• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multifunctional silicene/CeO2 heterojunctions: Desirable electronic material and promising water-splitting photocatalyst

    2022-09-16 05:24:56LingXuJinZengQunLiXinLuoTongChenJingjingLiuLingLingWng
    Chinese Chemical Letters 2022年8期

    Ling Xu, Jin Zeng, Qun Li, Xin Luo, Tong Chen,, Jingjing Liu,Ling-Ling Wng

    a Energy Materials Computing Center, School of Energy and Mechanical Engineering, Jiangxi University of Science and Technology, Nanchang 330013, China

    b Department of Applied Physics, School of Science, East China Jiaotong University, Nanchang 330013, China

    c Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082,China

    ABSTRACT The first-principles calculations demonstrate that covalently bonded (cb) heterojunction and van der Waals (vdW) heterojunction can coexist in silicene/CeO2 heterojunctions, due to the different stacking patterns.Especially, the cb heterojunction with band gap of 1.97 eV, forms a type-II heterojunction, exhibits good redox performance and has high-effective optical absorption spectra, thus it is a promising photocatalyst for overall water splitting.Besides, for the vdW heterojunction, the Dirac cone of silicene is well kept on CeO2 semiconducting substrate, with a considerable energy gap of 0.43 eV, which can be an ideal material in building silicene-based electronic device.These results may open a new gateway in both of nanoelectronic device and energy conversion for silicene/CeO2 nanocomposites.

    Keywords:Silicene CeO2 Photocatalyst Interfacial interaction Dirac cone

    In recent decades, lots of studies have devoted themselves to searching high-performance photocatalysts to split water into clean energy hydrogen (H2) [1–5].Stimulated by the graphene boom,a large number of two-dimensional (2D) catalytic materials have been studied [6–13].As an element of the same group as C, Si is an important carrier in the electronic semiconductor industry.And its two-dimensional morphological structure, named silicene (the silicon counterpart of graphene but with a slightly buckling of about 0.44) also has been theoretically investigated and experimentally synthesized [14–18].Silicene shares many of the intriguing electronic properties in graphene, such as Dirac cone, high Fermi velocity and carrier mobility [19–22].Considering the advantages of being inherently compatible with ubiquitous silicon-based semiconductor technology and facile tunability of the energy gap, in addition to constructing microelectronic devices, it may even be a good candidate for photocatalytic materials.The key lies in how to effectively adjust its band gap to obtain good photocatalytic performance, or opening without destroying its inherent Dirac Fermion characteristics for next-generation electronic-device application.

    With the successional synthesis of various non-toxic and cheap nanostructured CeO2, rational design of nano-CeO2supporting substrates or CeO2-based nanocomposites are considered as a prominent approach to realize better reaction activities and catalytic performance [23–29].The rapid formation and elimination of oxygen vacancies in CeO2, such as the reversible phase transition between CeO2and Ce2O3, endow it with high oxygen storage capacity and chemical activity, which plays an important role in the catalytic oxidation reactivity of the cerium oxide surface [30,31].Inspired by the significantly enhanced performance in our previous work of SiH/CeO2heterojunction [32] and graphene/CeO2heterojunction [26].We consider combining silicene with CeO2bulk material to form silicene/CeO2heterojunctions is very likely to obtain more intriguing properties than the two individuals, and even than graphene/CeO2heterojunction.In this paper, based on stateof-the-art hybrid density functional theory (the calculation details are in Supporting information), clearly studing the electronic properties of bulk Si/CeO2and silicene/CeO2heterojunctions.Our works not only find a superior semiconducting substrate material to grow or integrate Si/silicene, but also provide a promising visible-light photocatalyst for hydrogen production, or a promising electronicdevice.

    Fig.1.The unit cell of (a) Si in a diamond cubic crystal structure and (b) CeO2 in a fluorite structure.(c) The geometric structure and 3D charge density difference of Si/CeO2 nanocomposite with an isovalue of 0.001 e/3.Green and purple isosurfaces represent charge accumulation and depletion, respectively.(d) Band structures (left panel) and PDOS (right panel) of Si/CeO2 heterojunction.The red circles and green squares in the left panel denote the projection to Si and CeO2 constituents, respectively.(e) The electronic density distribution of CeO2L, SiL and SiH, with an isovalue of 0.02 e/3.(f) The absorption spectra of Si, CeO2 and Si/CeO2 heterojunction, and the inset denotes the calculated dielectric function of Si/CeO2 heterojunction, including both real and imaginary parts.Red, yellow, and blue spheres represent O,Si, and Ce atoms, respectively.

