• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Poly(thioether)-b-polysiloxane-b-poly(thioether) triblock copolymer towards homogeneous dielectric elastomer with high dielectric performance

    2022-09-16 05:25:04ZhnbinFengJifngGuoSutingLiuGuofeiFengXingHongZhng
    Chinese Chemical Letters 2022年8期

    Zhnbin Feng, Jifng Guo, Suting Liu, Guofei Feng, Xing-Hong Zhng,?

    a MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

    b Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China

    c Department of Chemical Engineering, Weifang Vocational College, Weifang 262737, China

    ABSTRACT Dielectric elastomers (DEs) have drawn much attention owing to their application prospects in artificial muscles and soft robotics, it is still a big challenge to prepare DEs with high electromechanical performances.This work reports a highly stretchable poly(thioether)-b-polysiloxane-b-poly(thioether) triblock copolymer based homogenous DEs with high electromechanical properties.The triblock copolymer(PSiPGE) was synthesized through the ring-opening polymerization (ROP) of phenyl glycidyl ether (PGE)and carbonyl sulfide (COS) catalyzed by silicon alkoxides.The dipoles (benzene rings) on the side groups of PSiPGE improved the dipole polarizations and the phase separation structure of this triblock copolymer enhanced the interfacial polarizations between poly(thioether) and polysiloxane, and thus improving the dielectric constant (ε’, up to 5.8).In addition, the PSiPGE exhibited low elastic modulus (Y, 0.04 MPa),and thus possessed high electromechanical sensitivity (β, ~145 MPa?1) which is much higher than that of most homogenous DEs.This work provides a new strategy to construct homogenous DEs with excellent electromechanical performances, leading to a greater application aspect in the actuated devices.

    Keywords:Poly(thioether)-b-polysiloxane-bpoly(thioether) triblock copolymer Homogenous Dielectric elastomer Phase separation Electromechanical performance

    Dielectric elastomers (DEs) [1], one of the soft electric-response materials [2], can possess the transformation of electricalmechanical energy under an applied electric field [3] with the advantages of large deformation, high energy density and electromechanical coupling efficiency, light weight and fast response speed[4,5].With these combined superiorities, the applications of DEs could range from artificial muscles [6], sensors [7] to optical lenses[8] and soft robotics [9].A disadvantage of DEs that limiting its commercial applications is the requirement of high actuated electric field (>100 kV/mm) [10,11] due to the low dielectric constant(ε’) and high dielectric loss (tanδ) [12].Thus, it is a great challenge to prepare DEs with highε’and large actuated strain at low electric field.

    To enable DEs excellent electromechanical performance at low electric field, a high electromechanical sensitivity (β) is needed[13], which is defined as the ratio ofε’ to Young’s modulus(Y) [14].Thus, decreasing Y [15] and increasingε’ [16] are the main methods to prepare DEs with high actuated behaviors.In the past few years, massive efforts have been made to improveε’ of DEs to obtain higher actuated strain [17–24].One of the most commonly used approach is to add conductive fillers such as graphene or graphene oxide (GO) [17,18], CNTs [19,20], metal nanoparticles [21], or high-ε’ceramics (TiO2[22] and BaTiO3[23])or conjugated conductive polymers (polyaniline [24] and polyhexylthiophene [12]) to the elastomer matrix.After the introduction of nanofillers or stiff conductive polymers, theε’ of elastomers could be enhanced significantly [4,25] but the Y and dielectric loss also increase, resulting in the decrease in flexibility of the elastomer matrix [26].Another widely way to achieve excellent electro-mechanical performance is to synthesize homogeneous DEs with low Y and highε’through molecular design or chemical graft modification [10,27–29].These studies usually focus on grafting polar groups (such as -COOH, -COO-, -OH) [30] on the mainchains of elastomers to enhance the dipole polarizations, achieving highε’and actuated strain [5].Besides, homogeneous DEs could also be obtained through the copolymerization of acrylate monomers[27] or between acrylate and polyurethane [10].Although theε’was not high (up to about 6), the as prepared DE exhibited high actuated strain (about 52% @21.57 kV/mm) due to the low Y and highβ.Up to now, there are few monomers that could be used to prepare copolymerized homogeneous DEs, and it is urgent to find out more suitable polar monomers to realize large-scale preparation of copolymerized DEs.

    Poly(thioether)s [31], a new type of sulfur-containing polymers, could be synthesizedviathe coupling reaction of carbonyl sulfide (COS) with epoxides and consequent decarboxylative ring-opening polymerization (ROP) of the cyclic thiocarbonates [32].They are very promising in the application of ion-exchange membranes, electrolytes and some optical materials [33].A series of epoxides with different side groups [34–36] could be used to synthesize poly(thioether)s with tunable structure polarities andTgin our previous study.The introduction of polar side groups is beneficial for the increase ofε’ of poly(thioether)s.Compared with commercial VHB based DEs [37],the poly(thioether)s we synthesized before were not crosslinked and exhibited high viscidity, limiting its application in the fields of DEs.If the poly(thioether)s could be chemically (adding extra crosslinker) or physically crosslinked (constructing micro-phase separation structure) [38], it will be an alternative material for the construction of DEs.

