• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In situ conversion builds MIL-101@NiFe-LDH heterojunction structures to enhance the oxygen evolution reaction

    2022-09-16 05:24:24JingweiHungKiLiLeiWngHoudeSheQizhoWng
    Chinese Chemical Letters 2022年8期

    Jingwei Hung, Ki Li, Lei Wng, Houde She, Qizho Wng,b,c,?

    a College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou 730070, China

    b School of Environmental Science and Engineering, Chang’an University, Xi’an 710054, China

    c Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, China

    ABSTRACT The construction of rich phase interfaces to increase active reaction area in hybrid materials is an excellent strategy to improve electrochemical performance.Under this guideline, MIL-101@OX-metal organic framework (MOF) is constructed by the "MOF on MOF" method, then converts to MIL-101@NiFe-layered double hydroxides (LDH) by in situ transformation in alkaline solution.MIL-101@NiFe-LDH shows excellent electrochemical water oxidation performance.It needs only an overpotential of 215 mV to drive 10 mA/cm2 of oxygen evolution reaction (OER), which is less than that of NiFe-LDH, MIL-101.In addition,MIL-101@NiFe-LDH has the smallest Tafel slope (55.1 mV/dec) compared with NiFe-LDH (61.1 mV/dec),MIL-101 (150.8 mV/dec).The excellent water oxidation activity is due to the high phase interfaces derived from high specific surface area of MOF.This work offers an alternative method for making MOF/LDH heterostructures with an optimized phase interfaces and provides new insights for OER.

    Keywords:Mil-101@NiFe-LDH OER Electrocatalysis Alkalize

    With the massive use of traditional fossil fuels, global warming and carbon emissions are becoming a pressing issue for mankind [1–3].A growing number of researchers are moving toward hydrogen-powered technologies as highly efficient and clean replacements for fossil fuels.Among many innovative methods for hydrogen production, water electrolysis has received much attention due to its simplicity, high purity and mature technology than microbial and photolysis methods [4,5].Oxygen evolution reaction(OER) [6–8] is a difficult process in water splitting because it undergoes a 4-electron transfer process, which leads to a high overpotential [9,10].Although many OER catalysts with high performances have been designed, driving OER with high efficiency at low overpotential still seems to be a challenge.Advanced catalysts for OER are generally noble metal oxides and their derivates, but their high cost impedes their further commercial large-scale applications [11].To settle this problem, sulfides [12–15], phosphides[16], layered double hydroxides (LDH) [17]etc.have been widely researched to replace OER noble metal based catalysts.

    Metal organic frameworks (MOFs) [18–21] have attracted wide attention because of their large surface area, adjustable morphology and permanent structure, which may offer numerous surfaceactive sites for efficient water oxidation [22–25].However, majority of their metal active sites are hidden very deeply in the MOF frames and may not be utilized to catalyze the reactions.In addition, the poor stability and conductivity of MOFs are important issues that must be overcome in electrocatalyst applications, particularly under alkaline/acidic conditions.For these reasons, Kenet al.propose an “MOF on MOF” concept to solve these problems and which is proved to be effective [24].Zhaiet al.introduce anin situsemi-conversion method to turn FeNi-MOF-74 into FeNi-LDH,which exhibited excellent OER performance [26].Yanget al.discover that oxalate MOF (OX-MOF) could be converted into NiFe-LDH in alkaline solution and preserves its shape, showing excellent catalytic performance for OER [27].Based on the above design concept and results, we try to combine the “MOF on MOF” concept within situconversion method to make an OER electrocatalyst with excellent performance.

    Here, MIL-101@NiFe-LDH heterostructure is designed and synthesized by growing two MOFs (MIL-101 and OX-MOF) successively on nickel foam (NF) substrate followed byin situconversion of OX-MOF to NiFe-LDH.The NiFe-LDH heterostructures constructed by this method have inherited not only large-scale surface area of MOF, but also superior phase interface.To be expected, the MIL-101@NiFe-LDH heterostructure shows excellent OER performance.

