• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Defective TiO2 hollow nanospheres as photo-electrocatalysts for photo-assisted Li-O2 batteries

    2022-09-16 05:25:02HilingJioGuiruSunYnWngZexuZhngZhoWngHiruiWngHioLiMingFeng
    Chinese Chemical Letters 2022年8期

    Hiling Jio, Guiru Sun,?, Yn Wng, Zexu Zhng, Zho Wng, Hirui Wng,Hio Li,?, Ming Feng,?

    a Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China

    b Key Laboratory of Preparation and Applications of Environmental Friendly Materials of the Ministry of Education, Jilin Normal University, Changchun 130103, China

    ABSTRACT The large overpotential for conventional Li-O2 batteries is an enormous challenge, which impedes their practical application.Here, we prepare a defective TiO2 (Ov-TiO2) hollow nanosphere as photoelectrocatalyst for photo-assisted Li-O2 batteries to reduce the overpotential.Under illumination, the oxygen vacancies as a charge separation center contribute to the separation of electrons and holes.The generated electrons could promote reducing O2 to Li2O2 during oxygen reduction reaction (ORR) process,while the generated holes are beneficial to Li2O2 decomposition during oxygen evolution reaction (OER)process.Additionally, the proper concentration of oxygen vacancies will decrease the recombination rate between electrons and holes.The photo-assisted Li-O2 batteries with Ov-TiO2-650 exhibit advanced performances, such as the low overpotential (0.70 V), the fine rate capability, and the considerable reversibility accompanied with the formation/decomposition of Li 2O2.We expect that these results could open a new mind to design of highly efficient photo-electrocatalysts for photo-assisted Li-O2battery.

    Keywords:TiO2 Hollow nanospheres Oxygen vacancies Photo-electrocatalyst Li-O2 battery

    In recent years, rechargeable lithium-oxygen (Li-O2) batteries have attracted considerable attention due to their high theoretical specific energy density (~3500 Wh/kg), which is considered as a promising candidate to replace Li-ion batteries [1].A typical nonaqueous Li-O2battery consists of a Li anode, an organic electrolyte,and a porous cathode, which operates based on the formation and decomposition of lithium peroxide (Li2O2) in porous cathode during oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) [2].The discharge product Li2O2with insoluble and insulating natures will deposit in the porous cathode, which could clog the mass transport channel and passivate cathode, leading to a large overpotential and then lowering the charge–discharge effi-ciency of Li-O2batteries [3].

    As a direct strategy to enhance the reaction kinetics of Li-O2batteries, a number of electrocatalysts such as noble metals (Pt and Pd) [4] and transition metal compound (CoO [5], MoS2[6], TiC [7],and Co2P [8]) have been explored to boost the reaction kinetics of Li-O2batteries.However, the high cost of noble metals and large voltage hysteresis of transition metal compound limit their practical applications [9].Soluble redox mediators (RMs), as another alternative, have been introduced into electrolytes to achieve the low overpotential [10].Unfortunately, the shuttle effect of RMs could lead to the RMs degradation and Li anode corrosion, resulting in poor cycling stability [11].Therefore, it is significant that a new strategy is developed to accelerate the decomposition of Li2O2.

    Recently, a photo-assisted Li-O2battery as a new system has been explored to reduce overpotential and improve cycle life [12].In this system, the cathode contains a suitable semiconductor with high light harvesting capability, which can separate electrons and holes under light illumination.The generated electrons and holes are beneficial for Li2O2formation and decomposition, respectively [13].To date, some semiconductors, such as TiO2-Fe2O3[14],WO3@g-C3N4NWA [15], and Co-TABQ [16] have been reported in photo-assisted Li-O2batteries, which remarkably lower the overpotential and enhance the rate capability.Among various semiconductors, titanium dioxide (TiO2) is considered as a promising photocatalyst due to its non-toxicity, cost-effectiveness, good electrochemical stability, and superior photostability [17].Unfortunately,TiO2exhibits poor photo-absorption and low photoconversion effi-ciency in the visible light resulting from its large band gap energy[18].It has been clearly demonstrated that introducing oxygen vacancies into TiO2(i.e., black TiO2) can boost its photoresponse to solar/visible light and its photocatalytic activity [19].However, the bulk oxygen vacancies in TiO2will serve as recombination centers of photogenerated electrons and holes, causing the decrease of photocatalytic efficiency [20].Therefore, it is crucial to control the concentration of oxygen vacancies on the surface of TiO2for improvement of its photocatalytic property.

    Fig.1.(a) Schematic illustration of the preparation process of Ov-TiO2-T, (T = 550,600, 650 and 700).(b) SEM image, (c, d) TEM images, (e) HRTEM image, (f) SAED image, and (g) HAADF-STEM image and EDX elemental mapping images of Ov-TiO2-650.

    In this work, the mesoporous TiO2hollow nanospheres with various concentration of oxygen vacancies (Ov-TiO2) were synthesized at different annealing temperature, which was employed as a photo-electrocatalyst for photo-assisted Li-O2batteries.The oxygen vacancies as charge separation center can promote the separation of electrons and holes with illumination.The photoexcited electrons contribute to the reduction of O2during ORR process,while the photoexcited holes are beneficial to Li2O2decomposition during OER process.Additionally, the proper concentration of oxygen vacancies will decrease the recombination rate between electrons and holes.The photo-assisted Li-O2batteries with Ov-TiO2-650 exhibit a low overpotential of 0.70 V at a current density of 100 mA/g, a superior rate capability, and a good reversibility accompanied with the formation and decomposition of Li2O2.This work represents a promising process in the development of a highly active photo-electrocatalyst for photo-assisted Li-O2battery.

