• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Poly(thioether)-b-polysiloxane-b-poly(thioether) triblock copolymer towards homogeneous dielectric elastomer with high dielectric performance

    2022-09-16 05:25:04ZhnbinFengJifngGuoSutingLiuGuofeiFengXingHongZhng
    Chinese Chemical Letters 2022年8期

    Zhnbin Feng, Jifng Guo, Suting Liu, Guofei Feng, Xing-Hong Zhng,?

    a MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

    b Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China

    c Department of Chemical Engineering, Weifang Vocational College, Weifang 262737, China

    ABSTRACT Dielectric elastomers (DEs) have drawn much attention owing to their application prospects in artificial muscles and soft robotics, it is still a big challenge to prepare DEs with high electromechanical performances.This work reports a highly stretchable poly(thioether)-b-polysiloxane-b-poly(thioether) triblock copolymer based homogenous DEs with high electromechanical properties.The triblock copolymer(PSiPGE) was synthesized through the ring-opening polymerization (ROP) of phenyl glycidyl ether (PGE)and carbonyl sulfide (COS) catalyzed by silicon alkoxides.The dipoles (benzene rings) on the side groups of PSiPGE improved the dipole polarizations and the phase separation structure of this triblock copolymer enhanced the interfacial polarizations between poly(thioether) and polysiloxane, and thus improving the dielectric constant (ε’, up to 5.8).In addition, the PSiPGE exhibited low elastic modulus (Y, 0.04 MPa),and thus possessed high electromechanical sensitivity (β, ~145 MPa?1) which is much higher than that of most homogenous DEs.This work provides a new strategy to construct homogenous DEs with excellent electromechanical performances, leading to a greater application aspect in the actuated devices.

    Keywords:Poly(thioether)-b-polysiloxane-bpoly(thioether) triblock copolymer Homogenous Dielectric elastomer Phase separation Electromechanical performance

    Dielectric elastomers (DEs) [1], one of the soft electric-response materials [2], can possess the transformation of electricalmechanical energy under an applied electric field [3] with the advantages of large deformation, high energy density and electromechanical coupling efficiency, light weight and fast response speed[4,5].With these combined superiorities, the applications of DEs could range from artificial muscles [6], sensors [7] to optical lenses[8] and soft robotics [9].A disadvantage of DEs that limiting its commercial applications is the requirement of high actuated electric field (>100 kV/mm) [10,11] due to the low dielectric constant(ε’) and high dielectric loss (tanδ) [12].Thus, it is a great challenge to prepare DEs with highε’and large actuated strain at low electric field.

    To enable DEs excellent electromechanical performance at low electric field, a high electromechanical sensitivity (β) is needed[13], which is defined as the ratio ofε’ to Young’s modulus(Y) [14].Thus, decreasing Y [15] and increasingε’ [16] are the main methods to prepare DEs with high actuated behaviors.In the past few years, massive efforts have been made to improveε’ of DEs to obtain higher actuated strain [17–24].One of the most commonly used approach is to add conductive fillers such as graphene or graphene oxide (GO) [17,18], CNTs [19,20], metal nanoparticles [21], or high-ε’ceramics (TiO2[22] and BaTiO3[23])or conjugated conductive polymers (polyaniline [24] and polyhexylthiophene [12]) to the elastomer matrix.After the introduction of nanofillers or stiff conductive polymers, theε’ of elastomers could be enhanced significantly [4,25] but the Y and dielectric loss also increase, resulting in the decrease in flexibility of the elastomer matrix [26].Another widely way to achieve excellent electro-mechanical performance is to synthesize homogeneous DEs with low Y and highε’through molecular design or chemical graft modification [10,27–29].These studies usually focus on grafting polar groups (such as -COOH, -COO-, -OH) [30] on the mainchains of elastomers to enhance the dipole polarizations, achieving highε’and actuated strain [5].Besides, homogeneous DEs could also be obtained through the copolymerization of acrylate monomers[27] or between acrylate and polyurethane [10].Although theε’was not high (up to about 6), the as prepared DE exhibited high actuated strain (about 52% @21.57 kV/mm) due to the low Y and highβ.Up to now, there are few monomers that could be used to prepare copolymerized homogeneous DEs, and it is urgent to find out more suitable polar monomers to realize large-scale preparation of copolymerized DEs.

    Poly(thioether)s [31], a new type of sulfur-containing polymers, could be synthesizedviathe coupling reaction of carbonyl sulfide (COS) with epoxides and consequent decarboxylative ring-opening polymerization (ROP) of the cyclic thiocarbonates [32].They are very promising in the application of ion-exchange membranes, electrolytes and some optical materials [33].A series of epoxides with different side groups [34–36] could be used to synthesize poly(thioether)s with tunable structure polarities andTgin our previous study.The introduction of polar side groups is beneficial for the increase ofε’ of poly(thioether)s.Compared with commercial VHB based DEs [37],the poly(thioether)s we synthesized before were not crosslinked and exhibited high viscidity, limiting its application in the fields of DEs.If the poly(thioether)s could be chemically (adding extra crosslinker) or physically crosslinked (constructing micro-phase separation structure) [38], it will be an alternative material for the construction of DEs.

