• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multifunctional silicene/CeO2 heterojunctions: Desirable electronic material and promising water-splitting photocatalyst

    2022-09-16 05:24:56LingXuJinZengQunLiXinLuoTongChenJingjingLiuLingLingWng
    Chinese Chemical Letters 2022年8期

    Ling Xu, Jin Zeng, Qun Li, Xin Luo, Tong Chen,, Jingjing Liu,Ling-Ling Wng

    a Energy Materials Computing Center, School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China

    b Department of Applied Physics, School of Science, East China Jiaotong University, Nanchang 330013, China

    c Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082,China

    ABSTRACT The first-principles calculations demonstrate that covalently bonded (cb) heterojunction and van der Waals (vdW) heterojunction can coexist in silicene/CeO2 heterojunctions, due to the different stacking patterns.Especially, the cb heterojunction with band gap of 1.97 eV, forms a type-II heterojunction, exhibits good redox performance and has high-effective optical absorption spectra, thus it is a promising photocatalyst for overall water splitting.Besides, for the vdW heterojunction, the Dirac cone of silicene is well kept on CeO2 semiconducting substrate, with a considerable energy gap of 0.43 eV, which can be an ideal material in building silicene-based electronic device.These results may open a new gateway in both of nanoelectronic device and energy conversion for silicene/CeO2 nanocomposites.

    Keywords:Silicene CeO2 Photocatalyst Interfacial interaction Dirac cone

    In recent decades, lots of studies have devoted themselves to searching high-performance photocatalysts to split water into clean energy hydrogen (H2) [1–5].Stimulated by the graphene boom,a large number of two-dimensional (2D) catalytic materials have been studied [6–13].As an element of the same group as C, Si is an important carrier in the electronic semiconductor industry.And its two-dimensional morphological structure, named silicene (the silicon counterpart of graphene but with a slightly buckling of about 0.44) also has been theoretically investigated and experimentally synthesized [14–18].Silicene shares many of the intriguing electronic properties in graphene, such as Dirac cone, high Fermi velocity and carrier mobility [19–22].Considering the advantages of being inherently compatible with ubiquitous silicon-based semiconductor technology and facile tunability of the energy gap, in addition to constructing microelectronic devices, it may even be a good candidate for photocatalytic materials.The key lies in how to effectively adjust its band gap to obtain good photocatalytic performance, or opening without destroying its inherent Dirac Fermion characteristics for next-generation electronic-device application.

    With the successional synthesis of various non-toxic and cheap nanostructured CeO2, rational design of nano-CeO2supporting substrates or CeO2-based nanocomposites are considered as a prominent approach to realize better reaction activities and catalytic performance [23–29].The rapid formation and elimination of oxygen vacancies in CeO2, such as the reversible phase transition between CeO2and Ce2O3, endow it with high oxygen storage capacity and chemical activity, which plays an important role in the catalytic oxidation reactivity of the cerium oxide surface [30,31].Inspired by the significantly enhanced performance in our previous work of SiH/CeO2heterojunction [32] and graphene/CeO2heterojunction [26].We consider combining silicene with CeO2bulk material to form silicene/CeO2heterojunctions is very likely to obtain more intriguing properties than the two individuals, and even than graphene/CeO2heterojunction.In this paper, based on stateof-the-art hybrid density functional theory (the calculation details are in Supporting information), clearly studing the electronic properties of bulk Si/CeO2and silicene/CeO2heterojunctions.Our works not only find a superior semiconducting substrate material to grow or integrate Si/silicene, but also provide a promising visible-light photocatalyst for hydrogen production, or a promising electronicdevice.

    Fig.1.The unit cell of (a) Si in a diamond cubic crystal structure and (b) CeO2 in a fluorite structure.(c) The geometric structure and 3D charge density difference of Si/CeO2 nanocomposite with an isovalue of 0.001 e/3.Green and purple isosurfaces represent charge accumulation and depletion, respectively.(d) Band structures (left panel) and PDOS (right panel) of Si/CeO2 heterojunction.The red circles and green squares in the left panel denote the projection to Si and CeO2 constituents, respectively.(e) The electronic density distribution of CeO2L, SiL and SiH, with an isovalue of 0.02 e/3.(f) The absorption spectra of Si, CeO2 and Si/CeO2 heterojunction, and the inset denotes the calculated dielectric function of Si/CeO2 heterojunction, including both real and imaginary parts.Red, yellow, and blue spheres represent O,Si, and Ce atoms, respectively.

