• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In situ conversion builds MIL-101@NiFe-LDH heterojunction structures to enhance the oxygen evolution reaction

    2022-09-16 05:24:24JingweiHungKiLiLeiWngHoudeSheQizhoWng
    Chinese Chemical Letters 2022年8期

    Jingwei Hung, Ki Li, Lei Wng, Houde She, Qizho Wng,b,c,?

    a College of Chemistry and Chemical Engineering, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Northwest Normal University, Lanzhou 730070, China

    b School of Environmental Science and Engineering, Chang’an University, Xi’an 710054, China

    c Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, China

    ABSTRACT The construction of rich phase interfaces to increase active reaction area in hybrid materials is an excellent strategy to improve electrochemical performance.Under this guideline, MIL-101@OX-metal organic framework (MOF) is constructed by the "MOF on MOF" method, then converts to MIL-101@NiFe-layered double hydroxides (LDH) by in situ transformation in alkaline solution.MIL-101@NiFe-LDH shows excellent electrochemical water oxidation performance.It needs only an overpotential of 215 mV to drive 10 mA/cm2 of oxygen evolution reaction (OER), which is less than that of NiFe-LDH, MIL-101.In addition,MIL-101@NiFe-LDH has the smallest Tafel slope (55.1 mV/dec) compared with NiFe-LDH (61.1 mV/dec),MIL-101 (150.8 mV/dec).The excellent water oxidation activity is due to the high phase interfaces derived from high specific surface area of MOF.This work offers an alternative method for making MOF/LDH heterostructures with an optimized phase interfaces and provides new insights for OER.

    Keywords:Mil-101@NiFe-LDH OER Electrocatalysis Alkalize

    With the massive use of traditional fossil fuels, global warming and carbon emissions are becoming a pressing issue for mankind [1–3].A growing number of researchers are moving toward hydrogen-powered technologies as highly efficient and clean replacements for fossil fuels.Among many innovative methods for hydrogen production, water electrolysis has received much attention due to its simplicity, high purity and mature technology than microbial and photolysis methods [4,5].Oxygen evolution reaction(OER) [6–8] is a difficult process in water splitting because it undergoes a 4-electron transfer process, which leads to a high overpotential [9,10].Although many OER catalysts with high performances have been designed, driving OER with high efficiency at low overpotential still seems to be a challenge.Advanced catalysts for OER are generally noble metal oxides and their derivates, but their high cost impedes their further commercial large-scale applications [11].To settle this problem, sulfides [12–15], phosphides[16], layered double hydroxides (LDH) [17]etc.have been widely researched to replace OER noble metal based catalysts.

    Metal organic frameworks (MOFs) [18–21] have attracted wide attention because of their large surface area, adjustable morphology and permanent structure, which may offer numerous surfaceactive sites for efficient water oxidation [22–25].However, majority of their metal active sites are hidden very deeply in the MOF frames and may not be utilized to catalyze the reactions.In addition, the poor stability and conductivity of MOFs are important issues that must be overcome in electrocatalyst applications, particularly under alkaline/acidic conditions.For these reasons, Kenet al.propose an “MOF on MOF” concept to solve these problems and which is proved to be effective [24].Zhaiet al.introduce anin situsemi-conversion method to turn FeNi-MOF-74 into FeNi-LDH,which exhibited excellent OER performance [26].Yanget al.discover that oxalate MOF (OX-MOF) could be converted into NiFe-LDH in alkaline solution and preserves its shape, showing excellent catalytic performance for OER [27].Based on the above design concept and results, we try to combine the “MOF on MOF” concept within situconversion method to make an OER electrocatalyst with excellent performance.

    Here, MIL-101@NiFe-LDH heterostructure is designed and synthesized by growing two MOFs (MIL-101 and OX-MOF) successively on nickel foam (NF) substrate followed byin situconversion of OX-MOF to NiFe-LDH.The NiFe-LDH heterostructures constructed by this method have inherited not only large-scale surface area of MOF, but also superior phase interface.To be expected, the MIL-101@NiFe-LDH heterostructure shows excellent OER performance.

