• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microwave-assisted synthesis of oxygen vacancy associated TiO2 for efficient photocatalytic nitrate reduction

    2022-09-16 05:24:38QinLiYunniLiuZheWnHiynCoShoZhngYueZhouXingyuYeXioynLiuDieqingZhng
    Chinese Chemical Letters 2022年8期

    Qin Li, Yunni Liu, Zhe Wn, Hiyn Co, Sho Zhng, Yue Zhou, Xingyu Ye,Xioyn Liu,?, Dieqing Zhng,?

    a The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry, Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China

    b School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China

    ABSTRACT The solar-driven photocatalytic technology has shown great potential in nitrate (NO3?) pollutants reduction, however, it has been greatly hindered by the complex preparation and high cost of photocatalysts.Herein, a relatively low-cost photocatalyst, rutile and anatase mixed phase TiO2 was synthesized by a facile microwave-hydrothermal method.Meanwhile, oxygen vacancy is successfully generated, leading to an acidic surface for strong adsorption towards NO3?, which further improved the reduction activity.Compared with the commercial P25, a higher NO3?conversion of ca. 100% and nitrogen (N2) selectivity of 87% were achieved under UV (365 nm) irradiation within 2 h.This research provides a promising strategy for designing efficient noble metal free photocatalyst in the NO3?reduction.

    Keywords:Photocatalysis TiO2 Oxygen vacancy Nitrate reduction

    Nitrogen (N) is an essential nutrient, but when its concentration accumulated to some threshold value, it could be a source of pollution in water or the atmosphere [1].Nitrates (NO3?) as one of the most common N species contaminants in the world, was mainly resulting from the use of nitrogen fertilizers and the dung from large animal farms [2].However, high intake of nitrate would appear a serious threat to human health, such as an increased risk of natural preterm birth and central nervous system cancers (CNC)in children [2–4].Furthermore, the nitrate can be reduced to dangerous chemicals, including nitrite (NO2?), which caused blue baby syndrome [5].Thus, many strategies such as reverse osmosis, electrodialysis and ion exchange have been widely studied for removing nitrate from ground water [6].However, these works highly concentrated on the nitrate conversion into brines instead of removing it to harmless nitrogen (N2) [7,8].

    Photocatalysis as an environment-friendly technology shows great potentials in pollutant removal by directly using solar energy [9–13].As a semiconductor, titanium dioxide (TiO2) has been widely used in photocatalytic nitrogen oxides (NOx) oxidation[10,11,14-17], carbon dioxide (CO2) reduction [18], hydrogen (H2)production [19] and removal of volatile organic pollutants (VOCs),etc.[20], due to its low-cost, nontoxicity and good stability [21,22].However, its application in NO3?conversion has been limited because of the low efficiency of traditional TiO2.Noble metals(e.g., Pd, Au, and Ag) loaded TiO2have been developed for promoted denitrification performance (Table S1 in Supporting information).However, this noble metal involving strategy greatly increased the cost, which is not practical for large-scale application[8,23,24].TiO2with oxygen vacancies has attracted intensive attention in photocatalytic NOxremoval, H2evolution and CO2reduction [25–27] owing to the improved charge separation and reactant molecules adsorption.TiO2materials with oxygen vacancies are traditionally produced by hydrogen reduction or NaBH4reduction, both of which are time and energy consuming [28].

    Herein, the mixed anatase and rutile phase TiO2(TiO2-A-R)with oxygen vacancies and proper acid sites was successfully prepared by a simple microwave hydrothermal method.The obtained TiO2-A-R showed outstanding photocatalytic NO3?conversion ofca.100% and high N2selectivity of 89% under ultraviolet irradiation.This study will provide a novel approach for efficient and low-cost nitrate removal from water.

    The synthetic procedure of TiO2-A-R was illustrated in Scheme 1.In a typical process, potassium titanium oxide oxalate dihydrate and sodium chloride were dispersed in the mixed solution of ethanol and water, keeping stirring for 15 min.Then the as-prepared solution was transferred to the microwave reaction chamber for further microwave treatment under 200 °C for 30 min.As comparison, pure rutile (TiO2-R) and pure anatase (TiO2-A)were prepared.As shown in Fig.1a, the TiO2-A-R shows the typical X-ray diffraction (XRD) peaks of rutile and anatase phases, which are similar to the commercial P25.Besides, according to the peak intensity, the weight fraction of the rutile in TiO2-A-R,WRcan be calculated from the formula (Eq.1) [29,30].And the weight fraction of the anatase in TiO2-A-R,WAcan be calculated from the formula as follows (Eq.2) [31]:

    Scheme 1.Schematic illustration of the synthesis processes of TiO2-A-R.

    Fig.1.(a) The XRD pattern, (b) UV–vis DRS spectra, (c) N2 adsorption-desorption isotherms and (d) pore size distributions of TiO2-A-R, TiO2-A, TiO2-R and P25 samples.