    Silicon alkoxides, the oligomer with strong base, are derived from the ring opening polymerization (ROP) of octamethyl cyclotetrasiloxane (D4) catalyzed by inorganic alkali such as KOH,NaOH, have been used to catalyze the anionic ROP of cyclic siloxane [39,40].More importantly, the silicon alkoxides own dual active sites and can be used to synthesize poly(thioether)-bpolysiloxane-b-poly(thioether) block copolymer.Due to the incompatibility of polysiloxane domains and poly(thioether) domains,the microphase separation structure can be constructed to achieve physical crosslinking [41].

    Herein, we reported a new approach to synthesize poly(thioether)-b-polysiloxane-b-poly(thioether) triblock copolymer from COS and epoxides catalyzed by silicon alkoxides,constructing homogeneous DE.The silicon alkoxides can catalyze the coupling reaction of COS and epoxides, and then decarboxylative of the cyclothiocarbonates can be achieved at high temperature to form poly(thioether) chain segments (hard segments, plastic phase); besides, the double active sites of silicon alkoxides can be double-terminated to form triblock copolymers with polysiloxane as soft segments (rubber phase).The poly(thioether)-b-polysiloxane-b-poly(thioether) block copolymer possesses microphase separation structure, and the morphology could be tuned by its composition.More importantly, the block copolymer possesses highε’(about 5.8), low Y (0.04 MPa)and exhibits highβ(up to 145 MPa?1) and actuated strain(13.4%@14.2 V/μm) due to the combination of dipole polarizations and interfacial polarizations.These results indicate that this new poly(thioether)-based homogenous DE could be very promising for developing electromechanical actuators with high performance.

    Fig.1.1H NMR spectra of (a) PSiPO and (b) PSiPGE from PO/PGE, COS and silicon alkoxides.

    The triblock copolymers were synthesizedviaa two-step procedure (Scheme 1a): The ROP reaction of D4, forming the silicon alkoxides; then the copolymerization between epoxides (such as PO and PGE) and COS was carried out catalyzed by the silicon alkoxides at about 120 °C for about 12 h.During this process, the coupling reaction of COS with epoxides firstly occurred, followed by decarboxylative ROP of the cyclic thiocarbonates with releasing of CO2and a little bit of COS [32], finally, the triblock copolymers were synthesized and the detailed mechanism for this process is shown in the Scheme S1 (Supporting information).

    Scheme 1.(a) Synthetic route to poly(thioether)-b-polysiloxane-b-poly(thioether) triblock copolymer from carbonyl sulfide (COS) and epoxides catalyzed by silicon alkoxides.(b) Schematic representation of the structure of this triblock copolymer.

    The copolymerization of epoxides and COS catalyzed by silicon alkoxides was evidenced by1H NMR, the results were shown in Fig.1.Taking PSiPO (Fig.1a) for example, peak a (0 ppm), peak b(2.57 ppm), peak c (2.85 ppm) and peak d (1.31 ppm) represent the proton of silicon methyl, methylene (-CH2-) and methine, respectively, indicating the successful synthesis of PSiPO.In Fig.1b,all the characteristic peaks could be found in the1H NMR spectra for the PSiPGE except for a new peak at about 5 ppm, indicating the successful synthesis of PSiPGE.The new peak at about 5 ppm corresponds to the proton of poly(monothiocarbonate) according to our previous study [34].As the peak corresponding to the poly(monothiocarbonate) is very weak, the main product synthesized from PGE, COS and silicon alkoxides is the poly(thioether)-bpolysiloxane-b-poly(thioether) copolymer and the schematic representation of the structure is shown in Scheme 1b.The structures of PSiPO and PSiPGE were also verified by13C NMR (Fig.S1 in Supporting information), suggesting the successful copolymerization of PO/PGE, COS and silicon alkoxides.

    The molecular weight of PSiPO and PSiPGE were characterized by GPC, and the results were shown in Fig.S2 (Supporting information).As the refractive index of polysiloxane is close to that of THF which is the mobile phase in GPC, the molecular weight of silicon alkoxides could not be detected by using GPC, so it was verified by MALDI-TOF MS, and the result was shown in Fig.S3 (Supporting information).It was found that the molecular weight of silicon alkoxides is about 2.48 kg/mol, the detailed Mn, Mw, PDI and the phase compositions are summarized in Table S2 (Supporting information).Compared with the triblock copolymer based DEs in the previous study [2,14], the PDI for the PSiPO or PSiPGE is much narrower, which agrees well with the poly(thioether)s catalyzed by organic bases in our previous report [42].Furthermore, the diffusion-ordered (DOSY) NMR spectrum exhibits a single diffusion coefficient (Fig.S2b), indicating that the triblock copolymer consists only one component.All these results evidenced that the poly(thioether)-b-polysiloxane-bpoly(thioether) copolymer could be synthesized under the catalysis of silicon alkoxides.