    Typicalin situsynthesis route of MIL-101@NiFe-LDH is schematically illustrated in Scheme 1.Before experiment, NF (3 × 1 cm2,Kunshan Guangjiayuan New Materials Co., Ltd.) substrates were ultrasonically cleaned for 30 min in 1 mol/L of hydrochloric acid solution, ethanol and distilled water, respectively.Then dry them in an oven at 60 °C overnight.The synthesis of MIL-101@NiFe-LDH on NF consists of the following three steps: (1) Synthesis of MIL-101 on NF.Put a piece of NF into an autoclave with teflon lining, then add a mixed solution of 1.5 mmol terephthalic acid (AR, Shanghai Macklin Biochemical Co., Ltd.), 2.5 mmolferric chloride hexahydrate (AR, Shanghai Macklin Biochemical Co., Ltd.) and 15 mLN,N-dimethylformamide (DMF) into it.The autoclave was put into an oven to react at 110 °C for 20 h.After the reaction, the product was washed with ethanol and distilled and dried in an oven at 60 °C.(2) Synthesis of MIL-101@OX-MOF on NF.Put 0.15 mmol(73.6 mg) potassium trioxalatoferrate(III) trihydrate (AR, Shanghai Macklin Biochemical Co., Ltd.), 0.15 mmol (35.5 mg) nickel chloride hexahydrate (AR, Sigma-Aldrich) and 0.15 mmol (55.6 mg)tetrapentylammonium bromide (AR, Shanghai Macklin Biochemical Co., Ltd.) into 3 mL distilled water.After stirring for 20 min, then put the above made MIL-101 into the solution and leave it to react for 75 min.After the reaction, wash it with ethanol and put it into an oven at 75 °C overnight.(3) Synthesis of MIL-101@NiFe-LDH on NF.Take a piece of the prepared MIL-101@OX-MOF into 6 mL distilled water, leave it for 5 min to get good wettability.Then, add 15 mL 1 mol/L potassium hydroxide (KOH) solution into the above aqueous solution slowly drop by drop and keep it actionless for 45 min to make MIL-101@OX-MOF fully convert into MIL-101@NiFe-LDH.Finally, take the obtained MIL-101@NiFe-LDH out, wash it with ethanol and distilled water, and dry it at 60 °C for 4 h.

    X-ray diffraction (XRD) data are obtained on a Bruker D8 Advance diffractometer with a Cu Kαradiation source.The X-ray photoelectron spectroscopy (XPS) analysis is carried out on a Thermo ESCALAB 250XI photoelectron spectrometer.Data for all samples are calibrated with C 1s (284.8 eV).The scanning electron microscope (SEM) images and transmission electron microscopy (TEM)images are recorded on a FEI Helios G4CX SEM and a FEI Talos F200S transmission electron microscope.Fourier transform infrared spectra (FTIR) test is performed on a Nicolet iS50 spectrometer.

    The electrochemical properties of the prepared materials were evaluated on a CHI 760E workstation using a three-electrode system.NF supported material (3 × 1 cm2) was used as working electrode, 1 × 1 cm2of NF supported material was immersed into the electrolyte.Hg/HgO electrode and Pt sheet were used as a reference electrode and a counter electrode, respectively.Linear sweep voltammetry (LSV) curve was obtained at a slow scan rate (1 mV/s)in 1 mol/L KOH.The Tafel slope is obtained from the LSV curve by the equation (η=a+blogj, whereηis overpotential, it is calculated as following:η=ERHE?1.23 V,ais a constant,bis the Tafel slope andjis the current density).The stability test was performed for 24 h at a voltage value corresponding to 10 mA of the LSV curve.

    From Figs.1A and B, it can be found that NF is smooth on the surface.After growing MIL-101, the smooth surface is covered in full of nanoparticles (Figs.1C and D), indicating the successful preparation of the MIL-101.As shown in Figs.1E and F, columnar OX-MOFs are overlaid on MIL-101.The design of "MOF on MOF"has been realized.The surface of MIL-101@OX-MOF becomes rough after alkalinization treatment (Figs.1G and H), indicating that MIL-101@OX-MOF has transformed into MIL-101@NiFe-LDH, in which the columnar form was retained.This could be confirmed by the control experiment of OX-MOF alkalinization treatment.It can be seen from Fig.S1 (Supporting information) that the surface of OXMOF becomes rough after KOH treatment, confirming the rough property of NiFe-LDH and successful conversion of MIL-101@OXMOF to MIL-101@NiFe-LDH.The 0.25 nm lattice spacing in Fig.1I corresponds to the (012) crystal plane of NiFe-LDH, and the obvious phase interface also indicates that MIL-101 and NiFe-LDH form a heterojunction [28].Mapped energy dispersive X-ray spectroscopy (EDS) elemental image of MIL-101@NiFe-LDH in Fig.S2(Supporting information) shows the uniform space distribution of C, O, Fe and Ni element.

