scheme 1).

    Scheme 1.Schematic illustration for the synthesis of TCPP@PEI/PGA nanoparticles and their applications in FL bioimaging in vivo and cell destruction in vitro.

    Fig.1.Synthesis of TCPP@PEI/PGA nanoparticles.Optimization of PEI/TCPP ratios using FL intensity (A) and size (B) of as-prepared nanoparticles as the parameters.Insert:Photos of the suspensions containing as-prepared TCPP@PEI nanoparticles using different PEI/TCPP ratios in daylight (upper) and under UV irradiation (lower).(C) Optimization of synthesis time using FL intensity (λem = 672 nm) as the parameter.(D) Optimization of PGA/PEI ratios using zeta potential of as-prepared TCPP@PEI/PGA nanoparticles as the parameter.

    Their large amount of amino groups make PEI positively charged and highly hydrophilic.More importantly, the amino groups of PEI can interact with carboxylic groups of TCPP to form nanoparticlesviaelectrostatic interaction-induced self-assembly(Scheme 1), and thereafter improve the water solubility and cellmembrane permeability of TCPP.This can facilitate its biomedical applications, especially for FL imaging-guided PDT.From the perspectives of PDT and FL imaging, the as-prepared TCPP@PEI/PGA nanoparticles should have the strongest capability of1O2generation as well as the highest FL quantum yield (QY).And from the perspective ofin vivoapplication, nanoparticles with smaller diameter are advantageous.Therefore, the PEI/TCPP ratio and the reaction time for the nanoparticle synthesis were optimized at first.As shown in Fig.1A and Fig.S1 (Supporting information), along with the increase of the PEI/TCPP ratio, the amount of undissolved TCPP decreased and the FL intensity of the nanoparticle suspension increased.And when the PEI/TCPP ratio reached 10, all the TCPP completely reacted with PEI to form nanoparticles (Inset of Fig.1A).However, for the as-prepared TCPP@PEI/PGA nanoparticle,at the PEI/TCPP feed mass ratio of 6, its size minimized (Fig.1B)as well as its FL QY and1O2QY maximized (Table S1 in Supporting information).Considering that nanoparticles with smaller diameter, higher FL QY as well as1O2QY are beneficial toin vivobiomedical applications, the PEI/TCPP ratio of 6 was considered as the optimal experiment condition for the synthesis.And from Fig.1C, the FL intensity of the nanoparticle suspension was leveled off after reaction 5 h,i.e., the optimal reaction time for the synthesis.

    It has been well-documented that the excess of surface positive charge might also induce serious cytotoxicity.To address this issue, in this study, biocompatibleγ-PGA was modified onto the surface of TCPP@PEI nanoparticlesviaelectrostatic interaction between carboxylic groups ofγ-PGA and amino groups of PEI.As expected, along with the increase of the PGA/PEI ratio from 0 to 0.6,the zeta potential of the as-prepared nanoparticles decreased from~40.0 mV to ~6.0 mV (Fig.1D).Since a certain amount of surface positive charge can facilitate the entry of nanoparticles into cells without affecting cell activity, the PGA/PEI ratio of 0.6 was considered as the optimal experiment condition for the surface modification.

    As shown in TEM image, the as-prepared TCPP@PEI/PGA nanoparticles exhibited irregular sphericity (Fig.2A).DLS measurements revealed that the water-dispersed TCPP@PEI/PGA nanoparticles exhibited an uniform size distribution with a hydrodynamic diameter of 221 ± 28.3 nm (Fig.2B).And the surface modification withγ-PGA substantially decreased the zeta potential of TCPP@PEI/PGA nanoparticles to +5.91 mV.

    The successful synthesis of TCPP@PEI/PGA nanoparticles was validated by the UV–vis absorption spectra and FL spectra.As demonstrated in Fig.2C, TCPP exhibited the characteristic absorption peak at ~420 nm which was originated from the porphyrin moiety of TCPP, while all the other components for nanoparticle synthesis, PEI and PGA, barely had absorption at ~420 nm.However, both TCPP@PEI and TCPP@PEI/PGA nanoparticles exhibited the characteristic absorption of TCPP, indicating the successful encapsulation of TCPP into nanoparticles.Notably, TCPP@PEI/PGA nanoparticles also exhibited an absorption peak at ~660 nm (Inset of Fig.2C), which could facilitate the PDT because the laser with longer wavelength is beneficial forin vivoapplications.

