• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Poly(thioether)-b-polysiloxane-b-poly(thioether) triblock copolymer towards homogeneous dielectric elastomer with high dielectric performance

    2022-09-16 05:25:04ZhnbinFengJifngGuoSutingLiuGuofeiFengXingHongZhng
    Chinese Chemical Letters 2022年8期

    Zhnbin Feng, Jifng Guo, Suting Liu, Guofei Feng, Xing-Hong Zhng,?

    a MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

    b Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China

    c Department of Chemical Engineering, Weifang Vocational College, Weifang 262737, China

    ABSTRACT Dielectric elastomers (DEs) have drawn much attention owing to their application prospects in artificial muscles and soft robotics, it is still a big challenge to prepare DEs with high electromechanical performances.This work reports a highly stretchable poly(thioether)-b-polysiloxane-b-poly(thioether) triblock copolymer based homogenous DEs with high electromechanical properties.The triblock copolymer(PSiPGE) was synthesized through the ring-opening polymerization (ROP) of phenyl glycidyl ether (PGE)and carbonyl sulfide (COS) catalyzed by silicon alkoxides.The dipoles (benzene rings) on the side groups of PSiPGE improved the dipole polarizations and the phase separation structure of this triblock copolymer enhanced the interfacial polarizations between poly(thioether) and polysiloxane, and thus improving the dielectric constant (ε’, up to 5.8).In addition, the PSiPGE exhibited low elastic modulus (Y, 0.04 MPa),and thus possessed high electromechanical sensitivity (β, ~145 MPa?1) which is much higher than that of most homogenous DEs.This work provides a new strategy to construct homogenous DEs with excellent electromechanical performances, leading to a greater application aspect in the actuated devices.

    Keywords:Poly(thioether)-b-polysiloxane-bpoly(thioether) triblock copolymer Homogenous Dielectric elastomer Phase separation Electromechanical performance

    Dielectric elastomers (DEs) [1], one of the soft electric-response materials [2], can possess the transformation of electricalmechanical energy under an applied electric field [3] with the advantages of large deformation, high energy density and electromechanical coupling efficiency, light weight and fast response speed[4,5].With these combined superiorities, the applications of DEs could range from artificial muscles [6], sensors [7] to optical lenses[8] and soft robotics [9].A disadvantage of DEs that limiting its commercial applications is the requirement of high actuated electric field (>100 kV/mm) [10,11] due to the low dielectric constant(ε’) and high dielectric loss (tanδ) [12].Thus, it is a great challenge to prepare DEs with highε’and large actuated strain at low electric field.

    To enable DEs excellent electromechanical performance at low electric field, a high electromechanical sensitivity (β) is needed[13], which is defined as the ratio ofε’ to Young’s modulus(Y) [14].Thus, decreasing Y [15] and increasingε’ [16] are the main methods to prepare DEs with high actuated behaviors.In the past few years, massive efforts have been made to improveε’ of DEs to obtain higher actuated strain [17–24].One of the most commonly used approach is to add conductive fillers such as graphene or graphene oxide (GO) [17,18], CNTs [19,20], metal nanoparticles [21], or high-ε’ceramics (TiO2[22] and BaTiO3[23])or conjugated conductive polymers (polyaniline [24] and polyhexylthiophene [12]) to the elastomer matrix.After the introduction of nanofillers or stiff conductive polymers, theε’ of elastomers could be enhanced significantly [4,25] but the Y and dielectric loss also increase, resulting in the decrease in flexibility of the elastomer matrix [26].Another widely way to achieve excellent electro-mechanical performance is to synthesize homogeneous DEs with low Y and highε’through molecular design or chemical graft modification [10,27–29].These studies usually focus on grafting polar groups (such as -COOH, -COO-, -OH) [30] on the mainchains of elastomers to enhance the dipole polarizations, achieving highε’and actuated strain [5].Besides, homogeneous DEs could also be obtained through the copolymerization of acrylate monomers[27] or between acrylate and polyurethane [10].Although theε’was not high (up to about 6), the as prepared DE exhibited high actuated strain (about 52% @21.57 kV/mm) due to the low Y and highβ.Up to now, there are few monomers that could be used to prepare copolymerized homogeneous DEs, and it is urgent to find out more suitable polar monomers to realize large-scale preparation of copolymerized DEs.

    Poly(thioether)s [31], a new type of sulfur-containing polymers, could be synthesizedviathe coupling reaction of carbonyl sulfide (COS) with epoxides and consequent decarboxylative ring-opening polymerization (ROP) of the cyclic thiocarbonates [32].They are very promising in the application of ion-exchange membranes, electrolytes and some optical materials [33].A series of epoxides with different side groups [34–36] could be used to synthesize poly(thioether)s with tunable structure polarities andTgin our previous study.The introduction of polar side groups is beneficial for the increase ofε’ of poly(thioether)s.Compared with commercial VHB based DEs [37],the poly(thioether)s we synthesized before were not crosslinked and exhibited high viscidity, limiting its application in the fields of DEs.If the poly(thioether)s could be chemically (adding extra crosslinker) or physically crosslinked (constructing micro-phase separation structure) [38], it will be an alternative material for the construction of DEs.