    Typicalin situsynthesis route of MIL-101@NiFe-LDH is schematically illustrated in Scheme 1.Before experiment, NF (3 × 1 cm2,Kunshan Guangjiayuan New Materials Co., Ltd.) substrates were ultrasonically cleaned for 30 min in 1 mol/L of hydrochloric acid solution, ethanol and distilled water, respectively.Then dry them in an oven at 60 °C overnight.The synthesis of MIL-101@NiFe-LDH on NF consists of the following three steps: (1) Synthesis of MIL-101 on NF.Put a piece of NF into an autoclave with teflon lining, then add a mixed solution of 1.5 mmol terephthalic acid (AR, Shanghai Macklin Biochemical Co., Ltd.), 2.5 mmolferric chloride hexahydrate (AR, Shanghai Macklin Biochemical Co., Ltd.) and 15 mLN,N-dimethylformamide (DMF) into it.The autoclave was put into an oven to react at 110 °C for 20 h.After the reaction, the product was washed with ethanol and distilled and dried in an oven at 60 °C.(2) Synthesis of MIL-101@OX-MOF on NF.Put 0.15 mmol(73.6 mg) potassium trioxalatoferrate(III) trihydrate (AR, Shanghai Macklin Biochemical Co., Ltd.), 0.15 mmol (35.5 mg) nickel chloride hexahydrate (AR, Sigma-Aldrich) and 0.15 mmol (55.6 mg)tetrapentylammonium bromide (AR, Shanghai Macklin Biochemical Co., Ltd.) into 3 mL distilled water.After stirring for 20 min, then put the above made MIL-101 into the solution and leave it to react for 75 min.After the reaction, wash it with ethanol and put it into an oven at 75 °C overnight.(3) Synthesis of MIL-101@NiFe-LDH on NF.Take a piece of the prepared MIL-101@OX-MOF into 6 mL distilled water, leave it for 5 min to get good wettability.Then, add 15 mL 1 mol/L potassium hydroxide (KOH) solution into the above aqueous solution slowly drop by drop and keep it actionless for 45 min to make MIL-101@OX-MOF fully convert into MIL-101@NiFe-LDH.Finally, take the obtained MIL-101@NiFe-LDH out, wash it with ethanol and distilled water, and dry it at 60 °C for 4 h.

    X-ray diffraction (XRD) data are obtained on a Bruker D8 Advance diffractometer with a Cu Kαradiation source.The X-ray photoelectron spectroscopy (XPS) analysis is carried out on a Thermo ESCALAB 250XI photoelectron spectrometer.Data for all samples are calibrated with C 1s (284.8 eV).The scanning electron microscope (SEM) images and transmission electron microscopy (TEM)images are recorded on a FEI Helios G4CX SEM and a FEI Talos F200S transmission electron microscope.Fourier transform infrared spectra (FTIR) test is performed on a Nicolet iS50 spectrometer.

    The electrochemical properties of the prepared materials were evaluated on a CHI 760E workstation using a three-electrode system.NF supported material (3 × 1 cm2) was used as working electrode, 1 × 1 cm2of NF supported material was immersed into the electrolyte.Hg/HgO electrode and Pt sheet were used as a reference electrode and a counter electrode, respectively.Linear sweep voltammetry (LSV) curve was obtained at a slow scan rate (1 mV/s)in 1 mol/L KOH.The Tafel slope is obtained from the LSV curve by the equation (η=a+blogj, whereηis overpotential, it is calculated as following:η=ERHE?1.23 V,ais a constant,bis the Tafel slope andjis the current density).The stability test was performed for 24 h at a voltage value corresponding to 10 mA of the LSV curve.

    From Figs.1A and B, it can be found that NF is smooth on the surface.After growing MIL-101, the smooth surface is covered in full of nanoparticles (Figs.1C and D), indicating the successful preparation of the MIL-101.As shown in Figs.1E and F, columnar OX-MOFs are overlaid on MIL-101.The design of "MOF on MOF"has been realized.The surface of MIL-101@OX-MOF becomes rough after alkalinization treatment (Figs.1G and H), indicating that MIL-101@OX-MOF has transformed into MIL-101@NiFe-LDH, in which the columnar form was retained.This could be confirmed by the control experiment of OX-MOF alkalinization treatment.It can be seen from Fig.S1 (Supporting information) that the surface of OXMOF becomes rough after KOH treatment, confirming the rough property of NiFe-LDH and successful conversion of MIL-101@OXMOF to MIL-101@NiFe-LDH.The 0.25 nm lattice spacing in Fig.1I corresponds to the (012) crystal plane of NiFe-LDH, and the obvious phase interface also indicates that MIL-101 and NiFe-LDH form a heterojunction [28].Mapped energy dispersive X-ray spectroscopy (EDS) elemental image of MIL-101@NiFe-LDH in Fig.S2(Supporting information) shows the uniform space distribution of C, O, Fe and Ni element.

    XRD tests were used to confirm the material structure of the prepared electrodes.As exhibited in Fig.2A, MIL-101 shows diffraction peaks located at 5.9°, 8.4°, 9.0°, 10.4°, and 16.4°, which are consistent with the simulated data of MIL-101 [29].Among them,the diffraction peak at 9.0° is still can be observed in the MIL-101@NiFe-LDH composite sample, indicating that MIL-101 remains unchanged after KOH treating.The XRD patterns of OX-MOF and NiFe-LDH derived from OX-MOF by KOH treating are tested to prove the conversion of OX-MOF to NiFe-LDH.It can be seen from Fig.S3 (Supporting information) that part diffraction peaks of OXMOF correspond with the simulated data of OX-MOF.However, the diffraction peaks of OX-MOF change completely after treating with KOH solution.New diffraction peaks at 34.4°, 37.1° and 60.9° are corresponding to the (012), (015) and (113) crystallographic planes of LDH [30], which proves that OX-MOF can be successfully converted to LDH by KOH solution treating.Similarly, MIL-101@OXMOF shows entirely different diffraction peaks after KOH treating(Fig.2A).Diffraction peaks at 23.1° and 37.6° are corresponding to the (006) and (014) crystallographic planes of NiFe-LDH, proving MIL-101@NiFe-LDH can be converted from MIL-101@OX-MOF.Infrared (IR) spectrum of OX-MOF (Fig.2B) shows that the peaks at 2738 cm?1and 2921 cm?1are attributed to quaternary ammonium salt and CH2groups, and the MOF has the presence of Pen4N+.However, these signal peaks are absent in the IR of NiFe-LDH.IR signals at 1633 and 1348 cm?1in NiFe-LDH are attributed to the oxalate ions [27].

