• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In situ conversion builds MIL-101@NiFe-LDH heterojunction structures to enhance the oxygen evolution reaction

    2022-09-16 05:24:24JingweiHungKiLiLeiWngHoudeSheQizhoWng
    Chinese Chemical Letters 2022年8期

    Jingwei Hung, Ki Li, Lei Wng, Houde She, Qizho Wng,b,c,?

    a College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou 730070, China

    b School of Environmental Science and Engineering, Chang’an University, Xi’an 710054, China

    c Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, China

    ABSTRACT The construction of rich phase interfaces to increase active reaction area in hybrid materials is an excellent strategy to improve electrochemical performance.Under this guideline, MIL-101@OX-metal organic framework (MOF) is constructed by the "MOF on MOF" method, then converts to MIL-101@NiFe-layered double hydroxides (LDH) by in situ transformation in alkaline solution.MIL-101@NiFe-LDH shows excellent electrochemical water oxidation performance.It needs only an overpotential of 215 mV to drive 10 mA/cm2 of oxygen evolution reaction (OER), which is less than that of NiFe-LDH, MIL-101.In addition,MIL-101@NiFe-LDH has the smallest Tafel slope (55.1 mV/dec) compared with NiFe-LDH (61.1 mV/dec),MIL-101 (150.8 mV/dec).The excellent water oxidation activity is due to the high phase interfaces derived from high specific surface area of MOF.This work offers an alternative method for making MOF/LDH heterostructures with an optimized phase interfaces and provides new insights for OER.

    Keywords:Mil-101@NiFe-LDH OER Electrocatalysis Alkalize

    With the massive use of traditional fossil fuels, global warming and carbon emissions are becoming a pressing issue for mankind [1–3].A growing number of researchers are moving toward hydrogen-powered technologies as highly efficient and clean replacements for fossil fuels.Among many innovative methods for hydrogen production, water electrolysis has received much attention due to its simplicity, high purity and mature technology than microbial and photolysis methods [4,5].Oxygen evolution reaction(OER) [6–8] is a difficult process in water splitting because it undergoes a 4-electron transfer process, which leads to a high overpotential [9,10].Although many OER catalysts with high performances have been designed, driving OER with high efficiency at low overpotential still seems to be a challenge.Advanced catalysts for OER are generally noble metal oxides and their derivates, but their high cost impedes their further commercial large-scale applications [11].To settle this problem, sulfides [12–15], phosphides[16], layered double hydroxides (LDH) [17]etc.have been widely researched to replace OER noble metal based catalysts.

    Metal organic frameworks (MOFs) [18–21] have attracted wide attention because of their large surface area, adjustable morphology and permanent structure, which may offer numerous surfaceactive sites for efficient water oxidation [22–25].However, majority of their metal active sites are hidden very deeply in the MOF frames and may not be utilized to catalyze the reactions.In addition, the poor stability and conductivity of MOFs are important issues that must be overcome in electrocatalyst applications, particularly under alkaline/acidic conditions.For these reasons, Kenet al.propose an “MOF on MOF” concept to solve these problems and which is proved to be effective [24].Zhaiet al.introduce anin situsemi-conversion method to turn FeNi-MOF-74 into FeNi-LDH,which exhibited excellent OER performance [26].Yanget al.discover that oxalate MOF (OX-MOF) could be converted into NiFe-LDH in alkaline solution and preserves its shape, showing excellent catalytic performance for OER [27].Based on the above design concept and results, we try to combine the “MOF on MOF” concept within situconversion method to make an OER electrocatalyst with excellent performance.

    Here, MIL-101@NiFe-LDH heterostructure is designed and synthesized by growing two MOFs (MIL-101 and OX-MOF) successively on nickel foam (NF) substrate followed byin situconversion of OX-MOF to NiFe-LDH.The NiFe-LDH heterostructures constructed by this method have inherited not only large-scale surface area of MOF, but also superior phase interface.To be expected, the MIL-101@NiFe-LDH heterostructure shows excellent OER performance.