    Silicon alkoxides, the oligomer with strong base, are derived from the ring opening polymerization (ROP) of octamethyl cyclotetrasiloxane (D4) catalyzed by inorganic alkali such as KOH,NaOH, have been used to catalyze the anionic ROP of cyclic siloxane [39,40].More importantly, the silicon alkoxides own dual active sites and can be used to synthesize poly(thioether)-bpolysiloxane-b-poly(thioether) block copolymer.Due to the incompatibility of polysiloxane domains and poly(thioether) domains,the microphase separation structure can be constructed to achieve physical crosslinking [41].

    Herein, we reported a new approach to synthesize poly(thioether)-b-polysiloxane-b-poly(thioether) triblock copolymer from COS and epoxides catalyzed by silicon alkoxides,constructing homogeneous DE.The silicon alkoxides can catalyze the coupling reaction of COS and epoxides, and then decarboxylative of the cyclothiocarbonates can be achieved at high temperature to form poly(thioether) chain segments (hard segments, plastic phase); besides, the double active sites of silicon alkoxides can be double-terminated to form triblock copolymers with polysiloxane as soft segments (rubber phase).The poly(thioether)-b-polysiloxane-b-poly(thioether) block copolymer possesses microphase separation structure, and the morphology could be tuned by its composition.More importantly, the block copolymer possesses highε’(about 5.8), low Y (0.04 MPa)and exhibits highβ(up to 145 MPa?1) and actuated strain(13.4%@14.2 V/μm) due to the combination of dipole polarizations and interfacial polarizations.These results indicate that this new poly(thioether)-based homogenous DE could be very promising for developing electromechanical actuators with high performance.

    Fig.1.1H NMR spectra of (a) PSiPO and (b) PSiPGE from PO/PGE, COS and silicon alkoxides.

    The triblock copolymers were synthesizedviaa two-step procedure (Scheme 1a): The ROP reaction of D4, forming the silicon alkoxides; then the copolymerization between epoxides (such as PO and PGE) and COS was carried out catalyzed by the silicon alkoxides at about 120 °C for about 12 h.During this process, the coupling reaction of COS with epoxides firstly occurred, followed by decarboxylative ROP of the cyclic thiocarbonates with releasing of CO2and a little bit of COS [32], finally, the triblock copolymers were synthesized and the detailed mechanism for this process is shown in the Scheme S1 (Supporting information).

    Scheme 1.(a) Synthetic route to poly(thioether)-b-polysiloxane-b-poly(thioether) triblock copolymer from carbonyl sulfide (COS) and epoxides catalyzed by silicon alkoxides.(b) Schematic representation of the structure of this triblock copolymer.

    The copolymerization of epoxides and COS catalyzed by silicon alkoxides was evidenced by1H NMR, the results were shown in Fig.1.Taking PSiPO (Fig.1a) for example, peak a (0 ppm), peak b(2.57 ppm), peak c (2.85 ppm) and peak d (1.31 ppm) represent the proton of silicon methyl, methylene (-CH2-) and methine, respectively, indicating the successful synthesis of PSiPO.In Fig.1b,all the characteristic peaks could be found in the1H NMR spectra for the PSiPGE except for a new peak at about 5 ppm, indicating the successful synthesis of PSiPGE.The new peak at about 5 ppm corresponds to the proton of poly(monothiocarbonate) according to our previous study [34].As the peak corresponding to the poly(monothiocarbonate) is very weak, the main product synthesized from PGE, COS and silicon alkoxides is the poly(thioether)-bpolysiloxane-b-poly(thioether) copolymer and the schematic representation of the structure is shown in Scheme 1b.The structures of PSiPO and PSiPGE were also verified by13C NMR (Fig.S1 in Supporting information), suggesting the successful copolymerization of PO/PGE, COS and silicon alkoxides.

    The molecular weight of PSiPO and PSiPGE were characterized by GPC, and the results were shown in Fig.S2 (Supporting information).As the refractive index of polysiloxane is close to that of THF which is the mobile phase in GPC, the molecular weight of silicon alkoxides could not be detected by using GPC, so it was verified by MALDI-TOF MS, and the result was shown in Fig.S3 (Supporting information).It was found that the molecular weight of silicon alkoxides is about 2.48 kg/mol, the detailed Mn, Mw, PDI and the phase compositions are summarized in Table S2 (Supporting information).Compared with the triblock copolymer based DEs in the previous study [2,14], the PDI for the PSiPO or PSiPGE is much narrower, which agrees well with the poly(thioether)s catalyzed by organic bases in our previous report [42].Furthermore, the diffusion-ordered (DOSY) NMR spectrum exhibits a single diffusion coefficient (Fig.S2b), indicating that the triblock copolymer consists only one component.All these results evidenced that the poly(thioether)-b-polysiloxane-bpoly(thioether) copolymer could be synthesized under the catalysis of silicon alkoxides.

