• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Poly(thioether)-b-polysiloxane-b-poly(thioether) triblock copolymer towards homogeneous dielectric elastomer with high dielectric performance

    2022-09-16 05:25:04ZhnbinFengJifngGuoSutingLiuGuofeiFengXingHongZhng
    Chinese Chemical Letters 2022年8期

    Zhnbin Feng, Jifng Guo, Suting Liu, Guofei Feng, Xing-Hong Zhng,?

    a MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

    b Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China

    c Department of Chemical Engineering, Weifang Vocational College, Weifang 262737, China

    ABSTRACT Dielectric elastomers (DEs) have drawn much attention owing to their application prospects in artificial muscles and soft robotics, it is still a big challenge to prepare DEs with high electromechanical performances.This work reports a highly stretchable poly(thioether)-b-polysiloxane-b-poly(thioether) triblock copolymer based homogenous DEs with high electromechanical properties.The triblock copolymer(PSiPGE) was synthesized through the ring-opening polymerization (ROP) of phenyl glycidyl ether (PGE)and carbonyl sulfide (COS) catalyzed by silicon alkoxides.The dipoles (benzene rings) on the side groups of PSiPGE improved the dipole polarizations and the phase separation structure of this triblock copolymer enhanced the interfacial polarizations between poly(thioether) and polysiloxane, and thus improving the dielectric constant (ε’, up to 5.8).In addition, the PSiPGE exhibited low elastic modulus (Y, 0.04 MPa),and thus possessed high electromechanical sensitivity (β, ~145 MPa?1) which is much higher than that of most homogenous DEs.This work provides a new strategy to construct homogenous DEs with excellent electromechanical performances, leading to a greater application aspect in the actuated devices.

    Keywords:Poly(thioether)-b-polysiloxane-bpoly(thioether) triblock copolymer Homogenous Dielectric elastomer Phase separation Electromechanical performance

    Dielectric elastomers (DEs) [1], one of the soft electric-response materials [2], can possess the transformation of electricalmechanical energy under an applied electric field [3] with the advantages of large deformation, high energy density and electromechanical coupling efficiency, light weight and fast response speed[4,5].With these combined superiorities, the applications of DEs could range from artificial muscles [6], sensors [7] to optical lenses[8] and soft robotics [9].A disadvantage of DEs that limiting its commercial applications is the requirement of high actuated electric field (>100 kV/mm) [10,11] due to the low dielectric constant(ε’) and high dielectric loss (tanδ) [12].Thus, it is a great challenge to prepare DEs with highε’and large actuated strain at low electric field.

    To enable DEs excellent electromechanical performance at low electric field, a high electromechanical sensitivity (β) is needed[13], which is defined as the ratio ofε’ to Young’s modulus(Y) [14].Thus, decreasing Y [15] and increasingε’ [16] are the main methods to prepare DEs with high actuated behaviors.In the past few years, massive efforts have been made to improveε’ of DEs to obtain higher actuated strain [17–24].One of the most commonly used approach is to add conductive fillers such as graphene or graphene oxide (GO) [17,18], CNTs [19,20], metal nanoparticles [21], or high-ε’ceramics (TiO2[22] and BaTiO3[23])or conjugated conductive polymers (polyaniline [24] and polyhexylthiophene [12]) to the elastomer matrix.After the introduction of nanofillers or stiff conductive polymers, theε’ of elastomers could be enhanced significantly [4,25] but the Y and dielectric loss also increase, resulting in the decrease in flexibility of the elastomer matrix [26].Another widely way to achieve excellent electro-mechanical performance is to synthesize homogeneous DEs with low Y and highε’through molecular design or chemical graft modification [10,27–29].These studies usually focus on grafting polar groups (such as -COOH, -COO-, -OH) [30] on the mainchains of elastomers to enhance the dipole polarizations, achieving highε’and actuated strain [5].Besides, homogeneous DEs could also be obtained through the copolymerization of acrylate monomers[27] or between acrylate and polyurethane [10].Although theε’was not high (up to about 6), the as prepared DE exhibited high actuated strain (about 52% @21.57 kV/mm) due to the low Y and highβ.Up to now, there are few monomers that could be used to prepare copolymerized homogeneous DEs, and it is urgent to find out more suitable polar monomers to realize large-scale preparation of copolymerized DEs.

    Poly(thioether)s [31], a new type of sulfur-containing polymers, could be synthesizedviathe coupling reaction of carbonyl sulfide (COS) with epoxides and consequent decarboxylative ring-opening polymerization (ROP) of the cyclic thiocarbonates [32].They are very promising in the application of ion-exchange membranes, electrolytes and some optical materials [33].A series of epoxides with different side groups [34–36] could be used to synthesize poly(thioether)s with tunable structure polarities andTgin our previous study.The introduction of polar side groups is beneficial for the increase ofε’ of poly(thioether)s.Compared with commercial VHB based DEs [37],the poly(thioether)s we synthesized before were not crosslinked and exhibited high viscidity, limiting its application in the fields of DEs.If the poly(thioether)s could be chemically (adding extra crosslinker) or physically crosslinked (constructing micro-phase separation structure) [38], it will be an alternative material for the construction of DEs.