    Typicalin situsynthesis route of MIL-101@NiFe-LDH is schematically illustrated in Scheme 1.Before experiment, NF (3 × 1 cm2,Kunshan Guangjiayuan New Materials Co., Ltd.) substrates were ultrasonically cleaned for 30 min in 1 mol/L of hydrochloric acid solution, ethanol and distilled water, respectively.Then dry them in an oven at 60 °C overnight.The synthesis of MIL-101@NiFe-LDH on NF consists of the following three steps: (1) Synthesis of MIL-101 on NF.Put a piece of NF into an autoclave with teflon lining, then add a mixed solution of 1.5 mmol terephthalic acid (AR, Shanghai Macklin Biochemical Co., Ltd.), 2.5 mmolferric chloride hexahydrate (AR, Shanghai Macklin Biochemical Co., Ltd.) and 15 mLN,N-dimethylformamide (DMF) into it.The autoclave was put into an oven to react at 110 °C for 20 h.After the reaction, the product was washed with ethanol and distilled and dried in an oven at 60 °C.(2) Synthesis of MIL-101@OX-MOF on NF.Put 0.15 mmol(73.6 mg) potassium trioxalatoferrate(III) trihydrate (AR, Shanghai Macklin Biochemical Co., Ltd.), 0.15 mmol (35.5 mg) nickel chloride hexahydrate (AR, Sigma-Aldrich) and 0.15 mmol (55.6 mg)tetrapentylammonium bromide (AR, Shanghai Macklin Biochemical Co., Ltd.) into 3 mL distilled water.After stirring for 20 min, then put the above made MIL-101 into the solution and leave it to react for 75 min.After the reaction, wash it with ethanol and put it into an oven at 75 °C overnight.(3) Synthesis of MIL-101@NiFe-LDH on NF.Take a piece of the prepared MIL-101@OX-MOF into 6 mL distilled water, leave it for 5 min to get good wettability.Then, add 15 mL 1 mol/L potassium hydroxide (KOH) solution into the above aqueous solution slowly drop by drop and keep it actionless for 45 min to make MIL-101@OX-MOF fully convert into MIL-101@NiFe-LDH.Finally, take the obtained MIL-101@NiFe-LDH out, wash it with ethanol and distilled water, and dry it at 60 °C for 4 h.

    X-ray diffraction (XRD) data are obtained on a Bruker D8 Advance diffractometer with a Cu Kαradiation source.The X-ray photoelectron spectroscopy (XPS) analysis is carried out on a Thermo ESCALAB 250XI photoelectron spectrometer.Data for all samples are calibrated with C 1s (284.8 eV).The scanning electron microscope (SEM) images and transmission electron microscopy (TEM)images are recorded on a FEI Helios G4CX SEM and a FEI Talos F200S transmission electron microscope.Fourier transform infrared spectra (FTIR) test is performed on a Nicolet iS50 spectrometer.

    The electrochemical properties of the prepared materials were evaluated on a CHI 760E workstation using a three-electrode system.NF supported material (3 × 1 cm2) was used as working electrode, 1 × 1 cm2of NF supported material was immersed into the electrolyte.Hg/HgO electrode and Pt sheet were used as a reference electrode and a counter electrode, respectively.Linear sweep voltammetry (LSV) curve was obtained at a slow scan rate (1 mV/s)in 1 mol/L KOH.The Tafel slope is obtained from the LSV curve by the equation (η=a+blogj, whereηis overpotential, it is calculated as following:η=ERHE?1.23 V,ais a constant,bis the Tafel slope andjis the current density).The stability test was performed for 24 h at a voltage value corresponding to 10 mA of the LSV curve.

    From Figs.1A and B, it can be found that NF is smooth on the surface.After growing MIL-101, the smooth surface is covered in full of nanoparticles (Figs.1C and D), indicating the successful preparation of the MIL-101.As shown in Figs.1E and F, columnar OX-MOFs are overlaid on MIL-101.The design of "MOF on MOF"has been realized.The surface of MIL-101@OX-MOF becomes rough after alkalinization treatment (Figs.1G and H), indicating that MIL-101@OX-MOF has transformed into MIL-101@NiFe-LDH, in which the columnar form was retained.This could be confirmed by the control experiment of OX-MOF alkalinization treatment.It can be seen from Fig.S1 (Supporting information) that the surface of OXMOF becomes rough after KOH treatment, confirming the rough property of NiFe-LDH and successful conversion of MIL-101@OXMOF to MIL-101@NiFe-LDH.The 0.25 nm lattice spacing in Fig.1I corresponds to the (012) crystal plane of NiFe-LDH, and the obvious phase interface also indicates that MIL-101 and NiFe-LDH form a heterojunction [28].Mapped energy dispersive X-ray spectroscopy (EDS) elemental image of MIL-101@NiFe-LDH in Fig.S2(Supporting information) shows the uniform space distribution of C, O, Fe and Ni element.

    XRD tests were used to confirm the material structure of the prepared electrodes.As exhibited in Fig.2A, MIL-101 shows diffraction peaks located at 5.9°, 8.4°, 9.0°, 10.4°, and 16.4°, which are consistent with the simulated data of MIL-101 [29].Among them,the diffraction peak at 9.0° is still can be observed in the MIL-101@NiFe-LDH composite sample, indicating that MIL-101 remains unchanged after KOH treating.The XRD patterns of OX-MOF and NiFe-LDH derived from OX-MOF by KOH treating are tested to prove the conversion of OX-MOF to NiFe-LDH.It can be seen from Fig.S3 (Supporting information) that part diffraction peaks of OXMOF correspond with the simulated data of OX-MOF.However, the diffraction peaks of OX-MOF change completely after treating with KOH solution.New diffraction peaks at 34.4°, 37.1° and 60.9° are corresponding to the (012), (015) and (113) crystallographic planes of LDH [30], which proves that OX-MOF can be successfully converted to LDH by KOH solution treating.Similarly, MIL-101@OXMOF shows entirely different diffraction peaks after KOH treating(Fig.2A).Diffraction peaks at 23.1° and 37.6° are corresponding to the (006) and (014) crystallographic planes of NiFe-LDH, proving MIL-101@NiFe-LDH can be converted from MIL-101@OX-MOF.Infrared (IR) spectrum of OX-MOF (Fig.2B) shows that the peaks at 2738 cm?1and 2921 cm?1are attributed to quaternary ammonium salt and CH2groups, and the MOF has the presence of Pen4N+.However, these signal peaks are absent in the IR of NiFe-LDH.IR signals at 1633 and 1348 cm?1in NiFe-LDH are attributed to the oxalate ions [27].

