• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Poly(thioether)-b-polysiloxane-b-poly(thioether) triblock copolymer towards homogeneous dielectric elastomer with high dielectric performance

    2022-09-16 05:25:04ZhnbinFengJifngGuoSutingLiuGuofeiFengXingHongZhng
    Chinese Chemical Letters 2022年8期

    Zhnbin Feng, Jifng Guo, Suting Liu, Guofei Feng, Xing-Hong Zhng,?

    a MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China

    b Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou 310027, China

    c Department of Chemical Engineering, Weifang Vocational College, Weifang 262737, China

    ABSTRACT Dielectric elastomers (DEs) have drawn much attention owing to their application prospects in artificial muscles and soft robotics, it is still a big challenge to prepare DEs with high electromechanical performances.This work reports a highly stretchable poly(thioether)-b-polysiloxane-b-poly(thioether) triblock copolymer based homogenous DEs with high electromechanical properties.The triblock copolymer(PSiPGE) was synthesized through the ring-opening polymerization (ROP) of phenyl glycidyl ether (PGE)and carbonyl sulfide (COS) catalyzed by silicon alkoxides.The dipoles (benzene rings) on the side groups of PSiPGE improved the dipole polarizations and the phase separation structure of this triblock copolymer enhanced the interfacial polarizations between poly(thioether) and polysiloxane, and thus improving the dielectric constant (ε’, up to 5.8).In addition, the PSiPGE exhibited low elastic modulus (Y, 0.04 MPa),and thus possessed high electromechanical sensitivity (β, ~145 MPa?1) which is much higher than that of most homogenous DEs.This work provides a new strategy to construct homogenous DEs with excellent electromechanical performances, leading to a greater application aspect in the actuated devices.

    Keywords:Poly(thioether)-b-polysiloxane-bpoly(thioether) triblock copolymer Homogenous Dielectric elastomer Phase separation Electromechanical performance

    Dielectric elastomers (DEs) [1], one of the soft electric-response materials [2], can possess the transformation of electricalmechanical energy under an applied electric field [3] with the advantages of large deformation, high energy density and electromechanical coupling efficiency, light weight and fast response speed[4,5].With these combined superiorities, the applications of DEs could range from artificial muscles [6], sensors [7] to optical lenses[8] and soft robotics [9].A disadvantage of DEs that limiting its commercial applications is the requirement of high actuated electric field (>100 kV/mm) [10,11] due to the low dielectric constant(ε’) and high dielectric loss (tanδ) [12].Thus, it is a great challenge to prepare DEs with highε’and large actuated strain at low electric field.

    To enable DEs excellent electromechanical performance at low electric field, a high electromechanical sensitivity (β) is needed[13], which is defined as the ratio ofε’ to Young’s modulus(Y) [14].Thus, decreasing Y [15] and increasingε’ [16] are the main methods to prepare DEs with high actuated behaviors.In the past few years, massive efforts have been made to improveε’ of DEs to obtain higher actuated strain [17–24].One of the most commonly used approach is to add conductive fillers such as graphene or graphene oxide (GO) [17,18], CNTs [19,20], metal nanoparticles [21], or high-ε’ceramics (TiO2[22] and BaTiO3[23])or conjugated conductive polymers (polyaniline [24] and polyhexylthiophene [12]) to the elastomer matrix.After the introduction of nanofillers or stiff conductive polymers, theε’ of elastomers could be enhanced significantly [4,25] but the Y and dielectric loss also increase, resulting in the decrease in flexibility of the elastomer matrix [26].Another widely way to achieve excellent electro-mechanical performance is to synthesize homogeneous DEs with low Y and highε’through molecular design or chemical graft modification [10,27–29].These studies usually focus on grafting polar groups (such as -COOH, -COO-, -OH) [30] on the mainchains of elastomers to enhance the dipole polarizations, achieving highε’and actuated strain [5].Besides, homogeneous DEs could also be obtained through the copolymerization of acrylate monomers[27] or between acrylate and polyurethane [10].Although theε’was not high (up to about 6), the as prepared DE exhibited high actuated strain (about 52% @21.57 kV/mm) due to the low Y and highβ.Up to now, there are few monomers that could be used to prepare copolymerized homogeneous DEs, and it is urgent to find out more suitable polar monomers to realize large-scale preparation of copolymerized DEs.

    Poly(thioether)s [31], a new type of sulfur-containing polymers, could be synthesizedviathe coupling reaction of carbonyl sulfide (COS) with epoxides and consequent decarboxylative ring-opening polymerization (ROP) of the cyclic thiocarbonates [32].They are very promising in the application of ion-exchange membranes, electrolytes and some optical materials [33].A series of epoxides with different side groups [34–36] could be used to synthesize poly(thioether)s with tunable structure polarities andTgin our previous study.The introduction of polar side groups is beneficial for the increase ofε’ of poly(thioether)s.Compared with commercial VHB based DEs [37],the poly(thioether)s we synthesized before were not crosslinked and exhibited high viscidity, limiting its application in the fields of DEs.If the poly(thioether)s could be chemically (adding extra crosslinker) or physically crosslinked (constructing micro-phase separation structure) [38], it will be an alternative material for the construction of DEs.