    Similarly, as demonstrated in Fig.2D, TCPP exhibited the characteristic emission peaks at ~650 nm and ~710 nm upon excitation at 414 nm, while all the other components for nanoparticle synthesis, PEI and PGA, exhibited no emission behavior at the wavelength range of 600–780 nm.However, both TCPP@PEI and TCPP@PEI/PGA nanoparticles exhibited the characteristic emission peaks of TCPP, again indicating the successful encapsulation of TCPP into nanoparticles.Notably, compared with TCPP, a red shift of ~20 nm was observed in the wavelengths of emission peaks of TCPP@PEI nanoparticles and TCPP@PEI/PGA nanoparticles, possibly due to the abundant amino groups surrounding the TCPP [39,40].The excellent emission property makes TCPP@PEI/PGA nanoparticle suitable forin vivoFL bioimaging applications.Since the synthesis reproducibility of TCPP@PEI/PGA nanoparticles is quite important for its future applications, we analyzed the key parameters, such as size, surface potential as well as emission properties, of 3 different batches of TCPP@PEI/PGA nanoparticles which were synthesized by 3 different graduate students.As shown in Table S2 (Supporting information), 3 different batches of as-prepared TCPP@PEI/PGA nanoparticles exhibited the similar size distribution profile, surface potentials and emission features.The quite simple and straightforward synthesis protocol definitely contributes to its good synthesis reproducibility.

    Fig.2.Characterization of TCPP@PEI/PGA nanoparticles.(A) TEM image of TCPP@PEI/PGA nanoparticles.(B) Particle size distribution of TCPP@PEI/PGA nanoparticles.(C) The absorption spectra of TCPP, PEI, PGA, TCPP@PEI and TCPP@PEI/PGA nanoparticles.Insert: The enlarged absorption spectra of TCPP, TCPP@PEI and TCPP@PEI/PGA nanoparticles in the wavelength of 630–700 nm.(D) The fluorescence excitation spectrum of TCPP@PEI/PGA nanoparticles, and the emission spectra of TCPP, PEI, PGA, TCPP@PEI and TCPP@PEI/PGA nanoparticles.Insert: The photos of TCPP, PEI, PGA, TCPP@PEI and TCPP@PEI/PGA nanoparticles under UV irradiation.

    Fig.3.Biotoxicity of TCPP@PEI/PGA nanoparticles.(A) Cell viabilities of CT26 cells upon treatment with TCPP@PEI/PGA nanoparticles with or without laser irradiation(650 nm, 0.1 W/cm2, 10 min).(B) The time-dependent production of 1O2 in the presence of 0.48 mg/mL of TCPP@PEI/PGA nanoparticles (red curve), TCPP (blue curve) and water (black curve) under 10 min laser irradiation.(C) The concentration-dependent production of 1O2 in the presence of 0.48 mg/mL of TCPP@PEI/PGA nanoparticles under 10 min laser irradiation.(D) Hemolytic potential of TCPP@PEI/PGA nanoparticles to human red blood cells.(E) H&E staining of organs dissected from mice upon treatment with PBS and TCPP@PEI/PGA nanoparticles (0.80 mg/mL).

    The low cytotoxicity and good biocompatibility of TCPP@PEI/PGA nanoparticles were verified by the MTT assay,as evidenced by a high cell viability (~95%) even after being exposed to TCPP@PEI/PGA nanoparticles with a concentration as high as 1.20 mg/mL for 24 h (black bar of Fig.3A).However, when the TCPP@PEI/PGA nanoparticle-treated CT26 cells were irradiated with a 650 nm laser (energy density: 0.1 W/cm2) for 10 min, cell viability exhibited a concentration-dependent decrease (red bar of Fig.3A).More than 90% of CT 26 cells were destructed at dosage of 1.20 mg/mL of TCPP@PEI/PGA nanoparticle and 10 min laser irradiation, indicating the high efficiency of cell destruction.It is believed that singlet oxygen (1O2) generated by TCPP@PEI/PGA nanoparticle upon laser irradiation should be responsible for the efficient cell destruction.Experiment results confirmed the timedependent (red curve of Fig.3B) and concentration-dependent(Fig.3C) production of1O2in the presence of 0.48 mg/mL of TCPP@PEI/PGA nanoparticles and 10 min laser irradiation, suggesting that TCPP@PEI/PGA nanoparticle is also a good PS candidate for tumor cell destruction through PDT.Correlated well with Table S1, the encapsulation of TCPP into TCPP@PEI/PGA did not obviously affect the capability of1O2generation, as evidenced by that1O2QY of TCPP and TCPP@PEI/PGA were 24.3% and 22.8%,respectively.

    The good biocompatibility of TCPP@PEI/PGA nanoparticles was also verified by their low hemolytic efficiency when using human red blood cells as the model.As shown in Inset picture of Fig.3D, TCPP@PEI/PGA nanoparticles with various concentrations did not cause the red blood cells to rupture and thereafter release hemoglobin, presenting no visually red color of the solution.Correlated well with this bare eye observation, only ~3.0% of hemolytic efficiency was determined for TCPP@PEI/PGA nanoparticles with the concentrations up to 0.30 mg/mL (Fig.3D).All these results verified the excellent blood compatibility of TCPP@PEI/PGA nanoparticles.