    Fig.1.SEM images of NF (A, B), MIL-101 (C, D) and MIL-101@OX-MOF (E, F).SEM (G, H) and HR-TEM (I) images of MIL-101@NiFe-LDH.

    Fig.2.(A) XRD patterns of MIL-101@NiFe-LDH, MIL-101@OX-MOF, MIL-101 as well as simulated pattern of MIL-101.(B) IR patterns of OX-MOF and NiFe-LDH.(C) Input voltage-output current characteristic curves of MIL-101 and MIL-101@NiFe-LDH electrodes.The red dotted line is added as linear reference.(D-F) XPS spectra of O, Ni and Fe, respectively.

    Input voltage-output current characteristic curves are tested to judge the formation of heterojunction between MIL-101 and NiFe-LDH.As demonstrated in Fig.2C, MIL-101 electrode shows a linear relationship between the output current and input voltage, indicating that the contact type between MIL-101 and NF substrate is ohmic contact.Conversely, there is a nonlinear relationship between the output current and input voltage of the MIL-101@NiFe-LDH electrode, indicating that the interface contact type between MIL-101 and NiFe-LDH is a non-ohmic contact.That is to say, MIL-101 and NiFe-LDH in the MIL-101@NiFe-LDH electrode are closely integrated to form heterojunction [31].

    Fig.3.(A) LSV curves NF, MIL-101, NiFe-LDH, MIL-101@NiFe-LDH and their overpotentials at 10 mA/cm2 (B), Tafel plots (C).(D) Linear relationship between the capacitive current and scan rate.(E) Electrochemical impedance spectroscopy of various electrodes.The inset image is the simulative equivalent circuit.(F) I-t curve of MIL-101@NiFe-LDH.The inset image is the comparison of LSV curve before and after 3000 cycles test.

    XPS spectra are measured to further analyze material composition.As shown in Fig.S4 (Supporting information), XPS survey spectrum shows that MIL-101@NiFe-LDH contains elements such as C, O, Fe and Ni.The O 1s spectrum of MIL-101@NiFe-LDH shows two peaks at 533.4 and 531.4 eV, which can be respectively assigned to the adsorbed water at the surface and hydroxide of the carboxylate ion (Fig.2D).As can be observed in the Ni 2p spectrum(Fig.2E), the signals of the two peaks at 873.8 and 856.1 eV are in agreement with 2p1/2and 2p3/2of Ni2+accompanied by satellite peaks (denoted as “Sat.”) [32].In Fig.2F, Fe 2p1/2and Fe 2p3/2peaks with the respective binding energies of 725.7 and 712.1 eV are characteristic of Fe3+in NiFe-LDH [33].

    To compare OER activity of the catalysts, the alkali treating time was optimized firstly.It is found that the obtained NiFe-LDH with a treating time of 75 min has the best OER activity (Fig.S5 in Supporting information).Unless otherwise indicated, all the NiFe-LDH and MIL-101@NiFe-LDH is treated in alkali solution for 75 min.As shown in Fig.3A, NF has the biggest onset potential.MIL-101 and NiFe-LDH have slightly smaller onset potentials.MIL-101@NiFe-LDH composite electrode has the minimum onset potential of 1.4 V.This demonstrates that the strategy of combining MIL-101 and NiFe-LDH to achieve high OER activity is successful.The MIL-101@NiFe-LDH electrode only requires an overpotential of 215 mV to drive 10 mA/cm2of OER, which is less than that of NiFe-LDH (239 mV), MIL-101 (271 mV) and NF (337 mV) electrodes(Fig.3B).The results show that the OER activity of MIL-101@NiFe-LDH is superior to other advanced catalysts that have been reported (Table S1 in Supporting information).The results showed that MIL-101@NiFe-LDH has the highest catalytic activity, indicating that the rich phase interface of MIL-101@NiFe-LDH has a positive effect on the catalytic activity.In addition, MIL-101@NiFe-LDH has the smallest Tafel slope (55.1 mV/dec) compared with NiFe-LDH (61.1 mV/dec), MIL-101 (150.8 mV/dec) and NF (91.7 mV/dec),indicating quick surface kinetics of MIL-101@NiFe-LDH (Fig.3C).