    Silicon alkoxides, the oligomer with strong base, are derived from the ring opening polymerization (ROP) of octamethyl cyclotetrasiloxane (D4) catalyzed by inorganic alkali such as KOH,NaOH, have been used to catalyze the anionic ROP of cyclic siloxane [39,40].More importantly, the silicon alkoxides own dual active sites and can be used to synthesize poly(thioether)-bpolysiloxane-b-poly(thioether) block copolymer.Due to the incompatibility of polysiloxane domains and poly(thioether) domains,the microphase separation structure can be constructed to achieve physical crosslinking [41].

    Herein, we reported a new approach to synthesize poly(thioether)-b-polysiloxane-b-poly(thioether) triblock copolymer from COS and epoxides catalyzed by silicon alkoxides,constructing homogeneous DE.The silicon alkoxides can catalyze the coupling reaction of COS and epoxides, and then decarboxylative of the cyclothiocarbonates can be achieved at high temperature to form poly(thioether) chain segments (hard segments, plastic phase); besides, the double active sites of silicon alkoxides can be double-terminated to form triblock copolymers with polysiloxane as soft segments (rubber phase).The poly(thioether)-b-polysiloxane-b-poly(thioether) block copolymer possesses microphase separation structure, and the morphology could be tuned by its composition.More importantly, the block copolymer possesses highε’(about 5.8), low Y (0.04 MPa)and exhibits highβ(up to 145 MPa?1) and actuated strain(13.4%@14.2 V/μm) due to the combination of dipole polarizations and interfacial polarizations.These results indicate that this new poly(thioether)-based homogenous DE could be very promising for developing electromechanical actuators with high performance.

    Fig.1.1H NMR spectra of (a) PSiPO and (b) PSiPGE from PO/PGE, COS and silicon alkoxides.

    The triblock copolymers were synthesizedviaa two-step procedure (Scheme 1a): The ROP reaction of D4, forming the silicon alkoxides; then the copolymerization between epoxides (such as PO and PGE) and COS was carried out catalyzed by the silicon alkoxides at about 120 °C for about 12 h.During this process, the coupling reaction of COS with epoxides firstly occurred, followed by decarboxylative ROP of the cyclic thiocarbonates with releasing of CO2and a little bit of COS [32], finally, the triblock copolymers were synthesized and the detailed mechanism for this process is shown in the Scheme S1 (Supporting information).

    Scheme 1.(a) Synthetic route to poly(thioether)-b-polysiloxane-b-poly(thioether) triblock copolymer from carbonyl sulfide (COS) and epoxides catalyzed by silicon alkoxides.(b) Schematic representation of the structure of this triblock copolymer.

    The copolymerization of epoxides and COS catalyzed by silicon alkoxides was evidenced by1H NMR, the results were shown in Fig.1.Taking PSiPO (Fig.1a) for example, peak a (0 ppm), peak b(2.57 ppm), peak c (2.85 ppm) and peak d (1.31 ppm) represent the proton of silicon methyl, methylene (-CH2-) and methine, respectively, indicating the successful synthesis of PSiPO.In Fig.1b,all the characteristic peaks could be found in the1H NMR spectra for the PSiPGE except for a new peak at about 5 ppm, indicating the successful synthesis of PSiPGE.The new peak at about 5 ppm corresponds to the proton of poly(monothiocarbonate) according to our previous study [34].As the peak corresponding to the poly(monothiocarbonate) is very weak, the main product synthesized from PGE, COS and silicon alkoxides is the poly(thioether)-bpolysiloxane-b-poly(thioether) copolymer and the schematic representation of the structure is shown in Scheme 1b.The structures of PSiPO and PSiPGE were also verified by13C NMR (Fig.S1 in Supporting information), suggesting the successful copolymerization of PO/PGE, COS and silicon alkoxides.

    The molecular weight of PSiPO and PSiPGE were characterized by GPC, and the results were shown in Fig.S2 (Supporting information).As the refractive index of polysiloxane is close to that of THF which is the mobile phase in GPC, the molecular weight of silicon alkoxides could not be detected by using GPC, so it was verified by MALDI-TOF MS, and the result was shown in Fig.S3 (Supporting information).It was found that the molecular weight of silicon alkoxides is about 2.48 kg/mol, the detailed Mn, Mw, PDI and the phase compositions are summarized in Table S2 (Supporting information).Compared with the triblock copolymer based DEs in the previous study [2,14], the PDI for the PSiPO or PSiPGE is much narrower, which agrees well with the poly(thioether)s catalyzed by organic bases in our previous report [42].Furthermore, the diffusion-ordered (DOSY) NMR spectrum exhibits a single diffusion coefficient (Fig.S2b), indicating that the triblock copolymer consists only one component.All these results evidenced that the poly(thioether)-b-polysiloxane-bpoly(thioether) copolymer could be synthesized under the catalysis of silicon alkoxides.