    Fig.2.(a, b) TEM images of PSiPGE with silicon alkoxides concentration of 0.1 g/mL.(c) The size distribution of the particle in (a, b).(d, e) TEM images of PSiPGE with silicon alkoxides concentration of 0.15 g/mL.(f) The size distribution of the particle in (d, e).

    The thermal analysis of PSiPO and PSiPGE were also carried out and shown in Fig.S4 (Supporting information).Two distinct transition temperature could be observed for both samples in DSC curves (Fig.S4a), which represent different domains.The transition temperature at about ?120 °C belongs to the glass transition of polysiloxane and the other is attributed to the poly(thioether)s.In the TGA curves (Fig.S4b), two different decomposition temperature could also be found for both samples.All these evidences indicated the successful synthesis of the triblock copolymer.

    Fig.2 and Fig.S5 (Supporting information) illustrate the nanomorphology of the triblock copolymer by TEM and AFM, as the sample of PSiPO could not be freezing sectioned due to its poor film-forming, only the sample of PSiPGE catalyzed by different concentration of silicon alkoxides were characterized.As expected,the microphase separation could be observed with clear phase boundaries in all the samples.The nanodomains of polysiloxane(dark domains) are well dispersed in the matrix of poly(thioether)(bright domains) due to the low content of polysiloxane segments.Unlike the worm-like form of polystyrene in the SBS [43],sphere-like form (Figs.2a, b, d and e) could be observed for the polysiloxane segments as the thermodynamic incompatibility with poly(thioether).For the PSiPGE sample catalyzed by 0.1 g/mL of silicon alkoxides (named as PSiPGE-0.1), the well-defined soft segments with the mean particle size of 400 nm (Fig.2c) could be observed; however, for the PSiPGE sample catalyzed by 0.15 g/mL of silicon alkoxides (named as PSiPGE-0.15), the mean particle size decreases to about 120 nm.The size decrease of soft segments illustrates that the content increase of hard segments [44,45].The AFM-phase images were also carried out to verify the structure of microphase separation (Fig.S5), which is consistent with the TEM results.

    Generally, the island-sea nano-morphology of triblock copolymer could enable it excellent mechanical properties [46].In this study, the soft segments (polysiloxane) are acted as dispersed phase whereas the hard segments (poly(thioether)) are acted as the continuous phase, resulting in the increase of the toughness and the decrease of mechanical strength.As shown in Fig.S6 (Supporting information), the PSiPGE exhibit highly stretchable performance with the elongation at break of over 1000%, whereas the ultimate tensile strength is about 0.06 MPa with the Young’s modulus of about 0.04 MPa.

    Fig.3.(a) The dielectric constant (ε’) and (b) the dielectric loss (tanδ) of the pure PPMTC and PSiPGE.(c) The mechanism of the improvement of the dielectric performances.

    Fig.3 illustrates the dielectric properties of pure poly(propylene-monothiocarbonate) (PPMTC) and PSiPGE as a function of frequency at room temperature, the detailed values are summarized in Table 1.It is found that theε’decreases as the frequency increases (Fig.3a) for both PPMTC and PSiPGE samples,indicating the frequency dependence ofε’.Compared with PPMTC,theε’of PSiPGE with significant micro-phase separation structure is much higher at the range of 10–106Hz.Taking theε’at 103Hz for example, theε’of PPMTC is about 2.2, whereas it is about 5.8 for PSiPGE which is more than 2.5 times that of PPMTC.Interestingly, the backbone of PPMTC is rich in thiocarbonate groups(dipoles), it still exhibits lowε’.The reason for this phenomenon is that the polar groups of PPMTC are located in the mainchains,the dipoles are difficult to move and difficult to be polarized under the electric fields [47].On the contrary, the dipoles (benzene ring)for the PSiPGE are located in the side groups, which are tended to be polarized much easier, leading to the increase ofε’(Fig.3c).

    Table 1 Physical and electromechanical properties of various homogenous DEs without pre-strain and the addition of plasticizer.

    In addition, the phase separation structure could also affect theε’(Fig.3c).For the homogenous DEs with continual phase structure, the interfacial polarizations are commonly not generated as there are no obvious phase interfaces; for the PSiPGE with separation structures, clearly phase interfaces could be observed (Fig.2),large amounts of free charges accumulate at the interfaces [48,49]between polysiloxane and poly(thioether) under the external electric field and finally, the interfacial polarizations occur, which is beneficial to the improvement ofε’.