    Scheme 2.Schematic illustration of photocatalytic reduction mechanism of NO3?.

    In formula,AanaandArutrepresented the diffraction peaks intensity of anatase (101) and rutile (110), respectively.Based on the XRD results, the anatase content of TiO2-A-R was estimated to be 84 wt%.The ultraviolet-visible diffuse reflectance spectra (UV–vis DRS) in Fig.1b demonstrated that all samples exhibited spectral absorption at 365 nm, which ensured the photocatalyst could be effectively excited under 365 nm irradiation.In addition, based on the UV–vis results, the band gap energy (Eg) of the TiO2-A-R was calculated as followed (Eq.3):

    whereα,h,v, A andEgrepresented the absorption coefficient, the Planck constant, the light frequency, the constant and band gap,respectively [32].Furthermore,nwas equal to 1/2 or 2 for an indirect or direct band gap semiconductors, respectively.Thus, the estimatedEgof TiO2-A-R is 3.18 eV (Fig.S1 in Supporting information).The calculated flat band potential (EFB) value of TiO2-A-R as shown in Fig.S2 (Supporting information) was –0.95 Vvs.SCE, which is corresponding to ?0.29 Vvs.NHE.Besides, TiO2-A-R as an n-type semiconductor, the conduction band (ECB) was 0.2 V belowEFB[33].Thus,ECBlevel of TiO2-A-R was ?0.49 eV.And the valence band(VB) was 2.69 eV, which was obtained according to the formula Eq.4 [32,34]:

    The nitrogen adsorption-desorption isotherms and pore size distributions were displayed in Figs.1c and d.All the samples showed typical IV isotherms and a pore size distribution ranging from 2 nm to 50 nm, indicating the mesoporous structures.The detailed surfaces areas, pore size and pore volume were listed in Table 1.Compared with other photocatalysts [35–37], TiO2-A-R had the distinguishing features of larger Brunauer-Emmett-Teller (BET)surface area (97.6 m2/g), the greater pore volume (0.3 cm3/g) and the pore diameter (11.4 nm), which might significantly enhance its adsorption ability of reactants and therefore facilitate the targeted reaction [38].

    Table 1 BET properties of TiO2-A-R, TiO2-A, TiO2-R and P25 photocatalysts.

    TEM images in Figs.2a and b suggested that TiO2-A-R was composed of flaky petal-like structure.Moreover, obvious diffraction rings could be observed in Fig.2c (the selected area electron diffraction, SAED), indicating the TiO2-A-R had good crystallinity[39].Meanwhile, the lattice spacing of 0.351 nm and 0.325 nm were also clearly detected in Fig.2d, which corresponded to (101)and (110) plane of anatase and rutile, respectively [40].The element mappings demonstrated the homogeneous distribution of Ti and O in TiO2-A-R (Fig.2e).These results further confirmed the successful synthesis of mixed-phase titanium dioxide.

    In order to probe the surface chemical compositions and the binding configuration of all the samples, X-ray photoelectron spectroscopy (XPS) measurement was performed.P25 and TiO2-R show the peaks located at 458.9 and 464.6 eV corresponding to Ti 2p3/2and Ti 2p1/2(Fig.3a).These peaks of TiO2-A slightly shifted to lower binding energies.Notably, a clearly negative shift was also observed in the TiO2-A-R, indicating the existence of Ti3+[41].Meanwhile, the O 1s XPS spectra of TiO2-A-R presented two peaks centered at ~529.8 and ~531.6 eV (Fig.3b), representing for the lattice oxygen and oxygen vacancy, respectively [7].And the area ratio of oxygen vacancy peak (named O2) to the sum area of the O1 and O2 peaks (named Os) is shown in Table S2 (Supporting information).The O2/Os of TiO2-A-R had the largest percentage(22.7%), which demonstrated that oxygen vacancy rooted more in the TiO2-A-R sample [28].

    Fig.2.(a, b) TEM images, (c) SAED pattern, (d) HRTEM image, (e) SEM image and corresponding elemental mappings of TiO2-A-R sample.

    Fig.3.XPS spectra of (a) Ti 2p and (b) O 1s over TiO2-A-R, TiO2-A, TiO2-R and P25 samples.