    In Fig.1a, the oxalic acid (10.05 g) was slowly poured intoN,Ndimethylformamide (DMF, 90 mL) and stirred at room temperature for 30 min.Afterwards, tetrabutyl titanate (150 μL) was added into the above solution and stirred for 30 min.The obtained solution(30 mL) was then transferred to a Teflon lined autoclave with a capacity of 50 mL for a hydrothermal treatment at 170 °C for 8 h.The formed precipitate was filtered, rinsed and dried in air at 80 °C for 24 h.The obtained white product was named P-TiO2.According to the oxygen vacancies that form under H2reduction, Ov-TiO2-T(T= 550, 600, 650 and 700) were obtained by annealing pristine TiO2at 550, 600, 650 and 700 °C under Ar-H2(volume ratio of 92:8) atmosphere with a heating rate of 5 °C/min for 7 h, respectively.In comparison, TiO2-650 is acquired after calcining at 650 °C in air for 7 h.

    The morphology of P-TiO2, TiO2-650, and Ov-TiO2-T (T= 550,600, 650 and 700) were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM).In Fig.1b and Fig.S1a (Supporting information), the P-TiO2, TiO2-650 and Ov-TiO2-T (T= 550, 600, 650, and 700) are uniform nanospheres with diameter of ~500 nm.The as-prepared TiO2nanospheres present a hollow structure (Fig.1c and Fig.S1b in Supporting information).In Fig.1d and Fig.S1c (Supporting information), it can be observed that the as-prepared TiO2nanospheres exhibit porous structures [21].The N2adsorption/desorption isotherms indicate that as-prepared TiO2nanospheres are mesoporous structure with a pore size distribution from 5 nm to 20 nm(Fig.S2 in Supporting information).Note that the morphology and size of Ov-TiO2-T (T= 550, 600, 650 and 700) are similar with PTiO2, implying that the introduced oxygen vacancies do not alter the microstructure of TiO2.The high-resolution transmission electron microscopy (HRTEM) images of as-prepared TiO2show the lattice fringes with distances of 0.35 nm, which corresponds to the (101) lattice plane of anatase TiO2(JCPDS #PDF No.21-1272)(Fig.1e and Fig.S1d in Supporting information).Interestingly, with the increasing of temperature, the distance of lattice plane is increased, which might be caused by the regrowth of grain [22].As shown in Fig.1f and Fig.S1e (Supporting information), the selected area electron diffraction (SAED) of as-prepared TiO2display (101),(004), and (200) planes, proving the polycrystalline nature [23,24].The high-angle annular dark-field scanning TEM (HAADF-STEM)images and the corresponding energy dispersive X-ray (EDX) elemental mapping images for as-prepared TiO2are exhibited in Fig.S1f (Supporting information) and Fig.1g, which clearly confirms the existence and homogeneous distribution of Ti and O elements.The atomic ratios of O and Ti are 1.88, 1.57, 1.54 and 1.56 for Ov-TiO2-T (T= 550, 600, 650 and 700), respectively, suggesting a larger concentration of oxygen vacancies for Ov-TiO2-650 than that of others (Table S1 in Supporting information).

    Fig.2a displays the X-ray diffraction (XRD) patterns of asprepared P-TiO2, TiO2-650, and Ov-TiO2-T (T= 550, 600, 650 and 700).The detected diffraction peaks at 25.2°, 37.8°, 48.0°, 53.9°,55.0°, 62.7°, 68.7°, 70.3° and 75.0° are assigned to the (101), (004),(200), (105), (211), (204), (116), (220), and (215) crystal planes of anatase TiO2(JCPDS #PDF No.21-1272) [25].Raman spectra of asprepared TiO2show five peaks at 167, 198, 396, 518 and 636 cm?1,which are attributed to the Eg1, Eg2, B1g, A1gand Eg3Raman active modes of the anatase TiO2, respectively (Fig.2b).With the increases of hydrogen reduction temperature, the peak of Eg1shift to smaller wavenumbers (Fig.S3 in Supporting information), resulting from the charge transfer of surface disorder between O2?and Ti4+,further suggesting that the oxygen vacancy and Ti3+exists in the as-prepared Ov-TiO2[26].Note that the Ov-TiO2-700 is an exception, which mainly because when the temperature rises to 700 °C,more energy separated electrons from oxygen vacancies and transferred to Ti4+[27].

    The chemical state of the TiO2-650 and Ov-TiO2-650 are characterized by X-ray photoelectron spectroscopy (XPS).The survey spectra exhibit that TiO2-650 and Ov-TiO2-650 consist of Ti and O elements (Fig.S4 in Supporting information), which agrees with the results of the above EDX mapping.The Ti 2p spectra of TiO2-650 and Ov-TiO2-650 are displayed in Fig.2c.The peaks at 458.82 and 464.58 eV represent Ti4+.While the peaks at 458.05 and 463.75 eV are a characteristic of Ti3+.In Fig.2d, the O 1s spectra of TiO2-650 and Ov-TiO2-650 show two peaks at 532.25 and 530.13 eV, which is characteristic of the lattice oxygen (O-Ti)and hydroxyl group and/or surface adsorbed oxygen, respectively[28,29].Note that the ratio of adsorbed oxygen significantly enhances by H2reduction, demonstrating that oxygen vacancies is beneficial to improving surface adsorption of oxygen species [30].Equally, the atomic ratios of O and Ti are calculated, as shown in Table S2 (Supporting information).The results show that the Ov-TiO2-650 possesses highest concentration of oxygen vacancies,which is consistent with the EDX mapping results.The electron spin resonance (ESR) spectra of TiO2-650 and Ov-TiO2-650 are obtained at room temperature to determine unpaired electrons in oxygen vacancies [31].As shown in Fig.2e, the TiO2-650 only presents a baseline noise signal, while the Ov-TiO2-650 exhibits an unpaired electron signal atg= 2.0014, revealing the existence of oxygen vacancies in Ov-TiO2-650.The Ti L-edge X-ray absorbtion spectrum (XAS) profiles of TiO2-650 and Ov-TiO2-650 are shown in Fig.2f, which display four well-defined peaks (labeled as A, B,C and D), representing the transitions from Ti 2p to Ti 3d levels of 2p3/2→3d t2g, 2p3/2→3d eg, 2p1/2→3d t2g, and 2p1/2→3d eg, respectively.The peak of B is split into two signals due to distortion of the octahedron formed by the ligands in TiO2[32–34].Generally,the intensity of characteristic peaks relates the Ti valence state.TheI(L2)/I(L3) intensity ratio for TiO2-650 and Ov-TiO2-650 is 1.266 and 0.692, respectively, further suggesting a high concentration of Ti3+ions in Ov-TiO2-650.