    Fig.4.(A, B) SEM images of MIL-101@NiFe-LDH after i-t-test.(C-D) The XPS spectra of MIL-101@NiFe-LDH before and after i-t-test.

    The true active reaction area of the OER catalyst is usually hardly measured precisely.Here, the electrochemical active surface area (ECSA), which is directly proportional with the electrochemical double layer capacitance (Cdl), is used to estimate active reaction area.Cyclic voltammetry experiments (1.125~1.225 Vvs.RHE)were performed at different scan rates to obtainCdl(Fig.S6 in Supporting information).As can be seen from Fig.3D, theCdlvalue of MIL-101@NiFe-LDH (8.6 mF/cm2) is significantly larger than that of NiFe-LDH (4.7 mF/cm2) and MIL-101 (3.7 mF/cm2).This means that the MIL-101@NiFe-LDH heterostructure with double-layer structure provides a rich active reaction area for surface-catalyzed reactions,which partly explains the remarkably high-level activity of the MIL-101@NiFe-LDH heterostructure for OER.MIL-101 (Rct= 0.16Ω), NiFe-LDH (Rct= 0.18Ω) and MIL-101@NiFe-LDH (Rct= 0.17Ω) exhibit identical charge transfer resistance (Rct) (Fig.3E), pointing to the fact that these electrocatalysts have almost the same electron transfer behavior among electrolyte to electrode interface.That is, different OER performance of these electrodes does not origin from electron transfer character.As can be seen in Fig.3F, MIL-101@NiFe-LDH exhibits good stability during 24 h test at 1.47 Vvs.RHE.Also, the good stability of MIL-101@NiFe-LDH is illustrated by the fact that its OER activity performs as before after 3000 cycles(inset in Fig.3F).

    As shown in Figs.4A and B, the overall appearance of MIL-101@NiFe-LDH is not changed after the stability test.It still keeps the double-layer structure, indicating excellent stability property of this electrode.It can be seen from the comparison of XPS spectra(Figs.4C and D) before and afteri-t-test that the binding energy of Fe 2p and Ni 2p basically keep unchanged.All these results prove the excellent stability of MIL-101@NiFe-LDH during long-time water splitting process.

    In conclusion, MIL-101@NiFe-LDH is fabricated under the guideline of “MOF on MOF” concept and the following alkali treating.OX-MOF isin situsuccessfully converted to NiFe-LDH on MIL-101 to form MIL-101@NiFe-LDH by the treatment of KOH solution.MIL-101@NiFe-LDH shows an OER onset potential of 1.4 V and an overpotential of 215 mV to drive 10 mA/cm2of OER, which is less than that of NiFe-LDH, MIL-101 and NF.The excellent OER performance could be ascribed to rich phase interface in MIL-101@NiFe-LDH, which provides more active reaction area derived from the high specific surface area of MOF.Due to thein situgrowth,MIL-101@NiFe-LDH also exhibits good stability during long time OER test.This work provides a new strategy for constructing of MOF/LDH heterostructures, which can be applied to the construction of other catalyst materials possessing excellent electrochemical performance.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (No.21808189), the National Natural Science Foundation of Gansu (No.20JR5RA523), and the Young Teachers’Research Ability Improvement Project of Northwest Normal University (NWNU-LKQN2020–01).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.11.028.