    We firstly explore the Si/CeO2heterojunctions.As shown in Figs.1a and b, Si and CeO2nanocrystals are both cubic crystal structures and share an approximate bulk lattice constant a, which is 5.43and 5.41[33,34], respectively, and the lattice constants of their (111) surfaces are even closer, as given in Table S1(Supporting information).Therefore, a 1 × 1 stoichiometric cubic CeO2(111) surface slab with 9 layers is used to match an approximate 1 × 1 supercell for Si(111) plane with 8 layers, realizing a negligible lattice mismatch of only 0.16% in their nanocomposite,the details are listed in Table S1.Our calculations clearly demonstrate that the Si/CeO2nanocomposite is a covalently bonded (cb)heterojunction with a typical cb equilibrium spacing of 1.69(Fig.1c).And the inapparent electron transfer at interface further confirms the formation of covalently-linked interface in Si/CeO2heterojunction.Although the Si/CeO2heterojunction is a gapless metal, there may be a sizable optical band gap for Si/CeO2heterojunction (Fig.1d).The band width between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) corresponding to the isolated Si (SiLand SiH) is 1.17 eV, this value exactly equals to the band gap of isolated bulk Si [33], as illustrated in Fig.S1b (Supporting information).Meanwhile, the band width between LUMO of CeO2and the HOMO of Si (CeO2Land SiH) is 3.23 eV, and this value approximates to the energy gap of freestanding CeO2nanocrystals (Fig.S2b and c in Supporting information) [35].The electronic density distributions of CeO2L, SiLand SiHhave been plotted in Fig.1e, which confirms our observations and analyses.Subsequently, the optical absorption spectra of Si/CeO2heterojunction and its constituents are given in Fig.1f.Si/CeO2composite shows a similar absorption curve with that of CeO2, except that the former is much stronger especially in the long wave region of visible light.In addition, to further verify our calculations, the electronic structure and optical properties of isolated Si, Si(111), CeO2, CeO2(111) are also given (Figs.S1 and S2 in Supporting information), and these results are found to be in excellent agreement with others [33–38].Although Si/CeO2heterojunction is not a promising photocatalyst, its optical band gap is very interesting and remains to be explored.

    Fig.2.Projected band structures (left panel) and PDOS (right panel) for (a) Si-c, (b)Si-v, (c) Si-v’.Their side views of HOMO and LUMO with an isovalue of 0.02 e/3 are given in (d).The red circles and green squares in the left panels represent the projection to CeO2(111) and silicene constituents, respectively.The Fermi level is set to zero.

    Combining CeO2with Si to form Si/CeO2heterojunction cannot significantly improve the photocatalytic performance of CeO2, so we turn to explore the silicene/CeO2heterojunctions.Our previous work has proved that the silicane (SiH)/CeO2is a type-II heterojunction with excellent photocatalytic performance [32].The geometric and electronic structures of silicene and silicane are quite different.Silicene and silicane are both low buckled structures with a buckling height of 0.43 and 0.73, and their Si-Si bond lengths are 2.25 and 2.34, which are consistent with the results of previous studies [15,32,39].Silicene is a gapless semiconductor that is not a good candidate as photocatalyst (Fig.S3 in Supporting information) [40], and it can be further proved by the inferior visible-light absorption of silicene (Figs.S3d and e).Due to the lattice constants of silicene and CeO2(111) are very close (Table S1) [15,41].Hence, we select a 1 × 1 silicene unit on the surface of 1 × 1 CeO2(111) supercell to obtain a lattice mismatch in their composites as low as 0.30%.For the silicene/CeO2heterojunctions, there are five different stacking patterns with various atom-alignment types, among which, two are cb heterojunctions and three are vdW heterojunctions (Fig.S4 in Supporting information).Based on the value of adhesive energies (Ead) (Table S1), the leftmost configuration in Fig.S4 (Si-c), and the rightmost configuration in Fig.S4 (Si-v) are selected as the representatives of cb heterojunctions and vdW heterojunctions, respectively.Subsequently,the molecular dynamics simulation and phonon dispersions further confirm their stability (Fig.S5 in Supporting information).In addition, whether the conversion between Si-v and Si-c is easy is also a question worth considering.Using CINEB method, we calculate the energy profiles and structures of the transition states for Si-v to Si-c.As shown in Fig.S6 (Supporting information), the energy barrier from Si-v to Si-c is as high as 2.626 eV, indicating that this process is not easy to occur, and also that they have relatively good structural stability.To have a strict and complete study,another case that Ce atoms locate on the outside surface also should be considered, named CeO2(111)’.After structural optimization, the silicene/CeO2(111)’heterojunction with the lowestEadis selected for research (Fig.S7 in Supporting information, named Si-v’).