    Fig.2.(a) XRD patterns and (b) Raman spectra of as-prepared P-TiO2, TiO2-650, and Ov-TiO2-T (T = 550, 600, 650 and 700).XPS core-level spectra of (c) Ti 2p and (d) O 1s of TiO2-650 and Ov-TiO2-650.(e) ESR spectra, (f) Ti L-edge XAS profiles, (g) UV–vis absorption spectra, (h) the corresponding Kubelke-Munk transformed diffuse reflectance spectra, and (i) PL spectra of TiO2-650 and Ov-TiO2-650.

    In Fig.2g, the ultraviolet visible spectrophotometer (UV–vis) absorption spectra are used to identify the optical absorption properties of the TiO2-650 and Ov-TiO2-650.In comparison with the TiO2-650, the Ov-TiO2-650 exhibits a clearly shift in the onset of absorption from the UV to visible light region.In Fig.2h, the bandgap of Ov-TiO2-650 is about 2.38 eV, which is smaller than that of TiO2-650 (3.16 eV), indicating that the solar-driven photocatalytic activity of TiO2can be enhanced by introducing oxygen vacancies [35].Equally, the photoluminescence (PL) spectra are carried out to evaluate the recombination behavior of the photogenerated carriers in the TiO2-650 and Ov-TiO2-650 (Fig.2i).the emission peak for the Ov-TiO2-650 is much lower than that for TiO2-650, demonstrating that the introducing oxygen vacancies into TiO2contributes to decrease the electron-hole recombination rate [36,37].

    The catalytic activity of as-prepared TiO2is studied by evaluating the electrochemical performance of photo-assisted Li-O2batteries with TiO2-650 and Ov-TiO2-T (T= 550, 600, 650 and 700).In Fig.3a, under illumination, the Li-O2cell with Ov-TiO2-650 delivers highest discharge and charge specific capacities at 500 mA/g,which reaches 9390 and 9853 mAh/g, respectively.Note that the cells show two platforms during the charging process.The first platform at ~3.75 V is attributed to the decomposition of Li2O2.The second platform located at ~4.40 V, corresponding to the decomposition of electrolyte.Fig.S5a (Supporting information) displays the first discharge-charge profiles of Li-O2cells with TiO2-650 and Ov-TiO2-T (T= 550, 600, 650 and 700) at 500 mA/g under the fixed capacity of 1000 mAh/g with illumination.The discharge and charge voltage platform for a cell with Ov-TiO2-650 are 2.80 and 3.75 V, respectively, leading to an overpotential of 0.95 V,which lower than that of Li-O2cells with TiO2-650 and Ov-TiO2-T(T= 550, 600, 700).Therefore, the Ov-TiO2-650 could be considered to contain the proper concentration of oxygen vacancies on its surface in this work, which could decrease the recombination rate between electrons and holes [38,39].

    The Li-O2batteries based on the Ov-TiO2-650 are tested to study the impact of the illumination on cell performance in the discharge process.The first discharge-charge curves for the Li-O2batteries at 100 mA/g under a capacity limit of 1000 mAh/g with and without illumination are presented in Fig.3b.Under illumination, the discharge potential increases from 2.72 V to 2.86 V and the charge potential decreases from 3.8 V to 3.56 V.The reduced discharge and charge overpotentials with illumination are attributed to the photo-energy [40].Additionally, the rate performance was measured at different current densities, as shown in Fig.3c and Fig.S5b (Supporting information).In Fig.3c, the discharge–charge voltage plateau for a cell cycled with illumination are slightly changed from 2.86/3.56 V at 100 mA/g to 2.82/3.77 V at 500 mA/g.In contrast, the discharge voltage plateau for a cell cycled without illumination significantly decreases to 2.70 V, and the charge voltage increases to 4.01 V, at a high current density of 500 mA/g (Fig.S5b).Moreover, the cycle abilities of the cells were investigated at current density of 500 mA/g with a capacity limit of 1000 mAh/g.As shown in Fig.S6 (Supporting information), the cell shows a good cyclability of 100 cycles with illumination.For the cell without illumination, it only sustains 62 cycles.These results imply that the Ov-TiO2-650 as photo-electrocatalysts in photo-assisted Li-O2battery not only contributes to the Li2O2formation at a high discharge voltage but also promotes its decomposition at a low charge voltage [41].

    Fig.3.(a) The discharge–charge curves of photo-assisted rechargeable Li-O2 battery with TiO2-650 and Ov-TiO2-T (T = 550, 600, 650 and 700) at 500 mA/g within a potential range of 2.2–4.4 V vs. Li/Li+.(b) The first discharge-charge profiles of Li-O2 cells with Ov-TiO2-650 with and without illumination at 100 mA/g.(c) The first discharge–charge profiles of photo-assisted Li-O2 cell with Ov-TiO2-650 with at different densities.SEM images of Ov-TiO2-650 after discharge (d) without and (e) with illumination.SEM images of Ov-TiO2-650 after recharge (f) with and (g) without illumination. In situ XRD patterns of Li-O2 cell (h) with and (i) without illumination.

