• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dendrite-free and anti-corrosion Zn metal anode enabled by an artificial layer for high-performance Zn ion capacitor

    2022-09-16 05:24:54ZhuoLiZheGongXioyuWuKeYeJunYnGuilingWngYingjinWeiKiZhuJinYiDinxueCoGuohuChen
    Chinese Chemical Letters 2022年8期

    Zhuo Li, Zhe Gong, Xioyu Wu, Ke Ye, Jun Yn, Guiling Wng, Yingjin Wei,Ki Zhu,, Jin Yi, Dinxue Co, Guohu Chen

    a College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China

    b Department of Mechanical Engineering, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, China

    c Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China

    d Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China

    ABSTRACT Aqueous zinc energy storage devices, holding various merits such as high specific capacity and low costs,have attracted extensive attention in recent years.Nevertheless, Zn metal anodes still suffer from a short lifespan and low Coulombic efficiency due to corrosion and side reactions in aqueous electrolytes.In this paper, we construct an artificial Sn inorganic layer on Zn metal anode through a facile strategy of atom exchange.The Sn layer suppresses Zn dendrite growth by facilitating homogeneous Zn plating and stripping during charge and discharge processes.Meanwhile, the Sn protective layer also serves as a physical barrier to decrease Zn corrosion and hydrogen generation.As a result, The Sn-coated anode (Sn|Zn) exhibits a low polarization voltage (~34 mV at 0.5 mAh/cm2) after 800 testing hours and displays a smooth and an even surface without corrosion.Moreover, the zinc ion capacitor (Sn|Zn||activated carbon) is assembled with an enhanced capacity of 42 mAh/g and a capacity retention of 95% after 10,000 cycles at 5 A/g.This work demonstrates a feasible approach for the commercialization of aqueous Zn-based energy storage devices.

    Keywords:Zn ion capacitor Aqueous electrolyte Surface structure Sn metal layer Anti-corrosion

    Rechargeable lithium-ion batteries (LIBs) have been commercialized for decades meeting the demands for portable devices and electric vehicles.However, the issues concerning the low safety derived from the flammable organic electrolyte, spiky metal dendrite and the high cost of Li salts hinder the application of LIBs for large-scale grid energy storage systems [1–5].As one of the multivalent ion batteries, rechargeable aqueous zinc-ion batteries (ZIBs)attract massive attention owing to their inherent merits of high safety technology for energy storage and conversion, high specific energy density (820 mAh/g and 5850 mAh/cm3), low redox reaction potential (?0.76 Vvs.SHE.), non-flammable property, low cost,and environmental benign [6–8].Consequently, ZIBs are considered as one of the most promising alternative candidates for LIBs [9].Researchers world-wide have made great efforts on investigating proper cathode materials and stable electrolytes or electrolyte additives.However, the work on Zn metal anode requires more investigations.Specifically, Zn anode suffers from severe corrosion and dendrite formation during redox cycling, resulting in passivation and internal short circuit ultimately [1,10,11].Upon battery charging (Zn2+reduction on the anode) [12–14], hydrogen evolution reaction (HER) may occur on the interface between metal anode and electrolyte simultaneously [15], accompanying the locally increased pH value and the growth of insulating by-products loosely deposited on the surface of Zn anode.The passivation layer formation also consumes Zn ions in the electrolyte, leading to capacity decrease within a short time [16–20].Therefore, it calls for the practical and facile solutions to stabilize the Zn anode surface and hamper passivation [21–23].

    Fig.1.Schematics of the preparation of Sn layer on Zn anode and Zn deposition behaviors on the surface of bare Zn and Sn|Zn anodes.

    Design and construction of a chemically stable and mechanically durable protective layer on the electrode is considered an effective way to suppress the dendrite growth and improve battery stability [24].In general, there are two main types of materials utilized to achieve surface modification: organic layer and inorganic layer [25].The organic layer could suppress the side reaction and promote the uniform Zn ion transport [26].Caoet al.applied commercial cyanoacrylate adhesive to zinc metal anode and achieved a high Coulombic efficiency of 99.74% [27].Zouet al.adhered konjac glucomannan on to Zn anode surface, the cycling performance and anti-corrosion ability were enhanced [28].Recently, the inorganic protected layer is developed to optimize the Zn electrodeposition and prevent the dendrite growth [29], such as coating Zn anode with CaCO3[30], TiO2[31] and 3D ZnO [32].A thin inorganic coating layer can facilitate the electrochemical reaction on the surface of the electrode [33], resulting in favourable electrochemical performance [34].Meanwhile, it hampers aqueous electrolyte infiltration into the surface of the electrode [35], consequently restrains hydrogen evolution reaction and contributes to compact deposition of Zn.Although the organic and inorganic layer modification strategies have shown exciting results [36,37], the complicated and time-consuming fabrication processes hinder their potential application, not to mention the unsatisfactory interfacial properties in the electrolyte/protective layer and protective layer/Zn anode.