    We firstly explore the Si/CeO2heterojunctions.As shown in Figs.1a and b, Si and CeO2nanocrystals are both cubic crystal structures and share an approximate bulk lattice constant a, which is 5.43and 5.41[33,34], respectively, and the lattice constants of their (111) surfaces are even closer, as given in Table S1(Supporting information).Therefore, a 1 × 1 stoichiometric cubic CeO2(111) surface slab with 9 layers is used to match an approximate 1 × 1 supercell for Si(111) plane with 8 layers, realizing a negligible lattice mismatch of only 0.16% in their nanocomposite,the details are listed in Table S1.Our calculations clearly demonstrate that the Si/CeO2nanocomposite is a covalently bonded (cb)heterojunction with a typical cb equilibrium spacing of 1.69(Fig.1c).And the inapparent electron transfer at interface further confirms the formation of covalently-linked interface in Si/CeO2heterojunction.Although the Si/CeO2heterojunction is a gapless metal, there may be a sizable optical band gap for Si/CeO2heterojunction (Fig.1d).The band width between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) corresponding to the isolated Si (SiLand SiH) is 1.17 eV, this value exactly equals to the band gap of isolated bulk Si [33], as illustrated in Fig.S1b (Supporting information).Meanwhile, the band width between LUMO of CeO2and the HOMO of Si (CeO2Land SiH) is 3.23 eV, and this value approximates to the energy gap of freestanding CeO2nanocrystals (Fig.S2b and c in Supporting information) [35].The electronic density distributions of CeO2L, SiLand SiHhave been plotted in Fig.1e, which confirms our observations and analyses.Subsequently, the optical absorption spectra of Si/CeO2heterojunction and its constituents are given in Fig.1f.Si/CeO2composite shows a similar absorption curve with that of CeO2, except that the former is much stronger especially in the long wave region of visible light.In addition, to further verify our calculations, the electronic structure and optical properties of isolated Si, Si(111), CeO2, CeO2(111) are also given (Figs.S1 and S2 in Supporting information), and these results are found to be in excellent agreement with others [33–38].Although Si/CeO2heterojunction is not a promising photocatalyst, its optical band gap is very interesting and remains to be explored.

    Fig.2.Projected band structures (left panel) and PDOS (right panel) for (a) Si-c, (b)Si-v, (c) Si-v’.Their side views of HOMO and LUMO with an isovalue of 0.02 e/3 are given in (d).The red circles and green squares in the left panels represent the projection to CeO2(111) and silicene constituents, respectively.The Fermi level is set to zero.

    Combining CeO2with Si to form Si/CeO2heterojunction cannot significantly improve the photocatalytic performance of CeO2, so we turn to explore the silicene/CeO2heterojunctions.Our previous work has proved that the silicane (SiH)/CeO2is a type-II heterojunction with excellent photocatalytic performance [32].The geometric and electronic structures of silicene and silicane are quite different.Silicene and silicane are both low buckled structures with a buckling height of 0.43 and 0.73, and their Si-Si bond lengths are 2.25 and 2.34, which are consistent with the results of previous studies [15,32,39].Silicene is a gapless semiconductor that is not a good candidate as photocatalyst (Fig.S3 in Supporting information) [40], and it can be further proved by the inferior visible-light absorption of silicene (Figs.S3d and e).Due to the lattice constants of silicene and CeO2(111) are very close (Table S1) [15,41].Hence, we select a 1 × 1 silicene unit on the surface of 1 × 1 CeO2(111) supercell to obtain a lattice mismatch in their composites as low as 0.30%.For the silicene/CeO2heterojunctions, there are five different stacking patterns with various atom-alignment types, among which, two are cb heterojunctions and three are vdW heterojunctions (Fig.S4 in Supporting information).Based on the value of adhesive energies (Ead) (Table S1), the leftmost configuration in Fig.S4 (Si-c), and the rightmost configuration in Fig.S4 (Si-v) are selected as the representatives of cb heterojunctions and vdW heterojunctions, respectively.Subsequently,the molecular dynamics simulation and phonon dispersions further confirm their stability (Fig.S5 in Supporting information).In addition, whether the conversion between Si-v and Si-c is easy is also a question worth considering.Using CINEB method, we calculate the energy profiles and structures of the transition states for Si-v to Si-c.As shown in Fig.S6 (Supporting information), the energy barrier from Si-v to Si-c is as high as 2.626 eV, indicating that this process is not easy to occur, and also that they have relatively good structural stability.To have a strict and complete study,another case that Ce atoms locate on the outside surface also should be considered, named CeO2(111)’.After structural optimization, the silicene/CeO2(111)’heterojunction with the lowestEadis selected for research (Fig.S7 in Supporting information, named Si-v’).

    Fig.3.Three-dimensional charge density difference for the (a) Si-v, (b) Si-c and (c)Si-v’.The purple and cyan iso-surfaces denote charge accumulation and depletion in the space, respectively.The horizontal dash dot lines denote the central location of each atomic layer.(d) Profile of the planar averaged charge density difference as a function of positions in the z-direction.The positive and negative values of ρ denote the charge accumulation and depletion, respectively.