    Silicon alkoxides, the oligomer with strong base, are derived from the ring opening polymerization (ROP) of octamethyl cyclotetrasiloxane (D4) catalyzed by inorganic alkali such as KOH,NaOH, have been used to catalyze the anionic ROP of cyclic siloxane [39,40].More importantly, the silicon alkoxides own dual active sites and can be used to synthesize poly(thioether)-bpolysiloxane-b-poly(thioether) block copolymer.Due to the incompatibility of polysiloxane domains and poly(thioether) domains,the microphase separation structure can be constructed to achieve physical crosslinking [41].

    Herein, we reported a new approach to synthesize poly(thioether)-b-polysiloxane-b-poly(thioether) triblock copolymer from COS and epoxides catalyzed by silicon alkoxides,constructing homogeneous DE.The silicon alkoxides can catalyze the coupling reaction of COS and epoxides, and then decarboxylative of the cyclothiocarbonates can be achieved at high temperature to form poly(thioether) chain segments (hard segments, plastic phase); besides, the double active sites of silicon alkoxides can be double-terminated to form triblock copolymers with polysiloxane as soft segments (rubber phase).The poly(thioether)-b-polysiloxane-b-poly(thioether) block copolymer possesses microphase separation structure, and the morphology could be tuned by its composition.More importantly, the block copolymer possesses highε’(about 5.8), low Y (0.04 MPa)and exhibits highβ(up to 145 MPa?1) and actuated strain(13.4%@14.2 V/μm) due to the combination of dipole polarizations and interfacial polarizations.These results indicate that this new poly(thioether)-based homogenous DE could be very promising for developing electromechanical actuators with high performance.

    Fig.1.1H NMR spectra of (a) PSiPO and (b) PSiPGE from PO/PGE, COS and silicon alkoxides.

    The triblock copolymers were synthesizedviaa two-step procedure (Scheme 1a): The ROP reaction of D4, forming the silicon alkoxides; then the copolymerization between epoxides (such as PO and PGE) and COS was carried out catalyzed by the silicon alkoxides at about 120 °C for about 12 h.During this process, the coupling reaction of COS with epoxides firstly occurred, followed by decarboxylative ROP of the cyclic thiocarbonates with releasing of CO2and a little bit of COS [32], finally, the triblock copolymers were synthesized and the detailed mechanism for this process is shown in the Scheme S1 (Supporting information).

    Scheme 1.(a) Synthetic route to poly(thioether)-b-polysiloxane-b-poly(thioether) triblock copolymer from carbonyl sulfide (COS) and epoxides catalyzed by silicon alkoxides.(b) Schematic representation of the structure of this triblock copolymer.

    The copolymerization of epoxides and COS catalyzed by silicon alkoxides was evidenced by1H NMR, the results were shown in Fig.1.Taking PSiPO (Fig.1a) for example, peak a (0 ppm), peak b(2.57 ppm), peak c (2.85 ppm) and peak d (1.31 ppm) represent the proton of silicon methyl, methylene (-CH2-) and methine, respectively, indicating the successful synthesis of PSiPO.In Fig.1b,all the characteristic peaks could be found in the1H NMR spectra for the PSiPGE except for a new peak at about 5 ppm, indicating the successful synthesis of PSiPGE.The new peak at about 5 ppm corresponds to the proton of poly(monothiocarbonate) according to our previous study [34].As the peak corresponding to the poly(monothiocarbonate) is very weak, the main product synthesized from PGE, COS and silicon alkoxides is the poly(thioether)-bpolysiloxane-b-poly(thioether) copolymer and the schematic representation of the structure is shown in Scheme 1b.The structures of PSiPO and PSiPGE were also verified by13C NMR (Fig.S1 in Supporting information), suggesting the successful copolymerization of PO/PGE, COS and silicon alkoxides.

    The molecular weight of PSiPO and PSiPGE were characterized by GPC, and the results were shown in Fig.S2 (Supporting information).As the refractive index of polysiloxane is close to that of THF which is the mobile phase in GPC, the molecular weight of silicon alkoxides could not be detected by using GPC, so it was verified by MALDI-TOF MS, and the result was shown in Fig.S3 (Supporting information).It was found that the molecular weight of silicon alkoxides is about 2.48 kg/mol, the detailed Mn, Mw, PDI and the phase compositions are summarized in Table S2 (Supporting information).Compared with the triblock copolymer based DEs in the previous study [2,14], the PDI for the PSiPO or PSiPGE is much narrower, which agrees well with the poly(thioether)s catalyzed by organic bases in our previous report [42].Furthermore, the diffusion-ordered (DOSY) NMR spectrum exhibits a single diffusion coefficient (Fig.S2b), indicating that the triblock copolymer consists only one component.All these results evidenced that the poly(thioether)-b-polysiloxane-bpoly(thioether) copolymer could be synthesized under the catalysis of silicon alkoxides.

