• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase-mediated cobalt phosphide with unique core-shell architecture serving as efficient and bifunctional electrocatalyst for hydrogen evolution and oxygen reduction reaction

    2022-09-16 05:24:20JunshengChenJinfengHungHiWngWeihngFengTinmiLuoYuzhuHuChengkeYunLiyunCoYnniJieKojiKjiyoshiYongqingFeng
    Chinese Chemical Letters 2022年8期

    Junsheng Chen, Jinfeng Hung,?, Hi Wng, Weihng Feng, Tinmi Luo, Yuzhu Hu,Chengke Yun, Liyun Co,?, Ynni Jie, Koji Kjiyoshi, Yongqing Feng,?

    a School of Material Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province, Xi’an Key Laboratory of Green Manufacture of Ceramic Materials, Shaanxi University of Science and Technology, Xi’an 710021, China

    b Kochi University, Research Laboratory of Hydrothermal Chemistry, Kochi 780-8520, Japan

    ABSTRACT Hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) have been considered as two critical processes in the field of electrocatalytic water-splitting for hydrogen production and fuel cells.However, the sluggish reaction kinetics of HER and ORR required efficient electrocatalyst such as Pt to promote such process.Transition metal phosphides (TMPs) exhibit great potential to replace noble metal electrocatalysts to accelerate HER and ORR due to their high activity and easy availability.Herein, a highly-efficient bifunctional CoP electrocatalyst for HER and ORR, featuring a unique core-shell structure decorated on nitrogen-doped carbon matrix was designed and constructed via etching a cobalt-based zeolitic imidazolate framework (ZIF-67) with phytic acid (PA) followed by pyrolysis treatment (PA-ZIF-67–900).Experimental results revealed that the pure-phase single-crystalline CoP exhibited outstanding electrocatalytic performance in HER and ORR, superior to Co(PO3)2 in PA-ZIF-67–700, hybrid phase of Co(PO3)2 and CoP in PA-ZIF-67–800 and Co2P-doped CoP in PA-ZIF-67–1000.To reach the current density of 10 mA/cm2 the as-synthesized CoP required an overpotential of 120 mV for HER in 1 mol/L KOH and half-wave potential of 0.85 V in O2-saturated 0.1 mol/L KOH.This work present new clue for construction of efficient and bifunctional electrocatalyst in the field of energy conversion and storage

    Keywords:Electrocatalyst Hydrogen evolution reaction Oxygen reduction reaction Transitional metal phosphide CoP

    As energy and environmental problems become more and more serious [1–4], renewable energy conversion and storage technologies have become research hotspots [5,6].Hydrogen as one of the clean, renewable, and cost-effective energy resources, has been considered to be promising alternative to fossil fuels [7,8],which can be accessed by electrocatalytic water-splitting [9,10].On the other hand, zinc-air battery (ZAB) and direct methanol fuel cell (DMFC) serving as low-cost and environmentally friendly energy storage technique exhibits great application potential [11–13].However, both hydrogen production and ZAB required efficient electrocatalysts to accelerate the sluggish reactions of hydrogen evolution reaction (HER) in water splitting process and oxygen reduction reaction (ORR) on the cathode of ZAB system.Until now,the state-of-the-art electrocatalyst for HER and ORR is Pt/C, but its large-scale application is prohibited due to its small reserves, high cost and poor stability [14].Therefore, it is necessary to develop a low-cost and highly-efficient noble-metal-free electrocatalysts for HER and ORR.

    Recently, transition metal phosphides (TMPs) such as FeP[15,16], CoP [17,18], NiP [19], have been reported as HER and ORR electrocatalysts [20,21].Generally, the TMP-based catalysts were synthesized by wet chemical method using trioctylphosphine (TOP)[22] and triphenylphosphine (TPP) [23] or gas-solid reaction approach using NaH2PO2, PH3gas and red phosphorus as phosphorus sources [24–27].Although the above-mentioned phosphating process has been widely developed, these phosphorus sources have certain toxicity and cause pollution to the environment, which greatly restricts their further utiliaztion.Therefore, pursuing a nontoxic and environment-benign phosphating process is meaningful and inevitable.