    Aqueous Zn ion capacitor (ZIC) has been considered as one of the most promising energy storage devices with capable power density for industrial application.With the advancement of smart wearable electronics, ZICs that possess flexible and non-toxic properties attract wide attention [38].Herein, we developed a smooth artificial protective film, Sn layer, on the surface of Zn anodeviaan extremely facile atom exchange strategy.The polished bare Zn foil was immersed in 0.01 mol/L SnCl2solution for 120 s, and then a durable Sn coated Zn (Sn|Zn) electrode was developed.The neatly and regularly arranged Sn particles on the Zn surface facilitated the distribution of charge and acted as artificial protective layer,inducing an even plating of Zn.In addition, the dense and protective Sn layer hindered HER and corrosion during the Zn plating and stripping process.In the symmetric cells with Sn|Zn electrodes, the excellent conductive Sn metal protective film results in a significantly low overpotential (<10 mV), ~100% Coulombic efficiency(CE), and stable cycling performance (over 800 h).Moreover, a ZIC is designed and assembled with Sn|Zn anode and activated carbon(AC) cathode.The ZIC presents a high capacity of 42 mAh/g with a capacity retention of 95% after 10,000 cycles, demonstrating the potential application of Sn|Zn.

    The preparation process of Sn coated Zn (Sn|Zn) is shown in Fig.1.Bare Zn foil was immersed in the SnCl2solution for 120 s and then the Sn layer was coated on the Zn electrode through a facile atom-exchange strategy with the mechanism given in Eq.1:

    Fig.2.(a) SEM image of polished Zn foil.Morphology of immersing time for (b)30 s (c) 60 s (d) 120 s and (f) 180 s in 0.01 mol/L SnCl2 solution.(e) Magnified region of image (d).(g) X-ray diffraction patterns of bare Zn and Sn|Zn foil.(h, i)EDX elemental mapping of Sn|Zn foil.

    The Sn layer can serve as an artificial SEI film to induce uniform Zn ion deposition, avoiding the irregular Zn dendrites growth [45].Meanwhile, the protective layer may suppress the hydrogen evolution reaction and by-product formation, leading to enhanced cycling stability of Zn anode.The original zinc metal foil and polished zinc foil were shiny and silvery (Fig.2a and Fig.S2 in Supporting information).After coating with the Sn layer, the electrode lost the metallic lustre.To better understand the most suitable time for an even morphology of Sn layer, SEM images were obtained.Figs.2b-d and f display the surface morphology of Zn foils after being immersed in 0.01 mol/L SnCl2solutions for 30 s, 60 s, 120 s and 180 s, respectively.As shown in Fig.2b, there are few particles on the Zn surface.With increasing reaction time to 60 s, some particles are observed as shown in Fig.2c, suggesting a fact that rendering the process 60 s or less is not enough for an even Sn layer formation.Figs.2d and f display that the Zn foil is covered with particles arranged continuously with superior order, demonstrating Sn layer is generated on the Zn foil when the reaction time was over 120 s.Prolonged atom exchange results in the formation of plenty of particles with the size of 2–10 μm and some fissures on the Zn foils.The visual inspection shows that 120 s atom exchange gives the most suitable Sn coating on Zn.Further magnification of the samples with 120 s reaction show more details about the surface that has been fully covered by Sn (Fig.2e).There are multiple clusters on the surface of Zn immersed for 180 s which indicates a worse morphology than that of 120 s (Fig.2f).Fig.2g presents the XRD spectra of Sn|Zn and bare Zn foils.The dominant peaks at 36.29°, 38.99° and 43.22° correspond to plane (002),(100) and (101) of standard Zn (JCPDS No.87–0813), respectively[46].The presence of peaks at 30.64°, 32.02°, 43.88° and 44.90°coincides with the crystal plane (200), (101), (220) and (211) of Sn,respectively, indicating the existence of Sn on Zn foil.EDX elemental mappings (Figs.2h and i) show that Sn is uniformly distributed on Zn substrate.

    Fig.3.SEM images of (a) polished Zn foil and (b) Sn|Zn immersed in 2 mol/L ZnSO4 solution for 14 days.(c) Corrosion curves of polished Zn and Sn|Zn anode in 2 mol/L ZnSO4 solution.(d) Optical microscopy images of polished Zn (up) and Sn|Zn (down) in 2 mol/L ZnSO4 electrolyte at 20 mA/cm2.(e) LSV curves of bare Zn and Sn|Zn in a 1 mol/L Na2SO4 solution at a scan rate of 5 mV/s.

    To examine the effect of the Sn layer on Zn corrosion resistance,Sn|Zn and bare Zn foils were immersed in the static 2 mol/L ZnSO4electrolyte synchronously for 14 days.SEM image (Fig.3a) shows countless flakes on the surface of bare Zn foil, which is attributed to the by-products originated from the reaction between OH?ions and the surface of Zn foil, which is loose and random.Meanwhile,there are many corrosion voids and vertical flaky by-products on Zn foil (Fig.S3 in Supporting information).In contrast, the surface of Sn|Zn foil changes insignificantly, suggesting its stability in aqueous electrolyte (Fig.3b).Fig.3c presents the corrosion curves of bare Zn and Sn|Zn foils.Linear polarization analysis was used to determine the current density of corrosion, which reflects the protective performance of the Sn layer.The corrosion current density of Sn coated Zn is lower than that of Zn foil, demonstrating the anti-corrosive quality of Sn|Zn [47].The enhanced anti-corrosive ability is ascribed to the Sn layer, which serves as a physical barrier to reduce the contact between Zn foil and water [48].In addition, the dendrite-growth was monitored through an optical microscope.The tiny symmetric cell consisted of 1 mL 2 mol/L ZnSO4electrolyte, Sn|Zn or Zn electrode, which was 2 mm in width.As shown in Fig.3d, for the Zn foil, H2gas bubbles are generated on the surface of Zn after only 5 s, and the dendrite sprouts out at the same time.About 30 s later, snow flake-like dendrites become sharp and large rapidly, and the volumes of the bubbles are also comparatively larger.Eventually, the dendrites connect to another electrode, causing a short circuit [49].In contrast, there are almost no conspicuous dendrites and corrosion on the surface of Sn|Zn anode.It is clear that the colour of the electrode surface turns from bright to grey homogeneously with time.As expected,the linear sweep voltammetry (LSV) analysis demonstrates a lower onset potential for the HER on the Sn|Zn electrode (?1.567 Vvs.Ag/AgCl) than that of Zn foil (?1.511 Vvs.Ag/AgCl) (Fig.3e).When the HER occurs, there will be OH?left on the surface of Zn.In alkaline circumstance, Zn will occur more complex chemical reactions than acid circumstance.Zn can combine with around OH?and some insulated by-products such as Zn4SO4(OH)6·4H2O, ZnO would generate on the surface of Zn anode [1].The Sn layer dramatically inhibits the dendrite growth and hydrogen evolution on the surface of electrode.It not only separates Zn from aqueous electrolyte, but also facilitates an even Zn plating/stripping during the charge/discharge process, resulting in a homogeneous and smooth zinc layer without formation of dendrites [50].