    The dielectric loss tangents (tanδ)versusfrequency of the PPMTC and PSiPGE are shown in Fig.3b.The tanδof PPMTC is quilt low and almost exhibit frequency independent at the range of 10–105Hz, and it will decrease in 105Hz to 106Hz.For the PSiPGE sample, the tanδincreases sharply from 10 to 103Hz and then decreases at the range of 103Hz to 106Hz, and a significant relaxation peak could be observed at about 103Hz.The relaxation peak shifts from 105Hz (high frequency) for the PPMTC to about 103Hz (low frequency) for PSiPGE, illustrating that the polarization ability of PSiPGE is much stronger than that of PPMTC [16].Specif-ically, the tanδat 103Hz of the PSiPGE increases slightly from 0.06 to about 0.14 compared with PPMTC.

    Fig.4.(a) Area strain-applied electric field curve of PSiPGE without prestrain; actuating images of PSiPGE under the electric field of (b) 0 V/μm, (c) 10.4 V/μm and(d) 14.2 V/μm.

    The electromechanical sensitivities (β) for the PPMTC and PSiPGE were also measured and listed in Table 1.Compared with PPMTC, the simultaneous increase in theε’and decrease in the Y of PSiPGE result in a much higherβ.For example,βat 103Hz increases sharply from about 0.1 MPa?1for PPMTC to about 145 MPa?1for the PSiPGE.The large increase inβwill enable PSiPGE larger actuation strain the improvement at low electric fields, and further research will be carried out to focus on the actuated performance of the PSiPGE.

    The comparisons of physical and electromechanical properties of various homogenous DEs reported in the previous studies and PPMTC, PSiPGE in this study are listed in Table 1.Although theε’of PSiPGE is not the highest, theβis much higher than that of most previous reported homogenous DEs.It is the simultaneous increase in theε’and decrease in the Y that enabling PSiPGE excellent electromechanical performances.

    The actuating behavior of PSiPGE (Fig.4) was measured according to standards for dielectric elastomer transducers in previous reports [50,54].As the SWCNT electrodes could not be coated at the surface of pure PPMTC perfectly, only the sample of PSiPGE was tested for the electro-actuated behavior.Here, a small and constant pneumatic pressure was applied to guide the direction of deformation and the applied voltage was slowly increased until the electric breakdown (Figs.4b–d).As expected, the actuation area strain of PSiPGE significantly increases with increasing the applied voltage (Fig.4a), the maximum actuation area strain of the sample was about 13.4%(@14.2 V/μm) due to its low modulus and highβ,demonstrating excellent electro-mechanical properties.It will provide an alternative method to the fabrication of homogenous DEs with wider application in the fields of artificial muscles and wearable devices.

    In summary, we synthesized poly(thioether)-b-polysiloxane-bpoly(thioether) triblock copolymer based homogenous DEs with highly stretchable and excellent electromechanical performancesviathe ROP of PGE and COS catalyzed by silicon alkoxides.With the presence of dipoles on the side groups and the phase separation structure of this triblock copolymer, the dipole polarizations and interfacial polarizations of PSiPGE were enhanced simultaneously, leading to the improvement ofε’(~5.8).In addition, the PSiPGE exhibited low modulus (0.04 MPa) with highly stretchable property (above 1100%) and thus, it possessed highβ(up to 145 MPa?1) which is higher than most previous reported homogenous DEs.Most importantly, the maximum actuation area strain could reach about 13.4% (@14.2 V/μm), which will enable this poly(thioether)-b-polysiloxane-b-poly(thioether)based homogenous DEs wider application in the fields of various biomimetic actuators.

    It is believed that many new triblock copolymer-based DEs with excellent electromechanical performances could also be constructed through the ROP of some other epoxides and COS catalyzed by silicon alkoxides.The work provides a novel strategy to prepare DEs with well-defined structure and improved actuated behaviors.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    We would like to express our sincere thanks to National Natural Science Foundation of China (Nos.51973190 and 21774108) and Zhejiang Provincial Department of Science and Technology (No.2020R52006) for financial supports.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.11.091.