    Fig.3.Three-dimensional charge density difference for the (a) Si-v, (b) Si-c and (c)Si-v’.The purple and cyan iso-surfaces denote charge accumulation and depletion in the space, respectively.The horizontal dash dot lines denote the central location of each atomic layer.(d) Profile of the planar averaged charge density difference as a function of positions in the z-direction.The positive and negative values of ρ denote the charge accumulation and depletion, respectively.

    As shown in Figs.2a and d, Si-c forms type-II heterojunction with a moderate energy gap of 1.97 eV.Its valence band maximum (VBM) and conduction band minimum (CBM) are dominated by two different individuals, which further confirms the formation of type-II heterojunction, and is very conducive to the separation of photogenerated carriers.More interesting, the Dirac cone of silicene is well kept in Si-v with a dream energy gap up to 0.43 eV,which can pave the avenue for the application of silicene-based high-speed nanoelectronics [42,43].There is no doubt that we have opened a considerable band gap in silicene without damaging its intrinsic electronic structure by combining with CeO2nanocrystal(Figs.2b and d).Additionally, the Si-v’is a metal but displays a similar electronic structure with that of Si-v (Fig.2c).For the Si-v’,there is one point we should note, the Dirac cone of silicene also has been opened, but its Fermi level shifts up and makes this system a gapless metal.Fig.S8 (Supporting information) shows the band structure of silicene with lattice mismatch of 0.3%, and its Dirac cone is still not opened.Therefore, such a small lattice mismatch hardly affects the band structure of silicene.For the pure silicene, the difference of onsite energy between the two sublattices is zero [44].While in the formed Si-v heterojunction, this balance is broken by the interaction between silicene and substrate CeO2.This point can also be confirmed from the charge analysis.We can see the charge density difference (Fig.3a), due to the effect of the substrate CeO2, the charges of the two Si atoms in the silicene layer are obviously different.Bader calculations show that the upper and lower Si atoms gain 0.0360 e and lose 0.0540 e, respectively.This can be attributed to the formation of the built-in electric field in the interlayer, also proves that the potential balance between the two Si atoms in the silicene layer is no longer maintained, the symmetry between the two sublattices of silicene is broken and the two Si atoms are no longer identical [44], so the Dirac cone is captured in Si-v.And the Dirac cone is captured in Si-v’for the same reason, the upper and lower Si atoms lose 0.0004 e and gain 0.3750 e, respectively.Of course, for the Si-c,the formation of Si-O destroys the inherent electronic structure of silicene, so Dirac cones cannot be captured and has undergone major changes.

    Fig.4.(a) The optical absorption spectra of CeO2(111) and silicene individuals, as well as Si-c, Si-v heterojunctions.(b) The comparison of absorption spectra for CeO2(111)’ and Si-v’, and the inset denotes the calculated dielectric function of Si/CeO2 heterojunction, including both real and imaginary parts.(c) Calculated VBM and CBM potentials versus normal hydrogen electrode of CeO2(111), silicene, Si-c,and Si-v.The upper and lower red dashed lines stand for the proton reduction potential (H+/H2) and oxygen reduction potential (O2/H2O) for water splitting with values of 0 and 1.23 eV, respectively.(d) Schematic diagram of photocatalytic water splitting for Si-c, as well as the electron transfer during the photocatalytic process.

    Among the three heterojunctions, Si-c exhibits the most effective optical absorption and Si-v owns the widest response range in the whole UV-vis light (Fig.4a).By comparing with the constituents, we can see that the optical absorption of Si-c has been enhanced greatly.Besides, the optical absorption spectra of Si-v’and the CeO2(111)’also have been plotted (Fig.4b).Although Si-v’is a gapless metal, it demonstrates a significantly improved UV-vis absorption, especially around the UV ray, which implies its promising application in the field of photocatalytic.In addition, to shed light on the potential applications of these heterojunctions in producing hydrogen, their band edge potentials with respect to the water redox potentials have been aligned in Fig.4c.To be an eligible photocatalyst in hydrogen production, the band gap of them must cross the redox potential of water splitting [45–47].Clearly,neither the silicene nor Si-v is an adequate photocatalyst for water splitting, because they do not have strong enough redox properties (blue block in Fig.4c).But the CeO2and Si-c can do well in water splitting.Moreover, Si-c is a type-II heterojunction with suitable band gap, which is benefit to the effective separation of photo-excited electrons and holes.On the basis of above results and analyses, we can conclude that the Si-c is very likely to be an excellent water-splitting photocatalyst (Fig.4d).