    Fig.2.(a, b) TEM images of PSiPGE with silicon alkoxides concentration of 0.1 g/mL.(c) The size distribution of the particle in (a, b).(d, e) TEM images of PSiPGE with silicon alkoxides concentration of 0.15 g/mL.(f) The size distribution of the particle in (d, e).

    The thermal analysis of PSiPO and PSiPGE were also carried out and shown in Fig.S4 (Supporting information).Two distinct transition temperature could be observed for both samples in DSC curves (Fig.S4a), which represent different domains.The transition temperature at about ?120 °C belongs to the glass transition of polysiloxane and the other is attributed to the poly(thioether)s.In the TGA curves (Fig.S4b), two different decomposition temperature could also be found for both samples.All these evidences indicated the successful synthesis of the triblock copolymer.

    Fig.2 and Fig.S5 (Supporting information) illustrate the nanomorphology of the triblock copolymer by TEM and AFM, as the sample of PSiPO could not be freezing sectioned due to its poor film-forming, only the sample of PSiPGE catalyzed by different concentration of silicon alkoxides were characterized.As expected,the microphase separation could be observed with clear phase boundaries in all the samples.The nanodomains of polysiloxane(dark domains) are well dispersed in the matrix of poly(thioether)(bright domains) due to the low content of polysiloxane segments.Unlike the worm-like form of polystyrene in the SBS [43],sphere-like form (Figs.2a, b, d and e) could be observed for the polysiloxane segments as the thermodynamic incompatibility with poly(thioether).For the PSiPGE sample catalyzed by 0.1 g/mL of silicon alkoxides (named as PSiPGE-0.1), the well-defined soft segments with the mean particle size of 400 nm (Fig.2c) could be observed; however, for the PSiPGE sample catalyzed by 0.15 g/mL of silicon alkoxides (named as PSiPGE-0.15), the mean particle size decreases to about 120 nm.The size decrease of soft segments illustrates that the content increase of hard segments [44,45].The AFM-phase images were also carried out to verify the structure of microphase separation (Fig.S5), which is consistent with the TEM results.

    Generally, the island-sea nano-morphology of triblock copolymer could enable it excellent mechanical properties [46].In this study, the soft segments (polysiloxane) are acted as dispersed phase whereas the hard segments (poly(thioether)) are acted as the continuous phase, resulting in the increase of the toughness and the decrease of mechanical strength.As shown in Fig.S6 (Supporting information), the PSiPGE exhibit highly stretchable performance with the elongation at break of over 1000%, whereas the ultimate tensile strength is about 0.06 MPa with the Young’s modulus of about 0.04 MPa.

    Fig.3.(a) The dielectric constant (ε’) and (b) the dielectric loss (tanδ) of the pure PPMTC and PSiPGE.(c) The mechanism of the improvement of the dielectric performances.

    Fig.3 illustrates the dielectric properties of pure poly(propylene-monothiocarbonate) (PPMTC) and PSiPGE as a function of frequency at room temperature, the detailed values are summarized in Table 1.It is found that theε’decreases as the frequency increases (Fig.3a) for both PPMTC and PSiPGE samples,indicating the frequency dependence ofε’.Compared with PPMTC,theε’of PSiPGE with significant micro-phase separation structure is much higher at the range of 10–106Hz.Taking theε’at 103Hz for example, theε’of PPMTC is about 2.2, whereas it is about 5.8 for PSiPGE which is more than 2.5 times that of PPMTC.Interestingly, the backbone of PPMTC is rich in thiocarbonate groups(dipoles), it still exhibits lowε’.The reason for this phenomenon is that the polar groups of PPMTC are located in the mainchains,the dipoles are difficult to move and difficult to be polarized under the electric fields [47].On the contrary, the dipoles (benzene ring)for the PSiPGE are located in the side groups, which are tended to be polarized much easier, leading to the increase ofε’(Fig.3c).

    Table 1 Physical and electromechanical properties of various homogenous DEs without pre-strain and the addition of plasticizer.

    In addition, the phase separation structure could also affect theε’(Fig.3c).For the homogenous DEs with continual phase structure, the interfacial polarizations are commonly not generated as there are no obvious phase interfaces; for the PSiPGE with separation structures, clearly phase interfaces could be observed (Fig.2),large amounts of free charges accumulate at the interfaces [48,49]between polysiloxane and poly(thioether) under the external electric field and finally, the interfacial polarizations occur, which is beneficial to the improvement ofε’.

    The dielectric loss tangents (tanδ)versusfrequency of the PPMTC and PSiPGE are shown in Fig.3b.The tanδof PPMTC is quilt low and almost exhibit frequency independent at the range of 10–105Hz, and it will decrease in 105Hz to 106Hz.For the PSiPGE sample, the tanδincreases sharply from 10 to 103Hz and then decreases at the range of 103Hz to 106Hz, and a significant relaxation peak could be observed at about 103Hz.The relaxation peak shifts from 105Hz (high frequency) for the PPMTC to about 103Hz (low frequency) for PSiPGE, illustrating that the polarization ability of PSiPGE is much stronger than that of PPMTC [16].Specif-ically, the tanδat 103Hz of the PSiPGE increases slightly from 0.06 to about 0.14 compared with PPMTC.