    The reversibility of Li-O2cells using Ov-TiO2-650 catalyst with and without illumination is investigated through characterizing the cathodes at different electrochemical states by SEM andin situXRD.In Fig.S7 (Supporting information), the super P (SP) particles and Ov-TiO2-650 nanospheres are distributed on the surface of cathode.After discharge, the film-like discharge product deposits on the surface of Ov-TiO2-650 without illumination (Fig.3d).Note that the large film-like products on the surface of catalyst limit the contact between electrolyte and active sites, which hinders the further discharge–charge reactions [14].In contrast, under illumination, toroidal-like discharge product forms on the surface of Ov-TiO2-650 (Fig.3e).After recharge, some residues of film-like product remain without illumination (Fig.3f), while the toroidal-like products totally disappear with illumination (Fig.3g), suggesting a good reversibility of Li-O2cells with Ov-TiO2-650 under illumination.Equally, the morphology of discharge products was studied after deep discharge.In Fig.S8 (Supporting information), the morphology of the discharge products remained unchanged with and without illumination.In Fig.S9 (Supporting information), after discharge, the cathodes were characterized by Raman.The peaks of Li2O2at 788 cm?1are observed for cathodes cycled with and without illumination, indicating that the toroidal-like and film-like discharge products are Li2O2.Figs.3h and i display thein situXRD patterns of Li-O2cells using Ov-TiO2-650 catalyst cycled with and without illumination, respectively.The new diffraction peaks corresponding to Li2O2appear and gradually increase with the discharge reaction for both cells, which proves the film-like and toroidal-like products are Li2O2.During recharge process, the intensity of Li2O2diffraction peaks gradually decreases until it disappears for a cell cycled with illumination (Fig.3h).In contrast, the Li2O2diffraction peaks always exist after recharge for a cell cycled without illumination (Fig.3i) [42,43].The results further confirm the photo-assistance could improve the reversibility of Li-O2cells with Ov-TiO2-650, which are consistent with the above SEM results.Additionally, the Nyquist plots of the cells using Ov-TiO2-650 catalyst before and after cycling without and with illumination are shown in Figs.S10a and b (Supporting information).In Fig.S10c(Supporting information), the corresponding impedances are obtained by fitting using the equivalent circuit.After 2nd cycles, the total resistance value is 154.12Ωfor a cell cycled without illumination, which significantly higher than that of a cell cycled with illumination (108.89Ω).These results reveal that a cell using Ov-TiO2-650 catalyst with illumination exhibits a better reversibility than without illumination, providing an evidence of the high ORR and OER actives of Ov-TiO2-650 induced by both photo-assistance and oxygen vacancies [39].

    The ORR and OER performances with and without illumination are studied to verify the discharge/charge reaction mechanisms for photo-assisted Li-O2batteries with Ov-TiO2-650.The cyclic voltammetry (CV) curves for the Li-O2cells using Ov-TiO2-650 catalyst at 0.5 mV/s with and without illumination are exhibited in Fig.4a and Fig.S11 (Supporting information).Compared with a cell without illumination, a higher onset reduction potential and a larger cathodic current are found for a cell under illumination.The rate capability of the Li-O2cells with Ov-TiO2-650 from 50 mA/g to 1000 mA/g are studied, as shown in Fig.4b.The cell maintained a high discharge voltage (2.71 V) at a large current density of 1000 mA/g, which clearly exceed the cell without illumination (2.51 V at 1000 mA/g).These results indicate Ov-TiO2-650 with a higher activity toward ORR under illumination, which could be attributed to the photogenerated electrons [44,45].Additionally, the kinetic properties of Ov-TiO2-650 with illumination during the charge process are assessed by executing a Li2O2contained experiment.The preloaded Li2O2cathodes are made based on the commercial Li2O2and Ov-TiO2-650.Fig.4c presents the linear sweep voltammetry (LSV) curves for the Li-O2batteries utilizing preloaded Li2O2cathodes with and without illumination at a scan rate of 0.2 mV/s.It can be observed that both cells show the anodic peak related to decomposition of Li2O2[14].Significantly, the anodic peak for the cell with illumination is higher than the cell without illumination, confirming that the Ov-TiO2-650 is beneficial to promote the decomposition of Li2O2under illumination, which are consistent with the CV results (Fig.S11).This impact is further demonstrated by the constant current charging,as shown in Fig.4d and Fig.S12 (Supporting information).The charge voltage of Li-O2batteries with preloaded Li2O2are 3.34,3.85, and 3.88 V at 100, 500, and 1000 mA/g, respectively with illumination, outperforming the cell without illumination.These results provide an evidence that the photo-assistance contributes to enhancing the reaction kinetics of Ov-TiO2-650 in OER process,which could be contributed by the photogenerated holes [46,47].In Fig.4e, based on above experimental results, the ORR and OER mechanisms for a photo-assisted Li-O2batteries with Ov-TiO2-650 are proposed.The Ov-TiO2-650 will promote the separation of electrons and holes under illumination.During discharge process, the photoexcited electrons are uniformly distributed on surface of Ov-TiO2-650, which could accelerate the rate of LiO2generation, thus facilitating the growth of Li2O2.During charge process, the photogenerated electrons migrate to Li anode by external circuit due to the force of the electric field, leading to the reduction of Li+to Li and deposition on surface of Li anode [48].As a result, the photoexcited holes are separated to the surface of Ov-TiO2-650, which helps to the decomposition of Li2O2at a low charge voltage.Therefore, the Li-O2batteries with Ov-TiO2-650 exhibit superior electrochemical performance with illumination, ascribing to appropriate a concentration of oxygen vacancies of Ov-TiO2-650, which could provide a proper band gap and abundant active sites for the high efficiency separation of electrons and holes.