    Furthermore, to have an insight into the interfacial interactions and the enhanced photocatalytic performance of Si-c, their 3D charge density difference and quantitative results of charge distribution are given in Fig.3.One thing to note here is that all the isovalues in Figs.3a and c and Fig.S4 are 0.001 e/3, while that of Fig.3b is 0.005 e/3.The more accurate Bader calculation results are listed in Table S1.Si-c has significantly more charge transfer from silicene to CeO2than Si-v, due to the strong action of Si-O.But silicene in Si-v’gains electrons from CeO2, which should be attributed to the exposed metal Ce atoms on the surface of CeO2.These results can well in line with the analysis of charge density difference.Such a good charge transfer effect of Si-c can more fully demonstrate its remarkable photocatalytic water splitting performance.On the other hand, the transfer of a large amount of charge to CeO2accelerates the reversible phase transition between CeO2and Ce2O3, which to a certain extent provides greater possibilities for the enhancement of the redox properties for CeO2.To further prove it, the charge changes of Ce atoms in the pure CeO2and Si-c are calculated.Results show that the charge of Ce atoms in Si-c is 0.0799 e/atom more than Ce atoms in pure CeO2, indicating that the valence state of Ce atoms in Si-c is reduced, and a reversible phase transition between CeO2and Ce2O3has occurred.

    In summary, using first-principles calculations, we systematically investigate the electronic, interfacial and optical properties of Si/CeO2and silicene/CeO2heterojunctions.The Si/CeO2nanocomposite is neither a good photocatalyst nor electronic material due to its unsuitable band structure, but its light absorption performance is well interesting and worthy of further exploration.Interestingly, the silicene/CeO2(111) heterojunctions can stably exist in the forms of both vdW and cb heterojunctions.The Si-c,as a type-II heterojunction with a moderate band gap of 1.97 eV,is an excellent photocatalyst in splitting water to produce hydrogen.In Si-v, the Dirac cone of silicene is well kept and opened up to 0.43 eV, this sizable energy gap over 0.4 eV without degrading its intrinsic Dirac Fermion characteristics is of great significance in silicene-based high-speed nanoelectronics.In short,this paper provides sufficient evidence supporting for designing high-performance silicene-based electronic device and CeO2-based water-splitting photocatalyst.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (Nos.11764018, 20212BAB201013,31760157), the Jiangxi Provincial Natural Science Foundation(Nos.20202ACBL211004, 20212BAB201013, 20202BABL211009,20192BAB212003) and the Science and Technology Planning Project of Ganzhou City.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.11.026.