    Silicon alkoxides, the oligomer with strong base, are derived from the ring opening polymerization (ROP) of octamethyl cyclotetrasiloxane (D4) catalyzed by inorganic alkali such as KOH,NaOH, have been used to catalyze the anionic ROP of cyclic siloxane [39,40].More importantly, the silicon alkoxides own dual active sites and can be used to synthesize poly(thioether)-bpolysiloxane-b-poly(thioether) block copolymer.Due to the incompatibility of polysiloxane domains and poly(thioether) domains,the microphase separation structure can be constructed to achieve physical crosslinking [41].

    Herein, we reported a new approach to synthesize poly(thioether)-b-polysiloxane-b-poly(thioether) triblock copolymer from COS and epoxides catalyzed by silicon alkoxides,constructing homogeneous DE.The silicon alkoxides can catalyze the coupling reaction of COS and epoxides, and then decarboxylative of the cyclothiocarbonates can be achieved at high temperature to form poly(thioether) chain segments (hard segments, plastic phase); besides, the double active sites of silicon alkoxides can be double-terminated to form triblock copolymers with polysiloxane as soft segments (rubber phase).The poly(thioether)-b-polysiloxane-b-poly(thioether) block copolymer possesses microphase separation structure, and the morphology could be tuned by its composition.More importantly, the block copolymer possesses highε’(about 5.8), low Y (0.04 MPa)and exhibits highβ(up to 145 MPa?1) and actuated strain(13.4%@14.2 V/μm) due to the combination of dipole polarizations and interfacial polarizations.These results indicate that this new poly(thioether)-based homogenous DE could be very promising for developing electromechanical actuators with high performance.

    Fig.1.1H NMR spectra of (a) PSiPO and (b) PSiPGE from PO/PGE, COS and silicon alkoxides.

    The triblock copolymers were synthesizedviaa two-step procedure (Scheme 1a): The ROP reaction of D4, forming the silicon alkoxides; then the copolymerization between epoxides (such as PO and PGE) and COS was carried out catalyzed by the silicon alkoxides at about 120 °C for about 12 h.During this process, the coupling reaction of COS with epoxides firstly occurred, followed by decarboxylative ROP of the cyclic thiocarbonates with releasing of CO2and a little bit of COS [32], finally, the triblock copolymers were synthesized and the detailed mechanism for this process is shown in the Scheme S1 (Supporting information).

    Scheme 1.(a) Synthetic route to poly(thioether)-b-polysiloxane-b-poly(thioether) triblock copolymer from carbonyl sulfide (COS) and epoxides catalyzed by silicon alkoxides.(b) Schematic representation of the structure of this triblock copolymer.

    The copolymerization of epoxides and COS catalyzed by silicon alkoxides was evidenced by1H NMR, the results were shown in Fig.1.Taking PSiPO (Fig.1a) for example, peak a (0 ppm), peak b(2.57 ppm), peak c (2.85 ppm) and peak d (1.31 ppm) represent the proton of silicon methyl, methylene (-CH2-) and methine, respectively, indicating the successful synthesis of PSiPO.In Fig.1b,all the characteristic peaks could be found in the1H NMR spectra for the PSiPGE except for a new peak at about 5 ppm, indicating the successful synthesis of PSiPGE.The new peak at about 5 ppm corresponds to the proton of poly(monothiocarbonate) according to our previous study [34].As the peak corresponding to the poly(monothiocarbonate) is very weak, the main product synthesized from PGE, COS and silicon alkoxides is the poly(thioether)-bpolysiloxane-b-poly(thioether) copolymer and the schematic representation of the structure is shown in Scheme 1b.The structures of PSiPO and PSiPGE were also verified by13C NMR (Fig.S1 in Supporting information), suggesting the successful copolymerization of PO/PGE, COS and silicon alkoxides.

    The molecular weight of PSiPO and PSiPGE were characterized by GPC, and the results were shown in Fig.S2 (Supporting information).As the refractive index of polysiloxane is close to that of THF which is the mobile phase in GPC, the molecular weight of silicon alkoxides could not be detected by using GPC, so it was verified by MALDI-TOF MS, and the result was shown in Fig.S3 (Supporting information).It was found that the molecular weight of silicon alkoxides is about 2.48 kg/mol, the detailed Mn, Mw, PDI and the phase compositions are summarized in Table S2 (Supporting information).Compared with the triblock copolymer based DEs in the previous study [2,14], the PDI for the PSiPO or PSiPGE is much narrower, which agrees well with the poly(thioether)s catalyzed by organic bases in our previous report [42].Furthermore, the diffusion-ordered (DOSY) NMR spectrum exhibits a single diffusion coefficient (Fig.S2b), indicating that the triblock copolymer consists only one component.All these results evidenced that the poly(thioether)-b-polysiloxane-bpoly(thioether) copolymer could be synthesized under the catalysis of silicon alkoxides.