    日本一二三区视频观看| 亚洲国产欧美在线一区| 精品一区在线观看国产| 久久久久九九精品影院| 又爽又黄a免费视频| 黄色欧美视频在线观看| 免费观看在线日韩| 亚州av有码| 嫩草影院入口| 久久精品久久久久久久性| 亚洲在线观看片| 人妻制服诱惑在线中文字幕| 成人黄色视频免费在线看| 久久久久久久午夜电影| 丝袜脚勾引网站| 国产大屁股一区二区在线视频| 熟女av电影| 中文天堂在线官网| 一级a做视频免费观看| 性色avwww在线观看| 成人鲁丝片一二三区免费| 国产伦精品一区二区三区四那| 一级毛片黄色毛片免费观看视频| 亚洲一级一片aⅴ在线观看| 国产免费视频播放在线视频| 亚洲精品456在线播放app| 国产午夜精品一二区理论片| 国内少妇人妻偷人精品xxx网站| 日韩大片免费观看网站| 亚洲av免费高清在线观看| 午夜精品国产一区二区电影 | h日本视频在线播放| 久久久午夜欧美精品| 国产国拍精品亚洲av在线观看| 欧美国产精品一级二级三级 | 国产精品一区二区在线观看99| 黄色一级大片看看| 国内精品美女久久久久久| 边亲边吃奶的免费视频| 亚洲精品日韩av片在线观看| 国产成人91sexporn| 亚洲综合色惰| 我的女老师完整版在线观看| 亚洲国产av新网站| 国产亚洲午夜精品一区二区久久 | 成人综合一区亚洲| 高清视频免费观看一区二区| 亚洲成人av在线免费| 插逼视频在线观看| 国产黄色免费在线视频| 亚洲怡红院男人天堂| 色吧在线观看| 99九九线精品视频在线观看视频| 香蕉精品网在线| 国产伦在线观看视频一区| 亚洲精品日韩在线中文字幕| 国产精品女同一区二区软件| 亚洲成人一二三区av| 亚洲无线观看免费| 亚洲成人中文字幕在线播放| 嫩草影院入口| 亚洲天堂国产精品一区在线| 永久网站在线| 一级片'在线观看视频| 在现免费观看毛片| 久久久精品免费免费高清| 边亲边吃奶的免费视频| 搡老乐熟女国产| 97精品久久久久久久久久精品| 一级毛片aaaaaa免费看小| 我的老师免费观看完整版| 亚洲精品色激情综合| 美女cb高潮喷水在线观看| 乱码一卡2卡4卡精品| 久久久久久久久久人人人人人人| 各种免费的搞黄视频| 最近手机中文字幕大全| 成人欧美大片| 亚洲精品视频女| 97在线视频观看| 狂野欧美激情性bbbbbb| 成人亚洲精品av一区二区| 久久久久性生活片| 一级毛片 在线播放| av免费在线看不卡| 新久久久久国产一级毛片| 亚洲欧美中文字幕日韩二区| 成人鲁丝片一二三区免费| 国产亚洲av片在线观看秒播厂| 日韩欧美一区视频在线观看 | 自拍欧美九色日韩亚洲蝌蚪91 | 成人毛片60女人毛片免费| 黄片wwwwww| 大码成人一级视频| 黄色怎么调成土黄色| 99久久精品国产国产毛片| 成人美女网站在线观看视频| 午夜福利网站1000一区二区三区| 国产精品女同一区二区软件| 国产精品伦人一区二区| 国产黄片美女视频| 一级片'在线观看视频| 国产美女午夜福利| 中国美白少妇内射xxxbb| 国产 一区精品| 国产黄片视频在线免费观看| 老师上课跳d突然被开到最大视频| 欧美日韩一区二区视频在线观看视频在线 | av在线观看视频网站免费| 听说在线观看完整版免费高清| 久久99热6这里只有精品| 亚洲最大成人中文| 免费电影在线观看免费观看| 国产精品99久久99久久久不卡 | 毛片一级片免费看久久久久| 国产精品人妻久久久久久| 国内精品美女久久久久久| 夫妻午夜视频| a级毛色黄片| 在线精品无人区一区二区三 | 91精品伊人久久大香线蕉| 日日啪夜夜爽| 国产精品一区二区性色av| 97在线视频观看| 日本黄色片子视频| .国产精品久久| 亚州av有码| 亚洲成人久久爱视频| 亚洲欧美成人精品一区二区| 久久99热这里只有精品18| 婷婷色综合www| 大又大粗又爽又黄少妇毛片口| 日韩一本色道免费dvd| 嫩草影院精品99| 国产精品蜜桃在线观看| 成人亚洲欧美一区二区av| 国产亚洲91精品色在线| 成人鲁丝片一二三区免费| 女人久久www免费人成看片| av免费在线看不卡| 麻豆精品久久久久久蜜桃| 十八禁网站网址无遮挡 | 国产亚洲5aaaaa淫片| 日本av手机在线免费观看| 欧美高清性xxxxhd video| 日本免费在线观看一区| 18禁在线播放成人免费| av在线app专区| 亚洲欧美一区二区三区黑人 | 亚州av有码| 久久精品夜色国产| av福利片在线观看| 亚洲最大成人av| 