    久久精品久久久久久噜噜老黄| 搡女人真爽免费视频火全软件| 精品国产一区二区久久| 国产av国产精品国产| 亚洲五月色婷婷综合| 中文字幕久久专区| 成年美女黄网站色视频大全免费 | 老司机影院成人| av线在线观看网站| 国产男女超爽视频在线观看| 操美女的视频在线观看| 黑人操中国人逼视频| 三上悠亚av全集在线观看| 国产伦理片在线播放av一区| 国产成人影院久久av| 婷婷成人精品国产| 国产欧美日韩一区二区三| 女性生殖器流出的白浆| 中文字幕人妻丝袜制服| 精品少妇黑人巨大在线播放| 亚洲精品国产精品久久久不卡| 日韩欧美三级三区| 久久亚洲精品不卡| 久久精品aⅴ一区二区三区四区| 美女高潮喷水抽搐中文字幕| 91成年电影在线观看| 男女之事视频高清在线观看| av超薄肉色丝袜交足视频| 中文欧美无线码| 极品人妻少妇av视频| 法律面前人人平等表现在哪些方面| 亚洲欧美日韩高清在线视频 | videosex国产| 麻豆av在线久日| 中文字幕色久视频| 美女国产高潮福利片在线看| 国产又爽黄色视频| 视频在线观看一区二区三区| 成人18禁在线播放| 成人特级黄色片久久久久久久 | 在线av久久热| 中文字幕精品免费在线观看视频| 国产不卡一卡二| 亚洲精品中文字幕一二三四区 | a级片在线免费高清观看视频| 午夜福利在线观看吧| 婷婷丁香在线五月| 国产老妇伦熟女老妇高清| 少妇粗大呻吟视频| 国产又色又爽无遮挡免费看| 欧美变态另类bdsm刘玥| 少妇被粗大的猛进出69影院| 国产一区二区激情短视频| 啪啪无遮挡十八禁网站| 美女主播在线视频| 一级片'在线观看视频| 日本av手机在线免费观看| 一本大道久久a久久精品| 日本黄色视频三级网站网址 | 久久亚洲精品不卡| 90打野战视频偷拍视频| 亚洲精品自拍成人| 夜夜夜夜夜久久久久| 午夜久久久在线观看| 久久九九热精品免费| 午夜福利视频在线观看免费| 免费少妇av软件| 国产不卡一卡二| 日本精品一区二区三区蜜桃| 国产在线免费精品| 亚洲国产欧美一区二区综合| 精品国产一区二区久久| 黄色丝袜av网址大全| 精品高清国产在线一区| 色老头精品视频在线观看| 嫩草影视91久久| 久久久欧美国产精品| 成在线人永久免费视频| 又大又爽又粗| 极品人妻少妇av视频| 国产精品欧美亚洲77777| 黑人欧美特级aaaaaa片| 欧美久久黑人一区二区| 欧美大码av| 最近最新中文字幕大全电影3 | 成人亚洲精品一区在线观看| 国产精品 国内视频| 国产国语露脸激情在线看| www.精华液| 国产成人精品久久二区二区免费| 国产亚洲av高清不卡| 波多野结衣av一区二区av| 99国产精品免费福利视频| 欧美在线一区亚洲| 精品久久久久久电影网| 午夜免费鲁丝| 亚洲午夜精品一区,二区,三区| 国产又色又爽无遮挡免费看| 欧美成狂野欧美在线观看| 99精品在免费线老司机午夜| 久久久国产欧美日韩av| 一级,二级,三级黄色视频| 伦理电影免费视频| 男人舔女人的私密视频| 99国产精品一区二区蜜桃av | 一级黄色大片毛片| 国产一区二区激情短视频| 菩萨蛮人人尽说江南好唐韦庄| 国产在视频线精品| 久久毛片免费看一区二区三区| 黄片大片在线免费观看| 国产成人免费无遮挡视频| 国产男靠女视频免费网站| 男女之事视频高清在线观看| 亚洲情色 制服丝袜| 成人av一区二区三区在线看| 欧美日韩亚洲综合一区二区三区_| 欧美一级毛片孕妇| 亚洲欧美激情在线| 黑丝袜美女国产一区| 成年女人毛片免费观看观看9 | 纯流量卡能插随身wifi吗| 国产精品自产拍在线观看55亚洲 | 成年人午夜在线观看视频| 国产主播在线观看一区二区| 午夜久久久在线观看| 大码成人一级视频| 最新美女视频免费是黄的| 9191精品国产免费久久| 国产精品久久久久久精品电影小说| 天堂俺去俺来也www色官网| 国产精品麻豆人妻色哟哟久久| 在线天堂中文资源库| 久久精品91无色码中文字幕| 国产成人欧美在线观看 | 国产在视频线精品| 动漫黄色视频在线观看| 国产高清激情床上av| 久久中文字幕人妻熟女| av福利片在线| 国产一区二区 视频在线| 9热在线视频观看99| 天天躁狠狠躁夜夜躁狠狠躁| 老司机影院毛片| 精品欧美一区二区三区在线| 国产亚洲av高清不卡| 黄色视频不卡| www.精华液| 亚洲精品国产区一区二| 国产一区二区三区在线臀色熟女 | 免费不卡黄色视频| 黄色视频在线播放观看不卡| 露出奶头的视频| 婷婷丁香在线五月| 精品国产超薄肉色丝袜足j| 性高湖久久久久久久久免费观看| www.