    久久性视频一级片| 久久午夜综合久久蜜桃| 50天的宝宝边吃奶边哭怎么回事| 91精品国产国语对白视频| 9191精品国产免费久久| 黄色成人免费大全| 在线十欧美十亚洲十日本专区| 色老头精品视频在线观看| 另类精品久久| 成人av一区二区三区在线看| 亚洲美女黄片视频| 久久久欧美国产精品| 十八禁网站免费在线| 久久中文字幕人妻熟女| 亚洲黑人精品在线| 亚洲天堂av无毛| 久久久久久亚洲精品国产蜜桃av| 免费久久久久久久精品成人欧美视频| 色视频在线一区二区三区| 亚洲av片天天在线观看| 欧美精品亚洲一区二区| 精品国产亚洲在线| 亚洲伊人色综图| 男女无遮挡免费网站观看| www.999成人在线观看| 国内毛片毛片毛片毛片毛片| 久久精品成人免费网站| av福利片在线| 亚洲综合色网址| 人人妻人人添人人爽欧美一区卜| 美国免费a级毛片| 成人特级黄色片久久久久久久 | 国产又爽黄色视频| 国产精品二区激情视频| 国产精品一区二区在线观看99| 国产精品久久久久久人妻精品电影 | 日本撒尿小便嘘嘘汇集6| svipshipincom国产片| 国产成人免费无遮挡视频| 欧美激情久久久久久爽电影 | 亚洲av电影在线进入| 夜夜爽天天搞| 黄色片一级片一级黄色片| 自拍欧美九色日韩亚洲蝌蚪91| 青青草视频在线视频观看| av不卡在线播放| 999久久久精品免费观看国产| 99国产极品粉嫩在线观看| 热99久久久久精品小说推荐| 国产一区二区三区在线臀色熟女 | 久久久国产欧美日韩av| 欧美激情 高清一区二区三区| 成在线人永久免费视频| 又大又爽又粗| e午夜精品久久久久久久| 最新美女视频免费是黄的| 人人妻,人人澡人人爽秒播| 天天影视国产精品| 天天影视国产精品| 高清视频免费观看一区二区| 中文字幕人妻丝袜制服| 制服诱惑二区| 欧美成人免费av一区二区三区 | 国产亚洲午夜精品一区二区久久| 窝窝影院91人妻| 成年版毛片免费区| 天天躁夜夜躁狠狠躁躁| 亚洲视频免费观看视频| 香蕉丝袜av| 亚洲天堂av无毛| √禁漫天堂资源中文www| 美女福利国产在线| 日韩一区二区三区影片| 丝袜喷水一区| 欧美日本中文国产一区发布| 99国产精品一区二区蜜桃av | 成年女人毛片免费观看观看9 | 亚洲国产中文字幕在线视频| 精品少妇内射三级| 国产亚洲av高清不卡| 丝袜喷水一区| 国产精品九九99| 一边摸一边抽搐一进一小说 | 精品第一国产精品| 在线十欧美十亚洲十日本专区| 18禁观看日本| 国产不卡av网站在线观看| 狠狠婷婷综合久久久久久88av| 麻豆国产av国片精品| 国产亚洲午夜精品一区二区久久| 搡老熟女国产l中国老女人| 侵犯人妻中文字幕一二三四区| 国产男靠女视频免费网站| 亚洲av美国av| 母亲3免费完整高清在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产在线精品亚洲第一网站| 五月天丁香电影| 99久久人妻综合| 午夜福利,免费看| 国产成人精品久久二区二区91| 精品一区二区三区四区五区乱码| 久久久久久久久免费视频了| 激情在线观看视频在线高清 | 一进一出好大好爽视频| 中文字幕人妻丝袜制服| 黄色片一级片一级黄色片| 国产精品一区二区免费欧美| 777久久人妻少妇嫩草av网站| 免费看a级黄色片| 岛国毛片在线播放| 桃红色精品国产亚洲av| 一本综合久久免费| 一边摸一边抽搐一进一出视频| 丝瓜视频免费看黄片| 久久av网站| 亚洲精华国产精华精| 国产成人欧美在线观看 | 亚洲一区中文字幕在线| 亚洲精品在线观看二区| 日本黄色日本黄色录像| 国产成人影院久久av| 欧美日韩亚洲国产一区二区在线观看 | 亚洲一区二区三区欧美精品| 国产单亲对白刺激| 精品国产国语对白av| 欧美亚洲日本最大视频资源| 他把我摸到了高潮在线观看 | 黄色视频在线播放观看不卡| 人人妻,人人澡人人爽秒播| 啦啦啦 在线观看视频| 久久精品亚洲av国产电影网| 一级黄色大片毛片| 巨乳人妻的诱惑在线观看| 国产精品av久久久久免费| 美女主播在线视频| 久久热在线av| 一级黄色大片毛片| 在线观看免费视频网站a站| 亚洲av第一区精品v没综合| 色婷婷av一区二区三区视频| 成人精品一区二区免费| 老熟妇仑乱视频hdxx| 亚洲中文av在线| 波多野结衣一区麻豆| 久久国产亚洲av麻豆专区| 日本黄色视频三级网站网址 | 人人妻人人爽人人添夜夜欢视频| 黄片大片在线免费观看| 伦理电影免费视频| 