    The potential biotoxicity of TCPP@PEI/PGA nanoparticles was evaluated using Balb/c mice.After being intravenous injected with TCPP@PEI/PGA nanoparticles, the mice were dissected to collect main organs including heart, kidneys, lungs, liver, and spleen for H&E staining.As shown in Fig.3E, compared to the PBS treated mice, all major organs of TCPP@PEI/PGA nanoparticle-treated mice exhibited negligible damage or inflammation.Again, this results further confirmed good biocompatibility and low biotoxicity of TCPP@PEI/PGA nanoparticles, laying a solid foundation for theirin vivobioimaging applications.

    Encouraged by their good biocompatibility, the capabilities of TCPP@PEI/PGA nanoparticles forin vitroandin vivoFL bioimaging were demonstrated by the use of CT 26 cells, zebra fishes and Balb/c mice as models.The abundant surface amino groups of TCPP@PEI/PGA nanoparticles afforded themselves good cellmembrane permeability, because amino groups could arouse endosomolytic effect.Combined with their bright FL, TCPP@PEI/PGA nanoparticles are expected to be effective FL imaging probes.The good cell-membrane permeability of TCPP@PEI-PGA nanoparticles were validated by the red cellular fluorescence (Fig.4A).To reveal the location of TCPP@PEI/PGA nanoparticles in the cells after endocytosis, TCPP@PEI/PGA nanoparticle-treated cells were further treated with DAPI which could specifically stain the cell nuclei.Fig.4A clearly showed that TCPP@PEI/PGA nanoparticles were mainly localized in the cytoplasmic region of the cells, suggesting the efficient internalization and accumulation of TCPP@PEI/PGA nanoparticles in tumor cells.In addition, the intact morphology of TCPP@PEI/PGA nanoparticle-treated cells also confirmed the good biocompatibility of TCPP@PEI/PGA nanoparticles.

    The capabilities of TCPP@PEI/PGA nanoparticles forin vivoFL bioimaging were firstly evaluated using zebra fishes.Fig.4B clearly showed that zebra fishes can uptake TCPP@PEI/PGA nanoparticles without affecting their normal physiological behaviors, as evidenced by the obvious and bright red fluorescence at their esophagus.This result suggested that zebra fishes might uptake TCPP@PEI/PGA nanoparticlesviaswallowing behavior.Again, the good biocompatibility and the low biotoxicity of TCPP@PEI/PGA nanoparticles was also verified by that TCPP@PEI/PGA nanoparticle-treated zebra fishes exhibited the intact morphology without obvious lesion and/or teratogenesis.

    Balb/c mice were also used as model to evaluate the bioimaging capability of TCPP@PEI/PGA nanoparticles.All animal experiments were performed in compliance with the regulations of the Animal Ethical and Welfare Committee of Sun Yat-sen University.Fig.4C showed real-timein vivoimaging of mice at different time points after being intravenous injected with TCPP@PEI/PGA nanoparticles.1 h after tail vein injection, strong FL signals originated from TCPP@PEI/PGA nanoparticles could be clearly observed in kidney, and the intensity of FL signals in kidney decreased along with time (middle of Fig.4C).This result suggested that TCPP@PEI/PGA nanoparticles could be efficiently accumulated in kidney and renal excretion was the main elimination route for TCPP@PEI/PGA nanoparticles.In addition, 24 h after tail vein injection, the efficient accumulation of TCPP@PEI/PGA nanoparticles in liver was also confirmed (upper of Fig.4C), suggesting that nanoparticles could also be eliminated by enteron excretion.Through imaging of the single organ after dissection, the accumulation of TCPP@PEI/PGA nanoparticles in lung was also observed(lower of Fig.4C), possibly due to the reticuloendothelial system containing large amounts of phagocytosis in lung [41].It was also worthy to mention that FL signals were barely observed from the heart, and spleen.All imaging results revealed that the synergistic metabolism of TCPP@PEI/PGA nanoparticlesviakidney and liver.

    Encouraged by the excellent PDT efficiency of TCPP@PEI/PGA nanoparticlesin vitro, a preliminary anti-tumor study using CT 26 tumor-bearing mice was carried out to assess its feasibility as PDT agent for cancer therapyin vivo.As shown in Fig.S2 (Supporting information), tumor volume was significantly decreased after being treated with 100 μL TCPP@PEI/PGA (0.80 mg/mL) and laser irradiation under a 635 nm laser (25 mW/cm2) for 10 min.The results indicated that TCPP@PEI/PGA nanoparticles exhibited potential in tumor growth inhibition and FL imaging-guided phototherapy.