    To further investigate the electrochemical property of Zn and Sn|Zn in plating and stripping, galvanostatic charge and discharge testing were carried out.Fig.4a presents the first discharge curves of the electrode under 10 mA/cm2.The Sn|Zn foil delivers a much lower nucleation overpotential (3.4 mV) than that of bare Zn(64.8 mV) at an areal capacity of 1.0 mAh/cm2, suggesting the Sn layer could decrease the barrier of Zn2+reduction.To evaluate the rate ability of the Zn and Sn|Zn anodes, the symmetric CR2032 coin cells were tested under the current density from 0.5 mA/cm2to 10 mA/cm2(Fig.4b).Sn|Zn anode maintains a stable and relatively low voltage overpotential (for example only 51.7 mV at 10 mA/cm2) under different current densities.When current density is resumed to 0.5 mA/cm2, the voltage platforms keep smooth with an overpotential of 9.9 mV, demonstrating the stably repeated Zn plating/stripping process.In contrast, the overpotential of bare Zn electrode soars to 353.4 mV at 10 mA/cm2.When current density returns to 0.5 mA/cm2, the overvoltage reaches 65.7 mV, revealing the poor rate ability of the Zn electrode.

    Fig.4.(a) Anode galnovastatic discharging of Zn and Sn|Zn at a capacity of 1 mAh/cm2 and a current density of 10 mA/cm2.(b) Long-term cycling stability at varying current densities.(c) Galvanostatic charge and discharge curves of Zn and Sn|Zn in symmetrical coin cells at 0.5 mA/cm2 (stripping/planting capacity is 0.25 mAh/cm2).(d) The adsorption energy plot of Zn2+ on Sn (101), (200), (211) and(220) planes.(e) Energy barrier profiles along the Zn-ion diffusion paths in Sn (220)plane; insert graph: diffusion paths (indicated by arrows) followed by Zn ion in the Sn (220) plane.

    Fig.5.(a) Full cell long-term charging and discharging curves and coulombic effi-ciencies at 5 A/g.The SEM image of cycled (b) polished Zn and (c) Sn|Zn at 5 A/g.

    The cycling stability performance of Zn and Sn|Zn were verified in symmetric coin cells with a constant areal capacity of 0.25 mAh/cm2under 0.5 mA/cm2.The symmetric cells with Sn|Zn anodes charge/discharge stably for up to 800 h with a low voltage overpotential (35.6 mV, at 800thhour) (Fig.4c).Charge-discharge profiles in each period are illustrated in the insets of Fig.4c.Sn|Zn electrode presents stable charge and discharge curves all the time,indicating the Sn layer could suppress dendrite growth and HER.Meanwhile, Sn|Zn electrodes also exhibit a more stable cycling performance than Zn foil at 3 and 5 mA/cm2(Figs.S4 and S5 in Supporting information), demonstrating the Sn layer could enhance the cycling stability of the Zn anode effectively.It should be noticed that the Sn|Zn anodes present a competitive electrochemical performance such as prolonged calendar life and low overpotential compared with previous works (Fig.S6 and Table S1 in Supporting information) [26,31,34,38-44].

    The DFT calculation was carried out to further confirm the Zn ion adsorption on the Sn surface and diffusion in the Sn layer.The adsorption energy of Zn2+on Sn metallic crystal plane of (101),(200), (211) and (220) are calculated to be ?2.37, ?2.48, ?2.71 and ?3.61 eV, respectively.Sn (220) plane has the best affinity toward Zn although all Sn surfaces are of good affinity with Zn2+.Thus, the Zn2+prefers to deposit on the Sn (220).Meanwhile, Sn presents a low migration energy barrier of 0.23 eV along the (220)direction, demonstrating Zn ion on the Sn surface could further diffuse and redistribute (Fig.4e and insert graph).This explains why Sn layer results in a homogeneous Zn deposition and the electrochemical performance enhancement of the composite Sn|Zn electrode.