    Fig.1.SEM images of NF (A, B), MIL-101 (C, D) and MIL-101@OX-MOF (E, F).SEM (G, H) and HR-TEM (I) images of MIL-101@NiFe-LDH.

    Fig.2.(A) XRD patterns of MIL-101@NiFe-LDH, MIL-101@OX-MOF, MIL-101 as well as simulated pattern of MIL-101.(B) IR patterns of OX-MOF and NiFe-LDH.(C) Input voltage-output current characteristic curves of MIL-101 and MIL-101@NiFe-LDH electrodes.The red dotted line is added as linear reference.(D-F) XPS spectra of O, Ni and Fe, respectively.

    Input voltage-output current characteristic curves are tested to judge the formation of heterojunction between MIL-101 and NiFe-LDH.As demonstrated in Fig.2C, MIL-101 electrode shows a linear relationship between the output current and input voltage, indicating that the contact type between MIL-101 and NF substrate is ohmic contact.Conversely, there is a nonlinear relationship between the output current and input voltage of the MIL-101@NiFe-LDH electrode, indicating that the interface contact type between MIL-101 and NiFe-LDH is a non-ohmic contact.That is to say, MIL-101 and NiFe-LDH in the MIL-101@NiFe-LDH electrode are closely integrated to form heterojunction [31].

    Fig.3.(A) LSV curves NF, MIL-101, NiFe-LDH, MIL-101@NiFe-LDH and their overpotentials at 10 mA/cm2 (B), Tafel plots (C).(D) Linear relationship between the capacitive current and scan rate.(E) Electrochemical impedance spectroscopy of various electrodes.The inset image is the simulative equivalent circuit.(F) I-t curve of MIL-101@NiFe-LDH.The inset image is the comparison of LSV curve before and after 3000 cycles test.

    XPS spectra are measured to further analyze material composition.As shown in Fig.S4 (Supporting information), XPS survey spectrum shows that MIL-101@NiFe-LDH contains elements such as C, O, Fe and Ni.The O 1s spectrum of MIL-101@NiFe-LDH shows two peaks at 533.4 and 531.4 eV, which can be respectively assigned to the adsorbed water at the surface and hydroxide of the carboxylate ion (Fig.2D).As can be observed in the Ni 2p spectrum(Fig.2E), the signals of the two peaks at 873.8 and 856.1 eV are in agreement with 2p1/2and 2p3/2of Ni2+accompanied by satellite peaks (denoted as “Sat.”) [32].In Fig.2F, Fe 2p1/2and Fe 2p3/2peaks with the respective binding energies of 725.7 and 712.1 eV are characteristic of Fe3+in NiFe-LDH [33].

    To compare OER activity of the catalysts, the alkali treating time was optimized firstly.It is found that the obtained NiFe-LDH with a treating time of 75 min has the best OER activity (Fig.S5 in Supporting information).Unless otherwise indicated, all the NiFe-LDH and MIL-101@NiFe-LDH is treated in alkali solution for 75 min.As shown in Fig.3A, NF has the biggest onset potential.MIL-101 and NiFe-LDH have slightly smaller onset potentials.MIL-101@NiFe-LDH composite electrode has the minimum onset potential of 1.4 V.This demonstrates that the strategy of combining MIL-101 and NiFe-LDH to achieve high OER activity is successful.The MIL-101@NiFe-LDH electrode only requires an overpotential of 215 mV to drive 10 mA/cm2of OER, which is less than that of NiFe-LDH (239 mV), MIL-101 (271 mV) and NF (337 mV) electrodes(Fig.3B).The results show that the OER activity of MIL-101@NiFe-LDH is superior to other advanced catalysts that have been reported (Table S1 in Supporting information).The results showed that MIL-101@NiFe-LDH has the highest catalytic activity, indicating that the rich phase interface of MIL-101@NiFe-LDH has a positive effect on the catalytic activity.In addition, MIL-101@NiFe-LDH has the smallest Tafel slope (55.1 mV/dec) compared with NiFe-LDH (61.1 mV/dec), MIL-101 (150.8 mV/dec) and NF (91.7 mV/dec),indicating quick surface kinetics of MIL-101@NiFe-LDH (Fig.3C).