    As shown in Figs.2a and d, Si-c forms type-II heterojunction with a moderate energy gap of 1.97 eV.Its valence band maximum (VBM) and conduction band minimum (CBM) are dominated by two different individuals, which further confirms the formation of type-II heterojunction, and is very conducive to the separation of photogenerated carriers.More interesting, the Dirac cone of silicene is well kept in Si-v with a dream energy gap up to 0.43 eV,which can pave the avenue for the application of silicene-based high-speed nanoelectronics [42,43].There is no doubt that we have opened a considerable band gap in silicene without damaging its intrinsic electronic structure by combining with CeO2nanocrystal(Figs.2b and d).Additionally, the Si-v’is a metal but displays a similar electronic structure with that of Si-v (Fig.2c).For the Si-v’,there is one point we should note, the Dirac cone of silicene also has been opened, but its Fermi level shifts up and makes this system a gapless metal.Fig.S8 (Supporting information) shows the band structure of silicene with lattice mismatch of 0.3%, and its Dirac cone is still not opened.Therefore, such a small lattice mismatch hardly affects the band structure of silicene.For the pure silicene, the difference of onsite energy between the two sublattices is zero [44].While in the formed Si-v heterojunction, this balance is broken by the interaction between silicene and substrate CeO2.This point can also be confirmed from the charge analysis.We can see the charge density difference (Fig.3a), due to the effect of the substrate CeO2, the charges of the two Si atoms in the silicene layer are obviously different.Bader calculations show that the upper and lower Si atoms gain 0.0360 e and lose 0.0540 e, respectively.This can be attributed to the formation of the built-in electric field in the interlayer, also proves that the potential balance between the two Si atoms in the silicene layer is no longer maintained, the symmetry between the two sublattices of silicene is broken and the two Si atoms are no longer identical [44], so the Dirac cone is captured in Si-v.And the Dirac cone is captured in Si-v’for the same reason, the upper and lower Si atoms lose 0.0004 e and gain 0.3750 e, respectively.Of course, for the Si-c,the formation of Si-O destroys the inherent electronic structure of silicene, so Dirac cones cannot be captured and has undergone major changes.

    Fig.4.(a) The optical absorption spectra of CeO2(111) and silicene individuals, as well as Si-c, Si-v heterojunctions.(b) The comparison of absorption spectra for CeO2(111)’ and Si-v’, and the inset denotes the calculated dielectric function of Si/CeO2 heterojunction, including both real and imaginary parts.(c) Calculated VBM and CBM potentials versus normal hydrogen electrode of CeO2(111), silicene, Si-c,and Si-v.The upper and lower red dashed lines stand for the proton reduction potential (H+/H2) and oxygen reduction potential (O2/H2O) for water splitting with values of 0 and 1.23 eV, respectively.(d) Schematic diagram of photocatalytic water splitting for Si-c, as well as the electron transfer during the photocatalytic process.

    Among the three heterojunctions, Si-c exhibits the most effective optical absorption and Si-v owns the widest response range in the whole UV-vis light (Fig.4a).By comparing with the constituents, we can see that the optical absorption of Si-c has been enhanced greatly.Besides, the optical absorption spectra of Si-v’and the CeO2(111)’also have been plotted (Fig.4b).Although Si-v’is a gapless metal, it demonstrates a significantly improved UV-vis absorption, especially around the UV ray, which implies its promising application in the field of photocatalytic.In addition, to shed light on the potential applications of these heterojunctions in producing hydrogen, their band edge potentials with respect to the water redox potentials have been aligned in Fig.4c.To be an eligible photocatalyst in hydrogen production, the band gap of them must cross the redox potential of water splitting [45–47].Clearly,neither the silicene nor Si-v is an adequate photocatalyst for water splitting, because they do not have strong enough redox properties (blue block in Fig.4c).But the CeO2and Si-c can do well in water splitting.Moreover, Si-c is a type-II heterojunction with suitable band gap, which is benefit to the effective separation of photo-excited electrons and holes.On the basis of above results and analyses, we can conclude that the Si-c is very likely to be an excellent water-splitting photocatalyst (Fig.4d).