    Fig.2.(a, b) TEM images of PSiPGE with silicon alkoxides concentration of 0.1 g/mL.(c) The size distribution of the particle in (a, b).(d, e) TEM images of PSiPGE with silicon alkoxides concentration of 0.15 g/mL.(f) The size distribution of the particle in (d, e).

    The thermal analysis of PSiPO and PSiPGE were also carried out and shown in Fig.S4 (Supporting information).Two distinct transition temperature could be observed for both samples in DSC curves (Fig.S4a), which represent different domains.The transition temperature at about ?120 °C belongs to the glass transition of polysiloxane and the other is attributed to the poly(thioether)s.In the TGA curves (Fig.S4b), two different decomposition temperature could also be found for both samples.All these evidences indicated the successful synthesis of the triblock copolymer.

    Fig.2 and Fig.S5 (Supporting information) illustrate the nanomorphology of the triblock copolymer by TEM and AFM, as the sample of PSiPO could not be freezing sectioned due to its poor film-forming, only the sample of PSiPGE catalyzed by different concentration of silicon alkoxides were characterized.As expected,the microphase separation could be observed with clear phase boundaries in all the samples.The nanodomains of polysiloxane(dark domains) are well dispersed in the matrix of poly(thioether)(bright domains) due to the low content of polysiloxane segments.Unlike the worm-like form of polystyrene in the SBS [43],sphere-like form (Figs.2a, b, d and e) could be observed for the polysiloxane segments as the thermodynamic incompatibility with poly(thioether).For the PSiPGE sample catalyzed by 0.1 g/mL of silicon alkoxides (named as PSiPGE-0.1), the well-defined soft segments with the mean particle size of 400 nm (Fig.2c) could be observed; however, for the PSiPGE sample catalyzed by 0.15 g/mL of silicon alkoxides (named as PSiPGE-0.15), the mean particle size decreases to about 120 nm.The size decrease of soft segments illustrates that the content increase of hard segments [44,45].The AFM-phase images were also carried out to verify the structure of microphase separation (Fig.S5), which is consistent with the TEM results.

    Generally, the island-sea nano-morphology of triblock copolymer could enable it excellent mechanical properties [46].In this study, the soft segments (polysiloxane) are acted as dispersed phase whereas the hard segments (poly(thioether)) are acted as the continuous phase, resulting in the increase of the toughness and the decrease of mechanical strength.As shown in Fig.S6 (Supporting information), the PSiPGE exhibit highly stretchable performance with the elongation at break of over 1000%, whereas the ultimate tensile strength is about 0.06 MPa with the Young’s modulus of about 0.04 MPa.

    Fig.3.(a) The dielectric constant (ε’) and (b) the dielectric loss (tanδ) of the pure PPMTC and PSiPGE.(c) The mechanism of the improvement of the dielectric performances.

    Fig.3 illustrates the dielectric properties of pure poly(propylene-monothiocarbonate) (PPMTC) and PSiPGE as a function of frequency at room temperature, the detailed values are summarized in Table 1.It is found that theε’decreases as the frequency increases (Fig.3a) for both PPMTC and PSiPGE samples,indicating the frequency dependence ofε’.Compared with PPMTC,theε’of PSiPGE with significant micro-phase separation structure is much higher at the range of 10–106Hz.Taking theε’at 103Hz for example, theε’of PPMTC is about 2.2, whereas it is about 5.8 for PSiPGE which is more than 2.5 times that of PPMTC.Interestingly, the backbone of PPMTC is rich in thiocarbonate groups(dipoles), it still exhibits lowε’.The reason for this phenomenon is that the polar groups of PPMTC are located in the mainchains,the dipoles are difficult to move and difficult to be polarized under the electric fields [47].On the contrary, the dipoles (benzene ring)for the PSiPGE are located in the side groups, which are tended to be polarized much easier, leading to the increase ofε’(Fig.3c).

    Table 1 Physical and electromechanical properties of various homogenous DEs without pre-strain and the addition of plasticizer.

    In addition, the phase separation structure could also affect theε’(Fig.3c).For the homogenous DEs with continual phase structure, the interfacial polarizations are commonly not generated as there are no obvious phase interfaces; for the PSiPGE with separation structures, clearly phase interfaces could be observed (Fig.2),large amounts of free charges accumulate at the interfaces [48,49]between polysiloxane and poly(thioether) under the external electric field and finally, the interfacial polarizations occur, which is beneficial to the improvement ofε’.