    Fig.4.(a) CV curves of Li-O2 cells with and without illumination at 0.5 mV/s with 2.0–2.9 V vs. Li/Li+.(b) Rate capability of Li-O2 cells during the discharge process with and without illumination, (c) the LSV curves for the Li-O2 cells with preloaded Li2O2 cathodes with and without illumination at 0.2 mV/s.(d) Charge curves of the Li-O2 cells with preloaded Li2O2 cathodes with and without illumination at 500 mA/g.(e) Schematic diagrams of the reaction mechanisms for the photo-assisted Li-O2 batterie with Ov-TiO2-650.

    In summary, we successfully prepared the Ov-TiO2-650 as a photo-electrocatalyst for photo-assisted Li-O2batteries.The Ov-TiO2-650 presents a microstructure with abundant mesoporous channels, which could provide paths for the diffusion of Li+and O2, as well as enough space for the deposition of Li2O2.The oxygen vacancies are as charge separation center, which contribute to the separation of electrons and holes with illumination.The photogenerated electrons are beneficial to reducing O2to Li2O2during discharge process.Equally, the photogenerated holes could promote the decomposition of Li2O2during charge process.Consequently,the photo-assisted Li-O2batteries with Ov-TiO2-650 exhibit advanced performances, such as the low overpotential (0.70 V), the fine rate capability, and the considerable reversibility accompanied with the formation/decomposition of Li2O2.We believe that the work could offer an insight into the design of highly efficient photo-electrocatalyst for photo-assisted Li-O2battery.

    Declaration of competing interest

    The authors declare no conflicts of interests.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.21978110, 51772126, and 52171210), the Jilin Province Science and Technology Department Program (Nos.20200201187JC, 20190201309JC, and YDZJ202101ZYTS047), the“13thfive-year” Science and Technology Project of Jilin Provincial Education Department (Nos.JJKH20200407KJ and JJKH20210444KJ)and the Jilin Province Development and Reform Commission Program (No.2020C026-3).Allocation of beamtime at 4B9B, BSRF, Beijing, China, is gratefully acknowledged.The authors would like to thank Dr.Jiaou Wang and Dr.Kaiqi Nie for the help in soft-X-ray absorption spectrum.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.11.086.