    To further evaluate the potential application of Sn|Zn anode in a full cell system, Sn|Zn anodes were matched with activated carbon (AC) cathodes to assemble ZICs.The typical charge-discharge curves of ZICs with Sn|Zn and Zn foil are shown in Fig.5.The ZIC with Sn|Zn anode exhibits a reversible discharge capacity of 42 mAh/g after 10,000 cycles with almost no decay, compared to the initial discharge capacity (44 mAh/g) and delivers almost 100% of Coulombic efficiency (CE) (Fig.5a).It can be ascribed that little “dead” Zn is produced.In contrast, the cell assembled with Zn foil delivers an initial capacity of 28 mAh/g, much lower than that of Sn|Zn.Its capacity begins to decrease from the 5500thcycle and fails after the 6300thcycle at a current density of 5 A/g.Similarly, the cell assembled with Sn|Zn anodes can sustain an agreeable performance at a current rate of 2 A/g and the cell using Sn|Zn anode can maintain redox cycling for more than 5000 cycles, which is much more than that of the cell using bare Zn anode (1500 cycles) (Fig.S7 in Supporting information).

    To explore the reasons for the excellent cycling performance of Sn|Zn, cycled cells were taken apart for analysis by SEM.The surface of the cycled Zn is rugged and bumpy, full of protrusions and corrosion voids, as can be seen in Fig.5b.The OH?ions stemming from HER react with Zn and generate an insulating layer.This layer may cause uneven distribution of charge, leading to inhomogeneous plating of Zn.Thus, the protrusions and corrosion voids are formed on the Zn foil.In contrast, Sn|Zn anode displays a smooth and flat surface (Fig.5c).It is obvious that there are rarely protrusions and rugged areas caused by corrosion on the surface of Sn|Zn (more images in Figs.S8 and S9 in Supporting information),consistent with the effective protection of Sn layer.Consequently,Sn layer vastly prolongs the lifespan of the Sn|Zn anode and uplifts the properties of aqueous Zn ions capacitors.Meanwhile, the main peaks of Sn layer can be clearly observed in the XRD patterns after cycling, suggesting the stability of Sn layer (Fig.S10 in Supporting information).

    The specific capacity values of Sn|Zn||AC cell and Zn||AC cell at different rates are illustrated in Fig.6a, and the corresponding charge-discharge curves at different rates are shown in Fig.6b.The reversible capacity values of the Sn|Zn||AC cell are about 45, 42, 38 and 37 mAh/g at current rates of 1, 2, 5 and 10 A/g, respectively.The specific capacity only decreases slightly by 5.47% from the initial value from 0.5 A/g to 1 A/g, demonstrating the remarkable rate ability.Comparing these two anodes at the same rate, the cell with Sn|Zn anode could hold a more stable capacitance than that made of Zn anode, suggesting the enhanced rate ability of Sn|Zn anode.In addition, Zn anode shows severe fluctuation at high rate density(5 A/g).In contrast, the Sn|Zn electrode offers a steady capacity with little capacitance decay.Even at 10 A/g, Sn|Zn electrode exhibits a higher capacity and better stability than Zn.Furthermore,when current density returns to 0.5 A/g, the specific capacity of the Sn|Zn electrode resumes to 47 mAh/g, corresponding to a capacity reversibility of 99.29%.The results of rate performance suggest that the Sn particles not only activated Zn2+reduction but also facilitate the fast transfer of Zn2+through the layer.It is evident that the plating and stripping processes are highly reversible according to the isosceles triangles at different rates (Fig.6b).The chargedischarge profiles of Zn||AC and Sn|Zn||AC capacitors at the current density of 2, 5 and 10 A/g are shown in Figs.S11 and S12 (Supporting information).The Sn|Zn||AC capacitor presents a lower IR drop (59.9, 124.1 and 169 mV at 2, 5 and 10 A/g, respectively) than that of Zn||AC capacitor (120.6, 242.2 and 324.5 mV at 2, 5 and 10 A/g, respectively), which is beneficial for the rate ability.

    The reversibility of cells with Zn and Sn|Zn anode was investigated by cyclic voltammetry.The CV curves of the cell with Sn|Zn at various scan rates are shown in Fig.6c (readers are referred to Fig.S13 in Supporting information for the CV curves of cells with Zn anode) with nearly rectangle shape typically observed for capacitor.The increase in capacitance with the scan rate indicates the good rate ability, consistent with that found in Fig.6a.The electrochemical impedance spectroscopy (EIS) of cycled capacitors were tested in coin cell configurations as shown in Fig.6d and the equivalent circuit of EIS Nyquist plot fitting is shown in Fig.6d insert.The EIS demonstrates that Sn|Zn electrode contains a much lower resistance (~15Ω) than Zn foil (~805Ω) after cycling 100 times(Fig.6d).The larger resistant of Zn foil is caused by the insulating by-products on the surface of Zn anode [51].

    Fig.6.(a) Rate capability at various charge-discharge rates.(b) Charge-discharge curves of Sn|Zn||AC capacitor.(c) Cyclic voltammogram of Zn plating/stripping on Sn|Zn anode at variety scan rates in a coin cell.(d) Nyquist plots of the polished and Sn|Zn anodes before and after cycling.