    The dielectric loss tangents (tanδ)versusfrequency of the PPMTC and PSiPGE are shown in Fig.3b.The tanδof PPMTC is quilt low and almost exhibit frequency independent at the range of 10–105Hz, and it will decrease in 105Hz to 106Hz.For the PSiPGE sample, the tanδincreases sharply from 10 to 103Hz and then decreases at the range of 103Hz to 106Hz, and a significant relaxation peak could be observed at about 103Hz.The relaxation peak shifts from 105Hz (high frequency) for the PPMTC to about 103Hz (low frequency) for PSiPGE, illustrating that the polarization ability of PSiPGE is much stronger than that of PPMTC [16].Specif-ically, the tanδat 103Hz of the PSiPGE increases slightly from 0.06 to about 0.14 compared with PPMTC.

    Fig.4.(a) Area strain-applied electric field curve of PSiPGE without prestrain; actuating images of PSiPGE under the electric field of (b) 0 V/μm, (c) 10.4 V/μm and(d) 14.2 V/μm.

    The electromechanical sensitivities (β) for the PPMTC and PSiPGE were also measured and listed in Table 1.Compared with PPMTC, the simultaneous increase in theε’and decrease in the Y of PSiPGE result in a much higherβ.For example,βat 103Hz increases sharply from about 0.1 MPa?1for PPMTC to about 145 MPa?1for the PSiPGE.The large increase inβwill enable PSiPGE larger actuation strain the improvement at low electric fields, and further research will be carried out to focus on the actuated performance of the PSiPGE.

    The comparisons of physical and electromechanical properties of various homogenous DEs reported in the previous studies and PPMTC, PSiPGE in this study are listed in Table 1.Although theε’of PSiPGE is not the highest, theβis much higher than that of most previous reported homogenous DEs.It is the simultaneous increase in theε’and decrease in the Y that enabling PSiPGE excellent electromechanical performances.

    The actuating behavior of PSiPGE (Fig.4) was measured according to standards for dielectric elastomer transducers in previous reports [50,54].As the SWCNT electrodes could not be coated at the surface of pure PPMTC perfectly, only the sample of PSiPGE was tested for the electro-actuated behavior.Here, a small and constant pneumatic pressure was applied to guide the direction of deformation and the applied voltage was slowly increased until the electric breakdown (Figs.4b–d).As expected, the actuation area strain of PSiPGE significantly increases with increasing the applied voltage (Fig.4a), the maximum actuation area strain of the sample was about 13.4%(@14.2 V/μm) due to its low modulus and highβ,demonstrating excellent electro-mechanical properties.It will provide an alternative method to the fabrication of homogenous DEs with wider application in the fields of artificial muscles and wearable devices.

    In summary, we synthesized poly(thioether)-b-polysiloxane-bpoly(thioether) triblock copolymer based homogenous DEs with highly stretchable and excellent electromechanical performancesviathe ROP of PGE and COS catalyzed by silicon alkoxides.With the presence of dipoles on the side groups and the phase separation structure of this triblock copolymer, the dipole polarizations and interfacial polarizations of PSiPGE were enhanced simultaneously, leading to the improvement ofε’(~5.8).In addition, the PSiPGE exhibited low modulus (0.04 MPa) with highly stretchable property (above 1100%) and thus, it possessed highβ(up to 145 MPa?1) which is higher than most previous reported homogenous DEs.Most importantly, the maximum actuation area strain could reach about 13.4% (@14.2 V/μm), which will enable this poly(thioether)-b-polysiloxane-b-poly(thioether)based homogenous DEs wider application in the fields of various biomimetic actuators.

    It is believed that many new triblock copolymer-based DEs with excellent electromechanical performances could also be constructed through the ROP of some other epoxides and COS catalyzed by silicon alkoxides.The work provides a novel strategy to prepare DEs with well-defined structure and improved actuated behaviors.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    We would like to express our sincere thanks to National Natural Science Foundation of China (Nos.51973190 and 21774108) and Zhejiang Provincial Department of Science and Technology (No.2020R52006) for financial supports.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.11.091.