    Fig.1.Structure and morphology characterization of PA-ZIF-67–900.(a) XRD patterns of PA-ZIF-67–700, PA-ZIF-67–800, PA-ZIF-67–900 and PA-ZIF-67–1000.(b, c) TEM, (d)SAED, (e) HRTEM of PA-ZIF-67–900.(f) Corresponding elemental mapping for Co (purple), P (yellow), C (red), N (blue) and O (green) of PA-ZIF-67–900.

    The cobalt-based zeolitic imidazolate framework (ZIF-67) is a metal-organic framework material with porous properties, high specific surface area and adjustable morphology [28,29].Moreover, it can be pyrolyzed to form nitrogen-doped carbon substrate,which is an ideal transition metal-based electrocatalyst precursor.In recent years, the ZIF-67 derived electrocatalysts have been widely reported [30,31], showing a very broad prospect owing to their low cost and high efficiency in water electrolysis and oxygen reduction.Phytic acid (PA) is a nontoxic and environmentally friendly compound, where the P–O bond can be broken to release P element as a source of phosphorus to form metallic phosphides[32].Herein, we synthesized phase-mediated cobalt phosphides via etching a ZIF-67 with PA followed by pyrolysis treatment under H2/Ar atmosphere (Figs.S1-S4 in Supporting information).Electrochemical measurement revealed that the pure phase CoP prepared at 900°C (denoted as PA-ZIF-67–900) exhibits the most excellent HER and ORR catalytic performance and robust stability.This work presents a new clue for construction of efficient bifunctional TMPbased electrocatalyst in the field of energy storage and conversion.

    The phase structure of PA-ZIF-67–900 was characterized by powder X-ray diffraction (XRD) along with its counterparts annealed at 700, 800 and 1000°C, respectively.As shown in Fig.1a,PA-ZIF-67–900 displayed diffraction peaks at 31.6°, 35.3°, 36.3°,46.2°, 48.1°, 52.3°, 56.1° and 56.8°, definitely corresponding to the pure phase CoP (JCPDS No.29–0497).Whereas the XRD pattern of PA-ZIF-67–700 can be assigned to pure phase Co(PO3)2(JCPDS No.27–1120), and PA-ZIF-67–800 is a hybrid phase of Co(PO3)2and CoP.For PA-ZIF-67–1000, beside the dominant phase of CoP,a small amount of Co2P miscellaneous phase was also observed.Raman spectroscopy was used to investigate the graphitization of the PA-ZIF-67–900.As shown in Fig.S5 (Supporting information),the ratio of D band (1345 cm?1) and G band (1580 cm?1) of PAZIF-67–900 (0.99) was similar to that of PA-ZIF-67–1000 (1.00),and higher than those of PA-ZIF-67–700 (0.90) and PA-ZIF-67–800(0.93).The higher graphitization of PA-ZIF-67–900 could facilitate the charge transfer during the electrocatalytic process.

    Fig.2.XPS spectrum of PA-ZIF-67–900.(a) XPS survey spectrum, (b) Co 2p, (c) N 1s and (d) P 2p high resolution spectrum of PA-ZIF-67–900.

    The morphology of PA-ZIF-67–900 was then investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM).From Fig.1b and Fig.S6a (Supporting information), it can be seen that in PA-ZIF-67–900 there exist plenty of nanoparticles with average size of 100–200 nm distributed on the surface of carbon matrix.A closer inspection of the nanoparticle(Fig.1c) disclosed an architecture of PA-ZIF-67–900 with a core enveloped with multiple shells.In order to further prove the multilayer core-shell structure, high-resolution TEM (HRTEM) characterization was carried out, as shown in Fig.S6b, the structure of carbon layer@CoP@carbon layer@CoP was observed.Selected area electron diffraction (SAED) pattern (Fig.1d) of a single PA-ZIF-67–900 particle exhibited regular spots corresponding to (110), (002),(102), and (112) crystal planes of the single-crystalline orthorhombic CoP, which is in good agreement with the XRD result.HRTEM image (Fig.1e) displayed a lattice fringe of 0.257 nm [33,34], which matched well with the (002) crystal plane of CoP.Besides, the element mapping (Fig.1f) unveiled that the CoP nanoparticles were decorated on the nitrogen-doped carbon matrix.It was worth noting that the pyrolysis temperature is vital to form core and multishell structure.When the temperature is very low,i.e., 700°C,only large blocks were obtained (Fig.S7 in Supporting information); while at 800°C nanoparticles featuring a solid core wrapped with one-layer carbon shell imbedded onto the surface of carbon substrate was observed (Fig.S8 in Supporting information).The PA-ZIF-67–1000 possessed nanoparticles with irregular shape and nonuniform size (Fig.S9 in Supporting information), which may be attributed to the heterogenous phase in PA-ZIF-67–1000.