    Furthermore, to have an insight into the interfacial interactions and the enhanced photocatalytic performance of Si-c, their 3D charge density difference and quantitative results of charge distribution are given in Fig.3.One thing to note here is that all the isovalues in Figs.3a and c and Fig.S4 are 0.001 e/3, while that of Fig.3b is 0.005 e/3.The more accurate Bader calculation results are listed in Table S1.Si-c has significantly more charge transfer from silicene to CeO2than Si-v, due to the strong action of Si-O.But silicene in Si-v’gains electrons from CeO2, which should be attributed to the exposed metal Ce atoms on the surface of CeO2.These results can well in line with the analysis of charge density difference.Such a good charge transfer effect of Si-c can more fully demonstrate its remarkable photocatalytic water splitting performance.On the other hand, the transfer of a large amount of charge to CeO2accelerates the reversible phase transition between CeO2and Ce2O3, which to a certain extent provides greater possibilities for the enhancement of the redox properties for CeO2.To further prove it, the charge changes of Ce atoms in the pure CeO2and Si-c are calculated.Results show that the charge of Ce atoms in Si-c is 0.0799 e/atom more than Ce atoms in pure CeO2, indicating that the valence state of Ce atoms in Si-c is reduced, and a reversible phase transition between CeO2and Ce2O3has occurred.

    In summary, using first-principles calculations, we systematically investigate the electronic, interfacial and optical properties of Si/CeO2and silicene/CeO2heterojunctions.The Si/CeO2nanocomposite is neither a good photocatalyst nor electronic material due to its unsuitable band structure, but its light absorption performance is well interesting and worthy of further exploration.Interestingly, the silicene/CeO2(111) heterojunctions can stably exist in the forms of both vdW and cb heterojunctions.The Si-c,as a type-II heterojunction with a moderate band gap of 1.97 eV,is an excellent photocatalyst in splitting water to produce hydrogen.In Si-v, the Dirac cone of silicene is well kept and opened up to 0.43 eV, this sizable energy gap over 0.4 eV without degrading its intrinsic Dirac Fermion characteristics is of great significance in silicene-based high-speed nanoelectronics.In short,this paper provides sufficient evidence supporting for designing high-performance silicene-based electronic device and CeO2-based water-splitting photocatalyst.

    Declaration of competing interest

    The authors report no declarations of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (Nos.11764018, 20212BAB201013,31760157), the Jiangxi Provincial Natural Science Foundation(Nos.20202ACBL211004, 20212BAB201013, 20202BABL211009,20192BAB212003) and the Science and Technology Planning Project of Ganzhou City.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.11.026.