    In summary, a Sn|Zn anode is fabricated by a facile atom exchange strategy.The Sn layer coated on the surface of Zn plays a role of artificial protective film for Zn, which can effectively inhibit corrosion, decrease hydrogen evolution, and induce a homogeneous deposition of Zn.Leveraging these unique properties, the Sn|Zn anode exhibits an extremely low nucleation overpotential(less than 10 mV), a relatively long repeated plating and striping lifespan of 800 h in symmetric Sn|Zn cells.In addition, the full cells paired with AC cathode display a capacity of 44 mAh/g and nearly 100% capacity retention after 10,000 cycles at 10 A/g.The present findings provide a facile and an economic strategy to design and fabricate safe and stable Zn metal electrode toward aqueous Zn ion energy storage devices.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was partially supported by Hong Kong Scholars Programs (No.XJ2019024), China Postdoctoral Science Foundation(Nos.2018M630340, 2019T120254), Fundamental Research Funds for the Central Universities and National Natural Science Foundation of China (No.22075171).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.11.015.

    婷婷六月久久综合丁香| 亚洲av电影不卡..在线观看| 免费看日本二区| 免费看日本二区| 亚洲在线观看片| 亚洲成av人片在线播放无| 亚洲国产精品合色在线| 日韩免费av在线播放| 99国产极品粉嫩在线观看| 亚洲成人中文字幕在线播放| or卡值多少钱| 亚洲成人久久性| 亚洲美女黄片视频| 精品人妻1区二区| 最新中文字幕久久久久| 国产精品自产拍在线观看55亚洲| 99riav亚洲国产免费| x7x7x7水蜜桃| 国产日本99.免费观看| 色尼玛亚洲综合影院| 男女视频在线观看网站免费| 毛片女人毛片| 午夜福利在线观看吧| 精品一区二区三区视频在线| 亚洲国产精品久久男人天堂| 午夜视频国产福利| 成年版毛片免费区| 久久香蕉精品热| 精品人妻1区二区| 精品乱码久久久久久99久播| 91久久精品国产一区二区成人| 久久久久国内视频| 欧美日韩国产亚洲二区| 婷婷亚洲欧美| 国产精品影院久久| 亚洲av成人av| 最近最新免费中文字幕在线| 国产精品亚洲av一区麻豆| 久久人妻av系列| 国产午夜精品论理片| 久久香蕉精品热| 五月伊人婷婷丁香| 舔av片在线| 国模一区二区三区四区视频| 国产精品久久久久久久久免 | 小说图片视频综合网站| 婷婷精品国产亚洲av在线| 国产蜜桃级精品一区二区三区| 国产精品三级大全| 好男人在线观看高清免费视频| 国产v大片淫在线免费观看| 淫妇啪啪啪对白视频| 欧美日韩国产亚洲二区| 中文字幕av成人在线电影| 少妇被粗大猛烈的视频| 国产aⅴ精品一区二区三区波| 中国美女看黄片| 久久午夜亚洲精品久久| 又爽又黄a免费视频| 国产亚洲精品综合一区在线观看| 悠悠久久av| eeuss影院久久| av在线天堂中文字幕| 欧美zozozo另类| 久久久国产成人精品二区| 免费观看精品视频网站| 精品一区二区三区人妻视频| 男女床上黄色一级片免费看| 欧美色视频一区免费| 亚洲精品乱码久久久v下载方式| 欧美绝顶高潮抽搐喷水| 欧美在线黄色| 男女视频在线观看网站免费| 精品午夜福利视频在线观看一区| 国产毛片a区久久久久| 亚洲成人精品中文字幕电影| 免费大片18禁| 色综合欧美亚洲国产小说| 日日摸夜夜添夜夜添av毛片 | 麻豆成人午夜福利视频| 99久久精品一区二区三区| 国产精品亚洲一级av第二区| 精品乱码久久久久久99久播| 麻豆国产av国片精品| 