    Fig.3.HER performance of PA-ZIF-67–900.(a) Polarized LSV curves, (b) Tafel slope, (c) comparison of overpotential at 10 mA/cm2 (red column) and Tafel slope (blue column) for PA-ZIF-67–700 (green), PA-ZIF-67–800 (blue), PA-ZIF-67–900 (red), PA-ZIF-67–1000 (purple) and 25% Pt/C (black).(d) Nyquist plots and (e) current density difference against scan rate of PA-ZIF-67–700 (green), PA-ZIF-67–800 (blue), PA-ZIF-67–900 (red) and PA-ZIF-67–1000 (purple).(f) Chronoamperometric current-time curve of PA-ZIF-67–900.

    The chemical state and electronic structure of PA-ZIF-67–900 were evaluated by X-ray photoelectron spectroscopy (XPS).Fig.2a presents the XPS survey spectrum of PA-ZIF-67–900, indicating the existence of Co, P, C, N and O in PA-ZIF-67–900.The high-resolution Co 2p spectrum could be deconvoluted into three groups as displayed in Fig.2b.Two distinct peaks at binding energy of 778.88 and 793.77 eV were attributed to Co 2p3/2and Co 2p1/2, respectively, corresponding to the Co–P bond in cobalt phosphide [20].The peaks at 781.64 and 797.69 eV can be assigned to oxidized cobalt species, which was ascribed to surface oxidation of PA-ZIF-67–900, and the peaks at 787.25 and 802.51 eV are satellite[20].Moreover, the N 1s spectrum exhibited three peaks located at 398.38, 400.79 and 401.97 eV (Fig.2c), which can be assigned to pyridinic N, pyrrolic N and graphitic N, respectively [35,36].It has been established that pyridinic N and graphitic N can promote the catalytic ORR activity [37], and the pyrrolic N at the edge of the carbon plane has also been reported as the active site for HER process [38].The electronegativity of N (3.04) is stronger than that of C (2.55), which polarizes the carbon matrix, enhancing the ability of carbon atoms nearby to capture oxygen during the ORR process [39,40].In addition, the high-resolution XPS spectra of P 2p displayed binding energy at 129.76 and 130.56 eV of the 2p3/2and 2p1/2, which agreed with the value in the literature for CoP(Fig.2d) [41].And the peak at 130.2 and 133.87 eV corresponds to oxidized P species [41].Particularly, compared with the binding energy of metallic Co (778.1 eV) and elemental P (130.0 eV), the binding energy of Co 2p3/2upshifts while the binding energy of P 2p3/2downshifts, indicating that charge transfer occurs between P and Co to form CoP [42], which would facilitate the electrocatalytic process.

    To further investigate the microscopic structure of PA-ZIF-67–900, nitrogen adsorption/desorption measurement was then carried out.The N2adsorption/desorption curves (Fig.S10 in Supporting information) displayed a type IV isotherm [32] with Brunauer-Emmett-Teller (BET) specific surface area of 292.41 m2/g.Three peaks at 1.74, 3.99 and 32 nm in the pore size distribution diagram of PA-ZIF-67–900 are observed, indicating that PA-ZIF-67–900 has a microporous/mesoporous hierarchical pore structure which could facilitate the mass transportation during the electrocatalytic process [32].