    XRD tests were used to confirm the material structure of the prepared electrodes.As exhibited in Fig.2A, MIL-101 shows diffraction peaks located at 5.9°, 8.4°, 9.0°, 10.4°, and 16.4°, which are consistent with the simulated data of MIL-101 [29].Among them,the diffraction peak at 9.0° is still can be observed in the MIL-101@NiFe-LDH composite sample, indicating that MIL-101 remains unchanged after KOH treating.The XRD patterns of OX-MOF and NiFe-LDH derived from OX-MOF by KOH treating are tested to prove the conversion of OX-MOF to NiFe-LDH.It can be seen from Fig.S3 (Supporting information) that part diffraction peaks of OXMOF correspond with the simulated data of OX-MOF.However, the diffraction peaks of OX-MOF change completely after treating with KOH solution.New diffraction peaks at 34.4°, 37.1° and 60.9° are corresponding to the (012), (015) and (113) crystallographic planes of LDH [30], which proves that OX-MOF can be successfully converted to LDH by KOH solution treating.Similarly, MIL-101@OXMOF shows entirely different diffraction peaks after KOH treating(Fig.2A).Diffraction peaks at 23.1° and 37.6° are corresponding to the (006) and (014) crystallographic planes of NiFe-LDH, proving MIL-101@NiFe-LDH can be converted from MIL-101@OX-MOF.Infrared (IR) spectrum of OX-MOF (Fig.2B) shows that the peaks at 2738 cm?1and 2921 cm?1are attributed to quaternary ammonium salt and CH2groups, and the MOF has the presence of Pen4N+.However, these signal peaks are absent in the IR of NiFe-LDH.IR signals at 1633 and 1348 cm?1in NiFe-LDH are attributed to the oxalate ions [27].

    Fig.1.SEM images of NF (A, B), MIL-101 (C, D) and MIL-101@OX-MOF (E, F).SEM (G, H) and HR-TEM (I) images of MIL-101@NiFe-LDH.

    Fig.2.(A) XRD patterns of MIL-101@NiFe-LDH, MIL-101@OX-MOF, MIL-101 as well as simulated pattern of MIL-101.(B) IR patterns of OX-MOF and NiFe-LDH.(C) Input voltage-output current characteristic curves of MIL-101 and MIL-101@NiFe-LDH electrodes.The red dotted line is added as linear reference.(D-F) XPS spectra of O, Ni and Fe, respectively.

    Input voltage-output current characteristic curves are tested to judge the formation of heterojunction between MIL-101 and NiFe-LDH.As demonstrated in Fig.2C, MIL-101 electrode shows a linear relationship between the output current and input voltage, indicating that the contact type between MIL-101 and NF substrate is ohmic contact.Conversely, there is a nonlinear relationship between the output current and input voltage of the MIL-101@NiFe-LDH electrode, indicating that the interface contact type between MIL-101 and NiFe-LDH is a non-ohmic contact.That is to say, MIL-101 and NiFe-LDH in the MIL-101@NiFe-LDH electrode are closely integrated to form heterojunction [31].

    Fig.3.(A) LSV curves NF, MIL-101, NiFe-LDH, MIL-101@NiFe-LDH and their overpotentials at 10 mA/cm2 (B), Tafel plots (C).(D) Linear relationship between the capacitive current and scan rate.(E) Electrochemical impedance spectroscopy of various electrodes.The inset image is the simulative equivalent circuit.(F) I-t curve of MIL-101@NiFe-LDH.The inset image is the comparison of LSV curve before and after 3000 cycles test.

    XPS spectra are measured to further analyze material composition.As shown in Fig.S4 (Supporting information), XPS survey spectrum shows that MIL-101@NiFe-LDH contains elements such as C, O, Fe and Ni.The O 1s spectrum of MIL-101@NiFe-LDH shows two peaks at 533.4 and 531.4 eV, which can be respectively assigned to the adsorbed water at the surface and hydroxide of the carboxylate ion (Fig.2D).As can be observed in the Ni 2p spectrum(Fig.2E), the signals of the two peaks at 873.8 and 856.1 eV are in agreement with 2p1/2and 2p3/2of Ni2+accompanied by satellite peaks (denoted as “Sat.”) [32].In Fig.2F, Fe 2p1/2and Fe 2p3/2peaks with the respective binding energies of 725.7 and 712.1 eV are characteristic of Fe3+in NiFe-LDH [33].

    To compare OER activity of the catalysts, the alkali treating time was optimized firstly.It is found that the obtained NiFe-LDH with a treating time of 75 min has the best OER activity (Fig.S5 in Supporting information).Unless otherwise indicated, all the NiFe-LDH and MIL-101@NiFe-LDH is treated in alkali solution for 75 min.As shown in Fig.3A, NF has the biggest onset potential.MIL-101 and NiFe-LDH have slightly smaller onset potentials.MIL-101@NiFe-LDH composite electrode has the minimum onset potential of 1.4 V.This demonstrates that the strategy of combining MIL-101 and NiFe-LDH to achieve high OER activity is successful.The MIL-101@NiFe-LDH electrode only requires an overpotential of 215 mV to drive 10 mA/cm2of OER, which is less than that of NiFe-LDH (239 mV), MIL-101 (271 mV) and NF (337 mV) electrodes(Fig.3B).The results show that the OER activity of MIL-101@NiFe-LDH is superior to other advanced catalysts that have been reported (Table S1 in Supporting information).The results showed that MIL-101@NiFe-LDH has the highest catalytic activity, indicating that the rich phase interface of MIL-101@NiFe-LDH has a positive effect on the catalytic activity.In addition, MIL-101@NiFe-LDH has the smallest Tafel slope (55.1 mV/dec) compared with NiFe-LDH (61.1 mV/dec), MIL-101 (150.8 mV/dec) and NF (91.7 mV/dec),indicating quick surface kinetics of MIL-101@NiFe-LDH (Fig.3C).