    Fig.2.(a, b) TEM images of PSiPGE with silicon alkoxides concentration of 0.1 g/mL.(c) The size distribution of the particle in (a, b).(d, e) TEM images of PSiPGE with silicon alkoxides concentration of 0.15 g/mL.(f) The size distribution of the particle in (d, e).

    The thermal analysis of PSiPO and PSiPGE were also carried out and shown in Fig.S4 (Supporting information).Two distinct transition temperature could be observed for both samples in DSC curves (Fig.S4a), which represent different domains.The transition temperature at about ?120 °C belongs to the glass transition of polysiloxane and the other is attributed to the poly(thioether)s.In the TGA curves (Fig.S4b), two different decomposition temperature could also be found for both samples.All these evidences indicated the successful synthesis of the triblock copolymer.

    Fig.2 and Fig.S5 (Supporting information) illustrate the nanomorphology of the triblock copolymer by TEM and AFM, as the sample of PSiPO could not be freezing sectioned due to its poor film-forming, only the sample of PSiPGE catalyzed by different concentration of silicon alkoxides were characterized.As expected,the microphase separation could be observed with clear phase boundaries in all the samples.The nanodomains of polysiloxane(dark domains) are well dispersed in the matrix of poly(thioether)(bright domains) due to the low content of polysiloxane segments.Unlike the worm-like form of polystyrene in the SBS [43],sphere-like form (Figs.2a, b, d and e) could be observed for the polysiloxane segments as the thermodynamic incompatibility with poly(thioether).For the PSiPGE sample catalyzed by 0.1 g/mL of silicon alkoxides (named as PSiPGE-0.1), the well-defined soft segments with the mean particle size of 400 nm (Fig.2c) could be observed; however, for the PSiPGE sample catalyzed by 0.15 g/mL of silicon alkoxides (named as PSiPGE-0.15), the mean particle size decreases to about 120 nm.The size decrease of soft segments illustrates that the content increase of hard segments [44,45].The AFM-phase images were also carried out to verify the structure of microphase separation (Fig.S5), which is consistent with the TEM results.

    Generally, the island-sea nano-morphology of triblock copolymer could enable it excellent mechanical properties [46].In this study, the soft segments (polysiloxane) are acted as dispersed phase whereas the hard segments (poly(thioether)) are acted as the continuous phase, resulting in the increase of the toughness and the decrease of mechanical strength.As shown in Fig.S6 (Supporting information), the PSiPGE exhibit highly stretchable performance with the elongation at break of over 1000%, whereas the ultimate tensile strength is about 0.06 MPa with the Young’s modulus of about 0.04 MPa.

    Fig.3.(a) The dielectric constant (ε’) and (b) the dielectric loss (tanδ) of the pure PPMTC and PSiPGE.(c) The mechanism of the improvement of the dielectric performances.

    Fig.3 illustrates the dielectric properties of pure poly(propylene-monothiocarbonate) (PPMTC) and PSiPGE as a function of frequency at room temperature, the detailed values are summarized in Table 1.It is found that theε’decreases as the frequency increases (Fig.3a) for both PPMTC and PSiPGE samples,indicating the frequency dependence ofε’.Compared with PPMTC,theε’of PSiPGE with significant micro-phase separation structure is much higher at the range of 10–106Hz.Taking theε’at 103Hz for example, theε’of PPMTC is about 2.2, whereas it is about 5.8 for PSiPGE which is more than 2.5 times that of PPMTC.Interestingly, the backbone of PPMTC is rich in thiocarbonate groups(dipoles), it still exhibits lowε’.The reason for this phenomenon is that the polar groups of PPMTC are located in the mainchains,the dipoles are difficult to move and difficult to be polarized under the electric fields [47].On the contrary, the dipoles (benzene ring)for the PSiPGE are located in the side groups, which are tended to be polarized much easier, leading to the increase ofε’(Fig.3c).

    Table 1 Physical and electromechanical properties of various homogenous DEs without pre-strain and the addition of plasticizer.

    In addition, the phase separation structure could also affect theε’(Fig.3c).For the homogenous DEs with continual phase structure, the interfacial polarizations are commonly not generated as there are no obvious phase interfaces; for the PSiPGE with separation structures, clearly phase interfaces could be observed (Fig.2),large amounts of free charges accumulate at the interfaces [48,49]between polysiloxane and poly(thioether) under the external electric field and finally, the interfacial polarizations occur, which is beneficial to the improvement ofε’.

    The dielectric loss tangents (tanδ)versusfrequency of the PPMTC and PSiPGE are shown in Fig.3b.The tanδof PPMTC is quilt low and almost exhibit frequency independent at the range of 10–105Hz, and it will decrease in 105Hz to 106Hz.For the PSiPGE sample, the tanδincreases sharply from 10 to 103Hz and then decreases at the range of 103Hz to 106Hz, and a significant relaxation peak could be observed at about 103Hz.The relaxation peak shifts from 105Hz (high frequency) for the PPMTC to about 103Hz (low frequency) for PSiPGE, illustrating that the polarization ability of PSiPGE is much stronger than that of PPMTC [16].Specif-ically, the tanδat 103Hz of the PSiPGE increases slightly from 0.06 to about 0.14 compared with PPMTC.