    天天躁日日操中文字幕| 国产av码专区亚洲av| 国产av国产精品国产| 高清在线视频一区二区三区| 少妇人妻久久综合中文| 人体艺术视频欧美日本| 免费观看的影片在线观看| 免费观看性生交大片5| 国产av不卡久久| 国产成人91sexporn| 亚洲成色77777| 欧美另类一区| 97在线人人人人妻| 18禁裸乳无遮挡免费网站照片| 免费观看av网站的网址| 一级毛片电影观看| 日韩在线高清观看一区二区三区| 午夜免费鲁丝| 91午夜精品亚洲一区二区三区| 亚洲欧美中文字幕日韩二区| 亚洲性久久影院| 免费观看在线日韩| 丰满乱子伦码专区| 91精品国产九色| 亚洲电影在线观看av| 久久久精品94久久精品| 晚上一个人看的免费电影| 国产欧美亚洲国产| 免费观看a级毛片全部| 一二三四中文在线观看免费高清| 国产在线一区二区三区精| 大片电影免费在线观看免费| 夫妻性生交免费视频一级片| a级毛色黄片| 久久久久久伊人网av| 亚洲欧美日韩东京热| 色婷婷久久久亚洲欧美| xxx大片免费视频| 黄色配什么色好看| 国产91av在线免费观看| 青春草亚洲视频在线观看| 熟女av电影| 亚洲精品国产av成人精品| 男的添女的下面高潮视频| 免费黄网站久久成人精品| 在线观看三级黄色| 欧美激情久久久久久爽电影| 一区二区三区免费毛片| 婷婷色麻豆天堂久久| 国产91av在线免费观看| 久久久久久国产a免费观看| 久久鲁丝午夜福利片| 97热精品久久久久久| 22中文网久久字幕| 国产人妻一区二区三区在| 日本色播在线视频| 久热这里只有精品99| 视频中文字幕在线观看| 久久久久久九九精品二区国产| 午夜爱爱视频在线播放| 99热国产这里只有精品6| 中国美白少妇内射xxxbb| 色婷婷久久久亚洲欧美| 亚洲av.av天堂| 日本熟妇午夜| 69av精品久久久久久| 亚洲一区二区三区欧美精品 | 特级一级黄色大片| 少妇 在线观看| 亚洲电影在线观看av| 一本一本综合久久| 一区二区三区精品91| 日韩成人伦理影院| 久久精品国产亚洲网站| 久久人人爽人人爽人人片va| 你懂的网址亚洲精品在线观看| 极品少妇高潮喷水抽搐| av卡一久久| 精品人妻视频免费看| 亚洲人成网站在线观看播放| 亚洲四区av| 九九久久精品国产亚洲av麻豆| 久久女婷五月综合色啪小说 | 成人黄色视频免费在线看| 久久久欧美国产精品| 亚洲精品日本国产第一区| 久久久成人免费电影| 日日摸夜夜添夜夜添av毛片| 亚洲av免费高清在线观看| 国产成年人精品一区二区| 国产精品一区二区性色av| 水蜜桃什么品种好| 一级片'在线观看视频| 99久久九九国产精品国产免费| 99热全是精品| 少妇裸体淫交视频免费看高清| 精品人妻偷拍中文字幕| 免费黄频网站在线观看国产| av卡一久久| 少妇丰满av| 国产欧美日韩精品一区二区| 毛片一级片免费看久久久久| 只有这里有精品99| 亚洲,欧美,日韩| 国产淫片久久久久久久久| www.色视频.com| 日本免费在线观看一区| 联通29元200g的流量卡| 最近的中文字幕免费完整| 狂野欧美激情性xxxx在线观看| 两个人的视频大全免费| 国产在线男女| 乱系列少妇在线播放| 搡老乐熟女国产| av在线观看视频网站免费| 午夜免费男女啪啪视频观看| 如何舔出高潮| 国产免费视频播放在线视频| 精品一区二区免费观看| 人体艺术视频欧美日本| 91狼人影院| 日本一本二区三区精品| 亚洲成人一二三区av| 国产精品熟女久久久久浪| 天天躁日日操中文字幕| 欧美一区二区亚洲| 夫妻午夜视频| 亚洲av.av天堂| 各种免费的搞黄视频| 亚洲精品自拍成人| 看黄色毛片网站| 好男人在线观看高清免费视频| 麻豆国产97在线/欧美| 午夜日本视频在线| 一个人看视频在线观看www免费| 晚上一个人看的免费电影| 一区二区三区免费毛片| 亚洲精品色激情综合| 三级国产精品欧美在线观看| 秋霞伦理黄片| 久久久久久久大尺度免费视频| 男男h啪啪无遮挡| 亚洲自偷自拍三级| 国产亚洲5aaaaa淫片| 色综合色国产| 中文字幕人妻熟人妻熟丝袜美| 18禁在线无遮挡免费观看视频| 男女边吃奶边做爰视频| 日本黄大片高清| 午夜免费男女啪啪视频观看| 尤物成人国产欧美一区二区三区| 丝袜脚勾引网站| 舔av片在线| 亚洲欧美成人综合另类久久久| 国产欧美亚洲国产| 久久久久久久亚洲中文字幕| 狂野欧美白嫩少妇大欣赏| 青青草视频在线视频观看| 深夜a级毛片| 精品人妻偷拍中文字幕| 