久热久热在线精品观看| 欧美xxⅹ黑人| 欧美性猛交╳xxx乱大交人| 久久99热6这里只有精品| 国产成人精品福利久久| 精品久久国产蜜桃| 亚洲精品乱码久久久v下载方式| 天堂中文最新版在线下载 | 国产精品麻豆人妻色哟哟久久| 中文天堂在线官网| 嫩草影院入口| 成人午夜精彩视频在线观看| 国产黄频视频在线观看| 最近手机中文字幕大全| 国产探花极品一区二区| 亚洲国产欧美在线一区| 晚上一个人看的免费电影| 精品国产露脸久久av麻豆| 国产黄a三级三级三级人| 韩国高清视频一区二区三区| 精品熟女少妇av免费看| 午夜免费鲁丝| 真实男女啪啪啪动态图| av国产免费在线观看| 男插女下体视频免费在线播放| 午夜免费观看性视频| 亚洲成人精品中文字幕电影| 色婷婷久久久亚洲欧美| 久久久久久久久久成人| 在线观看三级黄色| 女的被弄到高潮叫床怎么办| 亚洲av欧美aⅴ国产| 午夜免费鲁丝| 男人添女人高潮全过程视频| 成人黄色视频免费在线看| 一区二区三区乱码不卡18| 午夜视频国产福利| 国产成人免费观看mmmm| 免费看日本二区| av天堂中文字幕网| 青青草视频在线视频观看| 亚洲久久久久久中文字幕| 成人毛片60女人毛片免费| 搡女人真爽免费视频火全软件| 久久精品国产自在天天线| 久久国产乱子免费精品| 欧美精品人与动牲交sv欧美| 成人毛片60女人毛片免费| 男人添女人高潮全过程视频| 亚洲三级黄色毛片| 联通29元200g的流量卡| 免费少妇av软件| 成人一区二区视频在线观看| 久久久精品免费免费高清| 欧美变态另类bdsm刘玥| 亚洲精华国产精华液的使用体验| 伊人久久精品亚洲午夜| 麻豆久久精品国产亚洲av| 欧美另类一区| 秋霞在线观看毛片| 国产探花极品一区二区| 日韩av免费高清视频| 久热久热在线精品观看| 午夜福利在线在线| 高清欧美精品videossex| 国产伦在线观看视频一区| 18禁裸乳无遮挡动漫免费视频 | 亚洲国产精品专区欧美| 日韩一区二区三区影片| 寂寞人妻少妇视频99o| 嫩草影院新地址| 欧美97在线视频| 婷婷色综合大香蕉| 久久人人爽人人片av| 久久久久久久久久人人人人人人| 一区二区三区四区激情视频| 91精品一卡2卡3卡4卡| 99热网站在线观看| 国产乱来视频区| av福利片在线观看| 久久6这里有精品| 美女被艹到高潮喷水动态| 久久精品国产自在天天线| 国产精品99久久99久久久不卡 | 97精品久久久久久久久久精品| 国产男女超爽视频在线观看| 精品少妇久久久久久888优播| 国产淫语在线视频| 中国三级夫妇交换| 直男gayav资源| 国产精品国产三级专区第一集| 久久久久九九精品影院| 波野结衣二区三区在线| 最近中文字幕高清免费大全6| 国产欧美日韩精品一区二区| 亚洲一级一片aⅴ在线观看| 国产一级毛片在线| 午夜日本视频在线| 国产淫片久久久久久久久| 成人免费观看视频高清| 天美传媒精品一区二区| av专区在线播放| 亚洲怡红院男人天堂| 久久精品久久久久久久性| 永久免费av网站大全| 好男人视频免费观看在线| 亚洲国产精品999| 国产男人的电影天堂91| 亚洲天堂国产精品一区在线| 亚洲国产av新网站| 精品99又大又爽又粗少妇毛片| 午夜日本视频在线| 国产美女午夜福利| 91久久精品电影网| 久久国内精品自在自线图片| 99久久九九国产精品国产免费| 我要看日韩黄色一级片| 亚洲人成网站在线观看播放| 久久人人爽人人爽人人片va| 日本一本二区三区精品| 精品久久久久久电影网| 久热久热在线精品观看| 少妇人妻一区二区三区视频| 久久久久性生活片| 国产乱人视频| 亚洲四区av| 久久久久久久久久久免费av| 久久影院123| 日韩视频在线欧美| 精品午夜福利在线看| 直男gayav资源| 免费观看a级毛片全部| 最近2019中文字幕mv第一页| 1000部很黄的大片| 性色avwww在线观看| 人妻制服诱惑在线中文字幕| 在线观看国产h片| 夜夜爽夜夜爽视频| 亚州av有码| 99久久人妻综合| 精华霜和精华液先用哪个| 少妇熟女欧美另类| 婷婷色麻豆天堂久久| 麻豆成人午夜福利视频| 日本免费在线观看一区| 最近手机中文字幕大全| 国产有黄有色有爽视频| 97热精品久久久久久| 岛国毛片在线播放| 丝袜美腿在线中文| 国产伦理片在线播放av一区| 欧美性感艳星| 亚洲欧美成人精品一区二区| 国产黄a三级三级三级人| 国产高清三级在线| 免费电影在线观看免费观看| 高清毛片免费看| 