    Fig.4.(a) Area strain-applied electric field curve of PSiPGE without prestrain; actuating images of PSiPGE under the electric field of (b) 0 V/μm, (c) 10.4 V/μm and(d) 14.2 V/μm.

    The electromechanical sensitivities (β) for the PPMTC and PSiPGE were also measured and listed in Table 1.Compared with PPMTC, the simultaneous increase in theε’and decrease in the Y of PSiPGE result in a much higherβ.For example,βat 103Hz increases sharply from about 0.1 MPa?1for PPMTC to about 145 MPa?1for the PSiPGE.The large increase inβwill enable PSiPGE larger actuation strain the improvement at low electric fields, and further research will be carried out to focus on the actuated performance of the PSiPGE.

    The comparisons of physical and electromechanical properties of various homogenous DEs reported in the previous studies and PPMTC, PSiPGE in this study are listed in Table 1.Although theε’of PSiPGE is not the highest, theβis much higher than that of most previous reported homogenous DEs.It is the simultaneous increase in theε’and decrease in the Y that enabling PSiPGE excellent electromechanical performances.

    The actuating behavior of PSiPGE (Fig.4) was measured according to standards for dielectric elastomer transducers in previous reports [50,54].As the SWCNT electrodes could not be coated at the surface of pure PPMTC perfectly, only the sample of PSiPGE was tested for the electro-actuated behavior.Here, a small and constant pneumatic pressure was applied to guide the direction of deformation and the applied voltage was slowly increased until the electric breakdown (Figs.4b–d).As expected, the actuation area strain of PSiPGE significantly increases with increasing the applied voltage (Fig.4a), the maximum actuation area strain of the sample was about 13.4%(@14.2 V/μm) due to its low modulus and highβ,demonstrating excellent electro-mechanical properties.It will provide an alternative method to the fabrication of homogenous DEs with wider application in the fields of artificial muscles and wearable devices.

    In summary, we synthesized poly(thioether)-b-polysiloxane-bpoly(thioether) triblock copolymer based homogenous DEs with highly stretchable and excellent electromechanical performancesviathe ROP of PGE and COS catalyzed by silicon alkoxides.With the presence of dipoles on the side groups and the phase separation structure of this triblock copolymer, the dipole polarizations and interfacial polarizations of PSiPGE were enhanced simultaneously, leading to the improvement ofε’(~5.8).In addition, the PSiPGE exhibited low modulus (0.04 MPa) with highly stretchable property (above 1100%) and thus, it possessed highβ(up to 145 MPa?1) which is higher than most previous reported homogenous DEs.Most importantly, the maximum actuation area strain could reach about 13.4% (@14.2 V/μm), which will enable this poly(thioether)-b-polysiloxane-b-poly(thioether)based homogenous DEs wider application in the fields of various biomimetic actuators.

    It is believed that many new triblock copolymer-based DEs with excellent electromechanical performances could also be constructed through the ROP of some other epoxides and COS catalyzed by silicon alkoxides.The work provides a novel strategy to prepare DEs with well-defined structure and improved actuated behaviors.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    We would like to express our sincere thanks to National Natural Science Foundation of China (Nos.51973190 and 21774108) and Zhejiang Provincial Department of Science and Technology (No.2020R52006) for financial supports.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.11.091.