    Fig.4.(A, B) SEM images of MIL-101@NiFe-LDH after i-t-test.(C-D) The XPS spectra of MIL-101@NiFe-LDH before and after i-t-test.

    The true active reaction area of the OER catalyst is usually hardly measured precisely.Here, the electrochemical active surface area (ECSA), which is directly proportional with the electrochemical double layer capacitance (Cdl), is used to estimate active reaction area.Cyclic voltammetry experiments (1.125~1.225 Vvs.RHE)were performed at different scan rates to obtainCdl(Fig.S6 in Supporting information).As can be seen from Fig.3D, theCdlvalue of MIL-101@NiFe-LDH (8.6 mF/cm2) is significantly larger than that of NiFe-LDH (4.7 mF/cm2) and MIL-101 (3.7 mF/cm2).This means that the MIL-101@NiFe-LDH heterostructure with double-layer structure provides a rich active reaction area for surface-catalyzed reactions,which partly explains the remarkably high-level activity of the MIL-101@NiFe-LDH heterostructure for OER.MIL-101 (Rct= 0.16Ω), NiFe-LDH (Rct= 0.18Ω) and MIL-101@NiFe-LDH (Rct= 0.17Ω) exhibit identical charge transfer resistance (Rct) (Fig.3E), pointing to the fact that these electrocatalysts have almost the same electron transfer behavior among electrolyte to electrode interface.That is, different OER performance of these electrodes does not origin from electron transfer character.As can be seen in Fig.3F, MIL-101@NiFe-LDH exhibits good stability during 24 h test at 1.47 Vvs.RHE.Also, the good stability of MIL-101@NiFe-LDH is illustrated by the fact that its OER activity performs as before after 3000 cycles(inset in Fig.3F).

    As shown in Figs.4A and B, the overall appearance of MIL-101@NiFe-LDH is not changed after the stability test.It still keeps the double-layer structure, indicating excellent stability property of this electrode.It can be seen from the comparison of XPS spectra(Figs.4C and D) before and afteri-t-test that the binding energy of Fe 2p and Ni 2p basically keep unchanged.All these results prove the excellent stability of MIL-101@NiFe-LDH during long-time water splitting process.

    In conclusion, MIL-101@NiFe-LDH is fabricated under the guideline of “MOF on MOF” concept and the following alkali treating.OX-MOF isin situsuccessfully converted to NiFe-LDH on MIL-101 to form MIL-101@NiFe-LDH by the treatment of KOH solution.MIL-101@NiFe-LDH shows an OER onset potential of 1.4 V and an overpotential of 215 mV to drive 10 mA/cm2of OER, which is less than that of NiFe-LDH, MIL-101 and NF.The excellent OER performance could be ascribed to rich phase interface in MIL-101@NiFe-LDH, which provides more active reaction area derived from the high specific surface area of MOF.Due to thein situgrowth,MIL-101@NiFe-LDH also exhibits good stability during long time OER test.This work provides a new strategy for constructing of MOF/LDH heterostructures, which can be applied to the construction of other catalyst materials possessing excellent electrochemical performance.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (No.21808189), the National Natural Science Foundation of Gansu (No.20JR5RA523), and the Young Teachers’Research Ability Improvement Project of Northwest Normal University (NWNU-LKQN2020–01).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.11.028.