    Moreover, the strong electron paramagnetic resonance (EPR)signal (Fig.4a) in TiO2-A-R with a g-value of 2.001 further verified the existence of oxygen vacancy [42], which might play a vital role in promoting the rapid conversion of nitrate as previously reported [28].Furthermore, the catalysts’activities are closely related to their surface properties such as alkaline and acidity properties [43].Moreover, the NO3?presents Lewis base due to its electronegativity, which implies that it is easier to combine with the Lewis acid catalyst surface [44,45].Thus temperature-programmed desorption of ammonia (NH3-TPD) of P25 and TiO2-A-R were performed from 50 °C to 800 °C to find out their surface properties,and the curves were illustrated in Fig.4b [46,47].The desorption peaks of NH3located below 200 °C, 200–400 °C and above 400 °C are considered as indicators of the weak, medium and strong acid sites, respectively [48].P25 exhibited three NH3desorption peaks at 200, 487 and 611 °C, respectively.The former one is assigned to the weak acid sites and the other two peaks are indexed to the strong acid sites.As comparison, there are only medium (suggested by the peaks at 277 and 384 °C) and strong acid sites (suggested by the peaks at 540, 606 and 706 °C) observed, demonstrating its more acidic surface.As displayed in Table S3 (Supporting information), TiO2-A-R shows a larger peak area than that of P25, confirming there are more active sites to possibly absorb and reduce the NO3?[44,49].

    Fig.4.(a) EPR spectra of TiO2-A-R, TiO2-R, TiO2-A and P25 samples.(b) NH3-TPD analysis over TiO2-A-R and P25 sample.

    Normally, NO3?could be reduced to N2, NO2?and ammonium(NH4+), but both NO2?and NH4+are hazardous to the environment.An ideal photocatalyst should have high NO3?conversion and good N2selectivity [24,50].In order to inhibit the rapid recombination of electron-hole pairs, formic acid (FA) was selected as a hole scavenger in this reaction [51].To exclude the catalytic effect of FA on NO3?reduction, we conducted a control experiment (in FA without photocatalyst added) and the results were shown in Fig.S3a (Supporting information).No catalytic activity was observed in the absence of the photocatalyst, and thus we can conclude that FA itself will not react with NO3?and promote NO3?reduction.Then, TiO2-A-R (0.060 g) and various amounts of FA were dispersed into 60 mL nitrate solution (50 mg/L) to evaluate the optimal photocatalytic performance.As shown in Figs.5a-c, the activity sequence involving different amounts of FA were summarized as 5 mL FA ≈4 mL FA>3 mL FA.Meanwhile, almost no NO2?was detected in the reaction process of the three controlled trials.When the reaction progressed to 120 min, the average conversion of NO3?involving 3 mL FA was 98%, the average selectivity of N2and NH4+were 88% and 12%, respectively.The experiments with 4 mL or 5 mL FA showed similar nitrate conversion (almost 100%),N2selectivity (89%) and NH4+selectivity (11%).Therefore, we determined adding 4 mL FA as the optimal hole scavenger amount for this reaction.

    According to the literature, different hole scavengers such as oxalic acid (OC) and methanol may also be favorable for the photocatalytic nitrate reduction [50].Thus, the 4 mL 0.1 mol/L methanol and OC solution was introduced for photocatalytic NO3?(50 mg/L)reduction experiment as shown in Fig.5d.The OC involving system demonstrated the NO3?conversion of 11% and the 78% N2selectivity, which were much lower than that of FA.No NO3?conversions were observed in methanol involving system or hole scavengers absence system, indicating that FA significantly improved the photocatalytic activity [24].Based on the previous study [51],we confirm that carbon dioxide anion radical (CO2??) generated by reacting FA with photogenerated holes of photocatalyst has strong reductive ability for NO3?conversion to N2.Then, EPR test was carried out to probe the production of CO2??in the TiO2-A-R system.As shown in Fig.6, no signals were detected under dark conditions.While under light irradiation, a six-line DMPOCO2??spin adduct signal was formed with hyperfine parameter of magnetic factorg=2.0059 (Fig.S3b in Supporting information), which can be assigned to reductive CO2??species for further promoting NO3?degradation [52–54].These results clearly indicated the important promoted effect of FA in the photocatalytic NO3?reduction reaction using noble-metal free TiO2as photocatalysts.

    Fig.5.Photocatalytic nitrate reduction activity of TiO2-A-R (a-c) with 3–5 mL formic acid and (d) with different hole scavengers.

    Fig.6.DMPO spin-trapping EPR spectra of TiO2-A-R.

    In order to compare the contribution of TiO2-A-R, the performance of TiO2-A, TiO2-R and commercial P25 were evaluated in 4 mL FA and NO3?(50 mg/L) mixture solution system (Figs.7a-c.).The photocatalytic removal rate of these samples followed the order of TiO2-A-R (100%)>TiO2-A (82%)>P25 (61%)>TiO2-R (36%).And the selectivity of N2presented the trend of TiO2-A-R (89%)>TiO2-A (88%)>P25 (87%)>TiO2-R (80%).Obviously, TiO2-A-R showed the enhanced ability of NO3?reduction, which may be attributed to the existence of Ov and acid sites [28].In addition, the cycling durability of TiO2-A-R was conducted and displayed in Fig.7d.After five cycles, the photocatalyst still had 98% NO3?conversion, demonstrating its great stability and big potential for practical application.Moreover, when the concentration of the initial NO3?solution was diluted to 30 mg/L (Fig.8a), the NO3?conversion was achieved 100% after 90 min reaction and the selectivity of N2and NH4+reached 86% and 14%, respectively.Even when the NO3?concentration was increased to 100 mg/L, a high NO3?removal of 77% and N2selectivity of 91% were achieved after 120 min reaction (Fig.8b), implying the excellent activity of TiO2-A-R in a wide NO3?concentrations range.