    韩国av一区二区三区四区| 亚洲精品在线观看二区| 成人国产综合亚洲| 国产又色又爽无遮挡免费看| 香蕉久久夜色| tocl精华| 午夜a级毛片| 国产亚洲欧美98| 亚洲国产毛片av蜜桃av| 亚洲在线自拍视频| or卡值多少钱| 麻豆久久精品国产亚洲av| 淫妇啪啪啪对白视频| 十分钟在线观看高清视频www| 2021天堂中文幕一二区在线观 | 成人一区二区视频在线观看| 亚洲国产精品sss在线观看| √禁漫天堂资源中文www| 国产不卡一卡二| 久9热在线精品视频| 国产免费av片在线观看野外av| 国语自产精品视频在线第100页| 中文在线观看免费www的网站 | 国产亚洲欧美在线一区二区| 老熟妇仑乱视频hdxx| 亚洲自偷自拍图片 自拍| 精品欧美一区二区三区在线| 大型黄色视频在线免费观看| 久久久久精品国产欧美久久久| 国产免费av片在线观看野外av| 欧美不卡视频在线免费观看 | 欧美日韩一级在线毛片| 日韩av在线大香蕉| av有码第一页| 久久精品国产亚洲av香蕉五月| 波多野结衣高清无吗| 看片在线看免费视频| 88av欧美| 久久久久久久久免费视频了| 又大又爽又粗| 成人免费观看视频高清| 欧美在线黄色| 女同久久另类99精品国产91| 成人精品一区二区免费| 国产激情久久老熟女| 欧美日韩一级在线毛片| 亚洲国产精品成人综合色| 狠狠狠狠99中文字幕| 一区二区三区激情视频| 精品一区二区三区av网在线观看| 亚洲av美国av| 制服人妻中文乱码| 久久精品国产亚洲av高清一级| av欧美777| 精品久久久久久久久久免费视频| 精品国产乱码久久久久久男人| 日韩免费av在线播放| 最近在线观看免费完整版| 国产精品久久久久久亚洲av鲁大| 丰满人妻熟妇乱又伦精品不卡| 亚洲第一av免费看| 日韩一卡2卡3卡4卡2021年| 一本精品99久久精品77| 夜夜爽天天搞| 日韩欧美国产一区二区入口| 麻豆一二三区av精品| 欧美色欧美亚洲另类二区| 69av精品久久久久久| 90打野战视频偷拍视频| 最新美女视频免费是黄的| 欧美日韩亚洲综合一区二区三区_| 色在线成人网| 一级a爱视频在线免费观看| av片东京热男人的天堂| 亚洲精品久久国产高清桃花| 久久久久久大精品| 国产精品久久久人人做人人爽| 最好的美女福利视频网| 黄色 视频免费看| 午夜激情av网站| 久久国产亚洲av麻豆专区| 久久国产精品人妻蜜桃| 在线看三级毛片| 国产色视频综合| cao死你这个sao货| 欧美性猛交╳xxx乱大交人| 亚洲精品美女久久av网站| 久久精品aⅴ一区二区三区四区| 亚洲精品在线观看二区| 麻豆成人av在线观看| 国产精品亚洲美女久久久| 可以在线观看毛片的网站| 成人18禁在线播放| 美女扒开内裤让男人捅视频| 久久亚洲真实| 欧美+亚洲+日韩+国产| 精品少妇一区二区三区视频日本电影| 女人被狂操c到高潮| 免费看美女性在线毛片视频| 久久精品人妻少妇| 欧美 亚洲 国产 日韩一| av片东京热男人的天堂| 久久久久国内视频| 国产高清有码在线观看视频 | 日韩欧美在线二视频| 精品无人区乱码1区二区| 久久久久九九精品影院| 亚洲第一av免费看| 女同久久另类99精品国产91| 久久 成人 亚洲| 久久热在线av| 亚洲第一电影网av| 桃色一区二区三区在线观看| 制服诱惑二区| 这个男人来自地球电影免费观看| 狠狠狠狠99中文字幕| 免费看美女性在线毛片视频| 欧美激情 高清一区二区三区| 久久精品国产亚洲av香蕉五月| 亚洲国产精品999在线| 波多野结衣高清无吗| 少妇 在线观看| 丁香六月欧美| 三级毛片av免费| 真人一进一出gif抽搐免费| 久久精品aⅴ一区二区三区四区| 97碰自拍视频| 久久久久国产精品人妻aⅴ院| 午夜日韩欧美国产| 亚洲成av片中文字幕在线观看| 18禁观看日本| 夜夜看夜夜爽夜夜摸| 亚洲精品一卡2卡三卡4卡5卡| 日韩精品中文字幕看吧| 国产伦在线观看视频一区| 欧美日本视频| 亚洲国产日韩欧美精品在线观看 | 国产人伦9x9x在线观看| 国产久久久一区二区三区| 精品一区二区三区四区五区乱码| 高清毛片免费观看视频网站| 精品国产一区二区三区四区第35| 亚洲欧美激情综合另类| 国产av又大| 后天国语完整版免费观看| av片东京热男人的天堂| 久久久国产成人免费| 青草久久国产| 中国美女看黄片| 亚洲狠狠婷婷综合久久图片| 久久人人精品亚洲av| www日本在线高清视频| 亚洲一区中文字幕在线| 午夜成年电影在线免费观看| 亚洲人成伊人成综合网2020| 中国美女看黄片| 久久性视频一级片| 久99久视频精品免费| 国产亚洲欧美在线一区二区| 国产欧美日韩一区二区三| av欧美777| 欧美激情 高清一区二区三区| 国产av在哪里看| 精品国产超薄肉色丝袜足j| 午夜激情av网站| 一本大道久久a久久精品| 亚洲午夜精品一区,二区,三区| 国产精品免费视频内射| 日本成人三级电影网站| 麻豆成人av在线观看| 国产精品亚洲一级av第二区| 久久午夜综合久久蜜桃| 91国产中文字幕| 国产精品 国内视频| 十八禁人妻一区二区| 久久午夜亚洲精品久久| 听说在线观看完整版免费高清| 久久久久久久午夜电影| 亚洲无线在线观看| 久久久久久大精品| 久久久精品欧美日韩精品| 亚洲狠狠婷婷综合久久图片| 欧美日韩亚洲综合一区二区三区_| 午夜亚洲福利在线播放| 久久精品国产亚洲av高清一级| 日韩av在线大香蕉| 在线观看午夜福利视频| 两性夫妻黄色片| 在线观看免费午夜福利视频| 给我免费播放毛片高清在线观看| 麻豆成人午夜福利视频| 在线观看日韩欧美| 美女 人体艺术 gogo| 久久久久久亚洲精品国产蜜桃av| 成熟少妇高潮喷水视频| 黄色丝袜av网址大全| 精品一区二区三区av网在线观看| 亚洲精品av麻豆狂野| 亚洲av片天天在线观看| 亚洲最大成人中文| www.