    Fig.4.(A, B) SEM images of MIL-101@NiFe-LDH after i-t-test.(C-D) The XPS spectra of MIL-101@NiFe-LDH before and after i-t-test.

    The true active reaction area of the OER catalyst is usually hardly measured precisely.Here, the electrochemical active surface area (ECSA), which is directly proportional with the electrochemical double layer capacitance (Cdl), is used to estimate active reaction area.Cyclic voltammetry experiments (1.125~1.225 Vvs.RHE)were performed at different scan rates to obtainCdl(Fig.S6 in Supporting information).As can be seen from Fig.3D, theCdlvalue of MIL-101@NiFe-LDH (8.6 mF/cm2) is significantly larger than that of NiFe-LDH (4.7 mF/cm2) and MIL-101 (3.7 mF/cm2).This means that the MIL-101@NiFe-LDH heterostructure with double-layer structure provides a rich active reaction area for surface-catalyzed reactions,which partly explains the remarkably high-level activity of the MIL-101@NiFe-LDH heterostructure for OER.MIL-101 (Rct= 0.16Ω), NiFe-LDH (Rct= 0.18Ω) and MIL-101@NiFe-LDH (Rct= 0.17Ω) exhibit identical charge transfer resistance (Rct) (Fig.3E), pointing to the fact that these electrocatalysts have almost the same electron transfer behavior among electrolyte to electrode interface.That is, different OER performance of these electrodes does not origin from electron transfer character.As can be seen in Fig.3F, MIL-101@NiFe-LDH exhibits good stability during 24 h test at 1.47 Vvs.RHE.Also, the good stability of MIL-101@NiFe-LDH is illustrated by the fact that its OER activity performs as before after 3000 cycles(inset in Fig.3F).

    As shown in Figs.4A and B, the overall appearance of MIL-101@NiFe-LDH is not changed after the stability test.It still keeps the double-layer structure, indicating excellent stability property of this electrode.It can be seen from the comparison of XPS spectra(Figs.4C and D) before and afteri-t-test that the binding energy of Fe 2p and Ni 2p basically keep unchanged.All these results prove the excellent stability of MIL-101@NiFe-LDH during long-time water splitting process.

    In conclusion, MIL-101@NiFe-LDH is fabricated under the guideline of “MOF on MOF” concept and the following alkali treating.OX-MOF isin situsuccessfully converted to NiFe-LDH on MIL-101 to form MIL-101@NiFe-LDH by the treatment of KOH solution.MIL-101@NiFe-LDH shows an OER onset potential of 1.4 V and an overpotential of 215 mV to drive 10 mA/cm2of OER, which is less than that of NiFe-LDH, MIL-101 and NF.The excellent OER performance could be ascribed to rich phase interface in MIL-101@NiFe-LDH, which provides more active reaction area derived from the high specific surface area of MOF.Due to thein situgrowth,MIL-101@NiFe-LDH also exhibits good stability during long time OER test.This work provides a new strategy for constructing of MOF/LDH heterostructures, which can be applied to the construction of other catalyst materials possessing excellent electrochemical performance.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (No.21808189), the National Natural Science Foundation of Gansu (No.20JR5RA523), and the Young Teachers’Research Ability Improvement Project of Northwest Normal University (NWNU-LKQN2020–01).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.11.028.