    Fig.7.Photocatalytic nitrate reduction activity of (a) P25, (b) TiO2-A, and (c) TiO2-R samples.(d) Cycling stability test of TiO2-A-R.

    Fig.8.Photocatalytic nitrate reduction activity over the TiO2-A-R sample involving different NO3?initial concentrations of (a) 30 and (b) 100 mg/L.

    The photocurrent response (Fig.9a) was carried out to evaluate the charge transport properties [10].Compared with commercial P25, TiO2-A-R has a higher photocurrent density, which demonstrates the improved light source usage rate and effective separation of e?and h+excited by photons [55].In addition, the steadystate photoluminescence (PL) spectrum was measured to investigate the electrons and holes recombination (Fig.9b).Notably, a lower emission peak of TiO2-A-R can be obtained, demonstrating the improved charge carrier separation efficiency [56].And TiO2-AR showed the smaller radius under dark and 365 nm UV-LED irradiation (Figs.9c and d), indicating a better conductivity [9].These factors co-contributed the excellent NO3?conversion and good N2selectivity.

    Fig.9.(a) Photocurrent density, (b) PL spectra (ex=290 nm), electrochemical impedance spectra (c) in dark and (d) light irradiation of TiO2-A-R and P25 samples.

    Based on the above discussion, the possible NO3?degradation mechanism is proposed as shown in Scheme 2.Firstly, TiO2-A-R is excited to produce photo-generated electron-hole pairs under the UV-LED irradiation (Eq.5).Then the electrons are consumed by NO3?to generate N2or NH4+(Eqs.6 and 7) [24].Meanwhile,the photo-generated holes are scavenged by FA to produce CO2??species, which further reduces NO3?to N2(Eqs.8 and 9) [8,44,57-59].

    In conclusion, the mixed TiO2photocatalyst with oxygen vacancy was successfully synthesizedviaa facile microwave-assisted method.It has a NO3?conversion up toca.100% under 2 h ultraviolet radiation, which is much high than that of commercial P25(61%).Moreover, the N2selectivity is as high as 89%.This work provides a novel strategy to design noble metal free photocatalysts for cheap, safe and efficient nitrate removal.

    Declaration of competing interest

    The authors declare no competing financial interest.

    Acknowledgments

    This work was supported by the National Key Research and Development Program of China (No.2020YFA0211004), and National Natural Science Foundation of China (Nos.21876112, 21876113,22022608, 92034301), “111” Innovation and Talent Recruitment Base on Photochemical and Energy Materials (No.D18020),Ministry of Education, and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Engineering Research Center of Green Energy Chemical Engineering (Nos.18DZ2254200)and Shanghai government (Nos.18SG41, 309-AC9103–21–413002,19YF1436600).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.12.025.