    The electrocatalytic HER performance of PA-ZIF-67–900 was evaluated using a standard three-electrode system in 1 mol/L KOH at room temperature.For comparison, the HER activity of PAZIF-67–700, PA-ZIF-67–800, PA-ZIF-67–1000 and the commercial 25% Pt/C was also tested under the same condition.The linear sweep voltammetry (LSV) curves are shown in Fig.3a.It can be seen that PA-ZIF-67–900 with a pure phase of CoP outperformed PA-ZIF-67–700, PA-ZIF-67–800 and PA-ZIF-67–1000, even 25% Pt/C at large current density.To reach the current density of 10 mA/cm2, the PA-ZIF-67–900 required an overpotential of only 120 mV, which is lower than that of PA-ZIF-67–700 (465 mV), PAZIF-67–800 (197 mV) and PA-ZIF-1000 (147 mV) as shown in Fig.3c.The HER reaction kinetics was assessed by the Tafel slope derived from the LSV curves.As shown in Fig.3b, the Tafel slopes of PA-ZIF-67–900, PA-ZIF-67–700, PA-ZIF-67–800, PA-ZIF-67–1000 and 25% Pt/C were 100, 139, 181, 109 and 97 mV/dec, revealing a fast kinetics of PA-ZIF-67–900 comparable to Pt/C following the Volmer–Heyrovsky mechanism [41].Fig.3d depicted the electrochemical impedance spectroscopy (EIS) curves.From the Nyquist plots it was indicated that PA-ZIF-67–900 shows a smaller semicircle diameter, suggesting a favorable charge transfer resistance of PA-ZIF-67–900 (0.5Ω) compared to PA-ZIF-67–700 (147.7Ω),PA-ZIF-67–800 (3.1Ω) and PA-ZIF-67–1000 (0.7Ω).Moreover,the electrochemical double-layer capacitance (Cdl) obtained by the cyclic voltammetry (CV) measurement was used to assess the active reaction sites, which was proportional to the electrochemical active surface area (ECSA) [43].As illustrated in Fig.3e, PAZIF-67–900 exhibited a higherCdlvalue (113.2 mF/cm2) than that of PA-ZIF-67–700 (0.25 mF/cm2), PA-ZIF-67–800 (8.4 mF/cm2) and PA-ZIF-67–1000 (32.3 mF/cm2), indicating that PA-ZIF-67–900 has the largest amount of electrochemically active sites.These results demonstrated that the pure-phase single-crystalline CoP in PA-ZIF-67–900 possessed a much enhanced HER activity compared to the Co(PO3)2in PA-ZIF-67–700, hybrid phase of Co(PO3)2and CoP in PA-ZIF-67–800 and Co2P-doped CoP in PA-ZIF-67–1000.In addition, the HER catalytic stability of PA-ZIF-67–900 was investigated by the chronoamperometric test.As can be seen from Fig.3f, the catalytic performance of PA-ZIF-67–900 maintained stable for at least 40 h.To explore the structural stability of the catalyst, the TEM of PA-ZIF-67–900 after chronoamperometric currenttime measurement for HER was performed, as shown in Fig.S11(Supporting information), the core-shell structure can still be observed.Notably, the HER performance of PA-ZIF-67–900 is superior to many other recently-reported CoP-based electrocatalysts in alkaline medium (Table S1 in Supporting information).

    Fig.4.ORR performance of PA-ZIF-67–900.(a) CV curves of PA-ZIF-67–900 in the presence of N2 (black) and O2 (red).(b) LSV curves and (c) Tafel slope for PA-ZIF-67–700(green), PA-ZIF-67–800 (blue), PA-ZIF-67–900 (red), PA-ZIF-67–1000 (purple) and 25% Pt/C (black).(d) Number of electron transfer (left) and H2O2 yield (right) of PA-ZIF-67–900.(e) Normalized current density (j/j0) against time plot and (f) methanol tolerance test of PA-ZIF-67–900 (red) and 25% Pt/C (black).