    Fig.4.Bioimaging applications of TCPP@PEI/PGA nanoparticles.(A) CLSM images of CT 26 cells incubated with and without TCPP@PEI/PGA nanoparticles.The nuclei were stained with DAPI (blue).(B) Bright-field and fluorescence images of zebra fishes upon treatment with and without TCPP@PEI/PGA nanoparticles.(C) In vivo FL imaging of mice after intravenous injection with TCPP@PEI/PGA nanoparticles at different time points, and ex vivo FL images examined at 24 h post-injection.

    In conclusion, a simple and robust synthetic route is successfully demonstrated to encapsulate the porphyrin derivative, TCPP,into PEI-based polymer nanotheranostics, TCPP@PEI/PGA nanoparticles, forin vivobioimaging applications.In the resultant nanotheranostics, TCPP serves a dual function as the FL imaging probe and the PS for PDT.In vitroandin vivoexperiments confirmed that TCPP@PEI/PGA nanoparticles exhibited excellent biocompatibility as well as efficient FL imaging capability.In addition,in vitroandin vivoexperiments validated that TCPP@PEI/PGA nanoparticles could also serve as an effective phototherapeutic agent for cancer cell killing and tumor growth inhibition by generating efficient1O2under a 650 nm laser irradiation.All the results validated that TCPP@PEI/PGA nanoparticles were high efficient theranostic probes forin vivoapplications.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The financial support from Shenzhen Basic Research Program(No.JCYJ20210324140004013), Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instruments (No.2020B1212060077), and Guangdong Natural Science Foundation(No.2020A1515010661) is gratefully acknowledged.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2022.01.049.