    男女国产视频网站| 亚洲国产精品一区三区| 啦啦啦在线免费观看视频4| 亚洲欧美一区二区三区久久| 超碰97精品在线观看| 久久精品aⅴ一区二区三区四区 | 日韩精品有码人妻一区| 亚洲国产精品一区三区| 在线观看www视频免费| 久久精品aⅴ一区二区三区四区 | 王馨瑶露胸无遮挡在线观看| 亚洲精品中文字幕在线视频| 宅男免费午夜| 国产极品天堂在线| 两个人看的免费小视频| 久久久久网色| 秋霞伦理黄片| 日韩一本色道免费dvd| 亚洲av.av天堂| 黄色怎么调成土黄色| 狂野欧美激情性bbbbbb| 国产精品香港三级国产av潘金莲 | 欧美+日韩+精品| 色网站视频免费| 美女视频免费永久观看网站| 国产成人av激情在线播放| 美女xxoo啪啪120秒动态图| 欧美精品av麻豆av| 亚洲 欧美一区二区三区| 人妻人人澡人人爽人人| 国产 精品1| 女人被躁到高潮嗷嗷叫费观| 国产亚洲精品第一综合不卡| 国产男女超爽视频在线观看| 免费在线观看黄色视频的| 久久青草综合色| 婷婷色av中文字幕| 黄色配什么色好看| 桃花免费在线播放| 美国免费a级毛片| 18禁观看日本| 国产高清不卡午夜福利| 日韩精品有码人妻一区| 一本久久精品| 巨乳人妻的诱惑在线观看| 国产av码专区亚洲av| 性少妇av在线| 欧美国产精品va在线观看不卡| 国产日韩欧美亚洲二区| 制服丝袜香蕉在线| 久久久精品94久久精品| 日韩一区二区三区影片| www.av在线官网国产| 日韩中字成人| 精品少妇内射三级| 国产在线一区二区三区精| 亚洲成色77777| 久久精品国产自在天天线| 亚洲 欧美一区二区三区| 久久久久久久大尺度免费视频| 亚洲精品美女久久久久99蜜臀 | 国产成人精品福利久久| 成人国语在线视频| 9热在线视频观看99| 男人添女人高潮全过程视频| 最新的欧美精品一区二区| 国产视频首页在线观看| 中文字幕制服av| 国产一区二区激情短视频 | 在线观看免费视频网站a站| 天天操日日干夜夜撸| 欧美精品国产亚洲| 日韩中文字幕欧美一区二区 | 午夜免费观看性视频| 卡戴珊不雅视频在线播放| 三级国产精品片| 国产毛片在线视频| 亚洲国产av新网站| 国产片特级美女逼逼视频| 一区福利在线观看| 大香蕉久久成人网| 色视频在线一区二区三区| 热re99久久精品国产66热6| 亚洲成av片中文字幕在线观看 | 国产精品99久久99久久久不卡 | 久久精品亚洲av国产电影网| 国产成人免费无遮挡视频| 日韩制服丝袜自拍偷拍| 欧美最新免费一区二区三区| 午夜激情久久久久久久| 97人妻天天添夜夜摸| 男女午夜视频在线观看| 青春草视频在线免费观看| 亚洲 欧美一区二区三区| 久久精品久久精品一区二区三区| 天天躁日日躁夜夜躁夜夜| 国语对白做爰xxxⅹ性视频网站| 久久精品亚洲av国产电影网| 国产精品无大码| 秋霞伦理黄片| 国产成人精品在线电影| 亚洲精品aⅴ在线观看| 免费观看a级毛片全部| 国产激情久久老熟女| 男男h啪啪无遮挡| 男人爽女人下面视频在线观看| 男人舔女人的私密视频| 蜜桃在线观看..| 一级毛片黄色毛片免费观看视频| 午夜av观看不卡| 亚洲精品国产一区二区精华液| 亚洲成人手机| 天堂俺去俺来也www色官网| 国产深夜福利视频在线观看| 精品国产露脸久久av麻豆| 久久久久国产一级毛片高清牌| 老司机影院成人| av视频免费观看在线观看| 欧美亚洲 丝袜 人妻 在线| 观看美女的网站| 久久久久久人妻| 国产有黄有色有爽视频| 制服人妻中文乱码| 久久精品国产a三级三级三级| 久久久久久久久久人人人人人人| 夫妻午夜视频| 午夜精品国产一区二区电影| 满18在线观看网站| 久久热在线av| 91成人精品电影| 国产免费福利视频在线观看| 1024视频免费在线观看| 久久精品熟女亚洲av麻豆精品| 精品一品国产午夜福利视频| 亚洲国产日韩一区二区| 母亲3免费完整高清在线观看 | 成人18禁高潮啪啪吃奶动态图| 另类精品久久| 国产一区二区激情短视频 | 99久国产av精品国产电影| 久久久久久久国产电影| 美女午夜性视频免费| 精品少妇内射三级| 一边摸一边做爽爽视频免费| 久久精品国产亚洲av天美| 国产成人精品一,二区| 99re6热这里在线精品视频| 男女免费视频国产| 青草久久国产| 大片电影免费在线观看免费| 亚洲精品国产av成人精品| www.