    国产一区二区三区在线臀色熟女| 国产探花极品一区二区| 亚洲av电影不卡..在线观看| 99热6这里只有精品| 俺也久久电影网| 欧美黄色片欧美黄色片| 日日摸夜夜添夜夜添小说| 欧美成人a在线观看| 国产国拍精品亚洲av在线观看| 麻豆久久精品国产亚洲av| 免费黄网站久久成人精品 | 美女xxoo啪啪120秒动态图 | 日韩欧美免费精品| 亚洲第一区二区三区不卡| 国产单亲对白刺激| 99国产综合亚洲精品| 亚洲国产精品sss在线观看| 国语自产精品视频在线第100页| 韩国av一区二区三区四区| 国产精品一区二区免费欧美| 99久久成人亚洲精品观看| 又爽又黄无遮挡网站| 成人av在线播放网站| 久久久久国内视频| 99在线人妻在线中文字幕| 精品午夜福利视频在线观看一区| 久久精品国产亚洲av涩爱 | 日韩成人在线观看一区二区三区| 欧美绝顶高潮抽搐喷水| 国产大屁股一区二区在线视频| 美女 人体艺术 gogo| 欧美成人一区二区免费高清观看| 国产一区二区亚洲精品在线观看| 午夜福利18| 在线a可以看的网站| 国产伦精品一区二区三区四那| 亚洲精品456在线播放app | 最好的美女福利视频网| 两性午夜刺激爽爽歪歪视频在线观看| 人人妻人人看人人澡| 夜夜躁狠狠躁天天躁| 特大巨黑吊av在线直播| 老鸭窝网址在线观看| 亚洲国产精品合色在线| 国产视频内射| av视频在线观看入口| 精品国产三级普通话版| 久久国产乱子伦精品免费另类| 亚洲精品亚洲一区二区| 夜夜看夜夜爽夜夜摸| 久久伊人香网站| 国内毛片毛片毛片毛片毛片| 国产三级黄色录像| 欧美黑人欧美精品刺激| 亚洲精品日韩av片在线观看| 神马国产精品三级电影在线观看| 成人特级黄色片久久久久久久| 精品午夜福利视频在线观看一区| 深夜a级毛片| 夜夜躁狠狠躁天天躁| 日韩欧美精品免费久久 | 男人和女人高潮做爰伦理| 亚洲片人在线观看| 好看av亚洲va欧美ⅴa在| 蜜桃亚洲精品一区二区三区| 欧美成人一区二区免费高清观看| 免费看美女性在线毛片视频| 综合色av麻豆| 亚洲最大成人av| 超碰av人人做人人爽久久| 九九热线精品视视频播放| 免费电影在线观看免费观看| 色在线成人网| 12—13女人毛片做爰片一| 国产 一区 欧美 日韩| 黄色视频,在线免费观看| 亚洲成人精品中文字幕电影| 久久人妻av系列| 欧美成狂野欧美在线观看| 我要搜黄色片| 亚洲内射少妇av| 91麻豆精品激情在线观看国产| 国产男靠女视频免费网站| 日本黄大片高清| 亚洲三级黄色毛片| 色综合欧美亚洲国产小说| 国产精品嫩草影院av在线观看 | 午夜久久久久精精品| 最近在线观看免费完整版| 高清毛片免费观看视频网站| 性色avwww在线观看| 男插女下体视频免费在线播放| 麻豆国产av国片精品| 亚洲av日韩精品久久久久久密| 国产不卡一卡二| 一区二区三区激情视频| 欧美+日韩+精品| 国产在线精品亚洲第一网站| 简卡轻食公司| 丰满乱子伦码专区| 国产国拍精品亚洲av在线观看| 九色成人免费人妻av| 久久久久久国产a免费观看| 亚洲内射少妇av| 久久久精品欧美日韩精品| 在线观看66精品国产| 欧美+日韩+精品| 一个人看的www免费观看视频| 小说图片视频综合网站| 一卡2卡三卡四卡精品乱码亚洲| 欧美成人性av电影在线观看| 男女床上黄色一级片免费看| 免费在线观看影片大全网站| 直男gayav资源| 免费观看人在逋| 五月伊人婷婷丁香| 精品福利观看| 激情在线观看视频在线高清| 国产精品人妻久久久久久| 淫妇啪啪啪对白视频| 看免费av毛片| 真实男女啪啪啪动态图| 国产高清三级在线| 午夜精品一区二区三区免费看| 美女被艹到高潮喷水动态| 亚洲午夜理论影院| 亚洲男人的天堂狠狠| 久久99热6这里只有精品| 欧美日韩亚洲国产一区二区在线观看| 亚洲精品456在线播放app | 国产免费一级a男人的天堂| 国产高清三级在线| 老司机午夜十八禁免费视频| 久99久视频精品免费| 国产亚洲精品久久久com| 99riav亚洲国产免费| www.www免费av| 99riav亚洲国产免费| 亚洲精品久久国产高清桃花| 午夜福利在线观看吧| 欧美黑人巨大hd| 亚洲国产精品成人综合色| 免费看美女性在线毛片视频| 麻豆国产97在线/欧美| 久久亚洲精品不卡| 国产精品亚洲一级av第二区| 国产精品乱码一区二三区的特点| 一个人看视频在线观看www免费| 婷婷精品国产亚洲av| 亚洲成人免费电影在线观看| 