    中文亚洲av片在线观看爽| 黄色成人免费大全| 免费看美女性在线毛片视频| 亚洲色图av天堂| 午夜久久久久精精品| 免费看美女性在线毛片视频| 国产精品一区二区免费欧美| 久久精品国产亚洲av高清一级| 亚洲三区欧美一区| 亚洲精华国产精华精| 国产亚洲精品久久久久久毛片| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产精品成人综合色| 在线视频色国产色| 老司机在亚洲福利影院| 久久久久久久久中文| 国产激情久久老熟女| 视频在线观看一区二区三区| 女性生殖器流出的白浆| 亚洲色图av天堂| 亚洲五月天丁香| av视频免费观看在线观看| 日韩中文字幕欧美一区二区| 国产亚洲精品一区二区www| 母亲3免费完整高清在线观看| 欧美在线黄色| 亚洲国产精品合色在线| 亚洲中文日韩欧美视频| 可以在线观看的亚洲视频| 18禁裸乳无遮挡免费网站照片 | 在线观看午夜福利视频| 精品人妻在线不人妻| 91字幕亚洲| 精品久久久久久久久久免费视频| 久久久精品国产亚洲av高清涩受| www.www免费av| 亚洲精品中文字幕一二三四区| 免费少妇av软件| 亚洲欧美精品综合久久99| 欧美日韩乱码在线| 视频区欧美日本亚洲| 欧美黄色片欧美黄色片| 此物有八面人人有两片| 夜夜躁狠狠躁天天躁| 99在线视频只有这里精品首页| 久久久久久大精品| 日本欧美视频一区| 日韩中文字幕欧美一区二区| 日韩有码中文字幕| 性色av乱码一区二区三区2| 国产欧美日韩一区二区三区在线| 午夜免费鲁丝| 国产欧美日韩一区二区精品| 色综合站精品国产| 亚洲美女黄片视频| 女性被躁到高潮视频| 亚洲第一电影网av| 亚洲色图 男人天堂 中文字幕| 亚洲精品粉嫩美女一区| 亚洲成人久久性| 香蕉国产在线看| 久久天堂一区二区三区四区| 精品少妇一区二区三区视频日本电影| 亚洲国产精品久久男人天堂| 亚洲精华国产精华精| 宅男免费午夜| 亚洲电影在线观看av| 黄色a级毛片大全视频| 欧美人与性动交α欧美精品济南到| 十八禁网站免费在线| 女性被躁到高潮视频| 老司机福利观看| 十八禁人妻一区二区| 极品教师在线免费播放| 亚洲少妇的诱惑av| 国产aⅴ精品一区二区三区波| 少妇裸体淫交视频免费看高清 | 少妇的丰满在线观看| 亚洲久久久国产精品| 婷婷精品国产亚洲av在线| 国产亚洲av高清不卡| 黄色毛片三级朝国网站| 久久午夜亚洲精品久久| 岛国视频午夜一区免费看| 一二三四在线观看免费中文在| 久久 成人 亚洲| 亚洲人成电影免费在线| 亚洲熟妇熟女久久| www.自偷自拍.com| 精品久久久精品久久久| 欧美成人免费av一区二区三区| 久久久久久久久久久久大奶| 免费av毛片视频| 一级a爱片免费观看的视频| 一区二区三区激情视频| 脱女人内裤的视频| 极品人妻少妇av视频| 国产精品av久久久久免费| 久久人人精品亚洲av| 日韩精品中文字幕看吧| 久久久久精品国产欧美久久久| 亚洲欧美激情综合另类| 99热只有精品国产| 人人妻人人澡欧美一区二区 | 淫秽高清视频在线观看| 国产av一区二区精品久久| 777久久人妻少妇嫩草av网站| 欧美人与性动交α欧美精品济南到| 日韩av在线大香蕉| 久久久久久久精品吃奶| 日本 欧美在线| 琪琪午夜伦伦电影理论片6080| 97碰自拍视频| 黄网站色视频无遮挡免费观看| 亚洲专区国产一区二区| 亚洲色图av天堂| 91在线观看av| 无限看片的www在线观看| 欧美精品啪啪一区二区三区| 国产乱人伦免费视频| 亚洲 欧美一区二区三区| 他把我摸到了高潮在线观看| 国产免费男女视频| 国产熟女xx| 不卡av一区二区三区| 九色亚洲精品在线播放| 99国产精品一区二区三区| 国产99久久九九免费精品| 香蕉国产在线看| 日本 欧美在线| 亚洲人成电影观看| 一级作爱视频免费观看| 黄频高清免费视频| 国产精品香港三级国产av潘金莲| 一区二区三区高清视频在线| 女同久久另类99精品国产91| 欧美激情久久久久久爽电影 | 久久国产乱子伦精品免费另类| 国产欧美日韩一区二区三区在线| 久久香蕉精品热| 中文字幕av电影在线播放| 校园春色视频在线观看| 久9热在线精品视频| 少妇裸体淫交视频免费看高清 | 亚洲少妇的诱惑av| 一级a爱片免费观看的视频| 午夜a级毛片| 日韩免费av在线播放| 国产成+人综合+亚洲专区| 成人国语在线视频| 精品无人区乱码1区二区| 极品人妻少妇av视频| 