精华液| 免费在线观看黄色视频的| 首页视频小说图片口味搜索| 制服人妻中文乱码| 成人18禁在线播放| 国产成人欧美在线观看| 亚洲人成电影免费在线| 午夜精品在线福利| 亚洲精品久久国产高清桃花| 日本a在线网址| 国产精品久久久久久人妻精品电影| 日日干狠狠操夜夜爽| 极品教师在线免费播放| 黄频高清免费视频| 日本a在线网址| 高清毛片免费观看视频网站| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲成a人片在线一区二区| 色av中文字幕| 成人18禁高潮啪啪吃奶动态图| 看免费av毛片| 国产精品亚洲美女久久久| 欧美激情极品国产一区二区三区| 国产一卡二卡三卡精品| 久久久久久国产a免费观看| 丰满的人妻完整版| 午夜福利一区二区在线看| 日韩欧美一区二区三区在线观看| 中文字幕人妻丝袜一区二区| 国产精品九九99| 亚洲中文av在线| 51午夜福利影视在线观看| 中国美女看黄片| 亚洲一卡2卡3卡4卡5卡精品中文| 成人三级做爰电影| 日日夜夜操网爽| 日韩精品中文字幕看吧| 亚洲色图av天堂| 曰老女人黄片| 一区二区三区激情视频| 精品人妻1区二区| 大型黄色视频在线免费观看| 波多野结衣av一区二区av| 香蕉av资源在线| 变态另类丝袜制服| 91成年电影在线观看| 日日干狠狠操夜夜爽| 日韩av在线大香蕉| 亚洲五月婷婷丁香| 国产视频内射| 国产精品 欧美亚洲| 亚洲av中文字字幕乱码综合 | 搞女人的毛片| 不卡av一区二区三区| 亚洲一区中文字幕在线| 老司机靠b影院| 午夜福利在线在线| 亚洲国产毛片av蜜桃av| 深夜精品福利| 免费人成视频x8x8入口观看| 国产极品粉嫩免费观看在线| 亚洲国产中文字幕在线视频| 国产aⅴ精品一区二区三区波| 亚洲天堂国产精品一区在线| netflix在线观看网站| 亚洲人成网站在线播放欧美日韩| 变态另类成人亚洲欧美熟女| 日日爽夜夜爽网站| 男男h啪啪无遮挡| 欧美不卡视频在线免费观看 | 色老头精品视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 无遮挡黄片免费观看| 99热只有精品国产| 99国产精品一区二区蜜桃av| 亚洲精品久久国产高清桃花| 久久精品成人免费网站| 中文字幕精品亚洲无线码一区 | 欧美国产精品va在线观看不卡| 国产成人欧美在线观看| 精品无人区乱码1区二区| 一本精品99久久精品77| 中文资源天堂在线| 国产99白浆流出| 国产又色又爽无遮挡免费看| 国产三级黄色录像| 1024视频免费在线观看| 国产亚洲欧美98| www.熟女人妻精品国产| 午夜日韩欧美国产| 国产一区二区三区视频了| 亚洲第一av免费看| 琪琪午夜伦伦电影理论片6080| 视频在线观看一区二区三区| 国产精品亚洲av一区麻豆| 久久久国产成人精品二区| 一边摸一边抽搐一进一小说| 一本一本综合久久| 亚洲欧美精品综合久久99| 黄色丝袜av网址大全| 色综合婷婷激情| 亚洲 欧美 日韩 在线 免费| 午夜免费成人在线视频| 国产精品九九99| 中亚洲国语对白在线视频| 精品无人区乱码1区二区| 国内精品久久久久精免费| 成年版毛片免费区| 久久人人精品亚洲av| 国产一区二区在线av高清观看| 视频在线观看一区二区三区| 精品久久蜜臀av无| 色播在线永久视频| 麻豆久久精品国产亚洲av| 国产蜜桃级精品一区二区三区| 国内毛片毛片毛片毛片毛片| 欧美色视频一区免费| av片东京热男人的天堂| 欧美国产日韩亚洲一区| 久久精品国产综合久久久| 日韩免费av在线播放| 久久婷婷人人爽人人干人人爱| 黄色视频,在线免费观看| 制服诱惑二区| 在线播放国产精品三级| 美国免费a级毛片| 日韩欧美国产一区二区入口| 国产av不卡久久| 国产精品一区二区三区四区久久 | 一级片免费观看大全| 老司机午夜福利在线观看视频| 波多野结衣巨乳人妻| 国产一级毛片七仙女欲春2 | 精品久久蜜臀av无| 91九色精品人成在线观看| 神马国产精品三级电影在线观看 | 国产av不卡久久| 99在线视频只有这里精品首页| 淫妇啪啪啪对白视频| av免费在线观看网站| 日韩中文字幕欧美一区二区| 一区二区日韩欧美中文字幕| 日韩欧美免费精品| 一本久久中文字幕| 精品久久久久久久久久久久久 | 97碰自拍视频| 久久久水蜜桃国产精品网| 久久午夜亚洲精品久久| 久久热在线av| 亚洲 欧美 日韩 在线 免费| 日韩 欧美 亚洲 中文字幕| 免费女性裸体啪啪无遮挡网站| 久久这里只有精品19| xxx96com| 亚洲人成网站在线播放欧美日韩| 国产又色又爽无遮挡免费看| 日本a在线网址| 特大巨黑吊av在线直播 | 亚洲av日韩精品久久久久久密| 真人一进一出gif抽搐免费| xxx96com| 久久精品91蜜桃| 深夜精品福利| 后天国语完整版免费观看| 亚洲在线自拍视频| 夜夜看夜夜爽夜夜摸| 久久久久久久久久黄片| 黄片大片在线免费观看| 中出人妻视频一区二区| 波多野结衣巨乳人妻| 99久久久亚洲精品蜜臀av| 国产私拍福利视频在线观看| 1024手机看黄色片| 国产激情欧美一区二区| 波多野结衣高清无吗| 免费电影在线观看免费观看| 中国美女看黄片| 法律面前人人平等表现在哪些方面| 亚洲av五月六月丁香网| 欧美黑人精品巨大| 麻豆av在线久日| 99热这里只有精品一区 | 国产爱豆传媒在线观看 | 国产不卡一卡二| 久久香蕉国产精品| 真人一进一出gif抽搐免费| 日韩欧美国产在线观看| 又黄又爽又免费观看的视频| 男人舔女人下体高潮全视频| 中国美女看黄片| 亚洲人成网站高清观看| 色哟哟哟哟哟哟| 啦啦啦 在线观看视频| 亚洲成人久久爱视频| 91九色精品人成在线观看| 白带黄色成豆腐渣| 国产又色又爽无遮挡免费看| 两个人视频免费观看高清| 校园春色视频在线观看| 国产亚洲精品久久久久久毛片| 欧美激情极品国产一区二区三区| 桃色一区二区三区在线观看| 黄色毛片三级朝国网站| 在线观看www视频免费| 亚洲熟妇熟女久久| 女警被强在线播放| 女人爽到高潮嗷嗷叫在线视频| 国产亚洲精品第一综合不卡| 亚洲欧美一区二区三区黑人| 午夜久久久在线观看| 又紧又爽又黄一区二区| 