一区二区三区高清视频在线| 精品久久久久久,| 久久久久亚洲av毛片大全| 亚洲最大成人中文| 午夜福利成人在线免费观看| 好男人在线观看高清免费视频| 国产亚洲精品久久久com| 三级毛片av免费| 国产亚洲精品久久久com| 女生性感内裤真人,穿戴方法视频| 九九热线精品视视频播放| 99国产精品一区二区蜜桃av| 免费观看的影片在线观看| 少妇人妻精品综合一区二区 | 日韩欧美精品v在线| 精品久久久久久久久亚洲 | 99久久99久久久精品蜜桃| 欧美日韩亚洲国产一区二区在线观看| 亚洲五月婷婷丁香| 制服丝袜大香蕉在线| 欧美性猛交╳xxx乱大交人| 亚洲激情在线av| 男人舔奶头视频| 一进一出抽搐gif免费好疼| 欧美又色又爽又黄视频| 人人妻,人人澡人人爽秒播| 亚洲片人在线观看| 高清日韩中文字幕在线| 国产精品日韩av在线免费观看| 午夜亚洲福利在线播放| 天天躁日日操中文字幕| 99在线视频只有这里精品首页| 99久久精品国产亚洲精品| bbb黄色大片| 国产淫片久久久久久久久 | 欧美乱妇无乱码| 我要看日韩黄色一级片| 少妇的逼好多水| 色吧在线观看| 五月玫瑰六月丁香| 久久久久久久午夜电影| 免费看美女性在线毛片视频| 久久6这里有精品| 久久久久国内视频| 国产淫片久久久久久久久 | 亚洲天堂国产精品一区在线| 中文字幕人妻熟人妻熟丝袜美| 男女那种视频在线观看| 国产亚洲精品综合一区在线观看| 亚洲成av人片在线播放无| 麻豆一二三区av精品| 中文资源天堂在线| 成人特级黄色片久久久久久久| 亚洲欧美日韩无卡精品| 亚洲熟妇熟女久久| 久久久久久久精品吃奶| 成人av在线播放网站| 精品日产1卡2卡| 欧美日韩亚洲国产一区二区在线观看| 中文字幕人妻熟人妻熟丝袜美| 午夜福利成人在线免费观看| 精品国内亚洲2022精品成人| 淫妇啪啪啪对白视频| 日韩欧美国产在线观看| 国内久久婷婷六月综合欲色啪| 久久九九热精品免费| 天美传媒精品一区二区| 亚洲精品影视一区二区三区av| 午夜精品在线福利| 亚洲人成网站在线播| 在线播放无遮挡| 亚洲专区国产一区二区| 欧美一区二区精品小视频在线| avwww免费| a级毛片免费高清观看在线播放| 天天躁日日操中文字幕| 亚洲欧美激情综合另类| 啦啦啦观看免费观看视频高清| 国产毛片a区久久久久| 真人做人爱边吃奶动态| 国产在线精品亚洲第一网站| 高潮久久久久久久久久久不卡| 久久久久精品国产欧美久久久| 免费黄网站久久成人精品 | 国产精品亚洲一级av第二区| 老熟妇仑乱视频hdxx| 中文亚洲av片在线观看爽| 国产视频一区二区在线看| 91字幕亚洲| 在线观看av片永久免费下载| 精品久久久久久久久亚洲 | 天堂√8在线中文| 性插视频无遮挡在线免费观看| 国产亚洲精品久久久com| 久久久国产成人精品二区| 国产aⅴ精品一区二区三区波| 国产伦在线观看视频一区| 看免费av毛片| 9191精品国产免费久久| 小说图片视频综合网站| 欧美+亚洲+日韩+国产| 美女免费视频网站| 精品人妻视频免费看| 亚洲激情在线av| 超碰av人人做人人爽久久| 高清毛片免费观看视频网站| 久久久国产成人精品二区| 99热精品在线国产| 国产大屁股一区二区在线视频| 国产伦一二天堂av在线观看| 999久久久精品免费观看国产| 中文字幕人成人乱码亚洲影| a级毛片免费高清观看在线播放| 90打野战视频偷拍视频| 国产精品久久久久久人妻精品电影| 亚洲欧美激情综合另类| 欧美极品一区二区三区四区| a级一级毛片免费在线观看| 麻豆久久精品国产亚洲av| 88av欧美| 国产亚洲av嫩草精品影院| 欧美高清性xxxxhd video| 日韩精品中文字幕看吧| 婷婷色综合大香蕉| 性色av乱码一区二区三区2| 免费在线观看亚洲国产| 一本综合久久免费| 精品福利观看| 久久欧美精品欧美久久欧美| 3wmmmm亚洲av在线观看| 久久人人爽人人爽人人片va | 别揉我奶头~嗯~啊~动态视频| 内地一区二区视频在线| 亚洲18禁久久av| 一夜夜www| 中出人妻视频一区二区| 91狼人影院| av在线观看视频网站免费| 欧美一区二区国产精品久久精品| 真人一进一出gif抽搐免费| 国产大屁股一区二区在线视频| 国产探花极品一区二区| 午夜福利18| 性色av乱码一区二区三区2| 国产日本99.