亚洲人成网站高清观看| 亚洲成人久久性| 五月玫瑰六月丁香| 久99久视频精品免费| 亚洲欧美日韩高清在线视频| 老熟妇仑乱视频hdxx| 国产高清视频在线观看网站| 在现免费观看毛片| 精品久久久久久久人妻蜜臀av| 免费在线观看影片大全网站| 国产一区二区在线av高清观看| 1024手机看黄色片| 久久久久久久久中文| 在线观看av片永久免费下载| 嫩草影院精品99| 热99re8久久精品国产| 国产伦精品一区二区三区四那| 日本黄大片高清| 亚洲自偷自拍三级| 18禁黄网站禁片午夜丰满| 欧美丝袜亚洲另类 | 99热精品在线国产| 在线观看免费视频日本深夜| 国产欧美日韩精品亚洲av| 亚洲成av人片免费观看| 天堂av国产一区二区熟女人妻| 一区二区三区高清视频在线| 欧美性猛交╳xxx乱大交人| 国内精品久久久久久久电影| 人妻制服诱惑在线中文字幕| 国产免费av片在线观看野外av| 最近最新免费中文字幕在线| 亚洲在线观看片| 国产高潮美女av| 综合色av麻豆| 欧美极品一区二区三区四区| 国产视频一区二区在线看| 丰满人妻一区二区三区视频av| 亚洲五月婷婷丁香| 成人精品一区二区免费| 最新中文字幕久久久久| 久9热在线精品视频| 国产欧美日韩精品一区二区| 3wmmmm亚洲av在线观看| 午夜福利视频1000在线观看| 成人精品一区二区免费| 热99在线观看视频| 国产欧美日韩一区二区精品| 色av中文字幕| 久久国产精品影院| 色哟哟·www| 在线免费观看不下载黄p国产 | 欧美日本亚洲视频在线播放| 99国产精品一区二区蜜桃av| av黄色大香蕉| 欧美+亚洲+日韩+国产| 俄罗斯特黄特色一大片| 乱码一卡2卡4卡精品| 12—13女人毛片做爰片一| 亚洲av日韩精品久久久久久密| 在线看三级毛片| 日韩精品中文字幕看吧| 天堂动漫精品| 一级黄片播放器| 韩国av一区二区三区四区| 亚洲精品日韩av片在线观看| 嫁个100分男人电影在线观看| 人妻丰满熟妇av一区二区三区| 久久久久久九九精品二区国产| 亚洲av电影在线进入| 国产精品亚洲av一区麻豆| 又黄又爽又免费观看的视频| 国产精品av视频在线免费观看| 午夜免费激情av| 啦啦啦韩国在线观看视频| 欧美+亚洲+日韩+国产| 男女之事视频高清在线观看| 怎么达到女性高潮| 丁香欧美五月| 一级作爱视频免费观看| 国产午夜精品论理片| 一a级毛片在线观看| 午夜老司机福利剧场| 精品国内亚洲2022精品成人| 国产一区二区在线观看日韩| 可以在线观看的亚洲视频| 日日摸夜夜添夜夜添av毛片 | 中亚洲国语对白在线视频| 最近最新中文字幕大全电影3| 日韩欧美 国产精品| 中文字幕熟女人妻在线| 精品人妻一区二区三区麻豆 | 真人做人爱边吃奶动态| 亚洲美女视频黄频| 日本撒尿小便嘘嘘汇集6| 国产毛片a区久久久久| 亚洲精品色激情综合| 国产麻豆成人av免费视频| 亚洲,欧美,日韩| 亚洲激情在线av| 精品熟女少妇八av免费久了| 免费av不卡在线播放| 亚洲精品粉嫩美女一区| 亚洲男人的天堂狠狠| 动漫黄色视频在线观看| 嫩草影院新地址| 国产高清三级在线| 少妇人妻一区二区三区视频| 久久久色成人| 国产精品国产高清国产av| 国产成年人精品一区二区| 51国产日韩欧美| 757午夜福利合集在线观看| 久久中文看片网| 老司机午夜十八禁免费视频| 国产老妇女一区| 亚洲无线在线观看| 一本精品99久久精品77| 97人妻精品一区二区三区麻豆| 一边摸一边抽搐一进一小说| 亚洲,欧美,日韩| 国产精品一及| 国产成人欧美在线观看| 亚洲专区中文字幕在线| 中国美女看黄片| 9191精品国产免费久久| 精品乱码久久久久久99久播| 成人亚洲精品av一区二区| av在线蜜桃| 免费大片18禁| 国产伦精品一区二区三区四那| 国产不卡一卡二| 国产人妻一区二区三区在| 黄色配什么色好看| 亚洲无线在线观看| 精品久久久久久久久久免费视频| av国产免费在线观看| 国产欧美日韩一区二区精品| 一级黄色大片毛片| 少妇裸体淫交视频免费看高清| 精品人妻一区二区三区麻豆 | netflix在线观看网站| 搡老岳熟女国产| 麻豆国产av国片精品| 在线十欧美十亚洲十日本专区| 99热只有精品国产| 色综合欧美亚洲国产小说| 国产高潮美女av| 男女视频在线观看网站免费| 欧美乱色亚洲激情| 亚洲无线在线观看| 免费观看精品视频网站| 宅男免费午夜| 婷婷丁香在线五月| 欧美+亚洲+日韩+国产| 欧美成人一区二区免费高清观看| 成人永久免费在线观看视频| 欧美一区二区国产精品久久精品| 99热这里只有是精品50| 色噜噜av男人的天堂激情| 久久久国产成人免费| 少妇高潮的动态图| 国产精品自产拍在线观看55亚洲| 欧美潮喷喷水| 国产精品一及| 中文字幕免费在线视频6| 成人av一区二区三区在线看| 午夜老司机福利剧场| 国产伦一二天堂av在线观看| 亚洲内射少妇av| 一卡2卡三卡四卡精品乱码亚洲| 每晚都被弄得嗷嗷叫到高潮| 男人的好看免费观看在线视频| 18+在线观看网站| 免费av毛片视频| 桃色一区二区三区在线观看| 精品人妻偷拍中文字幕| 久久性视频一级片| 