    Fig.2.(a, b) TEM images of PSiPGE with silicon alkoxides concentration of 0.1 g/mL.(c) The size distribution of the particle in (a, b).(d, e) TEM images of PSiPGE with silicon alkoxides concentration of 0.15 g/mL.(f) The size distribution of the particle in (d, e).

    The thermal analysis of PSiPO and PSiPGE were also carried out and shown in Fig.S4 (Supporting information).Two distinct transition temperature could be observed for both samples in DSC curves (Fig.S4a), which represent different domains.The transition temperature at about ?120 °C belongs to the glass transition of polysiloxane and the other is attributed to the poly(thioether)s.In the TGA curves (Fig.S4b), two different decomposition temperature could also be found for both samples.All these evidences indicated the successful synthesis of the triblock copolymer.

    Fig.2 and Fig.S5 (Supporting information) illustrate the nanomorphology of the triblock copolymer by TEM and AFM, as the sample of PSiPO could not be freezing sectioned due to its poor film-forming, only the sample of PSiPGE catalyzed by different concentration of silicon alkoxides were characterized.As expected,the microphase separation could be observed with clear phase boundaries in all the samples.The nanodomains of polysiloxane(dark domains) are well dispersed in the matrix of poly(thioether)(bright domains) due to the low content of polysiloxane segments.Unlike the worm-like form of polystyrene in the SBS [43],sphere-like form (Figs.2a, b, d and e) could be observed for the polysiloxane segments as the thermodynamic incompatibility with poly(thioether).For the PSiPGE sample catalyzed by 0.1 g/mL of silicon alkoxides (named as PSiPGE-0.1), the well-defined soft segments with the mean particle size of 400 nm (Fig.2c) could be observed; however, for the PSiPGE sample catalyzed by 0.15 g/mL of silicon alkoxides (named as PSiPGE-0.15), the mean particle size decreases to about 120 nm.The size decrease of soft segments illustrates that the content increase of hard segments [44,45].The AFM-phase images were also carried out to verify the structure of microphase separation (Fig.S5), which is consistent with the TEM results.

    Generally, the island-sea nano-morphology of triblock copolymer could enable it excellent mechanical properties [46].In this study, the soft segments (polysiloxane) are acted as dispersed phase whereas the hard segments (poly(thioether)) are acted as the continuous phase, resulting in the increase of the toughness and the decrease of mechanical strength.As shown in Fig.S6 (Supporting information), the PSiPGE exhibit highly stretchable performance with the elongation at break of over 1000%, whereas the ultimate tensile strength is about 0.06 MPa with the Young’s modulus of about 0.04 MPa.

    Fig.3.(a) The dielectric constant (ε’) and (b) the dielectric loss (tanδ) of the pure PPMTC and PSiPGE.(c) The mechanism of the improvement of the dielectric performances.

    Fig.3 illustrates the dielectric properties of pure poly(propylene-monothiocarbonate) (PPMTC) and PSiPGE as a function of frequency at room temperature, the detailed values are summarized in Table 1.It is found that theε’decreases as the frequency increases (Fig.3a) for both PPMTC and PSiPGE samples,indicating the frequency dependence ofε’.Compared with PPMTC,theε’of PSiPGE with significant micro-phase separation structure is much higher at the range of 10–106Hz.Taking theε’at 103Hz for example, theε’of PPMTC is about 2.2, whereas it is about 5.8 for PSiPGE which is more than 2.5 times that of PPMTC.Interestingly, the backbone of PPMTC is rich in thiocarbonate groups(dipoles), it still exhibits lowε’.The reason for this phenomenon is that the polar groups of PPMTC are located in the mainchains,the dipoles are difficult to move and difficult to be polarized under the electric fields [47].On the contrary, the dipoles (benzene ring)for the PSiPGE are located in the side groups, which are tended to be polarized much easier, leading to the increase ofε’(Fig.3c).

    Table 1 Physical and electromechanical properties of various homogenous DEs without pre-strain and the addition of plasticizer.

    In addition, the phase separation structure could also affect theε’(Fig.3c).For the homogenous DEs with continual phase structure, the interfacial polarizations are commonly not generated as there are no obvious phase interfaces; for the PSiPGE with separation structures, clearly phase interfaces could be observed (Fig.2),large amounts of free charges accumulate at the interfaces [48,49]between polysiloxane and poly(thioether) under the external electric field and finally, the interfacial polarizations occur, which is beneficial to the improvement ofε’.