    欧美zozozo另类| 制服人妻中文乱码| 成年版毛片免费区| 亚洲美女黄片视频| 制服丝袜大香蕉在线| 一进一出抽搐动态| 成人一区二区视频在线观看| 999久久久精品免费观看国产| avwww免费| 亚洲av第一区精品v没综合| 老司机午夜十八禁免费视频| 美女被艹到高潮喷水动态| 黄色成人免费大全| 宅男免费午夜| 欧美乱妇无乱码| 国产av一区在线观看免费| 岛国在线观看网站| 久久精品夜夜夜夜夜久久蜜豆| 我要搜黄色片| 精品99又大又爽又粗少妇毛片 | 日韩欧美三级三区| 久久午夜亚洲精品久久| 窝窝影院91人妻| 不卡一级毛片| 国产三级黄色录像| 可以在线观看的亚洲视频| 夜夜躁狠狠躁天天躁| 国产精品久久久久久久电影 | 中国美女看黄片| 99热这里只有精品一区 | 久久久国产精品麻豆| 欧美日韩福利视频一区二区| 国产亚洲精品综合一区在线观看| 亚洲成人精品中文字幕电影| 国产高清有码在线观看视频| 欧美中文综合在线视频| 夜夜看夜夜爽夜夜摸| 他把我摸到了高潮在线观看| 两性夫妻黄色片| 久久午夜综合久久蜜桃| 1000部很黄的大片| 午夜福利免费观看在线| 狂野欧美白嫩少妇大欣赏| 99精品在免费线老司机午夜| 午夜福利在线在线| 一个人免费在线观看电影 | 国产高清激情床上av| 18禁国产床啪视频网站| 淫秽高清视频在线观看| 欧美黄色淫秽网站| 久久久久国产精品人妻aⅴ院| 国产精品久久久av美女十八| 欧美日韩乱码在线| 欧美中文日本在线观看视频| 国产精品98久久久久久宅男小说| 五月玫瑰六月丁香| 亚洲人成电影免费在线| 香蕉久久夜色| 久久人人精品亚洲av| 成在线人永久免费视频| 精品日产1卡2卡| 99国产精品一区二区三区| 国产精品久久久av美女十八| 成人无遮挡网站| 级片在线观看| 久久久久久人人人人人| 国产精品精品国产色婷婷| 国产视频内射| 亚洲va日本ⅴa欧美va伊人久久| 欧美av亚洲av综合av国产av| 天天躁日日操中文字幕| 91老司机精品| 欧美又色又爽又黄视频| 久久久久久久精品吃奶| 男女那种视频在线观看| av在线蜜桃| 九色成人免费人妻av| 欧美日韩一级在线毛片| 成人永久免费在线观看视频| 草草在线视频免费看| 最近最新免费中文字幕在线| 欧美大码av| 精品国产超薄肉色丝袜足j| 国产高清视频在线观看网站| 日本撒尿小便嘘嘘汇集6| 国产伦在线观看视频一区| 欧美av亚洲av综合av国产av| 狠狠狠狠99中文字幕| 校园春色视频在线观看| 亚洲熟女毛片儿| 日本精品一区二区三区蜜桃| 99久久精品国产亚洲精品| 成人永久免费在线观看视频| 久久天堂一区二区三区四区| 久久久国产成人免费| 麻豆一二三区av精品| 国产男靠女视频免费网站| 欧美日韩乱码在线| 久久午夜综合久久蜜桃| 久久欧美精品欧美久久欧美| 亚洲欧美日韩卡通动漫| 国产综合懂色| 日韩精品青青久久久久久| 欧美性猛交╳xxx乱大交人| 国产精品亚洲av一区麻豆| 日韩精品中文字幕看吧| 中文字幕人妻丝袜一区二区| 97超级碰碰碰精品色视频在线观看| 成人永久免费在线观看视频| 国产不卡一卡二| 亚洲精品美女久久av网站| 久久久国产成人免费| 特大巨黑吊av在线直播| 白带黄色成豆腐渣| 97超视频在线观看视频| aaaaa片日本免费| 成人性生交大片免费视频hd| 一个人看视频在线观看www免费 | 久久久久国内视频| 日日摸夜夜添夜夜添小说| 日本五十路高清| 国产高清有码在线观看视频| 午夜精品一区二区三区免费看| 大型黄色视频在线免费观看| 99国产精品一区二区蜜桃av| 一本精品99久久精品77| 男女午夜视频在线观看| 一边摸一边抽搐一进一小说| 真人做人爱边吃奶动态| 日韩 欧美 亚洲 中文字幕| 久久天躁狠狠躁夜夜2o2o| 日本一本二区三区精品| 男女午夜视频在线观看| 色精品久久人妻99蜜桃| 一区二区三区国产精品乱码| avwww免费| 免费观看的影片在线观看| 日日摸夜夜添夜夜添小说| 午夜福利18| 亚洲aⅴ乱码一区二区在线播放| 精品久久久久久久久久久久久| 身体一侧抽搐| av视频在线观看入口| 国产 一区 欧美 日韩| 日本黄大片高清| 露出奶头的视频| 色av中文字幕| 999精品在线视频| 俄罗斯特黄特色一大片| 制服人妻中文乱码| 色在线成人网| 亚洲成av人片免费观看| 亚洲无线观看免费| avwww免费| 男人和女人高潮做爰伦理| 小蜜桃在线观看免费完整版高清| 久久这里只有精品中国| 毛片女人毛片| 