免费观看| 乱人视频在线观看| 国产免费av片在线观看野外av| 久久国产乱子伦精品免费另类| 国产爱豆传媒在线观看| 国产高清激情床上av| 亚洲专区中文字幕在线| 成年女人毛片免费观看观看9| 亚洲aⅴ乱码一区二区在线播放| 亚洲欧美日韩卡通动漫| 欧美丝袜亚洲另类 | 在线观看免费视频日本深夜| 亚洲专区国产一区二区| 日韩欧美 国产精品| 男女床上黄色一级片免费看| 最近视频中文字幕2019在线8| 99国产综合亚洲精品| av女优亚洲男人天堂| 欧美激情在线99| 久久午夜福利片| 欧美成人性av电影在线观看| 亚洲欧美日韩卡通动漫| 亚洲性夜色夜夜综合| 亚州av有码| 88av欧美| 日本 欧美在线| 可以在线观看的亚洲视频| 丰满人妻熟妇乱又伦精品不卡| 怎么达到女性高潮| 人人妻人人看人人澡| 91久久精品电影网| 欧美bdsm另类| 色噜噜av男人的天堂激情| 亚洲片人在线观看| 久久久久久久久大av| 亚洲精品成人久久久久久| 伊人久久精品亚洲午夜| 一个人看视频在线观看www免费| 中文字幕av成人在线电影| 国产av在哪里看| 精品人妻1区二区| 69人妻影院| 99在线视频只有这里精品首页| 成年女人毛片免费观看观看9| 欧美日韩瑟瑟在线播放| 欧美最新免费一区二区三区 | 搡老妇女老女人老熟妇| 亚洲,欧美精品.| 日韩中字成人| 婷婷六月久久综合丁香| avwww免费| 欧美性猛交黑人性爽| 久久中文看片网| 国产探花极品一区二区| 精品久久久久久久久亚洲 | .国产精品久久| av天堂在线播放| 免费观看人在逋| 亚洲最大成人手机在线| 一本一本综合久久| 成人欧美大片| 黄色日韩在线| 国产老妇女一区| 国产高潮美女av| 中文字幕av成人在线电影| 人人妻,人人澡人人爽秒播| www日本黄色视频网| 色噜噜av男人的天堂激情| 97超视频在线观看视频| 久久久久久久久久黄片| 99热只有精品国产| 99国产综合亚洲精品| 制服丝袜大香蕉在线| 成年人黄色毛片网站| 99久久成人亚洲精品观看| 欧美高清性xxxxhd video| 又黄又爽又刺激的免费视频.| 三级国产精品欧美在线观看| 国产精品av视频在线免费观看| 深爱激情五月婷婷| 中文字幕免费在线视频6| 久久精品国产亚洲av涩爱 | 91麻豆av在线| 国产在线精品亚洲第一网站| 中文资源天堂在线| 亚洲色图av天堂| 国产免费一级a男人的天堂| 成人国产一区最新在线观看| 亚洲经典国产精华液单 | 日韩欧美精品v在线| 国产精品一及| 国内毛片毛片毛片毛片毛片| 免费在线观看亚洲国产| 乱码一卡2卡4卡精品| 国产精品亚洲美女久久久| 搡老岳熟女国产| 琪琪午夜伦伦电影理论片6080| 中国美女看黄片| 国产在线精品亚洲第一网站| 日本熟妇午夜| 好男人电影高清在线观看| 欧美一区二区国产精品久久精品| 欧美在线一区亚洲| 51国产日韩欧美| 在线观看舔阴道视频| 日韩中文字幕欧美一区二区| 亚洲精品一区av在线观看| 国产精品免费一区二区三区在线| 国产精品久久久久久久久免 | 一卡2卡三卡四卡精品乱码亚洲| 免费av不卡在线播放| 免费看a级黄色片| 欧美性猛交黑人性爽| 久久精品国产99精品国产亚洲性色| 欧美一级a爱片免费观看看| 久久久久免费精品人妻一区二区| 亚洲精品在线观看二区| 长腿黑丝高跟| 久9热在线精品视频| 国产探花极品一区二区| 日韩成人在线观看一区二区三区| 亚洲精品影视一区二区三区av| 国产欧美日韩一区二区精品| 成人av在线播放网站| 中文字幕免费在线视频6| 不卡一级毛片| 美女黄网站色视频| 亚洲欧美激情综合另类| 啦啦啦韩国在线观看视频| 日本成人三级电影网站| 亚洲精品粉嫩美女一区| 俺也久久电影网| 日本在线视频免费播放| 欧美精品啪啪一区二区三区| av天堂在线播放| 一区二区三区免费毛片| 熟女人妻精品中文字幕| 色综合欧美亚洲国产小说| 日本黄色视频三级网站网址| 男女床上黄色一级片免费看| 精品欧美国产一区二区三| 亚洲在线观看片| 久久精品国产亚洲av涩爱 | 国产大屁股一区二区在线视频| 成人国产综合亚洲| 欧美一区二区精品小视频在线| 久久精品夜夜夜夜夜久久蜜豆| 淫秽高清视频在线观看| 亚洲美女搞黄在线观看 | 在线天堂最新版资源| 2021天堂中文幕一二区在线观| 美女免费视频网站| 婷婷六月久久综合丁香| 最近视频中文字幕2019在线8| 一区二区三区四区激情视频 | 国产单亲对白刺激| 亚洲最大成人中文| 久久热精品热| 99在线人妻在线中文字幕| 在线看三级毛片| 日日摸夜夜添夜夜添小说| 久久久久国产精品人妻aⅴ院| 国产蜜桃级精品一区二区三区| 搡老妇女老女人老熟妇| 