黄色配什么色好看| 免费大片18禁| 淫妇啪啪啪对白视频| 一a级毛片在线观看| 免费在线观看成人毛片| 一区二区三区高清视频在线| 十八禁人妻一区二区| 丁香六月欧美| 亚洲av.av天堂| x7x7x7水蜜桃| 12—13女人毛片做爰片一| 欧美成人一区二区免费高清观看| 亚洲国产精品合色在线| 超碰av人人做人人爽久久| 窝窝影院91人妻| 日韩欧美一区二区三区在线观看| 精品日产1卡2卡| 亚洲 国产 在线| 久久九九热精品免费| 国内精品一区二区在线观看| 偷拍熟女少妇极品色| 直男gayav资源| 亚洲自拍偷在线| 亚洲成人久久爱视频| 在线观看免费视频日本深夜| 国产精品久久视频播放| 国语自产精品视频在线第100页| 乱人视频在线观看| 成人精品一区二区免费| 欧美日韩中文字幕国产精品一区二区三区| 怎么达到女性高潮| 欧美黄色片欧美黄色片| 国产色爽女视频免费观看| 久久亚洲精品不卡| 欧美高清性xxxxhd video| 亚洲精品在线观看二区| 精品人妻熟女av久视频| 日本黄大片高清| 久久午夜福利片| 久久精品国产亚洲av涩爱 | 99久久九九国产精品国产免费| 国产精品自产拍在线观看55亚洲| 国产精品人妻久久久久久| 欧美黑人欧美精品刺激| 国产大屁股一区二区在线视频| av国产免费在线观看| 三级毛片av免费| 亚洲国产高清在线一区二区三| 亚洲国产精品成人综合色| 亚洲,欧美,日韩| or卡值多少钱| 国产亚洲精品av在线| 亚洲熟妇熟女久久| 国产色婷婷99| 久久久久久久久大av| 如何舔出高潮| 一a级毛片在线观看| 欧美中文日本在线观看视频| 亚洲精品一区av在线观看| 国产美女午夜福利| 亚洲精品亚洲一区二区| 能在线免费观看的黄片| 一进一出抽搐gif免费好疼| 青草久久国产| 成年女人看的毛片在线观看| 嫁个100分男人电影在线观看| 免费av不卡在线播放| 久久久久久久精品吃奶| 国产白丝娇喘喷水9色精品| 51午夜福利影视在线观看| 欧美日韩国产亚洲二区| 琪琪午夜伦伦电影理论片6080| 国产精品,欧美在线| 婷婷丁香在线五月| 男女下面进入的视频免费午夜| 麻豆av噜噜一区二区三区| 午夜福利高清视频| 欧美xxxx性猛交bbbb| 成人av一区二区三区在线看| 精品人妻熟女av久视频| 此物有八面人人有两片| 一进一出抽搐动态| 又粗又爽又猛毛片免费看| 午夜精品久久久久久毛片777| 午夜福利在线观看免费完整高清在 | 国产精品伦人一区二区| 国语自产精品视频在线第100页| 国产三级在线视频| 久久午夜亚洲精品久久| 一级黄色大片毛片| 免费搜索国产男女视频| 日本熟妇午夜| 岛国在线免费视频观看| 在线播放无遮挡| 欧美黄色片欧美黄色片| 乱码一卡2卡4卡精品| 久久亚洲精品不卡| 久久伊人香网站| 一a级毛片在线观看| 又爽又黄无遮挡网站| 在线观看av片永久免费下载| 欧美色视频一区免费| 免费av不卡在线播放| 在线观看美女被高潮喷水网站 | 97超视频在线观看视频| 最近最新中文字幕大全电影3| 国产主播在线观看一区二区| 国产成人啪精品午夜网站| 少妇丰满av| 极品教师在线视频| 久久精品国产自在天天线| 一级av片app| 色在线成人网| 国产精品伦人一区二区| 欧美在线黄色| 国产精品久久电影中文字幕| 日本 av在线| 亚洲avbb在线观看| 搡女人真爽免费视频火全软件 | 成人av在线播放网站| 国产极品精品免费视频能看的| 男人的好看免费观看在线视频| 婷婷精品国产亚洲av| 性插视频无遮挡在线免费观看| 国产精品国产高清国产av| 久久久久久久精品吃奶| 少妇高潮的动态图| 色精品久久人妻99蜜桃| 午夜两性在线视频| 俺也久久电影网| 亚洲成人免费电影在线观看| 亚洲最大成人手机在线| 日本黄色视频三级网站网址| 日韩欧美精品免费久久 | bbb黄色大片| 日韩人妻高清精品专区| 亚洲欧美激情综合另类| av在线观看视频网站免费| 欧美色欧美亚洲另类二区| 99国产极品粉嫩在线观看| 一级黄片播放器| 人人妻人人澡欧美一区二区| 老司机午夜福利在线观看视频| 村上凉子中文字幕在线| 亚洲精品456在线播放app | 免费观看人在逋| 一个人看视频在线观看www免费| 精品免费久久久久久久清纯| 一个人看的www免费观看视频| 欧美黑人巨大hd| 亚洲av二区三区四区| 色精品久久人妻99蜜桃| 亚洲一区二区三区色噜噜| 亚洲成av人片免费观看| 亚洲专区中文字幕在线| 99热这里只有是精品在线观看 | 中文字幕人妻熟人妻熟丝袜美| 国产蜜桃级精品一区二区三区| 级片在线观看| 十八禁网站免费在线| 99热精品在线国产| 美女xxoo啪啪120秒动态图 | 亚洲五月婷婷丁香| 每晚都被弄得嗷嗷叫到高潮| 国产中年淑女户外野战色| av天堂在线播放| 首页视频小说图片口味搜索| 国内揄拍国产精品人妻在线| 观看免费一级毛片| 国产黄a三级三级三级人| 真人做人爱边吃奶动态| 国产精品女同一区二区软件 | 男人舔女人下体高潮全视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产视频内射| 搡老岳熟女国产| 