亚洲精品一二三| 免费黄网站久久成人精品| 啦啦啦啦在线视频资源| 女人十人毛片免费观看3o分钟| 国产精品福利在线免费观看| h日本视频在线播放| 大又大粗又爽又黄少妇毛片口| 女人被狂操c到高潮| 老司机影院成人| 色视频在线一区二区三区| 国产精品久久久久久精品电影| 亚洲国产成人一精品久久久| 免费电影在线观看免费观看| 国产av码专区亚洲av| 免费av观看视频| 久久久精品94久久精品| 国产成人精品一,二区| 亚洲,一卡二卡三卡| 最近手机中文字幕大全| 黄片无遮挡物在线观看| av福利片在线观看| 亚洲性久久影院| 精品视频人人做人人爽| 丝袜脚勾引网站| 99久久精品国产国产毛片| 国产免费一区二区三区四区乱码| 在线观看美女被高潮喷水网站| 成人国产av品久久久| 91aial.com中文字幕在线观看| 九草在线视频观看| 日韩在线高清观看一区二区三区| 国产日韩欧美在线精品| 99热这里只有精品一区| 人妻系列 视频| 亚洲最大成人手机在线| 天美传媒精品一区二区| 在线观看三级黄色| 国产精品成人在线| 国产免费一级a男人的天堂| 高清视频免费观看一区二区| 亚洲av成人精品一区久久| 亚洲久久久久久中文字幕| 国产片特级美女逼逼视频| 能在线免费看毛片的网站| av国产精品久久久久影院| 久久ye,这里只有精品| 国产国拍精品亚洲av在线观看| 99久久中文字幕三级久久日本| 肉色欧美久久久久久久蜜桃 | 国产精品国产三级专区第一集| 国产精品一区二区在线观看99| 国产精品国产av在线观看| 成人一区二区视频在线观看| 老师上课跳d突然被开到最大视频| 熟女人妻精品中文字幕| 青青草视频在线视频观看| 婷婷色av中文字幕| 91aial.com中文字幕在线观看| 黑人高潮一二区| av国产免费在线观看| 又大又黄又爽视频免费| 看非洲黑人一级黄片| 久久国产乱子免费精品| 菩萨蛮人人尽说江南好唐韦庄| 又粗又硬又长又爽又黄的视频| 国产精品秋霞免费鲁丝片| 亚洲综合色惰| 久久久久久久午夜电影| 国产成人免费无遮挡视频| 国产人妻一区二区三区在| 干丝袜人妻中文字幕| 中文在线观看免费www的网站| 成人一区二区视频在线观看| 久热这里只有精品99| 国产爱豆传媒在线观看| 男人舔奶头视频| 国产亚洲5aaaaa淫片| 精品久久久久久电影网| 国产av不卡久久| 国产av不卡久久| 丝袜美腿在线中文| 国产精品久久久久久精品电影小说 | 亚洲不卡免费看| 国产淫语在线视频| 国产黄片美女视频| 精品酒店卫生间| 国产女主播在线喷水免费视频网站| 久久久午夜欧美精品| 搡女人真爽免费视频火全软件| 国产亚洲午夜精品一区二区久久 | 熟妇人妻不卡中文字幕| 久久久a久久爽久久v久久| 日韩在线高清观看一区二区三区| 亚洲成色77777| 在线看a的网站| 亚洲成人中文字幕在线播放| 亚洲自偷自拍三级| 亚洲精品国产色婷婷电影| 久久久久久久精品精品| 男插女下体视频免费在线播放| 亚洲欧美日韩另类电影网站 | 久久久久久伊人网av| 亚洲av福利一区| 免费大片18禁| 性色avwww在线观看| 国产成人aa在线观看| 香蕉精品网在线| 亚洲三级黄色毛片| 十八禁网站网址无遮挡 | 69人妻影院| 好男人视频免费观看在线| 水蜜桃什么品种好| 国产欧美日韩一区二区三区在线 | 51国产日韩欧美| 热re99久久精品国产66热6| av黄色大香蕉| 熟女av电影| 成人高潮视频无遮挡免费网站| 寂寞人妻少妇视频99o| 免费看a级黄色片| 草草在线视频免费看| 夫妻午夜视频| 亚洲国产精品成人综合色| 在现免费观看毛片| 女的被弄到高潮叫床怎么办| 精品视频人人做人人爽| 成人高潮视频无遮挡免费网站| 日本熟妇午夜| 成人亚洲欧美一区二区av| 午夜福利网站1000一区二区三区| 麻豆成人av视频| 身体一侧抽搐| 美女主播在线视频| 一级片'在线观看视频| av卡一久久| 麻豆乱淫一区二区| 亚洲人成网站在线播| 内射极品少妇av片p| 汤姆久久久久久久影院中文字幕| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品爽爽va在线观看网站| 亚洲欧美清纯卡通| 亚洲人成网站在线播| 欧美变态另类bdsm刘玥| 国产高清不卡午夜福利| 亚洲精品aⅴ在线观看| 精品久久久久久电影网| 欧美日韩视频高清一区二区三区二| 热99国产精品久久久久久7| 蜜桃亚洲精品一区二区三区| 欧美一级a爱片免费观看看| 