精品久久久精品久久久| 新久久久久国产一级毛片| 日韩视频一区二区在线观看| 操美女的视频在线观看| 高清欧美精品videossex| 国产日韩欧美亚洲二区| 一个人免费在线观看的高清视频| 国产精品秋霞免费鲁丝片| 黄色怎么调成土黄色| 亚洲专区国产一区二区| 国产精品免费一区二区三区在线 | 99在线人妻在线中文字幕 | 在线观看66精品国产| 91成人精品电影| videosex国产| 国产区一区二久久| av一本久久久久| 成人永久免费在线观看视频 | av福利片在线| 啦啦啦中文免费视频观看日本| 免费在线观看视频国产中文字幕亚洲| 日本欧美视频一区| 纵有疾风起免费观看全集完整版| 欧美另类亚洲清纯唯美| 精品福利观看| 日韩 欧美 亚洲 中文字幕| 亚洲国产欧美一区二区综合| 高清av免费在线| 美女国产高潮福利片在线看| av天堂在线播放| 90打野战视频偷拍视频| 国产成人av教育| 亚洲成人手机| 国产高清视频在线播放一区| 亚洲精品美女久久av网站| 黄片大片在线免费观看| 欧美大码av| 国产亚洲一区二区精品| 国产91精品成人一区二区三区 | 欧美 亚洲 国产 日韩一| 黑人巨大精品欧美一区二区蜜桃| 免费在线观看完整版高清| 男女之事视频高清在线观看| 嫁个100分男人电影在线观看| 高清在线国产一区| 侵犯人妻中文字幕一二三四区| 天天躁狠狠躁夜夜躁狠狠躁| av视频免费观看在线观看| 最近最新中文字幕大全免费视频| 国产欧美日韩一区二区精品| 桃花免费在线播放| 人人澡人人妻人| 成人精品一区二区免费| 国产精品1区2区在线观看. | 91九色精品人成在线观看| 国产精品98久久久久久宅男小说| kizo精华| 高清毛片免费观看视频网站 | 精品一区二区三卡| 51午夜福利影视在线观看| 一级片'在线观看视频| 中文字幕精品免费在线观看视频| 动漫黄色视频在线观看| 欧美老熟妇乱子伦牲交| 亚洲av电影在线进入| 日本vs欧美在线观看视频| 色播在线永久视频| 老熟女久久久| 成人亚洲精品一区在线观看| 国产精品成人在线| 91老司机精品| 狠狠精品人妻久久久久久综合| 国产日韩欧美亚洲二区| 亚洲伊人色综图| 久久中文看片网| 欧美精品人与动牲交sv欧美| 欧美精品av麻豆av| 亚洲 国产 在线| 欧美激情高清一区二区三区| 成人18禁在线播放| 欧美成人午夜精品| 亚洲熟妇熟女久久| 三级毛片av免费| 在线十欧美十亚洲十日本专区| 国产不卡av网站在线观看| 国产精品美女特级片免费视频播放器 | 天堂动漫精品| 人成视频在线观看免费观看| 女人精品久久久久毛片| 正在播放国产对白刺激| 国产精品1区2区在线观看. | 久9热在线精品视频| 一本久久精品| 人人妻人人爽人人添夜夜欢视频| 亚洲国产中文字幕在线视频| 丁香欧美五月| 夜夜夜夜夜久久久久| 午夜两性在线视频| av网站免费在线观看视频| 精品高清国产在线一区| 在线天堂中文资源库| 亚洲国产中文字幕在线视频| 在线观看一区二区三区激情| 视频区图区小说| 亚洲欧美激情在线| 人成视频在线观看免费观看| 不卡av一区二区三区| 国产精品九九99| 法律面前人人平等表现在哪些方面| av天堂在线播放| 国产av又大| 97人妻天天添夜夜摸| 老司机影院毛片| 欧美精品av麻豆av| 一区二区日韩欧美中文字幕| 一级片'在线观看视频| 国产深夜福利视频在线观看| 一区在线观看完整版| 九色亚洲精品在线播放| 最近最新中文字幕大全免费视频| 大片免费播放器 马上看| 人妻一区二区av| 高清av免费在线| 免费看a级黄色片| 久久久国产成人免费| 麻豆成人av在线观看| 精品免费久久久久久久清纯 | 悠悠久久av| 一级,二级,三级黄色视频| 一本综合久久免费| 极品教师在线免费播放| 国产成人精品久久二区二区免费| 亚洲精品国产精品久久久不卡| 黄色丝袜av网址大全| 国产成人系列免费观看| 国产成人av教育| 另类精品久久| 每晚都被弄得嗷嗷叫到高潮| 一级,二级,三级黄色视频| 我要看黄色一级片免费的| 日韩熟女老妇一区二区性免费视频| 9色porny在线观看| 久久久欧美国产精品| 大码成人一级视频| 免费黄频网站在线观看国产| 99热网站在线观看| 亚洲精品在线观看二区| 亚洲国产av影院在线观看| 热re99久久精品国产66热6| 欧美精品一区二区大全| 女性被躁到高潮视频| 久久精品人人爽人人爽视色| 99国产精品99久久久久| 国产三级黄色录像| 精品国内亚洲2022精品成人 | 91成年电影在线观看| 