自偷自拍.com| 大香蕉久久网| 欧美日韩精品成人综合77777| 亚洲精品国产色婷婷电影| 日日摸夜夜添夜夜爱| 少妇人妻精品综合一区二区| 久久精品国产亚洲av天美| 日韩熟女老妇一区二区性免费视频| 欧美精品一区二区大全| 国产一区亚洲一区在线观看| 王馨瑶露胸无遮挡在线观看| 国产精品蜜桃在线观看| 日韩精品免费视频一区二区三区| 18+在线观看网站| 伦理电影大哥的女人| 国产免费福利视频在线观看| 在线观看免费日韩欧美大片| 制服诱惑二区| 国产成人91sexporn| 亚洲一级一片aⅴ在线观看| 97在线视频观看| 精品少妇久久久久久888优播| 久久精品国产综合久久久| 女性被躁到高潮视频| 亚洲av综合色区一区| 国产深夜福利视频在线观看| kizo精华| 90打野战视频偷拍视频| 纵有疾风起免费观看全集完整版| 久久99精品国语久久久| 亚洲伊人久久精品综合| 男女边吃奶边做爰视频| 91精品国产国语对白视频| 不卡av一区二区三区| 一边摸一边做爽爽视频免费| 亚洲熟女精品中文字幕| 国产成人91sexporn| 精品久久蜜臀av无| 黑人欧美特级aaaaaa片| 99九九在线精品视频| 国产精品国产三级国产专区5o| 亚洲少妇的诱惑av| 国产又色又爽无遮挡免| 人人妻人人澡人人爽人人夜夜| av网站免费在线观看视频| 亚洲美女视频黄频| 久久热在线av| 日韩欧美精品免费久久| 97精品久久久久久久久久精品| 乱人伦中国视频| 18+在线观看网站| 亚洲第一区二区三区不卡| 婷婷色综合大香蕉| 午夜激情久久久久久久| 久久国产亚洲av麻豆专区| 9热在线视频观看99| 亚洲国产精品国产精品| 欧美黄色片欧美黄色片| 免费观看在线日韩| 制服诱惑二区| 日本猛色少妇xxxxx猛交久久| 亚洲成人手机| 国产精品久久久久久精品古装| 国产日韩欧美在线精品| 国产精品.久久久| 免费人妻精品一区二区三区视频| 大码成人一级视频| 毛片一级片免费看久久久久| 国产乱来视频区| 精品国产一区二区三区四区第35| 性高湖久久久久久久久免费观看| 男的添女的下面高潮视频| 最新中文字幕久久久久| 伦理电影免费视频| 国产精品嫩草影院av在线观看| 国产一级毛片在线| 国产精品香港三级国产av潘金莲 | 又粗又硬又长又爽又黄的视频| 亚洲精品av麻豆狂野| 最近的中文字幕免费完整| 新久久久久国产一级毛片| 捣出白浆h1v1| 久久免费观看电影| 爱豆传媒免费全集在线观看| 国产免费一区二区三区四区乱码| 黄网站色视频无遮挡免费观看| 波多野结衣av一区二区av| 亚洲在久久综合| 麻豆av在线久日| 国产成人免费观看mmmm| xxxhd国产人妻xxx| 一级黄片播放器| 成年女人在线观看亚洲视频| 精品国产乱码久久久久久男人| 欧美日韩视频精品一区| 精品一区在线观看国产| 美国免费a级毛片| 久久久久久久国产电影| 熟女av电影| 亚洲美女黄色视频免费看| 国产人伦9x9x在线观看 | 免费看不卡的av| 精品国产露脸久久av麻豆| 美女主播在线视频| 久久久久人妻精品一区果冻| 国产精品久久久久久精品电影小说| 久久久国产欧美日韩av| 五月开心婷婷网| 制服诱惑二区| 成人18禁高潮啪啪吃奶动态图| 色婷婷久久久亚洲欧美| videos熟女内射| 九草在线视频观看| 久久99蜜桃精品久久| 免费av中文字幕在线| 国产精品嫩草影院av在线观看| 国产野战对白在线观看| 女性生殖器流出的白浆| 国产 一区精品| 丰满迷人的少妇在线观看| 日韩 亚洲 欧美在线| 国产色婷婷99| 99国产综合亚洲精品| 国产国语露脸激情在线看| 日本爱情动作片www.在线观看| 一级a爱视频在线免费观看| av在线老鸭窝| 久久国产精品大桥未久av| 26uuu在线亚洲综合色| 久久青草综合色| 热re99久久精品国产66热6| 成年人免费黄色播放视频| 黄片无遮挡物在线观看| 黑人猛操日本美女一级片| 亚洲国产色片| 午夜影院在线不卡| 日本-黄色视频高清免费观看| 美女国产视频在线观看| 国产免费一区二区三区四区乱码| 韩国精品一区二区三区| 国产一区二区激情短视频 | av免费观看日本| 色视频在线一区二区三区| 天堂俺去俺来也www色官网| 欧美老熟妇乱子伦牲交| 亚洲激情五月婷婷啪啪| 熟女少妇亚洲综合色aaa.