久久久久国产网址| 午夜日本视频在线| 在线观看三级黄色| 好男人视频免费观看在线| 久久精品久久久久久久性| 亚洲av成人精品一区久久| 成人亚洲精品一区在线观看 | 亚洲人成网站高清观看| 亚洲色图av天堂| av国产免费在线观看| 欧美性猛交╳xxx乱大交人| 简卡轻食公司| 成年女人在线观看亚洲视频 | av在线播放精品| 干丝袜人妻中文字幕| 成人欧美大片| 制服丝袜香蕉在线| 免费播放大片免费观看视频在线观看| 午夜亚洲福利在线播放| 久久精品国产亚洲网站| 久久这里有精品视频免费| 久久久久久久久久成人| 91久久精品电影网| 又大又黄又爽视频免费| 久久ye,这里只有精品| 男人爽女人下面视频在线观看| kizo精华| 亚洲真实伦在线观看| 国产欧美另类精品又又久久亚洲欧美| 欧美成人a在线观看| 美女高潮的动态| 日韩一区二区视频免费看| 国产午夜福利久久久久久| 搡女人真爽免费视频火全软件| 成人漫画全彩无遮挡| 亚洲欧美日韩另类电影网站 | 亚洲av电影在线观看一区二区三区 | 国产亚洲av片在线观看秒播厂| 欧美日本视频| 亚洲av欧美aⅴ国产| 高清av免费在线| 最近手机中文字幕大全| 老师上课跳d突然被开到最大视频| 九色成人免费人妻av| 我要看日韩黄色一级片| 狂野欧美白嫩少妇大欣赏| 小蜜桃在线观看免费完整版高清| 久久精品人妻少妇| 男女国产视频网站| 国产人妻一区二区三区在| 久久精品国产鲁丝片午夜精品| 久久久久久久久久久免费av| 视频区图区小说| 六月丁香七月| 国产欧美日韩一区二区三区在线 | 国产精品蜜桃在线观看| 中文资源天堂在线| 日产精品乱码卡一卡2卡三| 精品一区在线观看国产| 一级黄片播放器| 亚洲欧美成人精品一区二区| 国产黄色免费在线视频| a级毛片免费高清观看在线播放| 简卡轻食公司| 成人美女网站在线观看视频| 精品熟女少妇av免费看| 2018国产大陆天天弄谢| 国产黄色视频一区二区在线观看| 免费人成在线观看视频色| 国内少妇人妻偷人精品xxx网站| 久久久久久久午夜电影| 日韩一区二区三区影片| 欧美人与善性xxx| 91aial.com中文字幕在线观看| 综合色av麻豆| 免费在线观看成人毛片| 97超碰精品成人国产| 国产精品福利在线免费观看| 91精品伊人久久大香线蕉| 99久久人妻综合| 欧美最新免费一区二区三区| 看非洲黑人一级黄片| 六月丁香七月| 啦啦啦啦在线视频资源| 中国美白少妇内射xxxbb| 只有这里有精品99| 18禁在线播放成人免费| 国产精品国产三级国产专区5o| 99久久精品一区二区三区| 午夜福利在线观看免费完整高清在| 成人国产av品久久久| 日日撸夜夜添| 我要看日韩黄色一级片| 天堂俺去俺来也www色官网| 亚洲,欧美,日韩| 看非洲黑人一级黄片| 久久精品久久精品一区二区三区| 成人亚洲精品av一区二区| 欧美潮喷喷水| 国产亚洲5aaaaa淫片| 亚洲最大成人av| 人妻系列 视频| 中文资源天堂在线| av国产精品久久久久影院| 在线免费观看不下载黄p国产| 少妇的逼水好多| av在线观看视频网站免费| 在线观看国产h片| 成年人午夜在线观看视频| 国产色婷婷99| 深夜a级毛片| 春色校园在线视频观看| 免费黄频网站在线观看国产| 午夜福利高清视频| 精品少妇久久久久久888优播| 直男gayav资源| 永久免费av网站大全| 97在线视频观看| 国产乱来视频区| 特级一级黄色大片| 成人国产麻豆网| 老司机影院成人| 欧美老熟妇乱子伦牲交| 3wmmmm亚洲av在线观看| 18禁裸乳无遮挡免费网站照片| 欧美一级a爱片免费观看看| av在线蜜桃| 青春草亚洲视频在线观看| 亚洲不卡免费看| 中文字幕av成人在线电影| 日本av手机在线免费观看| 国产亚洲一区二区精品| 亚洲最大成人中文| 日韩三级伦理在线观看| 亚洲精品成人av观看孕妇| 国产欧美亚洲国产| 爱豆传媒免费全集在线观看| 欧美丝袜亚洲另类| 亚洲成色77777| 久久久国产一区二区| 麻豆精品久久久久久蜜桃| 在线精品无人区一区二区三 | 亚洲精品日韩在线中文字幕| 久久久久久久大尺度免费视频| 欧美激情久久久久久爽电影| 欧美日韩视频高清一区二区三区二| 小蜜桃在线观看免费完整版高清| 久久人人爽人人爽人人片va| 国产一区有黄有色的免费视频| 国产精品一及| 性色av一级| 全区人妻精品视频| 午夜亚洲福利在线播放| 真实男女啪啪啪动态图| 黄片无遮挡物在线观看| 亚洲va在线va天堂va国产| 