日本撒尿小便嘘嘘汇集6| 非洲黑人性xxxx精品又粗又长| 国产一区二区在线av高清观看| 亚洲熟妇熟女久久| 亚洲精品粉嫩美女一区| 露出奶头的视频| 51午夜福利影视在线观看| 啦啦啦 在线观看视频| 亚洲国产欧美日韩在线播放| 99国产精品99久久久久| 日本三级黄在线观看| 久久青草综合色| 国内久久婷婷六月综合欲色啪| 18禁黄网站禁片午夜丰满| 91字幕亚洲| 日日摸夜夜添夜夜添小说| www国产在线视频色| 久久这里只有精品19| 久久午夜亚洲精品久久| 麻豆av在线久日| 满18在线观看网站| 国产精品精品国产色婷婷| 99在线人妻在线中文字幕| 色播亚洲综合网| 亚洲精品中文字幕一二三四区| 国产精品爽爽va在线观看网站 | 久久久久久亚洲精品国产蜜桃av| 一区在线观看完整版| bbb黄色大片| 欧美日韩亚洲国产一区二区在线观看| a级毛片在线看网站| 亚洲精品粉嫩美女一区| 亚洲激情在线av| 国产精品二区激情视频| 少妇裸体淫交视频免费看高清 | 午夜福利视频1000在线观看 | 天堂影院成人在线观看| 精品第一国产精品| 国产伦一二天堂av在线观看| 久久精品亚洲精品国产色婷小说| 欧美精品亚洲一区二区| 国产欧美日韩一区二区三区在线| 日韩 欧美 亚洲 中文字幕| 亚洲熟妇中文字幕五十中出| 亚洲自拍偷在线| av中文乱码字幕在线| 两个人免费观看高清视频| 日韩成人在线观看一区二区三区| 国产精品综合久久久久久久免费 | 亚洲,欧美精品.| 免费高清在线观看日韩| 亚洲欧美一区二区三区黑人| 黑丝袜美女国产一区| 搡老岳熟女国产| 无遮挡黄片免费观看| 亚洲激情在线av| 国产精品九九99| 成在线人永久免费视频| av有码第一页| 久久久久久国产a免费观看| or卡值多少钱| а√天堂www在线а√下载| 老鸭窝网址在线观看| 视频在线观看一区二区三区| 国产色视频综合| 一级作爱视频免费观看| 免费在线观看亚洲国产| 狂野欧美激情性xxxx| 国产精品一区二区在线不卡| 日日摸夜夜添夜夜添小说| 黄片播放在线免费| 国产aⅴ精品一区二区三区波| 伦理电影免费视频| 精品第一国产精品| 黄色a级毛片大全视频| 51午夜福利影视在线观看| 亚洲熟妇中文字幕五十中出| 欧美激情 高清一区二区三区| 琪琪午夜伦伦电影理论片6080| 人成视频在线观看免费观看| 后天国语完整版免费观看| 亚洲精华国产精华精| 满18在线观看网站| 嫩草影院精品99| 国产精品精品国产色婷婷| 99riav亚洲国产免费| 久久久久久亚洲精品国产蜜桃av| 大码成人一级视频| 91麻豆av在线| 亚洲男人的天堂狠狠| 在线观看舔阴道视频| 夜夜看夜夜爽夜夜摸| 中文字幕人成人乱码亚洲影| 长腿黑丝高跟| 叶爱在线成人免费视频播放| 一个人免费在线观看的高清视频| 亚洲第一青青草原| 亚洲片人在线观看| 黄色视频不卡| 国产成人精品无人区| 69av精品久久久久久| 精品免费久久久久久久清纯| 51午夜福利影视在线观看| 日韩欧美免费精品| 精品国产乱码久久久久久男人| 免费观看人在逋| 国产精品久久视频播放| 麻豆av在线久日| 两性夫妻黄色片| 免费在线观看黄色视频的| 日本vs欧美在线观看视频| 桃色一区二区三区在线观看| 亚洲av电影不卡..在线观看| 制服人妻中文乱码| 欧美最黄视频在线播放免费| 在线观看舔阴道视频| 国产精品一区二区精品视频观看| 国产午夜福利久久久久久| 此物有八面人人有两片| 国产精品香港三级国产av潘金莲| 成人三级黄色视频| 国产精品二区激情视频| 免费av毛片视频| 天天添夜夜摸| 高清毛片免费观看视频网站| 色综合欧美亚洲国产小说| 国产精品亚洲美女久久久| 国产一区二区三区视频了| 97碰自拍视频| 精品国产一区二区三区四区第35| 亚洲第一青青草原| 日本免费a在线| 无人区码免费观看不卡| 一级毛片女人18水好多| 夜夜看夜夜爽夜夜摸| 国产xxxxx性猛交| 精品乱码久久久久久99久播| 亚洲熟妇熟女久久| 国产伦人伦偷精品视频| 在线观看免费日韩欧美大片| 国产精品一区二区免费欧美| 国产成人精品久久二区二区免费| 亚洲一区二区三区色噜噜| 精品乱码久久久久久99久播| 中亚洲国语对白在线视频| 国产亚洲欧美精品永久| 岛国在线观看网站| 悠悠久久av| 亚洲国产看品久久| 90打野战视频偷拍视频| 99精品久久久久人妻精品| 国产精品亚洲av一区麻豆| av天堂久久9| 又黄又爽又免费观看的视频| 日韩 欧美 亚洲 中文字幕| 午夜亚洲福利在线播放| 亚洲一区高清亚洲精品| 看黄色毛片网站| 国产乱人伦免费视频| 手机成人av网站| 精品一区二区三区视频在线观看免费| 国产又爽黄色视频| 丝袜美腿诱惑在线| 国产成人av教育| 中文字幕最新亚洲高清| 中文字幕最新亚洲高清| 免费观看精品视频网站| 超碰成人久久| 精品国产超薄肉色丝袜足j| 日韩 欧美 亚洲 中文字幕| 黄色视频不卡| 人成视频在线观看免费观看| 99久久国产精品久久久| 制服人妻中文乱码| 国产精品 欧美亚洲| 亚洲国产日韩欧美精品在线观看 | www.