亚洲精品乱码久久久v下载方式| 免费av毛片视频| 精品久久久久久久久久免费视频| 国产精品三级大全| 特级一级黄色大片| 亚洲五月天丁香| 日韩中文字幕欧美一区二区| 亚洲人成电影免费在线| 欧美日本亚洲视频在线播放| 亚洲avbb在线观看| www.999成人在线观看| 啦啦啦韩国在线观看视频| 午夜福利免费观看在线| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精华国产精华精| 中文亚洲av片在线观看爽| 1024手机看黄色片| 午夜免费成人在线视频| 精品久久久久久成人av| 亚洲av免费在线观看| 欧美潮喷喷水| 国产精品女同一区二区软件 | 色综合亚洲欧美另类图片| av在线老鸭窝| 成人高潮视频无遮挡免费网站| 成人午夜高清在线视频| 亚洲成人免费电影在线观看| 中文字幕精品亚洲无线码一区| 亚洲精品亚洲一区二区| 精品午夜福利视频在线观看一区| 91麻豆精品激情在线观看国产| 亚洲欧美日韩高清在线视频| 我要看日韩黄色一级片| 国产精品98久久久久久宅男小说| 久久午夜亚洲精品久久| 午夜影院日韩av| 欧美国产日韩亚洲一区| 国产av不卡久久| 亚洲无线观看免费| 日本 欧美在线| 免费在线观看影片大全网站| 国产亚洲欧美98| 一a级毛片在线观看| 亚洲人成网站高清观看| 国产一区二区三区在线臀色熟女| 国产精品一区二区三区四区免费观看 | 亚洲自拍偷在线| 黄色丝袜av网址大全| 长腿黑丝高跟| 搡老熟女国产l中国老女人| 丝袜美腿在线中文| 国产一区二区三区视频了| 99热6这里只有精品| 亚洲精品成人久久久久久| 级片在线观看| or卡值多少钱| 在线观看66精品国产| 亚洲国产色片| 精品人妻视频免费看| 黄色丝袜av网址大全| 久久久久久久午夜电影| 亚洲色图av天堂| 1024手机看黄色片| 精华霜和精华液先用哪个| 亚洲天堂国产精品一区在线| or卡值多少钱| 又紧又爽又黄一区二区| 国产麻豆成人av免费视频| 搡老岳熟女国产| 亚洲av成人精品一区久久| a级毛片a级免费在线| 欧美激情久久久久久爽电影| 成年人黄色毛片网站| 午夜免费成人在线视频| 黄色丝袜av网址大全| 90打野战视频偷拍视频| 亚洲av二区三区四区| 18禁黄网站禁片午夜丰满| 亚洲精品成人久久久久久| 久久久精品大字幕| 免费大片18禁| 午夜两性在线视频| 国产69精品久久久久777片| 久久久成人免费电影| 日日摸夜夜添夜夜添小说| 亚洲七黄色美女视频| 999久久久精品免费观看国产| aaaaa片日本免费| 草草在线视频免费看| 免费人成在线观看视频色| 性色av乱码一区二区三区2| 九九在线视频观看精品| 老司机午夜十八禁免费视频| 黄色女人牲交| 午夜日韩欧美国产| 亚洲精华国产精华精| 嫩草影视91久久| 日韩欧美在线二视频| 色哟哟·www| 日韩精品中文字幕看吧| 简卡轻食公司| 午夜a级毛片| 真人做人爱边吃奶动态| 色精品久久人妻99蜜桃| 婷婷精品国产亚洲av在线| 国产成人啪精品午夜网站| 久久久久久久午夜电影| 国产精品1区2区在线观看.| 国产成人aa在线观看| 久久精品久久久久久噜噜老黄 | 亚洲第一区二区三区不卡| 久久久国产成人精品二区| 亚洲av.av天堂| 韩国av一区二区三区四区| 97热精品久久久久久| 神马国产精品三级电影在线观看| 亚洲国产精品久久男人天堂| 色哟哟·www| 国产精品1区2区在线观看.| 一级黄片播放器| 免费电影在线观看免费观看| 欧美乱色亚洲激情| 青草久久国产| 精品久久久久久,| 亚洲人成网站高清观看| 岛国在线免费视频观看| 久久精品人妻少妇| 色尼玛亚洲综合影院| 亚洲狠狠婷婷综合久久图片| 在线观看免费视频日本深夜| 亚洲欧美激情综合另类| 亚洲av美国av| 亚洲va日本ⅴa欧美va伊人久久| 男人和女人高潮做爰伦理| 亚洲欧美日韩无卡精品| 夜夜躁狠狠躁天天躁| 亚洲七黄色美女视频| 日韩免费av在线播放| 欧洲精品卡2卡3卡4卡5卡区| 亚洲最大成人av| 九九在线视频观看精品| 蜜桃亚洲精品一区二区三区| 天堂√8在线中文| 免费无遮挡裸体视频| 国产中年淑女户外野战色| 美女黄网站色视频| 757午夜福利合集在线观看| 别揉我奶头~嗯~啊~动态视频| 尤物成人国产欧美一区二区三区| av在线天堂中文字幕| 国产极品精品免费视频能看的| 成人亚洲精品av一区二区| 九九热线精品视视频播放| 一区二区三区激情视频| 亚洲欧美精品综合久久99| 精品久久久久久久久av| 国语自产精品视频在线第100页| 国产视频内射| 日本精品一区二区三区蜜桃| 欧美绝顶高潮抽搐喷水| 熟女人妻精品中文字幕| 精品一区二区免费观看| 久久精品国产亚洲av涩爱 | 亚洲国产精品sss在线观看| 免费观看精品视频网站| 99久久无色码亚洲精品果冻| 午夜福利在线在线| 亚洲美女搞黄在线观看 | 床上黄色一级片| 又黄又爽又免费观看的视频| 亚洲人与动物交配视频| 国产精品一及| 亚洲欧美日韩东京热| 99热6这里只有精品| 亚洲国产欧洲综合997久久,| 婷婷精品国产亚洲av| 首页视频小说图片口味搜索|