    欧美乱色亚洲激情| 人人妻人人澡欧美一区二区| 亚洲国产毛片av蜜桃av| 国产精品免费视频内射| 亚洲成人久久性| 手机成人av网站| 国产av一区在线观看免费| 久久草成人影院| 九色国产91popny在线| 国产高清videossex| 一级毛片精品| 岛国在线观看网站| 亚洲一区中文字幕在线| 国产熟女xx| 国产精品野战在线观看| www日本在线高清视频| 亚洲三区欧美一区| av中文乱码字幕在线| 国产av一区二区精品久久| 99在线人妻在线中文字幕| 少妇裸体淫交视频免费看高清 | 国产亚洲欧美在线一区二区| 最近最新中文字幕大全免费视频| 久久午夜亚洲精品久久| 国产精品亚洲av一区麻豆| 亚洲欧洲精品一区二区精品久久久| 久久 成人 亚洲| 成人国产综合亚洲| 久久久久久人人人人人| 精品福利观看| 18禁观看日本| 国内揄拍国产精品人妻在线 | 两人在一起打扑克的视频| 黄色丝袜av网址大全| 久久国产亚洲av麻豆专区| 又黄又爽又免费观看的视频| 中文亚洲av片在线观看爽| 欧美又色又爽又黄视频| 成人av一区二区三区在线看| 国产一区在线观看成人免费| 亚洲熟妇中文字幕五十中出| 少妇裸体淫交视频免费看高清 | 国产成人精品久久二区二区91| 欧美成狂野欧美在线观看| 欧美丝袜亚洲另类 | 国产精品一区二区免费欧美| 午夜日韩欧美国产| 国产成+人综合+亚洲专区| 欧美不卡视频在线免费观看 | 婷婷精品国产亚洲av| 一级黄色大片毛片| 97碰自拍视频| 午夜福利一区二区在线看| 国产精品日韩av在线免费观看| 最近最新中文字幕大全免费视频| 亚洲人成电影免费在线| 国产亚洲欧美精品永久| 日日夜夜操网爽| 婷婷精品国产亚洲av| 神马国产精品三级电影在线观看 | 国产精品爽爽va在线观看网站 | 中文字幕av电影在线播放| 亚洲午夜精品一区,二区,三区| 国产成人欧美| avwww免费| a级毛片a级免费在线| 大香蕉久久成人网| 国产v大片淫在线免费观看| 脱女人内裤的视频| 白带黄色成豆腐渣| 日韩精品青青久久久久久| 国产蜜桃级精品一区二区三区| a级毛片a级免费在线| 在线观看免费日韩欧美大片| 少妇的丰满在线观看| 一个人免费在线观看的高清视频| 亚洲av第一区精品v没综合| 亚洲成av人片免费观看| 欧美色欧美亚洲另类二区| 一进一出抽搐动态| 亚洲天堂国产精品一区在线| 9191精品国产免费久久| 日本成人三级电影网站| 欧美又色又爽又黄视频| 亚洲成人国产一区在线观看| 丝袜美腿诱惑在线| 99riav亚洲国产免费| aaaaa片日本免费| 午夜久久久久精精品| 中文资源天堂在线| 亚洲人成网站在线播放欧美日韩| 国产精品影院久久| 一进一出好大好爽视频| 午夜福利免费观看在线| 中亚洲国语对白在线视频| 可以在线观看的亚洲视频| 国产国语露脸激情在线看| 中文字幕人妻熟女乱码| 欧美国产日韩亚洲一区| 欧美久久黑人一区二区| 亚洲自偷自拍图片 自拍| 嫩草影视91久久| 巨乳人妻的诱惑在线观看| 99在线人妻在线中文字幕| 一本久久中文字幕| 午夜久久久在线观看| 91九色精品人成在线观看| 999精品在线视频| 中文字幕人成人乱码亚洲影| 久久久久久久午夜电影| 国产精品 国内视频| 国产国语露脸激情在线看| www国产在线视频色| 熟女少妇亚洲综合色aaa.| 日韩欧美国产在线观看| 丁香六月欧美| 午夜两性在线视频| 亚洲精品在线观看二区| 国产亚洲精品第一综合不卡| 国产又色又爽无遮挡免费看| 天堂√8在线中文| 国内毛片毛片毛片毛片毛片| cao死你这个sao货| 大香蕉久久成人网| 99热这里只有精品一区 | 日韩欧美 国产精品| 国产精品久久久久久亚洲av鲁大| 亚洲精品在线观看二区| 在线免费观看的www视频| 少妇粗大呻吟视频| 黄色成人免费大全| 欧美 亚洲 国产 日韩一| 欧美人与性动交α欧美精品济南到| 亚洲免费av在线视频| 99精品在免费线老司机午夜| 一级黄色大片毛片| 午夜福利欧美成人| 久久中文字幕一级| 午夜激情福利司机影院| 久久久久久久久免费视频了| 国产黄片美女视频| 国产成人系列免费观看| 叶爱在线成人免费视频播放| 国产成人一区二区三区免费视频网站| 成人欧美大片| 欧美日韩黄片免| 国产私拍福利视频在线观看| 一级片免费观看大全| 国产v大片淫在线免费观看| 国产伦在线观看视频一区| 亚洲真实伦在线观看| 国产精品九九99| 后天国语完整版免费观看| 九色国产91popny在线| 