    The dielectric loss tangents (tanδ)versusfrequency of the PPMTC and PSiPGE are shown in Fig.3b.The tanδof PPMTC is quilt low and almost exhibit frequency independent at the range of 10–105Hz, and it will decrease in 105Hz to 106Hz.For the PSiPGE sample, the tanδincreases sharply from 10 to 103Hz and then decreases at the range of 103Hz to 106Hz, and a significant relaxation peak could be observed at about 103Hz.The relaxation peak shifts from 105Hz (high frequency) for the PPMTC to about 103Hz (low frequency) for PSiPGE, illustrating that the polarization ability of PSiPGE is much stronger than that of PPMTC [16].Specif-ically, the tanδat 103Hz of the PSiPGE increases slightly from 0.06 to about 0.14 compared with PPMTC.

    Fig.4.(a) Area strain-applied electric field curve of PSiPGE without prestrain; actuating images of PSiPGE under the electric field of (b) 0 V/μm, (c) 10.4 V/μm and(d) 14.2 V/μm.

    The electromechanical sensitivities (β) for the PPMTC and PSiPGE were also measured and listed in Table 1.Compared with PPMTC, the simultaneous increase in theε’and decrease in the Y of PSiPGE result in a much higherβ.For example,βat 103Hz increases sharply from about 0.1 MPa?1for PPMTC to about 145 MPa?1for the PSiPGE.The large increase inβwill enable PSiPGE larger actuation strain the improvement at low electric fields, and further research will be carried out to focus on the actuated performance of the PSiPGE.

    The comparisons of physical and electromechanical properties of various homogenous DEs reported in the previous studies and PPMTC, PSiPGE in this study are listed in Table 1.Although theε’of PSiPGE is not the highest, theβis much higher than that of most previous reported homogenous DEs.It is the simultaneous increase in theε’and decrease in the Y that enabling PSiPGE excellent electromechanical performances.

    The actuating behavior of PSiPGE (Fig.4) was measured according to standards for dielectric elastomer transducers in previous reports [50,54].As the SWCNT electrodes could not be coated at the surface of pure PPMTC perfectly, only the sample of PSiPGE was tested for the electro-actuated behavior.Here, a small and constant pneumatic pressure was applied to guide the direction of deformation and the applied voltage was slowly increased until the electric breakdown (Figs.4b–d).As expected, the actuation area strain of PSiPGE significantly increases with increasing the applied voltage (Fig.4a), the maximum actuation area strain of the sample was about 13.4%(@14.2 V/μm) due to its low modulus and highβ,demonstrating excellent electro-mechanical properties.It will provide an alternative method to the fabrication of homogenous DEs with wider application in the fields of artificial muscles and wearable devices.

    In summary, we synthesized poly(thioether)-b-polysiloxane-bpoly(thioether) triblock copolymer based homogenous DEs with highly stretchable and excellent electromechanical performancesviathe ROP of PGE and COS catalyzed by silicon alkoxides.With the presence of dipoles on the side groups and the phase separation structure of this triblock copolymer, the dipole polarizations and interfacial polarizations of PSiPGE were enhanced simultaneously, leading to the improvement ofε’(~5.8).In addition, the PSiPGE exhibited low modulus (0.04 MPa) with highly stretchable property (above 1100%) and thus, it possessed highβ(up to 145 MPa?1) which is higher than most previous reported homogenous DEs.Most importantly, the maximum actuation area strain could reach about 13.4% (@14.2 V/μm), which will enable this poly(thioether)-b-polysiloxane-b-poly(thioether)based homogenous DEs wider application in the fields of various biomimetic actuators.

    It is believed that many new triblock copolymer-based DEs with excellent electromechanical performances could also be constructed through the ROP of some other epoxides and COS catalyzed by silicon alkoxides.The work provides a novel strategy to prepare DEs with well-defined structure and improved actuated behaviors.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    We would like to express our sincere thanks to National Natural Science Foundation of China (Nos.51973190 and 21774108) and Zhejiang Provincial Department of Science and Technology (No.2020R52006) for financial supports.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.11.091.