    Fig.4.(a) Area strain-applied electric field curve of PSiPGE without prestrain; actuating images of PSiPGE under the electric field of (b) 0 V/μm, (c) 10.4 V/μm and(d) 14.2 V/μm.

    The electromechanical sensitivities (β) for the PPMTC and PSiPGE were also measured and listed in Table 1.Compared with PPMTC, the simultaneous increase in theε’and decrease in the Y of PSiPGE result in a much higherβ.For example,βat 103Hz increases sharply from about 0.1 MPa?1for PPMTC to about 145 MPa?1for the PSiPGE.The large increase inβwill enable PSiPGE larger actuation strain the improvement at low electric fields, and further research will be carried out to focus on the actuated performance of the PSiPGE.

    The comparisons of physical and electromechanical properties of various homogenous DEs reported in the previous studies and PPMTC, PSiPGE in this study are listed in Table 1.Although theε’of PSiPGE is not the highest, theβis much higher than that of most previous reported homogenous DEs.It is the simultaneous increase in theε’and decrease in the Y that enabling PSiPGE excellent electromechanical performances.

    The actuating behavior of PSiPGE (Fig.4) was measured according to standards for dielectric elastomer transducers in previous reports [50,54].As the SWCNT electrodes could not be coated at the surface of pure PPMTC perfectly, only the sample of PSiPGE was tested for the electro-actuated behavior.Here, a small and constant pneumatic pressure was applied to guide the direction of deformation and the applied voltage was slowly increased until the electric breakdown (Figs.4b–d).As expected, the actuation area strain of PSiPGE significantly increases with increasing the applied voltage (Fig.4a), the maximum actuation area strain of the sample was about 13.4%(@14.2 V/μm) due to its low modulus and highβ,demonstrating excellent electro-mechanical properties.It will provide an alternative method to the fabrication of homogenous DEs with wider application in the fields of artificial muscles and wearable devices.

    In summary, we synthesized poly(thioether)-b-polysiloxane-bpoly(thioether) triblock copolymer based homogenous DEs with highly stretchable and excellent electromechanical performancesviathe ROP of PGE and COS catalyzed by silicon alkoxides.With the presence of dipoles on the side groups and the phase separation structure of this triblock copolymer, the dipole polarizations and interfacial polarizations of PSiPGE were enhanced simultaneously, leading to the improvement ofε’(~5.8).In addition, the PSiPGE exhibited low modulus (0.04 MPa) with highly stretchable property (above 1100%) and thus, it possessed highβ(up to 145 MPa?1) which is higher than most previous reported homogenous DEs.Most importantly, the maximum actuation area strain could reach about 13.4% (@14.2 V/μm), which will enable this poly(thioether)-b-polysiloxane-b-poly(thioether)based homogenous DEs wider application in the fields of various biomimetic actuators.

    It is believed that many new triblock copolymer-based DEs with excellent electromechanical performances could also be constructed through the ROP of some other epoxides and COS catalyzed by silicon alkoxides.The work provides a novel strategy to prepare DEs with well-defined structure and improved actuated behaviors.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    We would like to express our sincere thanks to National Natural Science Foundation of China (Nos.51973190 and 21774108) and Zhejiang Provincial Department of Science and Technology (No.2020R52006) for financial supports.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.11.091.