一级黄色大片毛片| 黄色女人牲交| 啪啪无遮挡十八禁网站| 久久草成人影院| 又黄又粗又硬又大视频| 2021天堂中文幕一二区在线观 | 色综合婷婷激情| 午夜福利高清视频| АⅤ资源中文在线天堂| 青草久久国产| 日本一本二区三区精品| 亚洲 欧美 日韩 在线 免费| 国产91精品成人一区二区三区| 视频在线观看一区二区三区| 欧美中文综合在线视频| 曰老女人黄片| 国产一区在线观看成人免费| 日日干狠狠操夜夜爽| 狂野欧美激情性xxxx| 午夜日韩欧美国产| 变态另类成人亚洲欧美熟女| 久久狼人影院| 国产高清有码在线观看视频 | 麻豆国产av国片精品| 淫妇啪啪啪对白视频| 在线观看www视频免费| 88av欧美| 国产欧美日韩一区二区精品| 一级毛片女人18水好多| 黄色 视频免费看| 久久国产精品男人的天堂亚洲| 在线天堂中文资源库| 亚洲一卡2卡3卡4卡5卡精品中文| 免费在线观看日本一区| 成人av一区二区三区在线看| 一二三四社区在线视频社区8| 亚洲性夜色夜夜综合| 人人妻人人澡人人看| 成人精品一区二区免费| 男人舔奶头视频| 免费高清在线观看日韩| 国内精品久久久久久久电影| 精品久久久久久久人妻蜜臀av| 国产高清视频在线播放一区| 亚洲熟妇中文字幕五十中出| 久久久国产成人免费| 欧美最黄视频在线播放免费| 国产高清视频在线播放一区| 国产精品九九99| 午夜老司机福利片| 精品久久久久久久人妻蜜臀av| 伊人久久大香线蕉亚洲五| 久久久久久久午夜电影| 后天国语完整版免费观看| 精品第一国产精品| 不卡一级毛片| 久久精品影院6| 欧美日韩福利视频一区二区| 日日爽夜夜爽网站| 成人国产一区最新在线观看| 90打野战视频偷拍视频| 国产日本99.免费观看| 成人永久免费在线观看视频| 精华霜和精华液先用哪个| 欧美zozozo另类| 色尼玛亚洲综合影院| 欧美国产精品va在线观看不卡| 成人特级黄色片久久久久久久| 亚洲成人国产一区在线观看| 国产av又大| 国产精品电影一区二区三区| 日韩欧美国产一区二区入口| 99国产综合亚洲精品| 色综合欧美亚洲国产小说| 亚洲精品一卡2卡三卡4卡5卡| 91麻豆精品激情在线观看国产| 丝袜人妻中文字幕| 怎么达到女性高潮| www.自偷自拍.com| 极品教师在线免费播放| 国产单亲对白刺激| 国语自产精品视频在线第100页| 91麻豆精品激情在线观看国产| 大香蕉久久成人网| 欧美最黄视频在线播放免费| 男人舔奶头视频| 久久人妻福利社区极品人妻图片| e午夜精品久久久久久久| 欧美绝顶高潮抽搐喷水| 男女下面进入的视频免费午夜 | 中文字幕久久专区| 久久精品人妻少妇| 黄色视频,在线免费观看| 久久精品国产99精品国产亚洲性色| 欧美性长视频在线观看| 午夜a级毛片| 大香蕉久久成人网| 一区二区三区国产精品乱码| 国产亚洲精品第一综合不卡| 一个人观看的视频www高清免费观看 | 国产日本99.免费观看| 欧美 亚洲 国产 日韩一| 久久精品夜夜夜夜夜久久蜜豆 | 久久精品国产亚洲av高清一级| 欧美中文综合在线视频| 在线观看www视频免费| videosex国产| 可以免费在线观看a视频的电影网站| 婷婷精品国产亚洲av| 亚洲av成人av| 日本撒尿小便嘘嘘汇集6| 激情在线观看视频在线高清| 在线永久观看黄色视频| 久9热在线精品视频| 国产亚洲精品综合一区在线观看 | 国产精品一区二区三区四区久久 | 欧美日韩瑟瑟在线播放| 久久精品国产清高在天天线| 精品熟女少妇八av免费久了| 久久久久免费精品人妻一区二区 | 桃红色精品国产亚洲av| 真人做人爱边吃奶动态| 亚洲美女黄片视频| 99久久无色码亚洲精品果冻| 精品第一国产精品| 中文字幕精品亚洲无线码一区 | 成人三级黄色视频| 国产精品久久视频播放| 啦啦啦韩国在线观看视频| 人人妻人人澡欧美一区二区| 亚洲黑人精品在线| 国产精品一区二区免费欧美| 此物有八面人人有两片| 两个人视频免费观看高清| 国产av一区在线观看免费| 少妇粗大呻吟视频| 黄频高清免费视频| 国产av一区在线观看免费| 国产爱豆传媒在线观看 | 两性夫妻黄色片| 亚洲中文日韩欧美视频| 国产真人三级小视频在线观看| 免费看十八禁软件| 波多野结衣巨乳人妻| 亚洲国产看品久久| 91国产中文字幕| 9191精品国产免费久久| 日韩欧美一区视频在线观看| 精品欧美国产一区二区三| 91在线观看av| 一区二区日韩欧美中文字幕| 欧美人与性动交α欧美精品济南到| 