    The ORR performance of the as-synthesized PA-ZIF-67–900 along with the reference electrocatalysts was evaluated in 0.1 mol/L KOH using a rotating disk electrode (RDE).Fig.4a describes the CV curves of PA-ZIF-67–900 in the presence and absence of O2atmosphere with a scan rate of 50 mV/s.It can be seen that a sharp peak appeared at 0.78 V (vs.RHE) in the CV curve of O2-saturated 0.1 mol/L KOH in contrast to the case of N2-saturated 0.1 mol/L KOH, indicating the efficient ORR activity of PA-ZIF-67–900.The LSV curves of a series of electrocatalysts measured at 1600 rpm in O2-saturated 0.1 mol/L KOH is shown in Fig.4b.The PA-ZIF-67–900 with pure-phase CoP exhibited a half-wave potential (E1/2)of 0.85 V and limiting current density (JL) of 5 mA/cm2, which is comparable to that of 25% Pt/C (E1/2=0.86 V andJL=5 mA/cm2),and outperforms the other three electrocatalysts with phosphate or hybrid phases.Moreover, the ORR performance of PA-ZIF-67–900 are competitive to many other CoP-based electrocatalysts in alkaline media (Table S2 in Supporting information).The corresponding Tafel slope (Fig.4c) of PA-ZIF-67–900 is 75.2 mV/dec,which is lower than that of 25% Pt/C (115 mV/dec), PA-ZIF-67–700 (78.2 mV/dec), PA-ZIF-67–800 (117.3 mV/dec) and PA-ZIF-1000(78.4 mV/dec), indicating a favorable reaction kinetics of PA-ZIF-67–900 for ORR performance.The number of transferred electrons(n) and H2O2yield (H2O2%) in the ORR process of PA-ZIF-67–900 were evaluated at 1600 rpm by rotating ring-disk electrode (RRDE)measurement.As shown in Fig.4d, the n value of PA-ZIF-67–900 is in the range of 3.5–3.8 and H2O2yield is lower than 10%, indicating that the PA-ZIF-67–900 could efficiently reduce oxygenviaa four-electron reaction route in alkaline medium.In order to evaluate the catalytic stability of the electrocatalysts, a chronoamperometric response at 0.6 V was tested.As shown in Fig.4e, after 40 h continuous operation, the catalytic activity of PA-ZIF-67–900 still maintained 90.7% of the initial, however, it decayed to 78.4% for 25% Pt/C only after 10 h, demonstrating the robust catalytic durability of PA-ZIF-67–900.In addition, the methanol tolerance is an important indicator to evaluate the ORR electrocatalyst for DMFC because the methanol can poison the electrocatalyst.As displayed in Fig.4f, PA-ZIF-67–900 exhibits an excellent tolerance against methanol relative to 25% Pt/C.After injection with 3 mol/L methanol into the electrolyte, the activity of PA-ZIF-67–900 can recover to 90.9% while 25% Pt/C is only 70.2%.In order to explore the catalytic mechanism of ORR, the XPS and TEM of PA-ZIF-67–900 after the chronoamperometric response were characterized.As shown in Fig.S12 (Supporting information), the peak for Co 2p3/2after stability test positively shifted to 780.25 eV.Meanwhile P was also oxidized after electrolysis.And from Fig.S13 (Supporting information), the core-shell structure of PA-ZIF-67–900 is retained.

    In summary, a multilayer CoP core-shell structure decorated on N-doped carbon substrate as a highly efficient and stable HER and ORR bifunctional electrocatalyst was designed and synthesized.The results demonstrated that the pure-phase single-crystalline CoP (PA-ZIF-67–900) exhibited outstanding electrocatalytic performance in HER and ORR, superior to Co(PO3)2in PA-ZIF-67–700,hybrid phase of Co(PO3)2and CoP in PA-ZIF-67–800 and Co2Pdoped CoP in PA-ZIF-67–1000.For example, the pure-phase CoP formed at 900°C shows the most efficient HER and ORR performance, achieving the current density of 10 mA/cm2with an overpotential of 120 mV for HER in 1 mol/L KOH and half-wave potential of 0.85 V in O2-saturated 0.1 mol/L KOH.Besides, the PAZIF-67–900 displayed a desirable long-term catalytic stability and methanol tolerance, indicating its potential application in water splitting, ZAB and DMFC devices.The present work provides a new platform for construction of efficient and bifunctional electrocatalyst in the field of energy conversion and storage.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    Authors thank to Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials for their experimental platform and testing conditions.This work was supported by the National Natural Science Foundation of China (Nos.52073166,52072226), the Xi’an Key Laboratory of Green Manufacture of Ceramic Materials Foundation (No.2019220214SYS017CG039), the Key Program for International S&T Cooperation Projects of Shaanxi Province (Nos.2020KW-038, 2020GHJD-04), Science and Technology Program of Xi’an, China (No.2020KJRC0009) and Scientific Research Program Funded by Shaanxi Provincial Education Department (No.20JY001), Science and Technology Resource Sharing Platform of Shaanxi Province (No.2020PT-022), Science and Technology Plan of Weiyang District, Xi’an (No.202009).Dr.Y.Q.Feng is grateful for the support from the Science and Technology Youth Stars Project of Shaanxi Province (No.2021KJXX-35).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.11.063.