精品少妇久久久久久888优播| 80岁老熟妇乱子伦牲交| 国产精品免费大片| av在线播放免费不卡| 在线av久久热| 精品亚洲成a人片在线观看| 欧美日韩成人在线一区二区| 麻豆乱淫一区二区| 国产黄色免费在线视频| 一二三四在线观看免费中文在| 狠狠狠狠99中文字幕| av电影中文网址| 久久精品人人爽人人爽视色| 午夜福利视频精品| 成人亚洲精品一区在线观看| 丝袜美足系列| 黑丝袜美女国产一区| 免费一级毛片在线播放高清视频 | 色播在线永久视频| 国产在线免费精品| 99国产精品99久久久久| 91成年电影在线观看| 日日夜夜操网爽| 一本一本久久a久久精品综合妖精| 国产精品欧美亚洲77777| 在线观看一区二区三区激情| 欧美成人免费av一区二区三区 | 成年动漫av网址| 少妇的丰满在线观看| 人人妻,人人澡人人爽秒播| 国产极品粉嫩免费观看在线| 18禁观看日本| 18禁黄网站禁片午夜丰满| 国产精品久久久久久精品古装| 超色免费av| 少妇 在线观看| 大型av网站在线播放| 亚洲专区字幕在线| 免费女性裸体啪啪无遮挡网站| 亚洲国产欧美网| 99在线人妻在线中文字幕 | 欧美 日韩 精品 国产| 亚洲人成电影观看| 精品国产亚洲在线| 麻豆国产av国片精品| 999精品在线视频| 91国产中文字幕| 亚洲欧美日韩另类电影网站| 久久天躁狠狠躁夜夜2o2o| 曰老女人黄片| 午夜福利在线观看吧| 天天躁日日躁夜夜躁夜夜| 国产av一区二区精品久久| 大码成人一级视频| 欧美精品高潮呻吟av久久| 桃花免费在线播放| 国产日韩欧美在线精品| 久久午夜亚洲精品久久| 成年人午夜在线观看视频| 国产亚洲精品久久久久5区| 国产成人免费无遮挡视频| 精品视频人人做人人爽| 精品久久蜜臀av无| 成年动漫av网址| 国产男女内射视频| 国产免费av片在线观看野外av| www.精华液| 国产高清激情床上av| 欧美日韩亚洲国产一区二区在线观看 | 激情视频va一区二区三区| 久久久久国内视频| 日本黄色视频三级网站网址 | 天堂8中文在线网| 男女床上黄色一级片免费看| 我的亚洲天堂| 国产在线免费精品| netflix在线观看网站| 国产精品自产拍在线观看55亚洲 | 在线观看人妻少妇| 成年女人毛片免费观看观看9 | a级片在线免费高清观看视频| 精品久久蜜臀av无| 久热这里只有精品99| www.熟女人妻精品国产| 日韩欧美三级三区| 免费在线观看日本一区| 女性生殖器流出的白浆| 亚洲午夜理论影院| 丝袜美腿诱惑在线| 美女国产高潮福利片在线看| av网站免费在线观看视频| 欧美精品亚洲一区二区| 国产精品偷伦视频观看了| 久久久久久免费高清国产稀缺| 国产av又大| 少妇粗大呻吟视频| 国产成人一区二区三区免费视频网站| 国产日韩欧美亚洲二区| 高清av免费在线| 久热这里只有精品99| 国产高清videossex| 少妇被粗大的猛进出69影院| 成人18禁在线播放| 99re6热这里在线精品视频| av国产精品久久久久影院| 女性生殖器流出的白浆| 成人永久免费在线观看视频 | 精品一区二区三区视频在线观看免费 | 欧美亚洲日本最大视频资源| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久久国产电影| 日本撒尿小便嘘嘘汇集6| 免费黄频网站在线观看国产| 欧美成人免费av一区二区三区 | 国产在线视频一区二区| 99久久99久久久精品蜜桃| 香蕉丝袜av| 五月天丁香电影| 日韩人妻精品一区2区三区| 国产视频一区二区在线看| 香蕉国产在线看| 国产高清视频在线播放一区| 日本wwww免费看| 免费看a级黄色片| 欧美一级毛片孕妇| 欧美变态另类bdsm刘玥| 一级毛片女人18水好多| 成在线人永久免费视频| 曰老女人黄片| 国产色视频综合| 老熟妇仑乱视频hdxx| 亚洲国产av影院在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲精品国产一区二区精华液| 国产精品国产av在线观看| 久久久久久久久免费视频了| 国产精品九九99| 女人爽到高潮嗷嗷叫在线视频| 伊人久久大香线蕉亚洲五| 香蕉国产在线看| 日韩免费av在线播放| 操美女的视频在线观看| h视频一区二区三区| 久久热在线av| 女人久久www免费人成看片| 黑人操中国人逼视频| 亚洲av日韩在线播放| 国产精品1区2区在线观看. | 一本色道久久久久久精品综合| 精品国产一区二区三区四区第35| 