    成年美女黄网站色视频大全免费 | 街头女战士在线观看网站| 亚洲av男天堂| 亚洲av电影在线观看一区二区三区| 国产老妇伦熟女老妇高清| 亚洲国产欧美日韩在线播放 | 久久6这里有精品| 少妇人妻精品综合一区二区| 国产午夜精品一二区理论片| 男女边摸边吃奶| 又粗又硬又长又爽又黄的视频| 亚洲欧美日韩卡通动漫| 亚洲人成网站在线播| 久久久久久久久久成人| 免费高清在线观看视频在线观看| 91久久精品国产一区二区三区| 女性被躁到高潮视频| 国产日韩欧美亚洲二区| 夜夜看夜夜爽夜夜摸| 菩萨蛮人人尽说江南好唐韦庄| 国产黄片视频在线免费观看| 亚洲av不卡在线观看| 午夜福利,免费看| 亚洲激情五月婷婷啪啪| 国产视频首页在线观看| 狂野欧美白嫩少妇大欣赏| 成年女人在线观看亚洲视频| 男女边摸边吃奶| 多毛熟女@视频| 一本一本综合久久| 国产淫语在线视频| 国产女主播在线喷水免费视频网站| 亚洲一级一片aⅴ在线观看| 国产成人a∨麻豆精品| 久久久久久久大尺度免费视频| 麻豆成人av视频| 亚洲精品久久久久久婷婷小说| √禁漫天堂资源中文www| 热99国产精品久久久久久7| 精品亚洲成国产av| 男女免费视频国产| 久久久精品94久久精品| 国产亚洲一区二区精品| 精品人妻熟女毛片av久久网站| 免费高清在线观看视频在线观看| 91在线精品国自产拍蜜月| 丰满饥渴人妻一区二区三| 97超碰精品成人国产| 亚洲av国产av综合av卡| 久久久久人妻精品一区果冻| 美女视频免费永久观看网站| 国产白丝娇喘喷水9色精品| 美女主播在线视频| 亚洲欧美日韩卡通动漫| 自线自在国产av| 亚洲av二区三区四区| 日韩精品有码人妻一区| 国语对白做爰xxxⅹ性视频网站| 纯流量卡能插随身wifi吗| 人妻夜夜爽99麻豆av| 色婷婷av一区二区三区视频| 99久国产av精品国产电影| 丁香六月天网| 边亲边吃奶的免费视频| 成人影院久久| 九九爱精品视频在线观看| 成人免费观看视频高清| 18禁裸乳无遮挡动漫免费视频| 精品久久久精品久久久| 精品视频人人做人人爽| 制服丝袜香蕉在线| 青春草亚洲视频在线观看| 99热全是精品| 欧美日本中文国产一区发布| 亚洲伊人久久精品综合| 亚洲国产色片| 国产伦在线观看视频一区| 蜜臀久久99精品久久宅男| √禁漫天堂资源中文www| 少妇 在线观看| 久久毛片免费看一区二区三区| 日韩av在线免费看完整版不卡| 国产亚洲最大av| 久久人人爽人人片av| 亚洲欧美成人精品一区二区| 日韩伦理黄色片| 中文字幕av电影在线播放| 免费黄网站久久成人精品| 免费av不卡在线播放| 少妇人妻 视频| 亚洲高清免费不卡视频| 乱码一卡2卡4卡精品| 精品国产一区二区三区久久久樱花| 一本—道久久a久久精品蜜桃钙片| 国产在视频线精品| 高清毛片免费看| 国产精品国产av在线观看| 欧美人与善性xxx| 久久久国产精品麻豆| 国产女主播在线喷水免费视频网站| 久久国产乱子免费精品| 亚洲av男天堂| 老司机亚洲免费影院| 99热这里只有是精品50| 91午夜精品亚洲一区二区三区| 搡老乐熟女国产| 国产亚洲一区二区精品| av天堂中文字幕网| 大码成人一级视频| 天堂俺去俺来也www色官网| 久久精品国产亚洲av涩爱| 69精品国产乱码久久久| 少妇猛男粗大的猛烈进出视频| 国产在线一区二区三区精| 天堂中文最新版在线下载| 国产亚洲欧美精品永久| 水蜜桃什么品种好| 国产精品一区二区三区四区免费观看| 成人国产av品久久久| 久久久久久久大尺度免费视频| 免费av不卡在线播放| 黑人高潮一二区| 丝袜脚勾引网站| 18+在线观看网站| 深夜a级毛片| 在线观看免费高清a一片| av在线app专区| 制服丝袜香蕉在线| 啦啦啦中文免费视频观看日本| 九九爱精品视频在线观看| av.在线天堂| 久久久精品94久久精品| av线在线观看网站| 亚洲激情五月婷婷啪啪| 一区二区三区免费毛片| 蜜桃在线观看..