    一个人观看的视频www高清免费观看| 国产精品.久久久| 网址你懂的国产日韩在线| 亚洲一区二区三区欧美精品 | 午夜爱爱视频在线播放| 大又大粗又爽又黄少妇毛片口| 国产精品一区二区在线观看99| 2022亚洲国产成人精品| av一本久久久久| 亚洲va在线va天堂va国产| 欧美日韩亚洲高清精品| 99re6热这里在线精品视频| 1000部很黄的大片| av又黄又爽大尺度在线免费看| 亚洲,一卡二卡三卡| 国产中年淑女户外野战色| 99热这里只有是精品50| 国产有黄有色有爽视频| 搡女人真爽免费视频火全软件| 综合色丁香网| 国语对白做爰xxxⅹ性视频网站| 97热精品久久久久久| 免费播放大片免费观看视频在线观看| 久久久久久久久久成人| 亚洲精品中文字幕在线视频 | 国产亚洲91精品色在线| 国产亚洲精品久久久com| 久久久久久久国产电影| 日韩在线高清观看一区二区三区| 免费看a级黄色片| 一级a做视频免费观看| 亚洲欧美清纯卡通| 久久精品国产亚洲av天美| 国产探花极品一区二区| 亚洲成人中文字幕在线播放| 欧美激情在线99| 日本黄色片子视频| 亚洲欧美日韩东京热| 自拍偷自拍亚洲精品老妇| 激情五月婷婷亚洲| a级毛色黄片| 久久这里有精品视频免费| 大话2 男鬼变身卡| 国产黄a三级三级三级人| 国产亚洲精品久久久com| 涩涩av久久男人的天堂| 精品国产一区二区三区久久久樱花 | 国产男女超爽视频在线观看| 99久久中文字幕三级久久日本| 久久人人爽av亚洲精品天堂 | 小蜜桃在线观看免费完整版高清| 欧美成人精品欧美一级黄| 久久精品国产亚洲av天美| 大香蕉久久网| 久久99热这里只有精品18| 色播亚洲综合网| 亚洲av不卡在线观看| 欧美人与善性xxx| 亚洲欧美精品专区久久| 国产精品精品国产色婷婷| 久久久久国产精品人妻一区二区| 亚洲无线观看免费| 亚洲精品,欧美精品| 激情 狠狠 欧美| 少妇人妻精品综合一区二区| 尾随美女入室| 欧美亚洲 丝袜 人妻 在线| 欧美国产精品一级二级三级 | 91精品伊人久久大香线蕉| 晚上一个人看的免费电影| 国产探花极品一区二区| 久久99热这里只有精品18| 色播亚洲综合网| 欧美高清性xxxxhd video| 色5月婷婷丁香| 蜜臀久久99精品久久宅男| 精品久久国产蜜桃| 亚洲成人一二三区av| 亚洲,欧美,日韩| 亚洲精品久久久久久婷婷小说| 久久久久久久午夜电影| 免费看日本二区| 亚洲在久久综合| 91aial.com中文字幕在线观看| 成人漫画全彩无遮挡| 人妻系列 视频| 在线播放无遮挡| 国产黄色免费在线视频| 亚洲,一卡二卡三卡| 成年av动漫网址| 久久女婷五月综合色啪小说 | 99热这里只有是精品在线观看| 亚洲欧美成人精品一区二区| 日本色播在线视频| 一本久久精品| 国产色爽女视频免费观看| 国产精品久久久久久久电影| 爱豆传媒免费全集在线观看| 秋霞在线观看毛片| 少妇高潮的动态图| 99久久精品热视频| 国产精品一区www在线观看| 成人欧美大片| 亚洲自拍偷在线| 综合色丁香网| 精品人妻一区二区三区麻豆| 国产高潮美女av| 一级a做视频免费观看| 99热6这里只有精品| 亚洲精华国产精华液的使用体验| 国产一区二区在线观看日韩| 一本一本综合久久| 99re6热这里在线精品视频| 成人国产麻豆网| 久久午夜福利片| 最近最新中文字幕大全电影3| 高清午夜精品一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 十八禁网站网址无遮挡 | 亚洲av中文av极速乱| 深爱激情五月婷婷| 极品少妇高潮喷水抽搐| av网站免费在线观看视频| 欧美另类一区| 国产爽快片一区二区三区| 黄色日韩在线| 日韩av免费高清视频| 免费黄色在线免费观看| 在线精品无人区一区二区三 | 毛片一级片免费看久久久久| 真实男女啪啪啪动态图| 日韩一本色道免费dvd| 日韩强制内射视频| 内地一区二区视频在线| 欧美三级亚洲精品| 国国产精品蜜臀av免费| 如何舔出高潮| 天堂中文最新版在线下载 | 女的被弄到高潮叫床怎么办| 秋霞伦理黄片| 亚洲三级黄色毛片| 免费黄色在线免费观看| 国产大屁股一区二区在线视频| 白带黄色成豆腐渣| eeuss影院久久| 国产免费视频播放在线视频| 久久久久久久久久久免费av| 久久久久国产网址| 日本与韩国留学比较| 国产国拍精品亚洲av在线观看| 国内精品宾馆在线| 国产成人精品一,二区| 国产精品国产av在线观看| 国产老妇女一区| 