    飞空精品影院首页| 伊人久久国产一区二区| 少妇丰满av| www.色视频.com| 免费黄频网站在线观看国产| 伦理电影免费视频| 亚洲av二区三区四区| 国产成人av激情在线播放 | 中文欧美无线码| 黄色欧美视频在线观看| 亚洲av男天堂| 午夜免费观看性视频| 老司机影院成人| 日韩精品有码人妻一区| 国产精品嫩草影院av在线观看| 国产男女超爽视频在线观看| 99久久人妻综合| 高清不卡的av网站| 亚洲欧洲国产日韩| 精品国产一区二区三区久久久樱花| 亚洲av不卡在线观看| xxxhd国产人妻xxx| 免费高清在线观看视频在线观看| 另类亚洲欧美激情| 老司机影院成人| 国产亚洲午夜精品一区二区久久| 看免费成人av毛片| 在线观看www视频免费| a级毛色黄片| 国产精品免费大片| 国产在线视频一区二区| 啦啦啦视频在线资源免费观看| 纵有疾风起免费观看全集完整版| 老熟女久久久| 黑人欧美特级aaaaaa片| 久久热精品热| 免费人成在线观看视频色| 91精品国产国语对白视频| 欧美人与性动交α欧美精品济南到 | 亚洲人成网站在线播| 美女xxoo啪啪120秒动态图| 欧美bdsm另类| 麻豆成人av视频| 女的被弄到高潮叫床怎么办| 插阴视频在线观看视频| 国产亚洲欧美精品永久| a级毛片在线看网站| 欧美激情 高清一区二区三区| 老司机影院成人| 在线观看三级黄色| 成人毛片60女人毛片免费| 午夜免费观看性视频| 春色校园在线视频观看| 18禁裸乳无遮挡动漫免费视频| 满18在线观看网站| 精品人妻一区二区三区麻豆| 毛片一级片免费看久久久久| 美女国产视频在线观看| 欧美人与善性xxx| 三上悠亚av全集在线观看| 久久午夜福利片| 少妇人妻 视频| 久久久国产精品麻豆| 午夜91福利影院| 人人妻人人爽人人添夜夜欢视频| 黑人巨大精品欧美一区二区蜜桃 | 91久久精品国产一区二区三区| 婷婷色麻豆天堂久久| 国产免费现黄频在线看| 亚洲美女搞黄在线观看| 人妻少妇偷人精品九色| 久久99热这里只频精品6学生| 国产精品一国产av| 你懂的网址亚洲精品在线观看| 国产精品久久久久久久久免| 我要看黄色一级片免费的| 日日撸夜夜添| 日韩av在线免费看完整版不卡| 国产白丝娇喘喷水9色精品| 精品亚洲成a人片在线观看| 美女福利国产在线| 亚洲国产av新网站| 男的添女的下面高潮视频| 伊人久久精品亚洲午夜| 午夜福利视频在线观看免费| 亚洲精品第二区| 美女cb高潮喷水在线观看| 国产精品一区二区在线不卡| 成人国产麻豆网| 欧美日韩一区二区视频在线观看视频在线| 亚洲在久久综合| 老女人水多毛片| a级毛色黄片| 久久国内精品自在自线图片| 天美传媒精品一区二区| 又粗又硬又长又爽又黄的视频| 欧美日韩精品成人综合77777| 伊人亚洲综合成人网| 国产成人精品福利久久| 国产av精品麻豆| .国产精品久久| 成年女人在线观看亚洲视频| 亚洲精品456在线播放app| av电影中文网址| 亚洲国产精品一区三区| 精品久久国产蜜桃| 国产熟女午夜一区二区三区 | 七月丁香在线播放| 亚洲精品,欧美精品| 一个人看视频在线观看www免费| 青春草国产在线视频| 久久综合国产亚洲精品| 69精品国产乱码久久久| 亚洲人成77777在线视频| 国产深夜福利视频在线观看| 亚洲成人手机| 十分钟在线观看高清视频www| 亚洲成人av在线免费| 久久久a久久爽久久v久久| 人妻人人澡人人爽人人| 十分钟在线观看高清视频www| 人体艺术视频欧美日本| 久久毛片免费看一区二区三区| 在线免费观看不下载黄p国产| 国产精品女同一区二区软件| 欧美人与性动交α欧美精品济南到 | 午夜福利影视在线免费观看| 欧美少妇被猛烈插入视频| 久久精品国产亚洲av天美| 欧美日韩国产mv在线观看视频| 天堂8中文在线网| 在线观看三级黄色| videossex国产| 精品午夜福利在线看| 国产国语露脸激情在线看| 我的老师免费观看完整版| 你懂的网址亚洲精品在线观看| 精品人妻熟女毛片av久久网站| 久久狼人影院| 丝瓜视频免费看黄片| 999精品在线视频| 最近的中文字幕免费完整| 91久久精品国产一区二区成人| 欧美国产精品一级二级三级| 桃花免费在线播放| 制服诱惑二区| 人成视频在线观看免费观看| 大话2 男鬼变身卡| 女性生殖器流出的白浆| 黄色配什么色好看| 欧美激情国产日韩精品一区| 男女无遮挡免费网站观看| 一区二区日韩欧美中文字幕 | 