国产人伦9x9x在线观看| av有码第一页| 欧美人与性动交α欧美软件| 国产黄色免费在线视频| 日韩免费av在线播放| 在线av久久热| 国产av一区二区精品久久| 我的亚洲天堂| 日韩视频一区二区在线观看| 老司机在亚洲福利影院| tocl精华| av天堂在线播放| 大片电影免费在线观看免费| 欧美黑人欧美精品刺激| 色综合婷婷激情| 男女免费视频国产| 久久久久久免费高清国产稀缺| 午夜老司机福利片| 少妇精品久久久久久久| 国产精品一区二区在线不卡| 91成年电影在线观看| 五月天丁香电影| 欧美日韩成人在线一区二区| av线在线观看网站| 亚洲欧洲日产国产| 亚洲精品美女久久av网站| 一区二区三区乱码不卡18| 夜夜爽天天搞| 丝袜在线中文字幕| 成年女人毛片免费观看观看9 | 视频区欧美日本亚洲| 又黄又粗又硬又大视频| 视频在线观看一区二区三区| 在线亚洲精品国产二区图片欧美| 久久久久国产一级毛片高清牌| 蜜桃在线观看..| 免费一级毛片在线播放高清视频 | 女同久久另类99精品国产91| 如日韩欧美国产精品一区二区三区| 久久人人97超碰香蕉20202| 成年女人毛片免费观看观看9 | 午夜福利免费观看在线| 美女国产高潮福利片在线看| 久9热在线精品视频| 一个人免费看片子| 精品第一国产精品| 丝袜美腿诱惑在线| 午夜两性在线视频| 免费不卡黄色视频| 久久久欧美国产精品| 一区二区三区国产精品乱码| 亚洲黑人精品在线| 三上悠亚av全集在线观看| 日本vs欧美在线观看视频| 80岁老熟妇乱子伦牲交| 啦啦啦中文免费视频观看日本| 在线天堂中文资源库| 一级毛片精品| 日韩欧美免费精品| 热re99久久精品国产66热6| 两人在一起打扑克的视频| 久久久久久久久免费视频了| 亚洲av电影在线进入| 最黄视频免费看| 国产激情久久老熟女| 国产精品一区二区精品视频观看| 亚洲第一av免费看| 国产欧美日韩一区二区精品| 少妇猛男粗大的猛烈进出视频| 中文字幕制服av| 久久热在线av| 多毛熟女@视频| 国产激情久久老熟女| 久久香蕉激情| 中文字幕人妻丝袜制服| 亚洲成a人片在线一区二区| 搡老熟女国产l中国老女人| 国产精品亚洲一级av第二区| 91精品三级在线观看| 国产极品粉嫩免费观看在线| 王馨瑶露胸无遮挡在线观看| 一区二区日韩欧美中文字幕| 久久久久久久精品吃奶| 制服人妻中文乱码| 午夜两性在线视频| 蜜桃在线观看..| 国产熟女午夜一区二区三区| 一区二区av电影网| 亚洲国产欧美网| 久久婷婷成人综合色麻豆| 国产av一区二区精品久久| 三级毛片av免费| 老熟妇乱子伦视频在线观看| 深夜精品福利| 色尼玛亚洲综合影院| 嫩草影视91久久| 亚洲七黄色美女视频| 亚洲自偷自拍图片 自拍| 久久精品成人免费网站| 91字幕亚洲| 午夜久久久在线观看| 岛国毛片在线播放| 美女国产高潮福利片在线看| 国产欧美日韩一区二区精品| 国产在线观看jvid| 国产成人欧美在线观看 | 电影成人av| 国产高清视频在线播放一区| 亚洲综合色网址| 99re6热这里在线精品视频| 一本综合久久免费| 国产精品成人在线| 无遮挡黄片免费观看| 最近最新中文字幕大全电影3 | 高清黄色对白视频在线免费看| 999久久久精品免费观看国产| 国产精品亚洲av一区麻豆| 欧美黄色片欧美黄色片| 中文字幕精品免费在线观看视频| 高清毛片免费观看视频网站 | 美国免费a级毛片| 亚洲人成电影观看| 亚洲美女黄片视频| 最近最新中文字幕大全电影3 | 亚洲av国产av综合av卡| 亚洲伊人色综图| 国产高清国产精品国产三级| 大陆偷拍与自拍| 国产精品久久久久久精品电影小说| www.999成人在线观看| 中文字幕色久视频| 国产色视频综合| 看免费av毛片| 人妻 亚洲 视频| 亚洲第一欧美日韩一区二区三区 | 97在线人人人人妻| 人人妻人人澡人人看| 12—13女人毛片做爰片一| 极品教师在线免费播放| 最近最新中文字幕大全电影3 | 人人澡人人妻人| 国产免费av片在线观看野外av| 久久久久国产一级毛片高清牌| 国产深夜福利视频在线观看| 久久午夜亚洲精品久久| 亚洲五月色婷婷综合| 夜夜爽天天搞| 欧美精品啪啪一区二区三区| 国产av精品麻豆| 国产av国产精品国产| 欧美黄色片欧美黄色片| 高清在线国产一区| 日韩精品免费视频一区二区三区| 极品人妻少妇av视频| 国产欧美日韩一区二区三区在线| 亚洲av国产av综合av卡| 黄色成人免费大全| 啪啪无遮挡十八禁网站| 我要看黄色一级片免费的|