久久精品国产自在天天线| 欧美成人a在线观看| 久久久久久久国产电影| 日韩国内少妇激情av| 久久精品人妻少妇| 成人国产av品久久久| 日本一本二区三区精品| 亚洲国产日韩一区二区| 国产永久视频网站| 99热网站在线观看| 一二三四中文在线观看免费高清| 美女高潮的动态| 国产成人午夜福利电影在线观看| 国产免费一级a男人的天堂| 亚洲欧洲国产日韩| 最近中文字幕高清免费大全6| 午夜激情福利司机影院| 日韩视频在线欧美| 在线天堂最新版资源| 搡女人真爽免费视频火全软件| 听说在线观看完整版免费高清| 精品一区二区三区视频在线| 国产精品麻豆人妻色哟哟久久| 五月开心婷婷网| 久久99精品国语久久久| 国产国拍精品亚洲av在线观看| 一级毛片我不卡| 如何舔出高潮| 欧美+日韩+精品| 亚洲精品久久久久久婷婷小说| 色哟哟·www| 毛片女人毛片| 极品少妇高潮喷水抽搐| 国产男女超爽视频在线观看| 看非洲黑人一级黄片| 欧美性猛交╳xxx乱大交人| 久久人人爽人人片av| 美女被艹到高潮喷水动态| 国产午夜福利久久久久久| 国产成人免费观看mmmm| 欧美成人a在线观看| 中文字幕免费在线视频6| 不卡视频在线观看欧美| 精品人妻视频免费看| 美女xxoo啪啪120秒动态图| 建设人人有责人人尽责人人享有的 | 国产欧美另类精品又又久久亚洲欧美| 国产免费视频播放在线视频| 中文字幕免费在线视频6| 亚洲,欧美,日韩| 蜜臀久久99精品久久宅男| 久久久国产一区二区| 亚洲天堂av无毛| 一边亲一边摸免费视频| av卡一久久| 亚洲久久久久久中文字幕| 小蜜桃在线观看免费完整版高清| .国产精品久久| 久久精品国产自在天天线| 久久久精品94久久精品| 国产精品熟女久久久久浪| 中文字幕亚洲精品专区| 丝瓜视频免费看黄片| 在线播放无遮挡| 精品熟女少妇av免费看| 亚洲精品久久久久久婷婷小说| 久久精品综合一区二区三区| 一级毛片我不卡| 别揉我奶头 嗯啊视频| 欧美日韩综合久久久久久| 欧美日韩精品成人综合77777| 国产高清有码在线观看视频| 老司机影院成人| 亚洲久久久久久中文字幕| 国产精品一区二区三区四区免费观看| 亚洲精品自拍成人| 国产亚洲91精品色在线| 老司机影院成人| videos熟女内射| 人人妻人人澡人人爽人人夜夜| 精品国产乱码久久久久久小说| 国产精品爽爽va在线观看网站| 五月天丁香电影| 亚洲三级黄色毛片| 寂寞人妻少妇视频99o| 亚洲内射少妇av| 啦啦啦啦在线视频资源| 在线天堂最新版资源| 嫩草影院新地址| 蜜桃亚洲精品一区二区三区| 2021天堂中文幕一二区在线观| 国产一区二区亚洲精品在线观看| 涩涩av久久男人的天堂| 国产午夜精品久久久久久一区二区三区| 亚洲av免费高清在线观看| 国产精品国产av在线观看| 成人国产av品久久久| 在线 av 中文字幕| 精品酒店卫生间| 亚洲国产精品专区欧美| 晚上一个人看的免费电影| 亚洲欧美精品自产自拍| 久久人人爽av亚洲精品天堂 | 在线a可以看的网站| 欧美少妇被猛烈插入视频| 色视频www国产| 午夜福利在线观看免费完整高清在| 纵有疾风起免费观看全集完整版| 国产视频首页在线观看| 亚洲人成网站高清观看| 26uuu在线亚洲综合色| 成人无遮挡网站| 人人妻人人爽人人添夜夜欢视频 | 国产成人精品一,二区| 国语对白做爰xxxⅹ性视频网站| 国产精品一区www在线观看| 亚洲av不卡在线观看| 高清视频免费观看一区二区| 身体一侧抽搐| 我的女老师完整版在线观看| 欧美日韩国产mv在线观看视频 | av在线蜜桃| 亚洲自拍偷在线| 免费播放大片免费观看视频在线观看| 偷拍熟女少妇极品色| 韩国高清视频一区二区三区| 国产伦理片在线播放av一区| 国产亚洲5aaaaa淫片| 18禁在线播放成人免费| 亚洲精品成人av观看孕妇| 99热这里只有精品一区| 波野结衣二区三区在线| 亚洲欧美成人综合另类久久久| 国产免费视频播放在线视频| 久久精品国产鲁丝片午夜精品| 美女脱内裤让男人舔精品视频| 亚洲美女视频黄频| 青青草视频在线视频观看| 免费观看的影片在线观看| 一级av片app| 欧美变态另类bdsm刘玥| 亚洲一区二区三区欧美精品 | 日本黄色片子视频| 97超碰精品成人国产| 国内精品美女久久久久久| 国产精品av视频在线免费观看| 成人特级av手机在线观看| 一级黄片播放器| 天堂中文最新版在线下载 | 国产欧美日韩一区二区三区在线 | 亚洲国产色片| 亚洲av不卡在线观看| 亚洲精华国产精华液的使用体验| 三级男女做爰猛烈吃奶摸视频| 