极品人妻少妇av视频| 国产精品偷伦视频观看了| 最新的欧美精品一区二区| 亚洲欧美一区二区三区黑人 | 夫妻午夜视频| 久久人人爽人人爽人人片va| 亚洲av.av天堂| 精品国产一区二区久久| 国产午夜精品久久久久久一区二区三区| 日产精品乱码卡一卡2卡三| 久久久久久久久久久久大奶| 肉色欧美久久久久久久蜜桃| 久久女婷五月综合色啪小说| 国产一区二区三区综合在线观看 | 狠狠精品人妻久久久久久综合| 韩国高清视频一区二区三区| 色婷婷久久久亚洲欧美| 成人漫画全彩无遮挡| 搡女人真爽免费视频火全软件| 国产av一区二区精品久久| 中文字幕人妻熟人妻熟丝袜美| 亚洲av不卡在线观看| 亚洲国产欧美日韩在线播放| 91精品国产九色| 亚洲国产毛片av蜜桃av| 日韩电影二区| 亚洲国产精品国产精品| 国产爽快片一区二区三区| 如何舔出高潮| 自线自在国产av| 亚洲av在线观看美女高潮| 久热久热在线精品观看| 三级国产精品片| 免费黄色在线免费观看| 97精品久久久久久久久久精品| 国产精品国产三级国产专区5o| 美女国产高潮福利片在线看| 色婷婷久久久亚洲欧美| 99久国产av精品国产电影| 欧美 亚洲 国产 日韩一| 精品国产国语对白av| 视频中文字幕在线观看| 观看美女的网站| 久久精品久久精品一区二区三区| 99久久综合免费| 日日爽夜夜爽网站| 美女福利国产在线| 丝袜美足系列| 久久午夜福利片| 99九九在线精品视频| 午夜福利影视在线免费观看| 久久久久网色| 男人爽女人下面视频在线观看| 热re99久久国产66热| 视频中文字幕在线观看| 日韩强制内射视频| 五月玫瑰六月丁香| 18禁裸乳无遮挡动漫免费视频| 精品国产一区二区久久| 久久精品久久久久久噜噜老黄| 一区在线观看完整版| 国产精品一国产av| 一区二区三区精品91| 久久99精品国语久久久| 美女大奶头黄色视频| 永久免费av网站大全| 免费观看av网站的网址| 看十八女毛片水多多多| 亚洲国产日韩一区二区| 国产精品.久久久| 九草在线视频观看| 少妇高潮的动态图| 男女无遮挡免费网站观看| 久久精品国产a三级三级三级| 欧美3d第一页| 天堂俺去俺来也www色官网| 久久99热6这里只有精品| 久久精品夜色国产| 在现免费观看毛片| 曰老女人黄片| 三级国产精品片| 欧美丝袜亚洲另类| 三上悠亚av全集在线观看| 国产深夜福利视频在线观看| 欧美97在线视频| 80岁老熟妇乱子伦牲交| 人妻一区二区av| 国产精品.久久久| 满18在线观看网站| 日本av免费视频播放| 国产成人91sexporn| 自拍欧美九色日韩亚洲蝌蚪91| 欧美少妇被猛烈插入视频| 国精品久久久久久国模美| 国模一区二区三区四区视频| 色婷婷久久久亚洲欧美| 国产乱来视频区| 三上悠亚av全集在线观看| 亚洲国产精品国产精品| 国产亚洲av片在线观看秒播厂| 国产乱人偷精品视频| 精品一品国产午夜福利视频| 国产精品99久久久久久久久| 亚洲美女视频黄频| 少妇被粗大猛烈的视频| 女人精品久久久久毛片| 国产精品三级大全| 日本爱情动作片www.在线观看| 免费观看无遮挡的男女| 最近手机中文字幕大全| 亚洲av免费高清在线观看| 国产黄色视频一区二区在线观看| 性色av一级| 国产爽快片一区二区三区| 国产色婷婷99| 人人妻人人爽人人添夜夜欢视频| 日韩熟女老妇一区二区性免费视频| 国产熟女欧美一区二区| 男的添女的下面高潮视频| 成人手机av| 欧美bdsm另类| 精品一区二区免费观看| 欧美精品国产亚洲| 青青草视频在线视频观看| av在线播放精品| 狂野欧美白嫩少妇大欣赏| 老女人水多毛片| 日本欧美视频一区| 免费看不卡的av| 亚洲,欧美,日韩| 亚洲欧美一区二区三区黑人 | 国产黄片视频在线免费观看| 欧美日韩国产mv在线观看视频| 春色校园在线视频观看| 秋霞在线观看毛片| 欧美 日韩 精品 国产| 久久精品熟女亚洲av麻豆精品| av专区在线播放| 国产精品99久久久久久久久| 色网站视频免费| 久久久久久久久久久久大奶| 观看av在线不卡| 日韩av免费高清视频| xxxhd国产人妻xxx| 美女cb高潮喷水在线观看| 日本黄色片子视频| 国产欧美日韩一区二区三区在线 | 国产精品无大码| 高清av免费在线| 观看美女的网站| 在线 av 中文字幕| 国产精品一区www在线观看| 自线自在国产av| 国产av一区二区精品久久| 五月开心婷婷网| 母亲3免费完整高清在线观看 | freevideosex欧美| 亚洲av男天堂| 亚洲精品av麻豆狂野| 九色亚洲精品在线播放| 丝瓜视频免费看黄片| a级片在线免费高清观看视频| 亚洲成色77777| 一区二区三区精品91| 日韩制服骚丝袜av| 中国国产av一级| 国产精品嫩草影院av在线观看| 蜜桃国产av成人99| videos熟女内射| 高清视频免费观看一区二区| 精品国产一区二区三区久久久樱花| 男女边摸边吃奶| 亚洲精品色激情综合| 91精品伊人久久大香线蕉| 欧美一级a爱片免费观看看| 国产日韩欧美亚洲二区| 一区二区日韩欧美中文字幕 | 精品久久蜜臀av无| 美女xxoo啪啪120秒动态图| 日韩免费高清中文字幕av| 飞空精品影院首页| 午夜免费观看性视频| av.在线天堂| 99热网站在线观看| 亚洲情色 制服丝袜| 女性被躁到高潮视频| 99久久人妻综合| 久久鲁丝午夜福利片| 亚洲av中文av极速乱| 亚洲av.av天堂| 国产成人免费无遮挡视频| 麻豆精品久久久久久蜜桃| 欧美97在线视频| 在线精品无人区一区二区三| 蜜臀久久99精品久久宅男| 中文精品一卡2卡3卡4更新| 毛片一级片免费看久久久久| 麻豆乱淫一区二区| 国产爽快片一区二区三区| 国产爽快片一区二区三区| 亚洲情色 制服丝袜| 男的添女的下面高潮视频| 亚洲欧美色中文字幕在线| 丝袜美足系列| 9色porny在线观看| 精品久久蜜臀av无| 久久综合国产亚洲精品| 亚洲人与动物交配视频| 国产一区有黄有色的免费视频| 亚洲久久久国产精品| 中文字幕人妻丝袜制服| 欧美bdsm另类| 久久影院123| 亚洲精品日本国产第一区| 一个人免费看片子| 国产成人精品福利久久| 亚洲激情五月婷婷啪啪| 各种免费的搞黄视频| 国产免费视频播放在线视频| a级毛色黄片| 久久久国产欧美日韩av| 亚洲经典国产精华液单| 日韩一本色道免费dvd| 欧美人与性动交α欧美精品济南到 | 美女大奶头黄色视频| 3wmmmm亚洲av在线观看| 一级二级三级毛片免费看| 黄色视频在线播放观看不卡| 两个人免费观看高清视频| 亚洲精品乱码久久久久久按摩| 久久影院123| 嫩草影院入口| 中文字幕制服av| 精品人妻熟女毛片av久久网站| 永久网站在线| 国产精品秋霞免费鲁丝片| 久久久久精品久久久久真实原创| av又黄又爽大尺度在线免费看| 少妇猛男粗大的猛烈进出视频| 韩国av在线不卡| 国产乱来视频区| 久久国产精品男人的天堂亚洲 | 国产精品国产三级国产专区5o| 一级毛片aaaaaa免费看小| 你懂的网址亚洲精品在线观看| 国产国语露脸激情在线看| 美女xxoo啪啪120秒动态图| 韩国高清视频一区二区三区| 亚洲三级黄色毛片| 全区人妻精品视频| 亚洲综合色惰| 一本大道久久a久久精品| 丝袜喷水一区| 我的老师免费观看完整版| 亚洲欧洲日产国产| 国产精品久久久久久精品电影小说| 在线观看一区二区三区激情| 精品国产一区二区三区久久久樱花| 久久久久久久久大av| 婷婷色综合www| 国产一区有黄有色的免费视频| 亚洲av日韩在线播放| 有码 亚洲区| 亚洲五月色婷婷综合| 午夜免费观看性视频| 汤姆久久久久久久影院中文字幕| 黑人猛操日本美女一级片| av不卡在线播放| 成人综合一区亚洲| 91久久精品电影网| 日韩av免费高清视频| 熟女人妻精品中文字幕| 久久毛片免费看一区二区三区| 亚洲av中文av极速乱| 99九九线精品视频在线观看视频| 免费看av在线观看网站| 麻豆成人av视频| 人人妻人人澡人人看| 亚洲高清免费不卡视频| 久久精品国产鲁丝片午夜精品| 满18在线观看网站| 一边亲一边摸免费视频| 最近的中文字幕免费完整| 80岁老熟妇乱子伦牲交| 纵有疾风起免费观看全集完整版| 国产男女内射视频| 亚洲人与动物交配视频| h视频一区二区三区| 蜜臀久久99精品久久宅男| 国产成人91sexporn| 免费观看无遮挡的男女| 飞空精品影院首页| 色94色欧美一区二区| av又黄又爽大尺度在线免费看| av女优亚洲男人天堂| 男人添女人高潮全过程视频| 18在线观看网站| 欧美日韩视频高清一区二区三区二| 久热久热在线精品观看| 性高湖久久久久久久久免费观看| 美女国产视频在线观看| 亚洲国产精品成人久久小说| 国产av一区二区精品久久| 欧美日韩视频精品一区| 午夜福利视频精品| 日韩视频在线欧美| 国产爽快片一区二区三区| 中文字幕久久专区| av播播在线观看一区| 午夜福利视频精品| tube8黄色片| 