黄片无遮挡物在线观看| 国产成人aa在线观看| 午夜福利在线观看免费完整高清在| videossex国产| 99久久九九国产精品国产免费| 在线观看美女被高潮喷水网站| 波多野结衣巨乳人妻| 久久久国产一区二区| 国产综合懂色| 国产精品国产三级国产av玫瑰| 高清毛片免费看| 成年免费大片在线观看| 午夜福利在线在线| a级毛色黄片| 亚洲精品视频女| 国产 精品1| 我的老师免费观看完整版| 男插女下体视频免费在线播放| 夫妻性生交免费视频一级片| 精品久久久久久久末码| 色网站视频免费| 91久久精品国产一区二区成人| 伦精品一区二区三区| 激情 狠狠 欧美| 精品久久久久久久人妻蜜臀av| 又粗又硬又长又爽又黄的视频| 真实男女啪啪啪动态图| 大码成人一级视频| 成年女人在线观看亚洲视频 | 人人妻人人爽人人添夜夜欢视频 | 国产一区二区三区av在线| 韩国av在线不卡| 男人舔奶头视频| 日韩 亚洲 欧美在线| 永久免费av网站大全| 老司机影院成人| 亚洲国产高清在线一区二区三| 一级毛片我不卡| 亚洲精华国产精华液的使用体验| 免费高清在线观看视频在线观看| 国产av码专区亚洲av| 国产精品国产三级国产av玫瑰| 六月丁香七月| 亚洲av在线观看美女高潮| 国产男女超爽视频在线观看| xxx大片免费视频| 国产亚洲精品久久久com| 涩涩av久久男人的天堂| 看十八女毛片水多多多| 日韩大片免费观看网站| 国产黄色视频一区二区在线观看| 久久99热这里只有精品18| 99久国产av精品国产电影| 久久亚洲国产成人精品v| 九九久久精品国产亚洲av麻豆| 毛片女人毛片| 99re6热这里在线精品视频| 久久久久久伊人网av| 最近的中文字幕免费完整| 一个人看的www免费观看视频| 男女边吃奶边做爰视频| 热re99久久精品国产66热6| 九九在线视频观看精品| 夫妻午夜视频| 久久久久久久久久久丰满| 亚洲真实伦在线观看| 亚洲欧美清纯卡通| 欧美高清成人免费视频www| 日韩三级伦理在线观看| 一级毛片aaaaaa免费看小| 色哟哟·www| 波多野结衣巨乳人妻| 狂野欧美激情性xxxx在线观看| 亚洲欧美成人精品一区二区| 日本爱情动作片www.在线观看| 亚洲最大成人中文| 国产免费一区二区三区四区乱码| 你懂的网址亚洲精品在线观看| 一级毛片我不卡| 国产精品久久久久久久电影| 禁无遮挡网站| 国产乱人视频| 婷婷色av中文字幕| 免费播放大片免费观看视频在线观看| videos熟女内射| 黑人高潮一二区| 青春草视频在线免费观看| 亚洲内射少妇av| 欧美变态另类bdsm刘玥| 视频中文字幕在线观看| 三级经典国产精品| 春色校园在线视频观看| 亚洲av欧美aⅴ国产| 97精品久久久久久久久久精品| av在线观看视频网站免费| 成人二区视频| 亚洲美女视频黄频| 老女人水多毛片| 在线观看三级黄色| 国产精品人妻久久久久久| 深爱激情五月婷婷| 欧美激情久久久久久爽电影| 王馨瑶露胸无遮挡在线观看| 午夜福利在线观看免费完整高清在| 精品一区二区三区视频在线| freevideosex欧美| 特大巨黑吊av在线直播| 七月丁香在线播放| 秋霞伦理黄片| 美女xxoo啪啪120秒动态图| 天天一区二区日本电影三级| 欧美日韩国产mv在线观看视频 | 久久99蜜桃精品久久| 免费看日本二区| 又大又黄又爽视频免费| 国产色爽女视频免费观看| 午夜激情久久久久久久| 国产又色又爽无遮挡免| 黄色怎么调成土黄色| 成人免费观看视频高清| 久久精品久久精品一区二区三区| 久久久欧美国产精品| 精品午夜福利在线看| 青春草国产在线视频| 欧美激情国产日韩精品一区| 一本色道久久久久久精品综合| 秋霞在线观看毛片| 国产男女超爽视频在线观看| 中文精品一卡2卡3卡4更新| 国产黄色视频一区二区在线观看| 成年版毛片免费区| 亚洲精品国产成人久久av| 在线观看一区二区三区激情| 精品久久久久久久久亚洲| 欧美xxxx性猛交bbbb| 大话2 男鬼变身卡| 日日摸夜夜添夜夜爱| av在线亚洲专区| 欧美国产精品一级二级三级 | 日本爱情动作片www.