| av不卡在线播放| 久久久国产欧美日韩av| 日本-黄色视频高清免费观看| 女人精品久久久久毛片| 热re99久久国产66热| 中国三级夫妇交换| 久久综合国产亚洲精品| 激情视频va一区二区三区| 赤兔流量卡办理| 电影成人av| 欧美国产精品一级二级三级| 又黄又粗又硬又大视频| 国产日韩欧美亚洲二区| 99精国产麻豆久久婷婷| 极品人妻少妇av视频| 咕卡用的链子| 国产亚洲av片在线观看秒播厂| 日韩,欧美,国产一区二区三区| 久久99蜜桃精品久久| 国产成人av激情在线播放| 亚洲成人一二三区av| 免费大片黄手机在线观看| 国产精品无大码| 观看美女的网站| 香蕉精品网在线| 国产一区二区三区综合在线观看| 国产一区二区三区av在线| xxxhd国产人妻xxx| 女人被躁到高潮嗷嗷叫费观| 日韩,欧美,国产一区二区三区| 亚洲美女视频黄频| 色播在线永久视频| 男女午夜视频在线观看| 99国产综合亚洲精品| 日韩大片免费观看网站| 日本欧美国产在线视频| 精品国产一区二区三区四区第35| 国产福利在线免费观看视频| 2018国产大陆天天弄谢| 97人妻天天添夜夜摸| 黄片小视频在线播放| 国产熟女午夜一区二区三区| 一区二区三区四区激情视频| www.自偷自拍.com| 国产av精品麻豆| 国产片内射在线| 黄色 视频免费看| 国产有黄有色有爽视频| 国产精品人妻久久久影院| 最近的中文字幕免费完整| 80岁老熟妇乱子伦牲交| 欧美精品高潮呻吟av久久| 亚洲欧美一区二区三区黑人 | 午夜影院在线不卡| 成人国产麻豆网| 最近手机中文字幕大全| 久久婷婷青草| 亚洲综合色惰| 国产成人aa在线观看| 久久精品国产亚洲av涩爱| 精品一区二区三区四区五区乱码 | 久久精品国产亚洲av涩爱| 2018国产大陆天天弄谢| 天天躁夜夜躁狠狠躁躁| 国产亚洲一区二区精品| 亚洲久久久国产精品| 十分钟在线观看高清视频www| 一级黄片播放器| 老司机影院毛片| 久久人人爽av亚洲精品天堂| 国产免费又黄又爽又色| 免费观看a级毛片全部| 国产精品嫩草影院av在线观看| 老汉色av国产亚洲站长工具| 男女边吃奶边做爰视频| 久久人人97超碰香蕉20202| 一级片免费观看大全| 最近手机中文字幕大全| 国产免费现黄频在线看| 伦理电影免费视频| 免费黄频网站在线观看国产| 亚洲人成电影观看| 青春草国产在线视频| 亚洲国产色片| 亚洲欧美成人精品一区二区| 亚洲精品,欧美精品| 国产成人免费无遮挡视频| 亚洲视频免费观看视频| 成人毛片a级毛片在线播放| 搡老乐熟女国产| 欧美亚洲日本最大视频资源| 午夜福利在线免费观看网站| 少妇人妻久久综合中文| 精品久久久精品久久久| 欧美变态另类bdsm刘玥| 久久99蜜桃精品久久| 久久国产亚洲av麻豆专区| 国产淫语在线视频| 69精品国产乱码久久久| 热99国产精品久久久久久7| 久久久久国产网址| 国产精品三级大全| av线在线观看网站| 国产精品国产三级专区第一集| 婷婷色综合www| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲一级一片aⅴ在线观看| 欧美 亚洲 国产 日韩一| 精品卡一卡二卡四卡免费| 亚洲av在线观看美女高潮| 母亲3免费完整高清在线观看 | 婷婷色综合www| 久久久久精品人妻al黑| 色哟哟·www| 天天影视国产精品| 中文字幕色久视频| 高清在线视频一区二区三区| 在线观看免费日韩欧美大片| 久久久久久久精品精品| 成人免费观看视频高清| 99久久精品国产国产毛片| 久久人妻熟女aⅴ| 女性被躁到高潮视频| 交换朋友夫妻互换小说| 国产亚洲一区二区精品| 搡女人真爽免费视频火全软件| av在线app专区| 国产一区亚洲一区在线观看| 少妇的逼水好多| 精品一区在线观看国产| 国产一区二区三区综合在线观看| 久久精品国产综合久久久| 午夜福利在线观看免费完整高清在| 曰老女人黄片| av在线观看视频网站免费| 飞空精品影院首页| 日本vs欧美在线观看视频| 在线观看一区二区三区激情| 丰满乱子伦码专区| 成年人免费黄色播放视频| 久久午夜福利片| 亚洲第一区二区三区不卡| 国产精品99久久99久久久不卡 | www.