日韩人妻高清精品专区| 伦理电影免费视频| 狂野欧美白嫩少妇大欣赏| 尾随美女入室| 国产一区二区在线观看av| 女性被躁到高潮视频| 国产探花极品一区二区| 一级毛片 在线播放| 日韩亚洲欧美综合| 尾随美女入室| 免费播放大片免费观看视频在线观看| 亚洲高清免费不卡视频| 欧美一级a爱片免费观看看| 亚洲精品久久久久久婷婷小说| 人人妻人人添人人爽欧美一区卜| 中文字幕亚洲精品专区| 精品国产露脸久久av麻豆| 亚洲精品色激情综合| 少妇熟女欧美另类| 九草在线视频观看| 街头女战士在线观看网站| 成人18禁高潮啪啪吃奶动态图 | 久久久久久久国产电影| 一级毛片黄色毛片免费观看视频| 男女边吃奶边做爰视频| 亚洲国产成人一精品久久久| .国产精品久久| 国产亚洲欧美精品永久| 少妇 在线观看| 免费看光身美女| 成人国产av品久久久| 在线观看免费视频网站a站| 亚洲人成77777在线视频| 又粗又硬又长又爽又黄的视频| 国产无遮挡羞羞视频在线观看| 国产成人精品福利久久| 亚洲欧洲日产国产| 纯流量卡能插随身wifi吗| 成人毛片60女人毛片免费| 久久久久久久精品精品| 免费黄频网站在线观看国产| 欧美日韩在线观看h| 在现免费观看毛片| 大香蕉久久网| 国国产精品蜜臀av免费| 亚洲国产精品国产精品| 18在线观看网站| 高清欧美精品videossex| 久久久久国产网址| 高清av免费在线| 欧美 日韩 精品 国产| 伊人亚洲综合成人网| 精品国产国语对白av| a级片在线免费高清观看视频| 亚洲欧洲国产日韩| 久久人人爽人人片av| 欧美xxⅹ黑人| 在线观看免费高清a一片| 欧美激情 高清一区二区三区| 各种免费的搞黄视频| 在线亚洲精品国产二区图片欧美 | 国产亚洲最大av| 国产免费又黄又爽又色| 亚洲欧洲国产日韩| 欧美丝袜亚洲另类| 纵有疾风起免费观看全集完整版| 黄色毛片三级朝国网站| 亚洲精品一二三| 国产成人精品婷婷| 久久精品国产鲁丝片午夜精品| 国产午夜精品久久久久久一区二区三区| 国产精品嫩草影院av在线观看| 国产成人精品在线电影| 在线观看美女被高潮喷水网站| 国产免费又黄又爽又色| 草草在线视频免费看| 国产无遮挡羞羞视频在线观看| 中文天堂在线官网| av国产久精品久网站免费入址| 成年人免费黄色播放视频| 黑人猛操日本美女一级片| 亚洲欧美色中文字幕在线| 欧美bdsm另类| 超碰97精品在线观看| 一区二区三区精品91| 日韩 亚洲 欧美在线| 欧美日韩一区二区视频在线观看视频在线| 久久97久久精品| 在线观看免费视频网站a站| 日韩大片免费观看网站| 精品99又大又爽又粗少妇毛片| 亚洲精品亚洲一区二区| 免费日韩欧美在线观看| 色94色欧美一区二区| 久久99热这里只频精品6学生| 精品一区二区三卡| 色吧在线观看| 亚洲精品乱码久久久v下载方式| 国产精品一国产av| 国产精品国产三级国产专区5o| 伊人亚洲综合成人网| 春色校园在线视频观看| 国产男女超爽视频在线观看| 国产av国产精品国产| 精品少妇黑人巨大在线播放| 国产国拍精品亚洲av在线观看| 国产亚洲av片在线观看秒播厂| 九九久久精品国产亚洲av麻豆| 欧美成人精品欧美一级黄| 人妻人人澡人人爽人人| 九草在线视频观看| 久久精品久久精品一区二区三区| 欧美老熟妇乱子伦牲交| 在线观看三级黄色| 少妇精品久久久久久久| 色婷婷av一区二区三区视频| 国产爽快片一区二区三区| 日本色播在线视频| 成人二区视频| 国产熟女午夜一区二区三区 | 大话2 男鬼变身卡| 老司机亚洲免费影院| 99视频精品全部免费 在线| 91精品国产国语对白视频| 成年人免费黄色播放视频| 中国国产av一级| 蜜桃在线观看..| 中国国产av一级| 热99久久久久精品小说推荐| 多毛熟女@视频| 人妻 亚洲 视频| 97在线视频观看| 男女无遮挡免费网站观看| 777米奇影视久久| 午夜影院在线不卡| 97超视频在线观看视频| 日本91视频免费播放| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产精品国产精品| 搡女人真爽免费视频火全软件| 高清毛片免费看| 亚洲国产av影院在线观看| 久久久久久久国产电影| 亚洲欧洲国产日韩| 国产深夜福利视频在线观看| 欧美bdsm另类| 内地一区二区视频在线| 精品国产一区二区久久| 国产日韩欧美亚洲二区| 成人国语在线视频| 国产色爽女视频免费观看|