在线观看| 成人一区二区视频在线观看| 中国三级夫妇交换| 99热这里只有精品一区| 免费看a级黄色片| 精品人妻熟女av久视频| 成年女人看的毛片在线观看| 亚洲精品影视一区二区三区av| 天天一区二区日本电影三级| 亚洲精品亚洲一区二区| 国产69精品久久久久777片| 美女主播在线视频| 国产精品麻豆人妻色哟哟久久| 夫妻午夜视频| 九草在线视频观看| 插阴视频在线观看视频| 午夜日本视频在线| 成年av动漫网址| 丰满人妻一区二区三区视频av| 成人午夜精彩视频在线观看| 一区二区三区四区激情视频| 天堂中文最新版在线下载 | 大话2 男鬼变身卡| 性色av一级| 亚洲国产av新网站| 久热这里只有精品99| 欧美一区二区亚洲| 精品国产一区二区三区久久久樱花 | 色视频在线一区二区三区| .国产精品久久| 久久久久精品性色| 精品久久久久久久久亚洲| 免费黄频网站在线观看国产| 狂野欧美激情性xxxx在线观看| 国产毛片a区久久久久| 国产亚洲精品久久久com| 亚洲精品久久久久久婷婷小说| 国产爽快片一区二区三区| 在线观看三级黄色| 搞女人的毛片| 能在线免费看毛片的网站| 日韩人妻高清精品专区| 中文字幕免费在线视频6| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本wwww免费看| 成年女人在线观看亚洲视频 | 天堂中文最新版在线下载 | 精品人妻偷拍中文字幕| 成人二区视频| 亚洲精品色激情综合| 欧美高清成人免费视频www| 国产成人a∨麻豆精品| 在线看a的网站| 女人被狂操c到高潮| 我的女老师完整版在线观看| 欧美日本视频| 美女内射精品一级片tv| 国内少妇人妻偷人精品xxx网站| 又爽又黄无遮挡网站| 精品国产乱码久久久久久小说| 如何舔出高潮| 黄片wwwwww| 最近最新中文字幕免费大全7| 最后的刺客免费高清国语| 大陆偷拍与自拍| 成人无遮挡网站| 成人亚洲精品一区在线观看 | 亚洲第一区二区三区不卡| 国产亚洲av嫩草精品影院| 国产精品一区二区性色av| 高清欧美精品videossex| 免费av不卡在线播放| 国产在视频线精品| 插逼视频在线观看| 亚洲国产最新在线播放| 日本免费在线观看一区| av女优亚洲男人天堂| 国产有黄有色有爽视频| 一本久久精品| 国产成人精品福利久久| 欧美成人a在线观看| 欧美人与善性xxx| 亚洲av一区综合| 十八禁网站网址无遮挡 | 亚洲国产精品国产精品| 久久久久久九九精品二区国产| 久久97久久精品| 小蜜桃在线观看免费完整版高清| 国产精品三级大全| 丝袜喷水一区| 高清av免费在线| 国产欧美日韩精品一区二区| 国产成人精品婷婷| 免费人成在线观看视频色| 2018国产大陆天天弄谢| 日韩欧美一区视频在线观看 | 九九在线视频观看精品| 亚洲欧美清纯卡通| 国产成人精品久久久久久| 午夜爱爱视频在线播放| 国产黄色免费在线视频| 国产亚洲一区二区精品| 亚洲精品,欧美精品| 人妻系列 视频| 亚洲精品,欧美精品| 免费黄色在线免费观看| 大话2 男鬼变身卡| 国产老妇伦熟女老妇高清| 成人亚洲精品一区在线观看 | 国产精品av视频在线免费观看| av线在线观看网站| 国产成人91sexporn| 国产成人精品一,二区| 有码 亚洲区| 日韩成人伦理影院| av国产精品久久久久影院| 免费av不卡在线播放| 国产亚洲av嫩草精品影院| 中文天堂在线官网| 青春草国产在线视频| 五月伊人婷婷丁香| 精品亚洲乱码少妇综合久久| 五月玫瑰六月丁香| 国产午夜精品一二区理论片| 观看美女的网站| 白带黄色成豆腐渣| 国产在视频线精品| 91午夜精品亚洲一区二区三区| 热re99久久精品国产66热6| 日韩精品有码人妻一区| 老女人水多毛片| 久久久久久国产a免费观看| 91狼人影院| 国产免费视频播放在线视频| 亚洲国产高清在线一区二区三| 国产精品一区www在线观看| 免费看a级黄色片| 亚洲国产精品国产精品| 一级毛片久久久久久久久女| 亚洲av日韩在线播放| 亚洲人成网站在线播| 国产高清国产精品国产三级 | 日韩av免费高清视频| 伦理电影大哥的女人| 午夜激情福利司机影院| 一本色道久久久久久精品综合| 国产欧美亚洲国产| 秋霞在线观看毛片| av又黄又爽大尺度在线免费看| 伦理电影大哥的女人| 99热这里只有是精品在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 成人高潮视频无遮挡免费网站| 简卡轻食公司| 日日撸夜夜添| 久久鲁丝午夜福利片| 一级黄片播放器| av又黄又爽大尺度在线免费看| 网址你懂的国产日韩在线| 天堂俺去俺来也www色官网| 久久久国产一区二区| 大陆偷拍与自拍| 国产精品久久久久久久久免| 男女国产视频网站| 亚洲欧美一区二区三区黑人 | 亚洲久久久久久中文字幕|