日韩亚洲欧美综合| 韩国av一区二区三区四区| 悠悠久久av| av在线观看视频网站免费| 国产精品女同一区二区软件 | 欧美在线黄色| 长腿黑丝高跟| 国产成人影院久久av| 特级一级黄色大片| 精品国产三级普通话版| 欧美色欧美亚洲另类二区| 91在线观看av| 久久精品夜夜夜夜夜久久蜜豆| 国产一区二区亚洲精品在线观看| 十八禁人妻一区二区| 美女 人体艺术 gogo| 精品久久久久久久人妻蜜臀av| 神马国产精品三级电影在线观看| 免费人成视频x8x8入口观看| 国产精品久久久久久久久免 | 一进一出抽搐动态| h日本视频在线播放| 久久99热这里只有精品18| 免费人成视频x8x8入口观看| 中文字幕高清在线视频| 国产精品影院久久| 精品久久久久久久久av| 久久精品国产亚洲av天美| 91狼人影院| 美女免费视频网站| 国产麻豆成人av免费视频| 久久久久久久久中文| 午夜福利18| 最近最新免费中文字幕在线| 成人一区二区视频在线观看| 国产乱人视频| а√天堂www在线а√下载| 精品久久久久久久人妻蜜臀av| 欧美在线黄色| 首页视频小说图片口味搜索| 色哟哟哟哟哟哟| 免费av毛片视频| 午夜精品在线福利| h日本视频在线播放| 天美传媒精品一区二区| 亚洲av中文字字幕乱码综合| 在线免费观看的www视频| 欧美另类亚洲清纯唯美| 99国产极品粉嫩在线观看| 久久久色成人| 小说图片视频综合网站| 国产高清有码在线观看视频| 搡老熟女国产l中国老女人| 草草在线视频免费看| 很黄的视频免费| 国产黄片美女视频| 久久精品综合一区二区三区| 欧美中文日本在线观看视频| 成年女人看的毛片在线观看| 丰满乱子伦码专区| 一卡2卡三卡四卡精品乱码亚洲| 国产精品综合久久久久久久免费| 色精品久久人妻99蜜桃| 搞女人的毛片| 国产一区二区激情短视频| 国产在视频线在精品| 少妇被粗大猛烈的视频| 久久99热6这里只有精品| 午夜福利高清视频| 久久性视频一级片| 婷婷亚洲欧美| 日本免费a在线| 久久久久久久久中文| 国产成年人精品一区二区| 国产精品久久久久久久久免 | 日韩欧美精品v在线| 午夜免费激情av| 精品久久久久久久人妻蜜臀av| 宅男免费午夜| 精品熟女少妇八av免费久了| av天堂中文字幕网| 美女高潮喷水抽搐中文字幕| 精品无人区乱码1区二区| 国产白丝娇喘喷水9色精品| a级毛片a级免费在线| 国产 一区 欧美 日韩| 久久国产乱子伦精品免费另类| 久久久久国内视频| 韩国av一区二区三区四区| 宅男免费午夜| 校园春色视频在线观看| 精品人妻偷拍中文字幕| 好男人在线观看高清免费视频| 亚洲国产高清在线一区二区三| 一本久久中文字幕| 女同久久另类99精品国产91| 国模一区二区三区四区视频| 亚洲专区国产一区二区| 啪啪无遮挡十八禁网站| 国产精品乱码一区二三区的特点| 亚洲av第一区精品v没综合| 亚洲一区二区三区不卡视频| 超碰av人人做人人爽久久| 在线免费观看不下载黄p国产 | 欧美黑人巨大hd| 国产单亲对白刺激| 欧美日本视频| 18禁黄网站禁片免费观看直播| 一级黄片播放器| 欧美乱色亚洲激情| 最好的美女福利视频网| 丰满乱子伦码专区| 十八禁国产超污无遮挡网站| 午夜福利在线在线| 免费看美女性在线毛片视频| 国产精品野战在线观看| 亚洲成人中文字幕在线播放| 最后的刺客免费高清国语| 看十八女毛片水多多多| 哪里可以看免费的av片| 欧美3d第一页| 国产野战对白在线观看| 亚洲最大成人手机在线| 好看av亚洲va欧美ⅴa在| 少妇裸体淫交视频免费看高清| 淫妇啪啪啪对白视频| 每晚都被弄得嗷嗷叫到高潮| 欧美xxxx黑人xx丫x性爽| 成人一区二区视频在线观看| 日韩免费av在线播放| 99国产精品一区二区蜜桃av| 最近最新中文字幕大全电影3| 国产免费av片在线观看野外av| 国产亚洲av嫩草精品影院| 国产黄片美女视频| 哪里可以看免费的av片| 国产精品电影一区二区三区| 亚洲国产精品999在线| 很黄的视频免费| 国产黄片美女视频| 99久久无色码亚洲精品果冻| 亚洲午夜理论影院| 麻豆国产97在线/欧美| 久9热在线精品视频| 两个人的视频大全免费| 欧美日韩乱码在线| 免费无遮挡裸体视频| 性插视频无遮挡在线免费观看| 波多野结衣巨乳人妻| 日韩欧美一区二区三区在线观看| 最近在线观看免费完整版| 国产乱人伦免费视频| 国产精品三级大全| 国产在线男女| 免费看美女性在线毛片视频| 夜夜躁狠狠躁天天躁| 天堂√8在线中文|