自偷自拍.com| 1024香蕉在线观看| 日韩欧美免费精品| 久久久国产成人免费| 日韩欧美在线二视频| 在线观看舔阴道视频| 夜夜看夜夜爽夜夜摸| 人人妻人人爽人人添夜夜欢视频| 亚洲精品美女久久av网站| 99国产精品一区二区蜜桃av| 18禁裸乳无遮挡免费网站照片 | 欧美午夜高清在线| 男女之事视频高清在线观看| 波多野结衣一区麻豆| 日韩欧美在线二视频| 午夜福利影视在线免费观看| 亚洲一区二区三区色噜噜| 国产又色又爽无遮挡免费看| 国产精品日韩av在线免费观看 | 麻豆一二三区av精品| 亚洲 欧美 日韩 在线 免费| 久久久国产欧美日韩av| 欧美日本中文国产一区发布| 最近最新免费中文字幕在线| 中文字幕人妻熟女乱码| 精品一区二区三区av网在线观看| 欧美日韩精品网址| 亚洲激情在线av| 99riav亚洲国产免费| 黑人欧美特级aaaaaa片| 成年版毛片免费区| 亚洲 欧美 日韩 在线 免费| 欧美在线黄色| 啦啦啦 在线观看视频| 亚洲人成电影观看| 国产日韩一区二区三区精品不卡| 亚洲成人免费电影在线观看| 日韩欧美三级三区| 亚洲成av人片免费观看| www.熟女人妻精品国产| 亚洲va日本ⅴa欧美va伊人久久| 亚洲欧美日韩无卡精品| 久久精品国产亚洲av高清一级| 精品久久久久久成人av| 女同久久另类99精品国产91| 日本精品一区二区三区蜜桃| 久久久久九九精品影院| 色综合欧美亚洲国产小说| 看片在线看免费视频| av免费在线观看网站| 亚洲伊人色综图| 免费观看人在逋| 欧美中文综合在线视频| 亚洲专区字幕在线| 悠悠久久av| 99精品欧美一区二区三区四区| 丝袜人妻中文字幕| 成人18禁在线播放| 一边摸一边抽搐一进一出视频| 国产免费av片在线观看野外av| 高清毛片免费观看视频网站| 精品久久久久久成人av| 12—13女人毛片做爰片一| 美女高潮喷水抽搐中文字幕| 日韩高清综合在线| 国产av一区在线观看免费| 成人国产综合亚洲| 国产又爽黄色视频| 搡老妇女老女人老熟妇| 国产成人欧美在线观看| 成人永久免费在线观看视频| 最好的美女福利视频网| 一个人免费在线观看的高清视频| 国产极品粉嫩免费观看在线| 欧美最黄视频在线播放免费| 麻豆久久精品国产亚洲av| 国产精品一区二区三区四区久久 | 国产成人欧美| 中文字幕人妻丝袜一区二区| 国产高清有码在线观看视频 | 久久青草综合色| 亚洲专区国产一区二区| 人人妻人人爽人人添夜夜欢视频| 99精品久久久久人妻精品| 国产熟女xx| 在线观看免费视频网站a站| 一本久久中文字幕| 中文字幕久久专区| 精品国产超薄肉色丝袜足j| 国产免费av片在线观看野外av| 一边摸一边抽搐一进一小说| 久久伊人香网站| 亚洲国产欧美日韩在线播放| 午夜亚洲福利在线播放| 国产精品一区二区在线不卡| 久久人人97超碰香蕉20202| 51午夜福利影视在线观看| 免费不卡黄色视频| 国产亚洲精品一区二区www| 亚洲美女黄片视频| 日韩av在线大香蕉| 黄色丝袜av网址大全| 午夜福利高清视频| 亚洲av第一区精品v没综合| av片东京热男人的天堂| 欧美日韩精品网址| 变态另类丝袜制服| 可以免费在线观看a视频的电影网站| 一级黄色大片毛片| 琪琪午夜伦伦电影理论片6080| 精品久久蜜臀av无| 欧美乱色亚洲激情| 国产真人三级小视频在线观看| 99riav亚洲国产免费| 丝袜美足系列| 啦啦啦免费观看视频1| 嫁个100分男人电影在线观看| 欧美久久黑人一区二区| 亚洲欧洲精品一区二区精品久久久| 中国美女看黄片| 制服人妻中文乱码| 日本免费一区二区三区高清不卡 | 美女扒开内裤让男人捅视频| 国产视频一区二区在线看| 老汉色av国产亚洲站长工具| 很黄的视频免费| 亚洲午夜精品一区,二区,三区| 在线免费观看的www视频| 午夜老司机福利片| 成人国产综合亚洲| 女生性感内裤真人,穿戴方法视频| 久久精品国产99精品国产亚洲性色 | 日本 欧美在线| 精品第一国产精品| 纯流量卡能插随身wifi吗| 亚洲狠狠婷婷综合久久图片| 成年女人毛片免费观看观看9| 曰老女人黄片| 99热只有精品国产| 人人妻人人澡人人看| 老司机深夜福利视频在线观看| 男女做爰动态图高潮gif福利片 | 久久精品国产99精品国产亚洲性色 | 高清在线国产一区| 亚洲国产欧美日韩在线播放| 国产高清有码在线观看视频 | 亚洲av五月六月丁香网| 国产在线观看jvid| 一级片免费观看大全| 我的亚洲天堂| 日韩精品青青久久久久久| 日日干狠狠操夜夜爽| 精品一区二区三区av网在线观看| 精品国产一区二区三区四区第35| 青草久久国产| 又黄又爽又免费观看的视频| 日韩三级视频一区二区三区| 老司机午夜福利在线观看视频| 国产精品99久久99久久久不卡| 国产在线观看jvid| 丝袜人妻中文字幕| 免费在线观看视频国产中文字幕亚洲| 国产精品免费一区二区三区在线| 老司机午夜福利在线观看视频| 亚洲国产欧美日韩在线播放| av视频在线观看入口| 亚洲 欧美一区二区三区| 国产不卡一卡二| 中文字幕人妻熟女乱码| 99国产精品一区二区三区| 亚洲av美国av| 色av中文字幕| 亚洲全国av大片| 好男人在线观看高清免费视频 | 久久精品亚洲熟妇少妇任你| 女生性感内裤真人,穿戴方法视频| 天堂影院成人在线观看| 97人妻精品一区二区三区麻豆 | 丁香欧美五月| 国产亚洲av嫩草精品影院| 精品久久久精品久久久| 18禁国产床啪视频网站| 亚洲成a人片在线一区二区| 麻豆成人av在线观看| 亚洲性夜色夜夜综合| 在线播放国产精品三级| 亚洲av成人不卡在线观看播放网| 亚洲国产欧美一区二区综合| 可以在线观看毛片的网站| 午夜a级毛片| 无人区码免费观看不卡| 久久国产精品影院| 嫩草影院精品99| 久久人妻av系列| 波多野结衣av一区二区av| 欧美乱妇无乱码| 亚洲一区中文字幕在线| 亚洲中文av在线| 色尼玛亚洲综合影院| 韩国精品一区二区三区| 亚洲成av人片免费观看| 亚洲欧美精品综合一区二区三区| 日本a在线网址| netflix在线观看网站| 亚洲av成人av| 最近最新中文字幕大全电影3 | 精品欧美一区二区三区在线| 悠悠久久av| 免费看十八禁软件| 女性被躁到高潮视频| 极品教师在线免费播放| 久久国产亚洲av麻豆专区| 亚洲av美国av| av天堂久久9| 黄色女人牲交| 婷婷丁香在线五月| 婷婷精品国产亚洲av在线| 欧美乱妇无乱码| 午夜激情av网站| 亚洲精品中文字幕一二三四区| 国产亚洲精品av在线| 国产黄a三级三级三级人| 久久人妻av系列| 黄片小视频在线播放| 日本三级黄在线观看| 国产精品久久久av美女十八| 99久久国产精品久久久| 每晚都被弄得嗷嗷叫到高潮| 99riav亚洲国产免费| 又紧又爽又黄一区二区| 国产高清有码在线观看视频 | 动漫黄色视频在线观看| 人成视频在线观看免费观看| 欧美绝顶高潮抽搐喷水| 俄罗斯特黄特色一大片| 丁香六月欧美| 长腿黑丝高跟| 欧美大码av| 他把我摸到了高潮在线观看| 日本在线视频免费播放| 精品一品国产午夜福利视频| 精品午夜福利视频在线观看一区| 久久国产乱子伦精品免费另类| 欧美色欧美亚洲另类二区 | 老鸭窝网址在线观看| 免费在线观看视频国产中文字幕亚洲| 久久久国产精品麻豆| 国产成人av激情在线播放| 午夜福利一区二区在线看| 亚洲精品国产一区二区精华液| 美女午夜性视频免费| 精品日产1卡2卡| 国产成人系列免费观看| 老司机午夜福利在线观看视频| 亚洲国产精品sss在线观看| 欧美色欧美亚洲另类二区 | 久久精品成人免费网站| www日本在线高清视频| 性色av乱码一区二区三区2| 成人永久免费在线观看视频| 一区二区三区精品91| 亚洲五月色婷婷综合| 中国美女看黄片| 又紧又爽又黄一区二区| 中国美女看黄片| 又紧又爽又黄一区二区| 久久精品成人免费网站| 精品少妇一区二区三区视频日本电影| 电影成人av| 一级黄色大片毛片| a在线观看视频网站| 夜夜看夜夜爽夜夜摸| a在线观看视频网站| 精品国产亚洲在线| 国产欧美日韩一区二区精品| 老熟妇仑乱视频hdxx| 在线观看日韩欧美| 国产99白浆流出| 久久午夜亚洲精品久久| 一区二区三区激情视频| 午夜免费激情av| 亚洲三区欧美一区| 高清毛片免费观看视频网站| 在线观看免费视频日本深夜| 麻豆av在线久日| 黑人巨大精品欧美一区二区mp4| 国产精品久久视频播放|