真实男女啪啪啪动态图| 亚洲第一电影网av| 国产一区二区在线av高清观看| 欧美性猛交黑人性爽| 色播亚洲综合网| 亚洲欧美日韩高清专用| 99久久精品国产亚洲精品| 成人欧美大片| 亚洲中文字幕一区二区三区有码在线看 | 国产高清激情床上av| 99国产综合亚洲精品| 在线免费观看不下载黄p国产 | 91在线观看av| 欧美日韩黄片免| 国内精品美女久久久久久| 琪琪午夜伦伦电影理论片6080| 欧美日韩乱码在线| 十八禁人妻一区二区| 国产精品av久久久久免费| 哪里可以看免费的av片| 午夜福利在线观看吧| 欧美中文日本在线观看视频| 一级毛片女人18水好多| 老司机深夜福利视频在线观看| 午夜福利欧美成人| 18禁美女被吸乳视频| 国产美女午夜福利| 丰满人妻熟妇乱又伦精品不卡| 国内精品一区二区在线观看| 日本五十路高清| 日韩三级视频一区二区三区| 国产成人影院久久av| www.精华液| 国产精品一区二区三区四区免费观看 | 国产精品亚洲av一区麻豆| 搡老熟女国产l中国老女人| 亚洲av成人不卡在线观看播放网| 麻豆国产97在线/欧美| 好男人在线观看高清免费视频| 人妻丰满熟妇av一区二区三区| 精品国产亚洲在线| 男女床上黄色一级片免费看| 在线观看午夜福利视频| 午夜精品一区二区三区免费看| 久久人人精品亚洲av| 午夜免费激情av| 国产亚洲精品av在线| 男女做爰动态图高潮gif福利片| 99在线视频只有这里精品首页| 在线十欧美十亚洲十日本专区| 亚洲熟妇中文字幕五十中出| 亚洲第一电影网av| 97人妻精品一区二区三区麻豆| 毛片女人毛片| 亚洲欧美精品综合一区二区三区| 91av网站免费观看| 国产1区2区3区精品| 中文字幕人成人乱码亚洲影| 国产美女午夜福利| 搞女人的毛片| 搡老妇女老女人老熟妇| 欧美成人一区二区免费高清观看 | 少妇熟女aⅴ在线视频| 日本五十路高清| 欧美黄色淫秽网站| 99热只有精品国产| 噜噜噜噜噜久久久久久91| 91在线精品国自产拍蜜月 | 我要搜黄色片| 窝窝影院91人妻| 国产免费男女视频| 国产精品影院久久| 露出奶头的视频| 18禁黄网站禁片午夜丰满| 一级毛片女人18水好多| 老熟妇仑乱视频hdxx| www.999成人在线观看| 中国美女看黄片| 成人av在线播放网站| 午夜久久久久精精品| 亚洲中文日韩欧美视频| 一级毛片女人18水好多| 99视频精品全部免费 在线 | 非洲黑人性xxxx精品又粗又长| 成人亚洲精品av一区二区| 国产1区2区3区精品| 女同久久另类99精品国产91| 亚洲国产看品久久| 极品教师在线免费播放| 国产淫片久久久久久久久 | 午夜视频精品福利| 国产精品一区二区三区四区久久| 在线观看午夜福利视频| 女人被狂操c到高潮| 9191精品国产免费久久| 免费av毛片视频| 色视频www国产| 国产精品久久久久久久电影 | 久久精品国产99精品国产亚洲性色| 国产午夜福利久久久久久| 日日干狠狠操夜夜爽| 99精品在免费线老司机午夜| 99热只有精品国产| 丰满人妻熟妇乱又伦精品不卡| 国产男靠女视频免费网站| 国产亚洲av嫩草精品影院| 成人高潮视频无遮挡免费网站| av在线蜜桃| 国产精品亚洲美女久久久| 欧美色欧美亚洲另类二区| 亚洲人与动物交配视频| 欧美国产日韩亚洲一区| 久久久久久久久中文| 婷婷亚洲欧美| 久久精品aⅴ一区二区三区四区| 国产精品一区二区三区四区久久| 舔av片在线| 两个人视频免费观看高清| 无人区码免费观看不卡| 久久人妻av系列| 老司机在亚洲福利影院| 巨乳人妻的诱惑在线观看| 91av网站免费观看| 国产精品亚洲av一区麻豆| 国产午夜精品论理片| 欧美+亚洲+日韩+国产| 亚洲精品美女久久av网站| tocl精华| 亚洲在线观看片| 亚洲国产高清在线一区二区三| 宅男免费午夜| 国产亚洲精品久久久com| 黄色丝袜av网址大全| 国内精品一区二区在线观看| 精品久久久久久久毛片微露脸| 久久人妻av系列| 男女午夜视频在线观看| 老司机午夜十八禁免费视频| www.