精华液| 久久婷婷成人综合色麻豆| 国产男女超爽视频在线观看| 午夜成年电影在线免费观看| 男人舔女人的私密视频| 最新的欧美精品一区二区| 免费在线观看日本一区| 国产一区有黄有色的免费视频| 麻豆av在线久日| 啦啦啦在线免费观看视频4| 亚洲伊人色综图| 五月开心婷婷网| 嫁个100分男人电影在线观看| 亚洲伊人久久精品综合| 亚洲国产中文字幕在线视频| 免费日韩欧美在线观看| 久久人人97超碰香蕉20202| 亚洲久久久国产精品| 最新的欧美精品一区二区| √禁漫天堂资源中文www| 亚洲一区中文字幕在线| 国产精品麻豆人妻色哟哟久久| 极品教师在线免费播放| 无人区码免费观看不卡 | 久久久久精品人妻al黑| 成人手机av| 亚洲精品国产色婷婷电影| 亚洲精品一卡2卡三卡4卡5卡| www.999成人在线观看| e午夜精品久久久久久久| 水蜜桃什么品种好| 一本一本久久a久久精品综合妖精| 欧美乱妇无乱码| 美女扒开内裤让男人捅视频| 热re99久久国产66热| 亚洲午夜精品一区,二区,三区| 天天躁夜夜躁狠狠躁躁| 精品人妻在线不人妻| 老鸭窝网址在线观看| 成人三级做爰电影| 国产成+人综合+亚洲专区| 韩国精品一区二区三区| 亚洲中文av在线| 日韩有码中文字幕| 一级毛片女人18水好多| 国产亚洲一区二区精品| 久久精品国产亚洲av香蕉五月 | 99riav亚洲国产免费| 久久ye,这里只有精品| 黄网站色视频无遮挡免费观看| 宅男免费午夜| 久久性视频一级片| 欧美大码av| 久热爱精品视频在线9| 午夜福利,免费看| 国产成人影院久久av| 极品人妻少妇av视频| 亚洲午夜理论影院| 好男人电影高清在线观看| 国产在线视频一区二区| 亚洲色图 男人天堂 中文字幕| 亚洲精品久久午夜乱码| 日韩一区二区三区影片| 欧美激情 高清一区二区三区| 国产黄色免费在线视频| 黄色丝袜av网址大全| 亚洲成人免费电影在线观看| 91麻豆精品激情在线观看国产 | 午夜福利欧美成人| 午夜福利在线观看吧| 精品一区二区三区av网在线观看 | 亚洲av欧美aⅴ国产| 国产成人免费无遮挡视频| 日韩欧美一区视频在线观看| 久久久久视频综合| 国产欧美日韩一区二区三区在线| 大香蕉久久成人网| 亚洲欧美精品综合一区二区三区| 18禁美女被吸乳视频| 我的亚洲天堂| 亚洲精品一二三| 亚洲免费av在线视频| 亚洲精品国产区一区二| 汤姆久久久久久久影院中文字幕| 9热在线视频观看99| 美女高潮到喷水免费观看| 黑人猛操日本美女一级片| 日韩制服丝袜自拍偷拍| 午夜精品久久久久久毛片777| 亚洲色图av天堂| 欧美日韩中文字幕国产精品一区二区三区 | www.熟女人妻精品国产| 亚洲国产毛片av蜜桃av| 最黄视频免费看| 777久久人妻少妇嫩草av网站| videosex国产| 成年人午夜在线观看视频| 国产老妇伦熟女老妇高清| 欧美日韩亚洲高清精品| 亚洲第一青青草原| 国产成人影院久久av| 高潮久久久久久久久久久不卡| 国产欧美日韩一区二区三区在线| 一个人免费在线观看的高清视频| 成人国产av品久久久| 欧美激情 高清一区二区三区| 一区在线观看完整版| 国产高清videossex| 国产国语露脸激情在线看| av国产精品久久久久影院| 亚洲全国av大片| 美女高潮到喷水免费观看| av又黄又爽大尺度在线免费看| 精品一区二区三区视频在线观看免费 | 成年动漫av网址| 国产黄色免费在线视频| 精品国内亚洲2022精品成人 | 亚洲欧美日韩另类电影网站| 美女高潮喷水抽搐中文字幕| 久久久国产成人免费| 丰满少妇做爰视频| av在线播放免费不卡| 亚洲五月婷婷丁香| 在线观看免费高清a一片| 在线观看人妻少妇| 母亲3免费完整高清在线观看| 日日爽夜夜爽网站| 捣出白浆h1v1| 久久99热这里只频精品6学生| 国产精品久久久人人做人人爽| 中文字幕色久视频| 少妇精品久久久久久久| 最新在线观看一区二区三区| 涩涩av久久男人的天堂| 极品人妻少妇av视频| 每晚都被弄得嗷嗷叫到高潮| tocl精华| 丰满饥渴人妻一区二区三| 美女高潮到喷水免费观看| 99香蕉大伊视频| 天天操日日干夜夜撸| 高清av免费在线| 岛国在线观看网站| 80岁老熟妇乱子伦牲交| 欧美乱妇无乱码| 欧美久久黑人一区二区| 欧美日韩亚洲高清精品| 亚洲九九香蕉| 亚洲精品国产色婷婷电影| 妹子高潮喷水视频| 欧美激情 高清一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 又黄又粗又硬又大视频| 一区福利在线观看| 