亚洲专区字幕在线| 欧美激情 高清一区二区三区| 人人妻人人澡人人看| 美女国产高潮福利片在线看| 岛国视频午夜一区免费看| 国产视频内射| 一级黄色大片毛片| 久久久久久大精品| 美女扒开内裤让男人捅视频| 在线观看www视频免费| 天天添夜夜摸| 日韩欧美国产在线观看| av中文乱码字幕在线| 50天的宝宝边吃奶边哭怎么回事| 国产野战对白在线观看| 桃红色精品国产亚洲av| 搡老熟女国产l中国老女人| 日韩欧美一区二区三区在线观看| 亚洲成人久久爱视频| 成人国产综合亚洲| 欧美激情极品国产一区二区三区| 欧美日韩亚洲国产一区二区在线观看| 亚洲中文字幕一区二区三区有码在线看 | 亚洲在线自拍视频| 午夜免费成人在线视频| 亚洲精品久久国产高清桃花| 精品国产国语对白av| 国产91精品成人一区二区三区| 日本撒尿小便嘘嘘汇集6| 午夜两性在线视频| 免费观看人在逋| 高潮久久久久久久久久久不卡| 在线视频色国产色| 给我免费播放毛片高清在线观看| 国产伦一二天堂av在线观看| 99精品欧美一区二区三区四区| 亚洲免费av在线视频| 中文亚洲av片在线观看爽| 叶爱在线成人免费视频播放| 久久久久久久久免费视频了| 丁香欧美五月| 久久久国产成人免费| 白带黄色成豆腐渣| a级毛片a级免费在线| 国产aⅴ精品一区二区三区波| 免费看a级黄色片| 久久午夜亚洲精品久久| 欧美不卡视频在线免费观看 | 国产精品 国内视频| 黑人操中国人逼视频| 久久精品国产清高在天天线| 欧美丝袜亚洲另类 | 后天国语完整版免费观看| 欧美激情久久久久久爽电影| 亚洲无线在线观看| 正在播放国产对白刺激| 91成人精品电影| 中亚洲国语对白在线视频| 91九色精品人成在线观看| 国产精品二区激情视频| 午夜福利成人在线免费观看| 亚洲av成人不卡在线观看播放网| 欧美成人一区二区免费高清观看 | 夜夜夜夜夜久久久久| 999久久久精品免费观看国产| 国产成人精品无人区| 午夜日韩欧美国产| 亚洲av美国av| 国产精品久久电影中文字幕| 欧美又色又爽又黄视频| 午夜精品在线福利| 激情在线观看视频在线高清| 免费高清在线观看日韩| 欧美一级a爱片免费观看看 | 国产亚洲欧美在线一区二区| 中文字幕最新亚洲高清| 美女免费视频网站| x7x7x7水蜜桃| 久久久久久免费高清国产稀缺| 人成视频在线观看免费观看| 91在线观看av| 久久精品影院6| www.熟女人妻精品国产| 午夜福利18| 18禁黄网站禁片午夜丰满| 亚洲成人免费电影在线观看| 一夜夜www| 国产精品电影一区二区三区| 亚洲激情在线av| 特大巨黑吊av在线直播 | 欧美黄色淫秽网站| ponron亚洲| 国产色视频综合| 一二三四在线观看免费中文在| 免费观看人在逋| 波多野结衣巨乳人妻| 日本精品一区二区三区蜜桃| 色尼玛亚洲综合影院| 国产精品久久久av美女十八| 久久这里只有精品19| 亚洲精品在线美女| av超薄肉色丝袜交足视频| 超碰成人久久| 日韩视频一区二区在线观看| 中文字幕久久专区| 国产一卡二卡三卡精品| 国产亚洲欧美精品永久| 久久久国产欧美日韩av| 国产极品粉嫩免费观看在线| 国产99白浆流出| 国产精品久久视频播放| 亚洲一区中文字幕在线| 香蕉丝袜av| 精品卡一卡二卡四卡免费| 国产黄a三级三级三级人| 观看免费一级毛片| avwww免费| 亚洲第一欧美日韩一区二区三区| 日本五十路高清| 国产国语露脸激情在线看| 999精品在线视频| 午夜免费激情av| 国产精品98久久久久久宅男小说| 18禁美女被吸乳视频| 亚洲av片天天在线观看| 在线天堂中文资源库| 国产在线精品亚洲第一网站| 国产精品久久久久久精品电影 | 国产免费av片在线观看野外av| 特大巨黑吊av在线直播 | 人妻久久中文字幕网| 色在线成人网| 日本撒尿小便嘘嘘汇集6| 欧美+亚洲+日韩+国产| 久久香蕉激情| 国产日本99.