自偷自拍.com| 欧美日韩福利视频一区二区| 人妻夜夜爽99麻豆av| 欧美xxxx黑人xx丫x性爽| 又黄又粗又硬又大视频| 偷拍熟女少妇极品色| 看免费av毛片| 免费高清视频大片| 九色国产91popny在线| 日韩 欧美 亚洲 中文字幕| aaaaa片日本免费| 老熟妇仑乱视频hdxx| 日本一二三区视频观看| 亚洲人成网站在线播放欧美日韩| 嫩草影院入口| 国产精品98久久久久久宅男小说| 99久久无色码亚洲精品果冻| www日本在线高清视频| a级毛片a级免费在线| 精品一区二区三区av网在线观看| 色吧在线观看| 中文字幕最新亚洲高清| 久久精品国产清高在天天线| av黄色大香蕉| 免费av毛片视频| 欧美另类亚洲清纯唯美| 巨乳人妻的诱惑在线观看| 亚洲成a人片在线一区二区| 日韩免费av在线播放| 国产精华一区二区三区| 动漫黄色视频在线观看| 日本一二三区视频观看| 亚洲 欧美 日韩 在线 免费| 日本一二三区视频观看| 精品国产亚洲在线| 嫁个100分男人电影在线观看| 国产高清激情床上av| 亚洲欧美日韩高清专用| 国产一区二区三区视频了| 高清毛片免费观看视频网站| 亚洲中文字幕日韩| 美女cb高潮喷水在线观看 | 亚洲av熟女| 欧美绝顶高潮抽搐喷水| 岛国在线免费视频观看| 白带黄色成豆腐渣| 久久天躁狠狠躁夜夜2o2o| 老熟妇乱子伦视频在线观看| 天天躁日日操中文字幕| 黑人巨大精品欧美一区二区mp4| 天天躁日日操中文字幕| 一级黄色大片毛片| 又大又爽又粗| 久久精品91蜜桃| 99riav亚洲国产免费| 麻豆成人av在线观看| 免费人成视频x8x8入口观看| 免费在线观看视频国产中文字幕亚洲| 在线观看美女被高潮喷水网站 | 亚洲精品456在线播放app | 国产又黄又爽又无遮挡在线| 国产成年人精品一区二区| 真实男女啪啪啪动态图| 国产欧美日韩精品亚洲av| 高潮久久久久久久久久久不卡| 99热只有精品国产| 脱女人内裤的视频| 国产av不卡久久| 人妻丰满熟妇av一区二区三区| 在线免费观看的www视频| 最近最新中文字幕大全电影3| 国产蜜桃级精品一区二区三区| 99热这里只有精品一区 | 国产精品亚洲av一区麻豆| 午夜福利18| 欧美中文日本在线观看视频| 在线观看一区二区三区| 欧美国产日韩亚洲一区| 精品乱码久久久久久99久播| 亚洲 欧美一区二区三区| 久久精品影院6| 啦啦啦韩国在线观看视频| 变态另类丝袜制服| 欧美最黄视频在线播放免费| 综合色av麻豆| 欧美绝顶高潮抽搐喷水| 啪啪无遮挡十八禁网站| 亚洲人成网站在线播放欧美日韩| 亚洲色图 男人天堂 中文字幕| 精品国产亚洲在线| 麻豆国产av国片精品| 欧美一区二区精品小视频在线| 欧美日韩福利视频一区二区| 精品人妻1区二区| 日本黄色片子视频| 国产又色又爽无遮挡免费看| 熟女少妇亚洲综合色aaa.| 中文字幕人成人乱码亚洲影| 亚洲avbb在线观看| avwww免费| 国内久久婷婷六月综合欲色啪| 国产高清激情床上av| www.熟女人妻精品国产| 亚洲,欧美精品.| 精品国产乱子伦一区二区三区| 97超视频在线观看视频| 日韩大尺度精品在线看网址| 国产三级黄色录像| 国产在线精品亚洲第一网站| 九九久久精品国产亚洲av麻豆 | 12—13女人毛片做爰片一| 久久亚洲真实| 欧美绝顶高潮抽搐喷水| av视频在线观看入口| 国产精品99久久99久久久不卡| 亚洲精品久久国产高清桃花| 国产一级毛片七仙女欲春2| 成人精品一区二区免费| 精品国产美女av久久久久小说| 国产麻豆成人av免费视频| 亚洲人成伊人成综合网2020| 中文字幕高清在线视频| 久久精品国产亚洲av香蕉五月| 老司机福利观看| 婷婷精品国产亚洲av在线| 亚洲五月婷婷丁香| 国产av麻豆久久久久久久| 在线永久观看黄色视频| 性欧美人与动物交配| 久久国产乱子伦精品免费另类| 中文字幕精品亚洲无线码一区| 网址你懂的国产日韩在线| 麻豆国产97在线/欧美| 99久久综合精品五月天人人| 亚洲精品在线观看二区| 亚洲国产色片| 一区二区三区激情视频| 国产精品久久视频播放| 又黄又粗又硬又大视频| 精品久久久久久久毛片微露脸| 最近最新中文字幕大全电影3| 国产精品av视频在线免费观看| 成年免费大片在线观看| 精品国产超薄肉色丝袜足j| 国产高清有码在线观看视频| 久久精品亚洲精品国产色婷小说| 噜噜噜噜噜久久久久久91| 国产成人av激情在线播放| 国内揄拍国产精品人妻在线| 午夜激情福利司机影院| 动漫黄色视频在线观看| 日日干狠狠操夜夜爽| 最新在线观看一区二区三区| 人妻夜夜爽99麻豆av| 国产成人影院久久av| 国产黄片美女视频| 两个人视频免费观看高清| 亚洲专区字幕在线| 天天添夜夜摸| 香蕉久久夜色| 中国美女看黄片| 两个人的视频大全免费| 国产97色在线日韩免费| 色综合亚洲欧美另类图片| 天堂网av新在线| 一个人免费在线观看的高清视频| 