久久久欧美国产精品| 亚洲怡红院男人天堂| 国产黄色视频一区二区在线观看| h日本视频在线播放| 夫妻午夜视频| 如何舔出高潮| 99re6热这里在线精品视频| 91久久精品电影网| 国产国拍精品亚洲av在线观看| 国产亚洲精品久久久com| 99热这里只有精品一区| 天天一区二区日本电影三级| 久久精品人妻少妇| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久国产精品人妻一区二区| 青春草视频在线免费观看| 麻豆久久精品国产亚洲av| 五月玫瑰六月丁香| 国产老妇伦熟女老妇高清| 精品一区二区三卡| 日韩一本色道免费dvd| 国产精品三级大全| 亚洲av免费高清在线观看| 国产在线一区二区三区精| 久久鲁丝午夜福利片| 亚洲天堂av无毛| 观看美女的网站| 美女高潮的动态| 可以在线观看毛片的网站| 免费观看av网站的网址| 色吧在线观看| 高清欧美精品videossex| 九九爱精品视频在线观看| 大香蕉久久网| 男女下面进入的视频免费午夜| av在线播放精品| 欧美成人午夜免费资源| 2022亚洲国产成人精品| 插阴视频在线观看视频| 内射极品少妇av片p| 2018国产大陆天天弄谢| av线在线观看网站| av在线观看视频网站免费| 中文乱码字字幕精品一区二区三区| 成人亚洲精品一区在线观看 | 在线看a的网站| 国精品久久久久久国模美| 成年女人在线观看亚洲视频 | 又爽又黄无遮挡网站| 交换朋友夫妻互换小说| 一区二区三区免费毛片| 伦精品一区二区三区| 精品久久久久久久久av| 国产综合懂色| 亚洲精品日韩av片在线观看| 欧美 日韩 精品 国产| 蜜臀久久99精品久久宅男| 97精品久久久久久久久久精品| 成人亚洲精品一区在线观看 | 亚洲av欧美aⅴ国产| 六月丁香七月| 高清视频免费观看一区二区| 国产亚洲91精品色在线| 国产爽快片一区二区三区| 国产精品国产三级专区第一集| 国产人妻一区二区三区在| 色网站视频免费| 亚洲,一卡二卡三卡| 人人妻人人看人人澡| 中文精品一卡2卡3卡4更新| 国产爽快片一区二区三区| 少妇人妻一区二区三区视频| 国产美女午夜福利| 久久久久性生活片| 国内精品美女久久久久久| 王馨瑶露胸无遮挡在线观看| 黄色配什么色好看| 在线观看美女被高潮喷水网站| 人妻 亚洲 视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 女的被弄到高潮叫床怎么办| 日韩av在线免费看完整版不卡| 国语对白做爰xxxⅹ性视频网站| www.av在线官网国产| 我要看日韩黄色一级片| av专区在线播放| 五月玫瑰六月丁香| 真实男女啪啪啪动态图| 男女下面进入的视频免费午夜| 少妇 在线观看| 国产免费福利视频在线观看| 亚洲国产精品成人综合色| 国产一区二区三区综合在线观看 | 国产久久久一区二区三区| 国产午夜精品久久久久久一区二区三区| 大香蕉97超碰在线| 国产精品一区二区在线观看99| 亚洲,一卡二卡三卡| 高清视频免费观看一区二区| 国产精品精品国产色婷婷| 免费av观看视频| 夫妻午夜视频| 可以在线观看毛片的网站| 亚洲国产欧美在线一区| 真实男女啪啪啪动态图| 爱豆传媒免费全集在线观看| 国产大屁股一区二区在线视频| 亚洲怡红院男人天堂| 亚洲国产成人一精品久久久| 日本色播在线视频| 美女视频免费永久观看网站| 精品人妻视频免费看| 嘟嘟电影网在线观看| 亚洲熟女精品中文字幕| 麻豆乱淫一区二区| 日产精品乱码卡一卡2卡三| 久久精品夜色国产| 男女边摸边吃奶| 久久精品夜色国产| 在线观看av片永久免费下载| 熟女人妻精品中文字幕| 永久免费av网站大全| 国产精品久久久久久精品电影小说 | 97精品久久久久久久久久精品| 国产乱人视频| 99热6这里只有精品| 亚洲精品久久久久久婷婷小说| 少妇 在线观看| 亚洲精品久久久久久婷婷小说| 人妻系列 视频| 免费看a级黄色片| 亚洲成人久久爱视频| 欧美日韩一区二区视频在线观看视频在线 | freevideosex欧美| 亚洲va在线va天堂va国产| 中国美白少妇内射xxxbb| 日韩大片免费观看网站| 超碰97精品在线观看| 午夜福利在线观看免费完整高清在| 久久综合国产亚洲精品| 午夜精品一区二区三区免费看| 日本与韩国留学比较| 亚洲四区av| 精品酒店卫生间| 国产精品爽爽va在线观看网站| 乱码一卡2卡4卡精品| 免费观看a级毛片全部| 日韩 亚洲 欧美在线|