    99热这里只有精品一区| 九九爱精品视频在线观看| 亚洲国产精品国产精品| 国产老妇伦熟女老妇高清| 在现免费观看毛片| 国产精品免费大片| 亚洲内射少妇av| 2018国产大陆天天弄谢| 亚洲综合色网址| 哪个播放器可以免费观看大片| 永久免费av网站大全| 日韩熟女老妇一区二区性免费视频| 一个人看视频在线观看www免费| 欧美日本中文国产一区发布| 大又大粗又爽又黄少妇毛片口| 精品亚洲成a人片在线观看| 日本欧美视频一区| 精品亚洲成国产av| 精品亚洲乱码少妇综合久久| 久久久久久人妻| av黄色大香蕉| 久久久久久人妻| 丁香六月天网| 亚洲三级黄色毛片| 成年女人在线观看亚洲视频| 日本91视频免费播放| 又黄又爽又刺激的免费视频.| 久久久a久久爽久久v久久| 国产一区有黄有色的免费视频| 老女人水多毛片| 亚洲综合精品二区| 一级毛片 在线播放| 99热国产这里只有精品6| 又大又黄又爽视频免费| 五月伊人婷婷丁香| 少妇人妻 视频| 亚洲av福利一区| 国产精品三级大全| 亚洲精品国产色婷婷电影| 18禁在线播放成人免费| 91精品伊人久久大香线蕉| 妹子高潮喷水视频| 黄色一级大片看看| 亚洲欧美成人综合另类久久久| 9色porny在线观看| 18禁动态无遮挡网站| 看免费成人av毛片| 少妇丰满av| 国产综合精华液| 久久精品国产亚洲网站| 中国美白少妇内射xxxbb| 久久久亚洲精品成人影院| 国产国拍精品亚洲av在线观看| 成人无遮挡网站| 欧美日韩亚洲高清精品| 99re6热这里在线精品视频| 大香蕉久久成人网| 免费观看性生交大片5| 妹子高潮喷水视频| 少妇高潮的动态图| 成人国产麻豆网| 黄色怎么调成土黄色| 热re99久久精品国产66热6| 久久av网站| 欧美亚洲 丝袜 人妻 在线| 久久久精品94久久精品| 亚洲精品第二区| 欧美变态另类bdsm刘玥| 日本av免费视频播放| 免费大片18禁| 飞空精品影院首页| 成人免费观看视频高清| 自拍欧美九色日韩亚洲蝌蚪91| videossex国产| 亚洲精品国产av蜜桃| 大香蕉久久网| 91午夜精品亚洲一区二区三区| 国产黄色免费在线视频| 搡女人真爽免费视频火全软件| 日韩精品有码人妻一区| 永久免费av网站大全| 在线观看免费日韩欧美大片 | 亚洲精品视频女| 母亲3免费完整高清在线观看 | 日日摸夜夜添夜夜添av毛片| 妹子高潮喷水视频| 欧美人与性动交α欧美精品济南到 | 国产视频首页在线观看| 亚洲欧洲日产国产| 综合色丁香网| 久久99热这里只频精品6学生| 美女xxoo啪啪120秒动态图| 啦啦啦中文免费视频观看日本| av免费在线看不卡| 国产 一区精品| 永久免费av网站大全| av在线观看视频网站免费| 另类亚洲欧美激情| 超碰97精品在线观看| 在线观看www视频免费| 最新的欧美精品一区二区| 搡女人真爽免费视频火全软件| 精品久久久久久电影网| √禁漫天堂资源中文www| 丝袜美足系列| 久久久久网色| 久久久久久久大尺度免费视频| 国产亚洲精品第一综合不卡 | 卡戴珊不雅视频在线播放| 一边摸一边做爽爽视频免费| 欧美老熟妇乱子伦牲交| 久久精品国产自在天天线| 免费观看性生交大片5| 热re99久久精品国产66热6| 一个人看视频在线观看www免费| 亚洲第一区二区三区不卡| 久久99精品国语久久久| 国产精品久久久久久av不卡| av在线老鸭窝| 国产精品久久久久久久电影| 亚洲av福利一区| 亚洲欧美日韩另类电影网站| 人人妻人人澡人人爽人人夜夜| 视频区图区小说| 热re99久久国产66热| 一个人免费看片子| 亚洲一区二区三区欧美精品| 亚洲精品av麻豆狂野| 