精华液| 久久亚洲国产成人精品v| 久久97久久精品| 欧美日韩综合久久久久久| 老司机影院成人| 亚洲av国产av综合av卡| 如何舔出高潮| 亚洲av.av天堂| 久久婷婷青草| 久久99热这里只频精品6学生| 国产成人精品在线电影| 在线 av 中文字幕| 青草久久国产| 高清在线视频一区二区三区| 男女边吃奶边做爰视频| 亚洲国产日韩一区二区| 一本大道久久a久久精品| 老鸭窝网址在线观看| 在线观看www视频免费| 又大又黄又爽视频免费| 97在线人人人人妻| 欧美另类一区| 国产一区二区激情短视频 | 中文欧美无线码| 久久精品国产亚洲av天美| 美女国产视频在线观看| 两个人免费观看高清视频| 亚洲av电影在线观看一区二区三区| 老汉色av国产亚洲站长工具| 最近手机中文字幕大全| 国产极品天堂在线| 久久精品国产a三级三级三级| 大码成人一级视频| 人人妻人人爽人人添夜夜欢视频| 国产免费一区二区三区四区乱码| 精品国产露脸久久av麻豆| 咕卡用的链子| 美女中出高潮动态图| 永久网站在线| 亚洲综合精品二区| 国产av精品麻豆| 91精品伊人久久大香线蕉| 十八禁网站网址无遮挡| 国产日韩一区二区三区精品不卡| 90打野战视频偷拍视频| 午夜激情av网站| 欧美人与性动交α欧美精品济南到 | 黄色视频在线播放观看不卡| 波多野结衣一区麻豆| 精品亚洲成a人片在线观看| 日本猛色少妇xxxxx猛交久久| 十八禁网站网址无遮挡| 亚洲四区av| 青草久久国产| 日本91视频免费播放| 久久ye,这里只有精品| 性高湖久久久久久久久免费观看| 下体分泌物呈黄色| 99热国产这里只有精品6| 国产xxxxx性猛交| 久久久久久久久免费视频了| 欧美激情高清一区二区三区 | 国产成人一区二区在线| 咕卡用的链子| 亚洲人成电影观看| 亚洲少妇的诱惑av| 久久久久人妻精品一区果冻| 黑丝袜美女国产一区| 国产精品久久久久久精品电影小说| 亚洲熟女精品中文字幕| 国产又爽黄色视频| 最近中文字幕高清免费大全6| 中文字幕人妻丝袜制服| 丰满饥渴人妻一区二区三| 五月伊人婷婷丁香| 女人被躁到高潮嗷嗷叫费观| 欧美精品一区二区免费开放| 久久久久久伊人网av| 国产精品一二三区在线看| 男的添女的下面高潮视频| 国产老妇伦熟女老妇高清| 欧美精品人与动牲交sv欧美| 久久久久久人人人人人| 亚洲精品国产一区二区精华液| 老汉色av国产亚洲站长工具| 亚洲精品日本国产第一区| 一区在线观看完整版| 免费少妇av软件| 我的亚洲天堂| 寂寞人妻少妇视频99o| 国产成人欧美| 熟女少妇亚洲综合色aaa.| 老汉色av国产亚洲站长工具| 久久久久网色| 免费播放大片免费观看视频在线观看| 人妻 亚洲 视频| 一二三四中文在线观看免费高清| 香蕉丝袜av| 五月天丁香电影| 男女边摸边吃奶| 色婷婷av一区二区三区视频| 人妻人人澡人人爽人人| 黑丝袜美女国产一区| 丝袜美足系列| 国产精品av久久久久免费| 又黄又粗又硬又大视频| 国产免费福利视频在线观看| 美女国产高潮福利片在线看| av在线观看视频网站免费| 久久久久久人妻| 免费不卡的大黄色大毛片视频在线观看| 极品少妇高潮喷水抽搐| 中国三级夫妇交换| 精品视频人人做人人爽| 男女高潮啪啪啪动态图| 免费在线观看完整版高清| 精品一区在线观看国产| 国产成人午夜福利电影在线观看| 亚洲精品国产色婷婷电影| 国产伦理片在线播放av一区| 看免费av毛片| 人成视频在线观看免费观看| 韩国精品一区二区三区| 在线观看国产h片| 免费观看av网站的网址| 亚洲精品中文字幕在线视频| 又粗又硬又长又爽又黄的视频| 黄色一级大片看看| 在线免费观看不下载黄p国产| 日日撸夜夜添| 国产探花极品一区二区| 成年人午夜在线观看视频| 欧美bdsm另类| 国产不卡av网站在线观看| 国产在视频线精品| 亚洲天堂av无毛| 久久这里有精品视频免费| 午夜91福利影院| 只有这里有精品99| 欧美在线黄色| 丝袜美足系列| 街头女战士在线观看网站| 在线观看一区二区三区激情| 啦啦啦视频在线资源免费观看| 日韩av不卡免费在线播放| 涩涩av久久男人的天堂| 最近中文字幕高清免费大全6| 男的添女的下面高潮视频| 老汉色∧v一级毛片| 亚洲综合色惰| 久久精品aⅴ一区二区三区四区 | 香蕉丝袜av| 婷婷色综合www| 男的添女的下面高潮视频| 久久久精品区二区三区| 久久精品久久久久久噜噜老黄| 在线观看免费视频网站a站| 99久久综合免费| 久久精品亚洲av国产电影网| 国产淫语在线视频| 日韩欧美精品免费久久| 婷婷色综合大香蕉| 免费看不卡的av| 欧美国产精品va在线观看不卡| 亚洲欧美成人综合另类久久久| kizo精华| 男人爽女人下面视频在线观看| 国产精品秋霞免费鲁丝片| 尾随美女入室| 2021少妇久久久久久久久久久| 人人妻人人澡人人看| 久久亚洲国产成人精品v| 亚洲国产色片| 成人国产av品久久久|