欧美不卡视频在线免费观看| 两性夫妻黄色片| 国内少妇人妻偷人精品xxx网站 | 又粗又爽又猛毛片免费看| 又爽又黄无遮挡网站| 国产蜜桃级精品一区二区三区| 亚洲欧美日韩高清在线视频| 极品教师在线免费播放| 一二三四在线观看免费中文在| 国产欧美日韩一区二区精品| 久久国产乱子伦精品免费另类| 日本三级黄在线观看| 老汉色av国产亚洲站长工具| 熟妇人妻久久中文字幕3abv| 嫁个100分男人电影在线观看| 亚洲 国产 在线| 99久久综合精品五月天人人| 美女高潮喷水抽搐中文字幕| 中文资源天堂在线| 啪啪无遮挡十八禁网站| 国产高清视频在线播放一区| 99久国产av精品| 在线免费观看的www视频| 国产成人精品久久二区二区免费| 亚洲黑人精品在线| 国产高清视频在线播放一区| 91麻豆av在线| 十八禁网站免费在线| 黑人操中国人逼视频| 欧美黑人巨大hd| 成人av一区二区三区在线看| 91麻豆av在线| www.999成人在线观看| 欧美日韩国产亚洲二区| 99riav亚洲国产免费| 日韩精品青青久久久久久| 精品99又大又爽又粗少妇毛片 | 免费在线观看视频国产中文字幕亚洲| a在线观看视频网站| 久久精品人妻少妇| 国产激情久久老熟女| 天堂动漫精品| 亚洲va日本ⅴa欧美va伊人久久| 午夜免费激情av| av天堂在线播放| 可以在线观看的亚洲视频| 在线视频色国产色| 精品久久久久久久久久免费视频| 叶爱在线成人免费视频播放| 一级黄色大片毛片| 免费在线观看亚洲国产| 黄色女人牲交| 中文字幕av在线有码专区| 久久亚洲真实| 伊人久久大香线蕉亚洲五| 亚洲男人的天堂狠狠| 日韩三级视频一区二区三区| 色老头精品视频在线观看| 最近在线观看免费完整版| 欧美av亚洲av综合av国产av| 久久久精品大字幕| 51午夜福利影视在线观看| 亚洲中文字幕一区二区三区有码在线看 | 亚洲精品一卡2卡三卡4卡5卡| 一级作爱视频免费观看| 国产真人三级小视频在线观看| 亚洲在线自拍视频| 亚洲七黄色美女视频| 麻豆久久精品国产亚洲av| 免费看日本二区| 男女床上黄色一级片免费看| 99国产精品一区二区三区| tocl精华| 亚洲国产看品久久| 国产1区2区3区精品| 51午夜福利影视在线观看| 亚洲一区二区三区色噜噜| 成年女人毛片免费观看观看9| 88av欧美| 少妇熟女aⅴ在线视频| av女优亚洲男人天堂 | 夜夜躁狠狠躁天天躁| 日本a在线网址| 两个人的视频大全免费| 精品99又大又爽又粗少妇毛片 | 网址你懂的国产日韩在线| 一进一出抽搐动态| 在线永久观看黄色视频| 搡老熟女国产l中国老女人| 桃红色精品国产亚洲av| 亚洲国产精品999在线| 中文字幕久久专区| 免费搜索国产男女视频| 好男人电影高清在线观看| 99久久成人亚洲精品观看| 99国产综合亚洲精品| 亚洲精品在线美女| 少妇的丰满在线观看| 十八禁网站免费在线| 岛国在线观看网站| 国产美女午夜福利| 国产欧美日韩一区二区三| 一本综合久久免费| 最近在线观看免费完整版| 国内揄拍国产精品人妻在线| 欧美高清成人免费视频www| 嫁个100分男人电影在线观看| 久久国产乱子伦精品免费另类| 夜夜躁狠狠躁天天躁| 亚洲国产精品成人综合色| 日韩免费av在线播放| 99久久成人亚洲精品观看| 精品国产乱码久久久久久男人| 色哟哟哟哟哟哟| 蜜桃久久精品国产亚洲av| 中文字幕熟女人妻在线| 日本黄色视频三级网站网址| 色综合欧美亚洲国产小说| 视频区欧美日本亚洲| 亚洲成人免费电影在线观看| 狂野欧美激情性xxxx| 国产精品九九99| 又紧又爽又黄一区二区| 久久久国产成人精品二区| 19禁男女啪啪无遮挡网站| 黄色成人免费大全| 女人被狂操c到高潮| 国产一区二区在线av高清观看| 麻豆成人av在线观看| 免费看日本二区| 久久精品综合一区二区三区| 国产亚洲精品久久久久久毛片| 中出人妻视频一区二区| 久久久久久久久久黄片| 小蜜桃在线观看免费完整版高清| 黄频高清免费视频| 久久伊人香网站| 免费在线观看影片大全网站| 国产日本99.免费观看| 国产免费av片在线观看野外av| 国产精品野战在线观看| 亚洲aⅴ乱码一区二区在线播放| 国产一级毛片七仙女欲春2| 国产日本99.免费观看| 国产不卡一卡二| 两个人看的免费小视频| 女生性感内裤真人,穿戴方法视频| 国产精品乱码一区二三区的特点| 香蕉国产在线看| av国产免费在线观看| 国产精品 欧美亚洲| 国产真人三级小视频在线观看| 成人一区二区视频在线观看|