免费观看| 身体一侧抽搐| 国产色视频综合| 黄网站色视频无遮挡免费观看| 中亚洲国语对白在线视频| 激情在线观看视频在线高清| а√天堂www在线а√下载| 欧美乱色亚洲激情| 日本撒尿小便嘘嘘汇集6| 欧美一区二区精品小视频在线| 又大又爽又粗| 国产熟女xx| or卡值多少钱| 热re99久久国产66热| 亚洲中文av在线| 看免费av毛片| 老汉色av国产亚洲站长工具| 人人澡人人妻人| 久久婷婷人人爽人人干人人爱| 日韩一卡2卡3卡4卡2021年| 欧美日韩黄片免| 日日干狠狠操夜夜爽| 欧美乱码精品一区二区三区| 露出奶头的视频| 好看av亚洲va欧美ⅴa在| 一个人免费在线观看的高清视频| 麻豆一二三区av精品| 美女高潮到喷水免费观看| 免费观看精品视频网站| 天堂√8在线中文| 国产99久久九九免费精品| 天堂动漫精品| 亚洲在线自拍视频| 深夜精品福利| 精品一区二区三区av网在线观看| 国产一卡二卡三卡精品| 国产aⅴ精品一区二区三区波| 国产91精品成人一区二区三区| 中文字幕最新亚洲高清| 久久精品国产清高在天天线| 亚洲天堂国产精品一区在线| 国产精品免费一区二区三区在线| 天堂影院成人在线观看| 免费电影在线观看免费观看| 久久国产精品人妻蜜桃| 免费电影在线观看免费观看| 精品第一国产精品| 美女高潮喷水抽搐中文字幕| 亚洲在线自拍视频| 长腿黑丝高跟| 亚洲 欧美一区二区三区| 久久香蕉国产精品| 国产1区2区3区精品| 久久香蕉国产精品| 男男h啪啪无遮挡| videosex国产| 18美女黄网站色大片免费观看| 熟女电影av网| 真人一进一出gif抽搐免费| 日韩免费av在线播放| 日韩一卡2卡3卡4卡2021年| 亚洲欧美日韩无卡精品| 亚洲第一欧美日韩一区二区三区| 国内揄拍国产精品人妻在线 | 精品不卡国产一区二区三区| 一本久久中文字幕| 午夜视频精品福利| 可以在线观看的亚洲视频| 亚洲精品一区av在线观看| 少妇的丰满在线观看| 午夜福利欧美成人| 亚洲第一电影网av| 他把我摸到了高潮在线观看| 丰满人妻熟妇乱又伦精品不卡| 1024香蕉在线观看| 高清在线国产一区| 久久久国产欧美日韩av| 久久久久国产一级毛片高清牌| 久久狼人影院| 精品午夜福利视频在线观看一区| 欧美av亚洲av综合av国产av| 国产97色在线日韩免费| 久久国产乱子伦精品免费另类| 国产成人欧美在线观看| 午夜福利18| 老司机福利观看| 国产高清激情床上av| 久久伊人香网站| 香蕉av资源在线| 久久久久久久久免费视频了| 天堂√8在线中文| 久久精品国产综合久久久| 国产成人精品久久二区二区91| 精品福利观看| 这个男人来自地球电影免费观看| 成人特级黄色片久久久久久久| 成年人黄色毛片网站| 午夜福利高清视频| 很黄的视频免费| 欧美av亚洲av综合av国产av| 校园春色视频在线观看| 国产主播在线观看一区二区| 丰满人妻熟妇乱又伦精品不卡| 亚洲第一青青草原| 人妻丰满熟妇av一区二区三区| 黄色视频不卡| 精品国产国语对白av| 国产黄色小视频在线观看| 欧美不卡视频在线免费观看 | 久99久视频精品免费| 97碰自拍视频| 狂野欧美激情性xxxx| 国产又色又爽无遮挡免费看| 国产激情久久老熟女| 久久精品aⅴ一区二区三区四区| 日韩欧美国产在线观看| 欧美乱码精品一区二区三区| 国产成年人精品一区二区| 中文在线观看免费www的网站 | 国内少妇人妻偷人精品xxx网站 | 男人舔女人下体高潮全视频| 日韩欧美在线二视频| 宅男免费午夜| 国产99久久九九免费精品| 淫秽高清视频在线观看| 亚洲自偷自拍图片 自拍| 免费搜索国产男女视频| 亚洲中文字幕日韩| 麻豆成人午夜福利视频| 自线自在国产av| 免费看日本二区| 少妇被粗大的猛进出69影院| 91大片在线观看| 国产精品九九99| 一本大道久久a久久精品| 亚洲国产精品成人综合色| 一区二区三区激情视频| 免费在线观看黄色视频的| 亚洲真实伦在线观看| 成人亚洲精品av一区二区| 免费在线观看完整版高清| 麻豆一二三区av精品| 18禁美女被吸乳视频| 国产亚洲av高清不卡| 在线观看免费午夜福利视频| 亚洲成人精品中文字幕电影| 国产高清videossex| 女生性感内裤真人,穿戴方法视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲一码二码三码区别大吗| 久久香蕉精品热| 非洲黑人性xxxx精品又粗又长| 男人舔女人下体高潮全视频| 一级毛片女人18水好多| 免费观看人在逋| 久久精品91蜜桃| 性欧美人与动物交配| 亚洲,欧美精品.| 国产亚洲精品综合一区在线观看 | 亚洲精品在线美女| 国产av又大| 午夜福利18| xxx96com| 18禁国产床啪视频网站| 久久精品国产综合久久久| 丝袜人妻中文字幕| 男人舔女人的私密视频| 成人三级做爰电影| 亚洲,欧美精品.| 人人妻人人看人人澡| 亚洲精品中文字幕一二三四区| 黑人巨大精品欧美一区二区mp4| 在线观看午夜福利视频| 午夜福利在线在线|