天堂中文最新版在线下载| 国产成人啪精品午夜网站| 国产一区二区三区视频了| 亚洲九九香蕉| 91大片在线观看| 91字幕亚洲| 一级片免费观看大全| 国产av国产精品国产| 免费少妇av软件| 两性夫妻黄色片| 久久精品亚洲精品国产色婷小说| 久久毛片免费看一区二区三区| 国产极品粉嫩免费观看在线| 国产老妇伦熟女老妇高清| 美女高潮喷水抽搐中文字幕| 亚洲国产av新网站| 亚洲专区国产一区二区| 国产精品九九99| 精品欧美一区二区三区在线| 国产精品熟女久久久久浪| 少妇被粗大的猛进出69影院| 久久精品亚洲av国产电影网| 99国产精品99久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精华国产精华精| 久久99热这里只频精品6学生| tube8黄色片| 制服诱惑二区| 久久精品亚洲熟妇少妇任你| 美女高潮喷水抽搐中文字幕| 女人精品久久久久毛片| 一二三四在线观看免费中文在| 视频区欧美日本亚洲| 多毛熟女@视频| 人人妻,人人澡人人爽秒播| 亚洲精品自拍成人| 在线观看舔阴道视频| 国产精品国产av在线观看| 国产一区二区在线观看av| 亚洲专区国产一区二区| 国产av精品麻豆| 成人18禁高潮啪啪吃奶动态图| 国产日韩欧美亚洲二区| 如日韩欧美国产精品一区二区三区| 午夜两性在线视频| 欧美乱妇无乱码| 国产无遮挡羞羞视频在线观看| 高清毛片免费观看视频网站 | 两人在一起打扑克的视频| 男人舔女人的私密视频| 日韩一卡2卡3卡4卡2021年| 国产深夜福利视频在线观看| 夜夜夜夜夜久久久久| 极品少妇高潮喷水抽搐| 国产成人欧美在线观看 | 交换朋友夫妻互换小说| 少妇 在线观看| 亚洲av国产av综合av卡| 妹子高潮喷水视频| 国产精品美女特级片免费视频播放器 | 人成视频在线观看免费观看| 黄色成人免费大全| 欧美亚洲 丝袜 人妻 在线| 黄网站色视频无遮挡免费观看| 超色免费av| 精品国产亚洲在线| 操出白浆在线播放| 新久久久久国产一级毛片| 国产97色在线日韩免费| 午夜福利欧美成人| 黄色丝袜av网址大全| 久久天堂一区二区三区四区| 天堂8中文在线网| www.999成人在线观看| 脱女人内裤的视频| 国产男女超爽视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产xxxxx性猛交| av网站在线播放免费| 日韩精品免费视频一区二区三区| 亚洲精品国产色婷婷电影| 欧美激情 高清一区二区三区| 淫妇啪啪啪对白视频| 他把我摸到了高潮在线观看 | 国产日韩欧美亚洲二区| 1024视频免费在线观看| 亚洲成人手机| 精品福利永久在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产精品久久久av美女十八| 操出白浆在线播放| 日韩一区二区三区影片| 欧美激情高清一区二区三区| 中文字幕av电影在线播放| 国产精品国产av在线观看| 一本—道久久a久久精品蜜桃钙片| 热re99久久精品国产66热6| 男女下面插进去视频免费观看| 色播在线永久视频| 欧美黑人欧美精品刺激| 欧美中文综合在线视频| 日本五十路高清| 如日韩欧美国产精品一区二区三区| 亚洲色图av天堂| 精品国产乱码久久久久久男人| 99精品在免费线老司机午夜| 亚洲第一青青草原| 丰满人妻熟妇乱又伦精品不卡| 超碰成人久久| 成人亚洲精品一区在线观看| 怎么达到女性高潮| 久久久欧美国产精品| 国产单亲对白刺激| 午夜视频精品福利| 一级,二级,三级黄色视频| 一本综合久久免费| 国产午夜精品久久久久久| 久久人妻av系列| 久久亚洲精品不卡| 欧美一级毛片孕妇| 精品亚洲成国产av| 99久久国产精品久久久| 亚洲精品中文字幕在线视频| 亚洲国产欧美一区二区综合| 又黄又粗又硬又大视频| 一个人免费在线观看的高清视频| 精品少妇久久久久久888优播| 他把我摸到了高潮在线观看 | 每晚都被弄得嗷嗷叫到高潮| 汤姆久久久久久久影院中文字幕| 激情在线观看视频在线高清 | 久久精品91无色码中文字幕| 国产av又大| 国产一区二区激情短视频| 国产成人啪精品午夜网站| 亚洲成人免费av在线播放| 久久久久国内视频| 国产精品熟女久久久久浪| 90打野战视频偷拍视频| 国产高清videossex| 欧美av亚洲av综合av国产av| 后天国语完整版免费观看| 在线观看66精品国产| 叶爱在线成人免费视频播放| 黄色毛片三级朝国网站| 一本一本久久a久久精品综合妖精| 亚洲成国产人片在线观看| 老司机靠b影院| 免费人妻精品一区二区三区视频| 欧美精品啪啪一区二区三区| 天天添夜夜摸| 午夜福利视频精品| 高清视频免费观看一区二区| √禁漫天堂资源中文www| 十八禁高潮呻吟视频| 成年人黄色毛片网站| 午夜激情av网站| 亚洲一码二码三码区别大吗| 欧美精品啪啪一区二区三区| 最近最新中文字幕大全免费视频| 两性午夜刺激爽爽歪歪视频在线观看 | 蜜桃在线观看..