日日啪夜夜撸| 久久久久久伊人网av| 一二三四中文在线观看免费高清| 一级av片app| www.av在线官网国产| 中国三级夫妇交换| av女优亚洲男人天堂| av黄色大香蕉| 精品国产露脸久久av麻豆| 亚洲精品色激情综合| 国模一区二区三区四区视频| 成年女人在线观看亚洲视频 | 美女xxoo啪啪120秒动态图| 日本一本二区三区精品| 久久久久精品久久久久真实原创| 成年av动漫网址| 午夜日本视频在线| 51国产日韩欧美| 在线a可以看的网站| 毛片一级片免费看久久久久| 国产精品人妻久久久久久| 夫妻午夜视频| 黄色欧美视频在线观看| 久久人人爽人人爽人人片va| 亚洲av在线观看美女高潮| 日韩精品有码人妻一区| 国产亚洲一区二区精品| 国产精品偷伦视频观看了| 毛片女人毛片| 两个人的视频大全免费| 女人十人毛片免费观看3o分钟| 80岁老熟妇乱子伦牲交| 麻豆国产97在线/欧美| 欧美高清性xxxxhd video| 哪个播放器可以免费观看大片| 黄色视频在线播放观看不卡| 99精国产麻豆久久婷婷| 美女cb高潮喷水在线观看| 天天一区二区日本电影三级| 日本爱情动作片www.在线观看| 91精品一卡2卡3卡4卡| 日韩三级伦理在线观看| 涩涩av久久男人的天堂| 搡女人真爽免费视频火全软件| 亚洲人成网站在线播| 免费高清在线观看视频在线观看| 日韩一区二区三区影片| 日韩一本色道免费dvd| 最近2019中文字幕mv第一页| 内射极品少妇av片p| 深夜a级毛片| 听说在线观看完整版免费高清| 国产一级毛片在线| 网址你懂的国产日韩在线| 久久99热这里只有精品18| 国产在视频线精品| 人妻 亚洲 视频| 日韩av不卡免费在线播放| 大片电影免费在线观看免费| 女人十人毛片免费观看3o分钟| 亚洲久久久久久中文字幕| 永久免费av网站大全| 久久午夜福利片| 亚洲成人av在线免费| 校园人妻丝袜中文字幕| 亚洲欧美日韩东京热| 国国产精品蜜臀av免费| 久久亚洲国产成人精品v| 国产精品久久久久久精品电影| 久久久久久久大尺度免费视频| 日韩中字成人| 干丝袜人妻中文字幕| 亚洲熟女精品中文字幕| 欧美丝袜亚洲另类| 我的老师免费观看完整版| 亚洲婷婷狠狠爱综合网| 日本免费在线观看一区| 18禁在线无遮挡免费观看视频| 波野结衣二区三区在线| 一区二区三区四区激情视频| 人人妻人人澡人人爽人人夜夜| 欧美国产精品一级二级三级 | 亚洲国产日韩一区二区| 九色成人免费人妻av| 成人亚洲精品av一区二区| 日韩av不卡免费在线播放| 天天躁日日操中文字幕| 国产 一区 欧美 日韩| 日本-黄色视频高清免费观看| 丰满少妇做爰视频| 国产综合懂色| 色吧在线观看| 国产色爽女视频免费观看| 精品午夜福利在线看| 国产乱人偷精品视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人亚洲精品av一区二区| 免费播放大片免费观看视频在线观看| 18禁动态无遮挡网站| 国产伦精品一区二区三区视频9| 免费看av在线观看网站| 3wmmmm亚洲av在线观看| 新久久久久国产一级毛片| 日本wwww免费看| 伊人久久国产一区二区| 国产精品久久久久久精品电影| 久久久a久久爽久久v久久| 男女下面进入的视频免费午夜| 亚洲欧美日韩另类电影网站 | 日韩一区二区视频免费看| 亚洲欧洲日产国产| 亚洲精品中文字幕在线视频 | 国产伦理片在线播放av一区| 99热网站在线观看| 别揉我奶头 嗯啊视频| 少妇人妻 视频| 国产 一区 欧美 日韩| 免费播放大片免费观看视频在线观看| 在线观看人妻少妇| 亚洲怡红院男人天堂| 丝袜喷水一区| 精品久久久久久电影网| 国产一区有黄有色的免费视频| 黄片wwwwww| 蜜桃亚洲精品一区二区三区| 欧美亚洲 丝袜 人妻 在线| 欧美xxxx黑人xx丫x性爽| 精品99又大又爽又粗少妇毛片| 国产高潮美女av| 人妻少妇偷人精品九色| 欧美日韩综合久久久久久| 日本欧美国产在线视频| 亚洲第一区二区三区不卡| 亚洲成人久久爱视频| av网站免费在线观看视频| 三级国产精品片| 欧美精品人与动牲交sv欧美| 国产精品一二三区在线看| 1000部很黄的大片| 亚洲欧美中文字幕日韩二区| 免费看a级黄色片| 男插女下体视频免费在线播放| 成人亚洲欧美一区二区av| 性色avwww在线观看| av福利片在线观看| 美女cb高潮喷水在线观看| 国产成人精品福利久久| 久久午夜福利片| 成人亚洲欧美一区二区av| 少妇猛男粗大的猛烈进出视频 | av国产久精品久网站免费入址| 网址你懂的国产日韩在线| 国产亚洲精品久久久com| 成年女人看的毛片在线观看| 日韩一区二区三区影片| 亚洲成人精品中文字幕电影| 高清毛片免费看| 3wmmmm亚洲av在线观看| 久久久久久久亚洲中文字幕| 久久精品综合一区二区三区| 亚洲国产精品999| 国产av国产精品国产| www.av在线官网国产| 亚洲精品国产av成人精品| 美女脱内裤让男人舔精品视频| 简卡轻食公司| 精品人妻视频免费看| 中文字幕亚洲精品专区| av又黄又爽大尺度在线免费看| 午夜精品一区二区三区免费看| 中国国产av一级| 国产在线男女| 久久ye,这里只有精品| 国产毛片a区久久久久| 一个人观看的视频www高清免费观看| 国产午夜福利久久久久久| 国产精品嫩草影院av在线观看| 国产精品国产三级专区第一集| 香蕉精品网在线| 久久久久精品久久久久真实原创| 午夜精品一区二区三区免费看| 2018国产大陆天天弄谢| 不卡视频在线观看欧美| 久久韩国三级中文字幕| av网站免费在线观看视频| 超碰97精品在线观看| 在线观看一区二区三区| 一级毛片aaaaaa免费看小| 精品久久久久久久久av| 亚洲最大成人中文| 欧美少妇被猛烈插入视频| www.av在线官网国产| 久久久久九九精品影院| 国产乱人视频| 国产爽快片一区二区三区| 少妇人妻久久综合中文| 看黄色毛片网站| 欧美激情在线99| 精品国产一区二区三区久久久樱花 | 成人黄色视频免费在线看| 久久精品国产鲁丝片午夜精品| 2018国产大陆天天弄谢| 国产伦理片在线播放av一区| 精品久久久精品久久久| 午夜福利在线观看免费完整高清在| 青春草国产在线视频| 亚洲美女视频黄频| 天堂网av新在线| 深爱激情五月婷婷| 久久鲁丝午夜福利片| 男人和女人高潮做爰伦理| 街头女战士在线观看网站| 在线亚洲精品国产二区图片欧美 | 新久久久久国产一级毛片| 国国产精品蜜臀av免费| 少妇高潮的动态图| 一本久久精品| 中文欧美无线码| 下体分泌物呈黄色| 在线观看一区二区三区| 欧美潮喷喷水| 综合色丁香网| 身体一侧抽搐| 91精品国产九色| 久久久久久伊人网av| kizo精华| 欧美zozozo另类| av网站免费在线观看视频| 久久久久久久国产电影| 丰满人妻一区二区三区视频av| 亚洲国产精品999| 嫩草影院精品99| 人妻制服诱惑在线中文字幕| 国产精品久久久久久精品电影小说 | 大陆偷拍与自拍| 少妇人妻精品综合一区二区| 午夜日本视频在线| 涩涩av久久男人的天堂| 超碰av人人做人人爽久久| 亚洲最大成人中文| 国产人妻一区二区三区在| 五月伊人婷婷丁香| 国产精品麻豆人妻色哟哟久久| 观看美女的网站| 黄色配什么色好看| 亚洲欧美一区二区三区国产| 精品一区二区免费观看| 国产淫语在线视频| 日日摸夜夜添夜夜爱| 在线观看av片永久免费下载| 国产精品久久久久久精品古装| 亚洲av免费在线观看| 另类亚洲欧美激情| 精品久久久精品久久久| 亚洲av日韩在线播放| 国产欧美日韩一区二区三区在线 | 一级爰片在线观看| 亚洲欧洲日产国产| 成人亚洲欧美一区二区av| 五月天丁香电影| 男女下面进入的视频免费午夜| 成人欧美大片| 国精品久久久久久国模美| 国产高潮美女av| 美女高潮的动态| 中文精品一卡2卡3卡4更新| 色综合色国产| 99久久精品国产国产毛片| 精华霜和精华液先用哪个| 99久久精品一区二区三区| 黄色怎么调成土黄色| 亚洲av欧美aⅴ国产| 久久精品国产亚洲网站| 国产成年人精品一区二区| www.av在线官网国产| 国产亚洲精品久久久com| 3wmmmm亚洲av在线观看| 另类亚洲欧美激情| 国产成人免费无遮挡视频| 亚洲精品日韩在线中文字幕| 蜜桃亚洲精品一区二区三区| 男女边吃奶边做爰视频| 波野结衣二区三区在线| 在线免费观看不下载黄p国产| 亚洲欧洲国产日韩| 日日摸夜夜添夜夜添av毛片| 国产精品熟女久久久久浪| 欧美精品人与动牲交sv欧美| 香蕉精品网在线| a级毛片免费高清观看在线播放| 精品少妇黑人巨大在线播放| 精品一区二区三区视频在线| 少妇人妻久久综合中文| 国产在线男女| 国产亚洲av嫩草精品影院| av免费观看日本| 免费黄频网站在线观看国产| 久久6这里有精品| 国产精品一区二区性色av| 九九爱精品视频在线观看| 美女xxoo啪啪120秒动态图| 最近中文字幕2019免费版| 91精品国产九色| 亚洲精品国产色婷婷电影| 网址你懂的国产日韩在线| 啦啦啦啦在线视频资源| 国产精品三级大全|