| 观看av在线不卡| 久久午夜福利片| 亚洲三级黄色毛片| av免费观看日本| 欧美日韩国产mv在线观看视频| 午夜影院在线不卡| 久久国产乱子免费精品| 日韩亚洲欧美综合| 免费看光身美女| 精品一区二区免费观看| 97精品久久久久久久久久精品| 国产成人一区二区在线| 少妇丰满av| 亚洲婷婷狠狠爱综合网| a级片在线免费高清观看视频| 日本午夜av视频| 人妻人人澡人人爽人人| 欧美高清成人免费视频www| 欧美日韩精品成人综合77777| 亚洲高清免费不卡视频| 80岁老熟妇乱子伦牲交| 日韩不卡一区二区三区视频在线| a 毛片基地| 高清视频免费观看一区二区| 国产精品国产三级国产av玫瑰| 国产精品一区www在线观看| 内射极品少妇av片p| 国产一区二区在线观看av| 国内精品宾馆在线| 久久鲁丝午夜福利片| 最近最新中文字幕免费大全7| 下体分泌物呈黄色| 亚洲中文av在线| 各种免费的搞黄视频| 国产淫片久久久久久久久| 亚洲性久久影院| 九九久久精品国产亚洲av麻豆| 成年人午夜在线观看视频| 人妻一区二区av| 国产精品秋霞免费鲁丝片| 国产精品嫩草影院av在线观看| 色5月婷婷丁香| 国产精品秋霞免费鲁丝片| 欧美日韩av久久| 亚洲在久久综合| 日日撸夜夜添| 91精品国产九色| 色网站视频免费| 亚洲精品国产成人久久av| 在线亚洲精品国产二区图片欧美 | 中文精品一卡2卡3卡4更新| 另类精品久久| 亚洲av日韩在线播放| 亚洲国产精品一区三区| 一级爰片在线观看| 国产一区二区在线观看日韩| 秋霞在线观看毛片| 你懂的网址亚洲精品在线观看| √禁漫天堂资源中文www| 亚洲精品国产av蜜桃| 大话2 男鬼变身卡| 好男人视频免费观看在线| 欧美变态另类bdsm刘玥| 国产成人免费观看mmmm| 大片免费播放器 马上看| av在线app专区| 最新的欧美精品一区二区| 一区二区三区免费毛片| 亚洲在久久综合| 777米奇影视久久| 热re99久久精品国产66热6| 欧美区成人在线视频| 成人影院久久| 日韩精品免费视频一区二区三区 | 国产毛片在线视频| 午夜激情久久久久久久| 99久久人妻综合| 91午夜精品亚洲一区二区三区| 热re99久久国产66热| 久热这里只有精品99| 少妇丰满av| 水蜜桃什么品种好| 高清午夜精品一区二区三区| 日日爽夜夜爽网站| 国产伦在线观看视频一区| 爱豆传媒免费全集在线观看| av线在线观看网站| 哪个播放器可以免费观看大片| 国内精品宾馆在线| 伦理电影大哥的女人| 有码 亚洲区| 亚洲精品乱码久久久v下载方式| 男人舔奶头视频| 精品国产国语对白av| 另类亚洲欧美激情| 国产欧美另类精品又又久久亚洲欧美| 亚洲图色成人| 日本色播在线视频| 国产精品一二三区在线看| 在线天堂最新版资源| 观看美女的网站| 大又大粗又爽又黄少妇毛片口| 国产欧美日韩综合在线一区二区 | 肉色欧美久久久久久久蜜桃| 91精品国产国语对白视频| 久热这里只有精品99| 亚洲国产精品专区欧美| 亚洲国产欧美日韩在线播放 | 国产欧美日韩一区二区三区在线 | 亚洲精品国产成人久久av| 观看免费一级毛片| 人人妻人人澡人人看| 少妇熟女欧美另类| 久久热精品热| 好男人视频免费观看在线| 国产色爽女视频免费观看| 亚洲中文av在线| 婷婷色综合大香蕉| 亚洲精品色激情综合| 丝袜脚勾引网站| 亚洲国产精品999| 看非洲黑人一级黄片| 久久 成人 亚洲| 国产精品久久久久久久久免| 亚洲中文av在线| 免费久久久久久久精品成人欧美视频 | 91午夜精品亚洲一区二区三区| 性色avwww在线观看| 欧美+日韩+精品| 99久久中文字幕三级久久日本| 下体分泌物呈黄色| 久久婷婷青草| 全区人妻精品视频| 一级毛片 在线播放| 97精品久久久久久久久久精品| 久久国产精品大桥未久av | 欧美一级a爱片免费观看看| 国产精品成人在线| 99九九线精品视频在线观看视频| 97精品久久久久久久久久精品| 精品视频人人做人人爽| 丰满人妻一区二区三区视频av| 亚洲av不卡在线观看| 一级,二级,三级黄色视频| 久久国内精品自在自线图片| 成年人免费黄色播放视频 | 日日啪夜夜爽| 欧美日韩一区二区视频在线观看视频在线| 国产精品偷伦视频观看了| 嫩草影院新地址| 亚洲人成网站在线播| 波野结衣二区三区在线| 国产高清国产精品国产三级| 一级毛片aaaaaa免费看小| 99久久中文字幕三级久久日本| 18禁动态无遮挡网站| 亚洲一区二区三区欧美精品| 热99国产精品久久久久久7| 波野结衣二区三区在线| 大片免费播放器 马上看| 国产探花极品一区二区| 欧美性感艳星| 中国美白少妇内射xxxbb| 高清av免费在线| 精品亚洲成a人片在线观看| 22中文网久久字幕| 久久韩国三级中文字幕| 国产色爽女视频免费观看| 天天躁夜夜躁狠狠久久av| 精品少妇久久久久久888优播| 国产av一区二区精品久久| 五月玫瑰六月丁香| 黄色欧美视频在线观看| 久久久久久伊人网av| 久久久久久久大尺度免费视频| 午夜福利网站1000一区二区三区| 精品一区二区免费观看| .