| 18禁黄网站禁片午夜丰满| 丰满饥渴人妻一区二区三| 中文字幕另类日韩欧美亚洲嫩草| 午夜91福利影院| 久久精品人人爽人人爽视色| 丁香六月欧美| 19禁男女啪啪无遮挡网站| 精品国产乱子伦一区二区三区| 亚洲,欧美精品.| 中文字幕最新亚洲高清| 他把我摸到了高潮在线观看 | 国产精品国产av在线观看| 欧美中文综合在线视频| 亚洲精品久久成人aⅴ小说| 国产激情久久老熟女| 成年动漫av网址| 免费av中文字幕在线| 欧美黑人精品巨大| 亚洲精品国产一区二区精华液| 99re在线观看精品视频| 亚洲人成伊人成综合网2020| 91老司机精品| 国产一卡二卡三卡精品| 久久影院123| 亚洲精品美女久久av网站| 欧美黄色淫秽网站| 极品少妇高潮喷水抽搐| 一进一出抽搐动态| 午夜视频精品福利| 视频区图区小说| 999久久久国产精品视频| 国产国语露脸激情在线看| 国产高清视频在线播放一区| 国产熟女午夜一区二区三区| 午夜视频精品福利| 别揉我奶头~嗯~啊~动态视频| 999精品在线视频| 欧美人与性动交α欧美精品济南到| 超碰97精品在线观看| 欧美日韩成人在线一区二区| 国产亚洲av高清不卡| 1024视频免费在线观看| 国产亚洲av高清不卡| 大香蕉久久成人网| 亚洲精品中文字幕在线视频| 一区在线观看完整版| 老熟妇仑乱视频hdxx| 人人妻人人澡人人看| 日韩制服丝袜自拍偷拍| 老司机午夜十八禁免费视频| 男女午夜视频在线观看| 一本色道久久久久久精品综合| 巨乳人妻的诱惑在线观看| 亚洲avbb在线观看| 考比视频在线观看| 欧美精品av麻豆av| 久久av网站| 国产av国产精品国产| 90打野战视频偷拍视频| 美国免费a级毛片| 中文字幕另类日韩欧美亚洲嫩草| 在线十欧美十亚洲十日本专区| 大型av网站在线播放| 国产亚洲一区二区精品| 少妇的丰满在线观看| 国产淫语在线视频| 黑人猛操日本美女一级片| 1024香蕉在线观看| 看免费av毛片| 国产在线免费精品| 午夜福利视频精品| 国产av精品麻豆| 欧美国产精品va在线观看不卡| 精品福利永久在线观看| 麻豆成人av在线观看| 国产精品成人在线| 12—13女人毛片做爰片一| 精品国产乱码久久久久久小说| 乱人伦中国视频| 一本色道久久久久久精品综合| 久久国产精品男人的天堂亚洲| 久久精品国产99精品国产亚洲性色 | 久久国产精品人妻蜜桃| 99精品欧美一区二区三区四区| 精品国内亚洲2022精品成人 | 91麻豆精品激情在线观看国产 | 精品免费久久久久久久清纯 | 色老头精品视频在线观看| 免费观看av网站的网址| 美国免费a级毛片| 51午夜福利影视在线观看| 欧美精品啪啪一区二区三区| av超薄肉色丝袜交足视频| 亚洲熟女毛片儿| 中文字幕人妻熟女乱码| 老熟女久久久| 在线av久久热| 久久精品aⅴ一区二区三区四区| 最近最新中文字幕大全电影3 | 免费观看人在逋| 女性被躁到高潮视频| 亚洲人成电影观看| 国产一区二区三区视频了| 99久久国产精品久久久| 免费黄频网站在线观看国产| 色尼玛亚洲综合影院| 日韩欧美三级三区| 黑人操中国人逼视频| 精品福利永久在线观看| 久久婷婷成人综合色麻豆| 国产精品亚洲av一区麻豆| 91麻豆精品激情在线观看国产 | 性少妇av在线| 久热这里只有精品99| 黄色怎么调成土黄色| 午夜福利免费观看在线| 美国免费a级毛片| 电影成人av| 国产一区二区三区视频了| 三级毛片av免费| 巨乳人妻的诱惑在线观看| 中文字幕最新亚洲高清| 美女高潮到喷水免费观看| 又黄又粗又硬又大视频| 一级,二级,三级黄色视频| 丝袜在线中文字幕| aaaaa片日本免费| 国产精品香港三级国产av潘金莲| 91大片在线观看| 久久国产精品大桥未久av| 亚洲精品中文字幕在线视频| 欧美国产精品一级二级三级| 亚洲性夜色夜夜综合| 亚洲国产欧美日韩在线播放| 在线播放国产精品三级| 18禁美女被吸乳视频| www.自偷自拍.com| 精品一区二区三区av网在线观看 | 亚洲精品国产一区二区精华液| 亚洲,欧美精品.| 亚洲午夜理论影院| 纵有疾风起免费观看全集完整版| 国产精品久久久久久精品古装|