波多野结衣高清作品| 热99re8久久精品国产| 一本综合久久免费| 国内揄拍国产精品人妻在线 | 别揉我奶头~嗯~啊~动态视频| 久久国产亚洲av麻豆专区| 亚洲一区中文字幕在线| 亚洲国产毛片av蜜桃av| 亚洲av日韩精品久久久久久密| 男人的好看免费观看在线视频 | 精品第一国产精品| 欧美一区二区精品小视频在线| 久久久精品欧美日韩精品| 婷婷丁香在线五月| 国产亚洲av高清不卡| 久久久久久国产a免费观看| 亚洲精品久久国产高清桃花| 国产人伦9x9x在线观看| 成人永久免费在线观看视频| 日韩成人在线观看一区二区三区| 久久精品成人免费网站| 亚洲精品av麻豆狂野| 日韩免费av在线播放| or卡值多少钱| 最新在线观看一区二区三区| 搡老熟女国产l中国老女人| 最好的美女福利视频网| 欧美在线一区亚洲| 国产成人av激情在线播放| 每晚都被弄得嗷嗷叫到高潮| 亚洲熟妇中文字幕五十中出| 欧美色欧美亚洲另类二区| 精品福利观看| 一二三四社区在线视频社区8| 日韩一卡2卡3卡4卡2021年| 日韩精品中文字幕看吧| 亚洲av美国av| aaaaa片日本免费| 国产精品免费视频内射| 人人妻人人澡欧美一区二区| 亚洲七黄色美女视频| 亚洲人成网站高清观看| 无遮挡黄片免费观看| 午夜免费激情av| 成人永久免费在线观看视频| 国产精品,欧美在线| 国产视频内射| 不卡一级毛片| cao死你这个sao货| 精品高清国产在线一区| 国产蜜桃级精品一区二区三区| 99久久国产精品久久久| 亚洲色图av天堂| 国产三级黄色录像| 熟女少妇亚洲综合色aaa.| 悠悠久久av| 欧美zozozo另类| 丁香六月欧美| 久久婷婷人人爽人人干人人爱| 99久久国产精品久久久| 变态另类成人亚洲欧美熟女| 日本免费a在线| 黑人操中国人逼视频| АⅤ资源中文在线天堂| 最近最新中文字幕大全电影3 | 久久久久久久久久黄片| 久久草成人影院| www.自偷自拍.com| 这个男人来自地球电影免费观看| 91在线观看av| 波多野结衣高清作品| 老司机福利观看| 国内少妇人妻偷人精品xxx网站 | 国产熟女xx| 在线免费观看的www视频| 在线av久久热| 国产99白浆流出| 久久精品国产亚洲av高清一级| 国内精品久久久久精免费| 久久国产精品男人的天堂亚洲| 好男人在线观看高清免费视频 | 天天添夜夜摸| 精品第一国产精品| 搡老岳熟女国产| 国产成人一区二区三区免费视频网站| 亚洲午夜精品一区,二区,三区| videosex国产| 国产在线精品亚洲第一网站| 天天躁狠狠躁夜夜躁狠狠躁| 别揉我奶头~嗯~啊~动态视频| 国产精品免费视频内射| 亚洲七黄色美女视频| 精品卡一卡二卡四卡免费| 波多野结衣高清作品| 法律面前人人平等表现在哪些方面| 日韩精品青青久久久久久| 99riav亚洲国产免费| 欧美日韩瑟瑟在线播放| 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美国产在线观看| 国产一区在线观看成人免费| 日韩一卡2卡3卡4卡2021年| 丝袜在线中文字幕| 亚洲精品久久国产高清桃花| 少妇熟女aⅴ在线视频| 亚洲人成77777在线视频| 欧美一级a爱片免费观看看 | 久久久久亚洲av毛片大全| 黄片大片在线免费观看| 亚洲自偷自拍图片 自拍| 视频区欧美日本亚洲| 久久热在线av| 色综合亚洲欧美另类图片| 亚洲成a人片在线一区二区| 欧美亚洲日本最大视频资源| 一级片免费观看大全| 日本熟妇午夜| av在线天堂中文字幕| 真人做人爱边吃奶动态| 欧美黑人欧美精品刺激| 91大片在线观看| 黄色女人牲交| 亚洲精品国产一区二区精华液| 国产在线观看jvid| 欧美丝袜亚洲另类 | 久久精品国产亚洲av香蕉五月| 国产成人av教育| 日本黄色视频三级网站网址| 满18在线观看网站| 中文资源天堂在线| 美女高潮到喷水免费观看| 天堂影院成人在线观看| 久久狼人影院| 国产精品亚洲av一区麻豆| 欧美+亚洲+日韩+国产| 国产av又大| 中文亚洲av片在线观看爽| 亚洲国产精品成人综合色| 中文字幕精品免费在线观看视频| 成人免费观看视频高清| 人妻丰满熟妇av一区二区三区| 1024香蕉在线观看| 99久久国产精品久久久| 免费在线观看视频国产中文字幕亚洲| 91成年电影在线观看| 欧美中文综合在线视频| 日本黄色视频三级网站网址| 国产精品 国内视频| 亚洲一区中文字幕在线| 黄频高清免费视频| 好看av亚洲va欧美ⅴa在| 91成年电影在线观看| 国产精品野战在线观看| 一二三四社区在线视频社区8| 观看免费一级毛片| 国产免费av片在线观看野外av| 一卡2卡三卡四卡精品乱码亚洲| 天天躁狠狠躁夜夜躁狠狠躁| av片东京热男人的天堂| 午夜福利在线在线| 亚洲人成伊人成综合网2020| 97碰自拍视频| 国产成人av教育| 91字幕亚洲| 中文字幕精品亚洲无线码一区 | 国产精品久久久久久精品电影 | 国产精品久久久av美女十八| 久久久久久亚洲精品国产蜜桃av| 免费看a级黄色片| e午夜精品久久久久久久| 日本五十路高清| 久久精品国产99精品国产亚洲性色| 神马国产精品三级电影在线观看 | 日韩精品中文字幕看吧| 最新在线观看一区二区三区| 国产1区2区3区精品| 天堂动漫精品| 美国免费a级毛片| av视频在线观看入口| 一级a爱视频在线免费观看| 1024手机看黄色片| 精华霜和精华液先用哪个| 成人一区二区视频在线观看| 精品国产乱码久久久久久男人| 亚洲成人免费电影在线观看| av片东京热男人的天堂| 亚洲精品色激情综合| 又黄又粗又硬又大视频| a在线观看视频网站| 嫩草影视91久久| 欧美国产日韩亚洲一区| 亚洲成av片中文字幕在线观看| 啦啦啦韩国在线观看视频| 性色av乱码一区二区三区2| 不卡一级毛片| 亚洲一区高清亚洲精品| 长腿黑丝高跟| 欧美激情久久久久久爽电影| 黄色片一级片一级黄色片| 国产精品亚洲一级av第二区| 非洲黑人性xxxx精品又粗又长| 久久精品国产清高在天天线| 亚洲午夜理论影院| 久久性视频一级片|