国产精品久久| 视频区图区小说| 国产精品久久久久成人av| 伊人久久精品亚洲午夜| av国产精品久久久久影院| 亚洲无线观看免费| 视频中文字幕在线观看| 伦精品一区二区三区| 精品一区在线观看国产| 国产色婷婷99| 又粗又硬又长又爽又黄的视频| 久久久a久久爽久久v久久| 精品国产一区二区久久| 久久久久久人妻| 久久国产乱子免费精品| 亚洲av不卡在线观看| 午夜av观看不卡| 丰满饥渴人妻一区二区三| 婷婷色麻豆天堂久久| 亚洲人与动物交配视频| 亚洲精品日韩在线中文字幕| 三级国产精品片| 亚洲激情五月婷婷啪啪| 麻豆乱淫一区二区| 在线观看免费日韩欧美大片 | 亚洲国产精品国产精品| 26uuu在线亚洲综合色| 另类精品久久| 精品久久久久久久久亚洲| 在线观看www视频免费| 亚洲精品自拍成人| 韩国高清视频一区二区三区| 日本av免费视频播放| 韩国高清视频一区二区三区| 欧美日韩视频精品一区| 欧美日韩亚洲高清精品| 国内少妇人妻偷人精品xxx网站| 日本av手机在线免费观看| av在线老鸭窝| 最新的欧美精品一区二区| 中文字幕av电影在线播放| 国产日韩欧美在线精品| 亚洲天堂av无毛| 毛片一级片免费看久久久久| 熟妇人妻不卡中文字幕| 91久久精品电影网| 中文字幕av电影在线播放| av视频免费观看在线观看| 久久精品久久久久久噜噜老黄| 一本一本综合久久| 人妻制服诱惑在线中文字幕| 亚洲精品国产色婷婷电影| 亚洲第一av免费看| 亚洲美女视频黄频| 韩国av在线不卡| 日本黄大片高清| 久久青草综合色| 99久久精品一区二区三区| 久久精品久久久久久噜噜老黄| 狂野欧美白嫩少妇大欣赏| 老司机影院毛片| 亚洲av电影在线观看一区二区三区| 成人综合一区亚洲| 最黄视频免费看| 亚洲国产精品成人久久小说| 免费看不卡的av| 色婷婷av一区二区三区视频| 99热6这里只有精品| 波野结衣二区三区在线| 男女国产视频网站| 十八禁高潮呻吟视频 | 成年人午夜在线观看视频| 亚洲欧美日韩东京热| 亚洲国产欧美在线一区| 国产亚洲一区二区精品| 国产免费福利视频在线观看| 91在线精品国自产拍蜜月| 亚洲丝袜综合中文字幕| 国产精品秋霞免费鲁丝片| 亚洲欧美日韩另类电影网站| 亚洲在久久综合| 国产精品三级大全| 久久久久久久大尺度免费视频| 男女边摸边吃奶| 男人和女人高潮做爰伦理| 少妇高潮的动态图| 久久久久久久久大av| 热re99久久精品国产66热6| 边亲边吃奶的免费视频| videossex国产| 欧美+日韩+精品| 91久久精品国产一区二区三区| av在线老鸭窝| 久久久久精品久久久久真实原创| 韩国av在线不卡| 在线看a的网站| 在线观看免费高清a一片| 亚洲精华国产精华液的使用体验| 大码成人一级视频| 国产在线一区二区三区精| 深夜a级毛片| 少妇 在线观看| 天堂中文最新版在线下载| 国产成人a∨麻豆精品| 不卡视频在线观看欧美| 噜噜噜噜噜久久久久久91| 国产精品麻豆人妻色哟哟久久| 一级,二级,三级黄色视频| 91精品伊人久久大香线蕉| 午夜视频国产福利| 亚洲国产精品专区欧美| 国产视频内射| 交换朋友夫妻互换小说| 日韩免费高清中文字幕av| 高清视频免费观看一区二区| 国产亚洲91精品色在线| 啦啦啦啦在线视频资源| freevideosex欧美| 老司机亚洲免费影院| 色94色欧美一区二区| 亚洲精品久久午夜乱码| av专区在线播放| 亚洲伊人久久精品综合| 性色av一级| 国产女主播在线喷水免费视频网站| 国产精品久久久久久av不卡| 中文资源天堂在线| 啦啦啦在线观看免费高清www| 久久精品国产鲁丝片午夜精品| 如日韩欧美国产精品一区二区三区 | av福利片在线观看| 久久午夜综合久久蜜桃| 成人美女网站在线观看视频| 欧美bdsm另类| 国产乱来视频区| 人妻夜夜爽99麻豆av| 国产精品久久久久久av不卡| 欧美老熟妇乱子伦牲交| 日韩三级伦理在线观看| 三上悠亚av全集在线观看 | 人妻少妇偷人精品九色| 精品国产一区二区三区久久久樱花| 观看美女的网站| a级一级毛片免费在线观看| 99久久精品热视频| 超碰97精品在线观看| 午夜日本视频在线| 男人爽女人下面视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 狂野欧美白嫩少妇大欣赏| 成人毛片a级毛片在线播放| 五月天丁香电影| 熟女电影av网| 91在线精品国自产拍蜜月| 在线播放无遮挡| 黑人高潮一二区| 丝瓜视频免费看黄片| 日韩中字成人| 妹子高潮喷水视频| 国产精品国产三级专区第一集| 男人爽女人下面视频在线观看| 欧美三级亚洲精品| 午夜91福利影院| .国产精品久久| 国产成人a∨麻豆精品| 少妇高潮的动态图| 最近中文字幕高清免费大全6| 日韩成人伦理影院| 男女国产视频网站| 欧美老熟妇乱子伦牲交| 国产亚洲最大av| 成年女人在线观看亚洲视频| 我的女老师完整版在线观看| 在线观看人妻少妇| 视频区图区小说| 内地一区二区视频在线| 免费观看a级毛片全部| 亚洲精品中文字幕在线视频 | 国产成人免费观看mmmm| 高清毛片免费看| 成人国产麻豆网| 久久精品国产亚洲av天美| 又大又黄又爽视频免费| 极品教师在线视频| 亚洲天堂av无毛| 亚洲精品国产av蜜桃| 人人妻人人澡人人看| 纯流量卡能插随身wifi吗| 看非洲黑人一级黄片| 久久久久久久大尺度免费视频| 久久国产乱子免费精品| 午夜激情福利司机影院| 亚洲欧美一区二区三区黑人 | 伦精品一区二区三区| 日日爽夜夜爽网站| 女人久久www免费人成看片| 高清不卡的av网站| 亚洲av二区三区四区| 嫩草影院入口| 久久6这里有精品| 一个人看视频在线观看www免费| av天堂久久9| 亚洲人成网站在线观看播放| av一本久久久久| 亚洲国产精品999| 欧美性感艳星| 国产在线男女| 日韩强制内射视频| 色5月婷婷丁香| 久久精品久久精品一区二区三区| 欧美人与善性xxx| 国产综合精华液| 久久久久久久久久久免费av| videossex国产| 午夜福利在线观看免费完整高清在| 久久午夜福利片| 亚洲成人av在线免费| 丰满少妇做爰视频| 日本黄大片高清| 日韩 亚洲 欧美在线| 亚洲精品,欧美精品| 男人狂女人下面高潮的视频| 黄片无遮挡物在线观看| 国产视频内射| 免费人妻精品一区二区三区视频| 免费在线观看成人毛片| 人体艺术视频欧美日本| 久久6这里有精品| 成人亚洲欧美一区二区av| 午夜免费鲁丝| 午夜免费观看性视频| 久久人人爽人人爽人人片va| 久久狼人影院| 一边亲一边摸免费视频| 日韩一区二区视频免费看| 色哟哟·www| 久久毛片免费看一区二区三区| 91久久精品国产一区二区三区| 久久av网站| 一级毛片久久久久久久久女| 亚洲精品一二三| 久久精品久久精品一区二区三区| 岛国毛片在线播放| 国产在视频线精品| 日韩人妻高清精品专区| 一级黄片播放器| 亚洲一区二区三区欧美精品| 美女视频免费永久观看网站| 久久精品国产自在天天线| 亚洲精品国产av蜜桃| 精品国产一区二区久久| 亚洲不卡免费看| 日日撸夜夜添| 国产成人精品一,二区| 欧美精品国产亚洲| 国产伦精品一区二区三区四那| 日本猛色少妇xxxxx猛交久久| 少妇的逼水好多| 成人影院久久| 精品人妻熟女毛片av久久网站| 毛片一级片免费看久久久久| 三级国产精品欧美在线观看| 青春草国产在线视频| 一区在线观看完整版| 日日啪夜夜爽| 国产亚洲午夜精品一区二区久久| 99re6热这里在线精品视频| 国产成人a∨麻豆精品| 亚洲第一区二区三区不卡| 男人爽女人下面视频在线观看| 久久免费观看电影| 韩国高清视频一区二区三区| 日本午夜av视频| 亚洲人成网站在线播| 99久久中文字幕三级久久日本| 久热这里只有精品99| 啦啦啦中文免费视频观看日本| 波野结衣二区三区在线| 女性被躁到高潮视频| 只有这里有精品99| 久久精品国产a三级三级三级| 亚洲精品色激情综合| 在线播放无遮挡| 少妇猛男粗大的猛烈进出视频| 亚洲国产精品一区二区三区在线| 亚洲欧美中文字幕日韩二区| 国产精品无大码| 乱码一卡2卡4卡精品| 国产精品免费大片| 18+在线观看网站| 亚洲,一卡二卡三卡| 久久人妻熟女aⅴ| 久久人人爽人人片av| 欧美bdsm另类| 国产乱人偷精品视频| 中文精品一卡2卡3卡4更新| 成人午夜精彩视频在线观看| 青春草亚洲视频在线观看| 欧美+日韩+精品| 国精品久久久久久国模美| 看十八女毛片水多多多| 大片免费播放器 马上看|