在线免费观看不下载黄p国产| 十分钟在线观看高清视频www| 亚洲av在线观看美女高潮| 久久久国产一区二区| 欧美人与性动交α欧美精品济南到 | 精品久久久精品久久久| 亚洲国产最新在线播放| 亚洲高清免费不卡视频| 亚洲国产精品成人久久小说| 建设人人有责人人尽责人人享有的| 婷婷色综合www| 久久精品国产亚洲网站| 国模一区二区三区四区视频| 久久97久久精品| 亚洲av电影在线观看一区二区三区| 91久久精品电影网| 99九九线精品视频在线观看视频| 亚洲av免费高清在线观看| 内地一区二区视频在线| 精品久久久噜噜| 女人久久www免费人成看片| 亚洲欧美一区二区三区黑人 | 观看美女的网站| 午夜91福利影院| 丝袜在线中文字幕| 午夜视频国产福利| 99久久精品一区二区三区| 久久久久久久亚洲中文字幕| 亚洲内射少妇av| 亚洲精品久久午夜乱码| 黑人巨大精品欧美一区二区蜜桃 | 精品亚洲乱码少妇综合久久| 97超碰精品成人国产| 全区人妻精品视频| 亚洲美女黄色视频免费看| 日韩大片免费观看网站| 久久精品久久精品一区二区三区| 久久久久国产精品人妻一区二区| av视频免费观看在线观看| av网站免费在线观看视频| 交换朋友夫妻互换小说| 久久久久国产网址| 欧美一级a爱片免费观看看| 国产日韩欧美视频二区| 国产精品99久久99久久久不卡 | 国产国拍精品亚洲av在线观看| 亚洲国产av影院在线观看| 我的女老师完整版在线观看| 亚洲国产精品一区三区| 下体分泌物呈黄色| 亚洲第一av免费看| 亚洲av二区三区四区| 91午夜精品亚洲一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 欧美少妇被猛烈插入视频| 国产亚洲精品久久久com| 免费看av在线观看网站| 精品久久久噜噜| 国产精品一区二区在线观看99| 伊人亚洲综合成人网| 欧美性感艳星| 精品亚洲成a人片在线观看| 亚洲av欧美aⅴ国产| av国产精品久久久久影院| 国产亚洲av片在线观看秒播厂| 亚洲av日韩在线播放| 亚洲国产精品一区三区| 欧美97在线视频| 欧美精品一区二区免费开放| 日本欧美国产在线视频| 欧美+日韩+精品| 久久精品久久久久久噜噜老黄| 夜夜骑夜夜射夜夜干| 午夜免费男女啪啪视频观看| 我的女老师完整版在线观看| 日本黄色片子视频| 熟女电影av网| 亚洲欧美日韩卡通动漫| 成人综合一区亚洲| 国产极品粉嫩免费观看在线 | 成年人免费黄色播放视频| 日韩大片免费观看网站| 狠狠精品人妻久久久久久综合| 成人亚洲欧美一区二区av| 午夜激情久久久久久久| 高清毛片免费看| 三级国产精品欧美在线观看| 国产成人av激情在线播放 | 黄片无遮挡物在线观看| 国产老妇伦熟女老妇高清| 91精品三级在线观看| 成人国产av品久久久| 一级毛片黄色毛片免费观看视频| 在线观看国产h片| 乱人伦中国视频| 久久久亚洲精品成人影院| 卡戴珊不雅视频在线播放| 日韩精品免费视频一区二区三区 | 国产成人91sexporn| 最近2019中文字幕mv第一页| 熟女电影av网| 久久 成人 亚洲| 成年女人在线观看亚洲视频| 亚洲伊人久久精品综合| 妹子高潮喷水视频| 22中文网久久字幕| 99久久综合免费| av视频免费观看在线观看| 极品人妻少妇av视频| 三级国产精品片| 国产熟女欧美一区二区| 青青草视频在线视频观看| 黄色欧美视频在线观看| 久久精品国产自在天天线| 五月天丁香电影| 国产精品一区二区三区四区免费观看| 免费久久久久久久精品成人欧美视频 | 丰满少妇做爰视频| 国产成人精品福利久久| 久久影院123| 乱码一卡2卡4卡精品| 男女边摸边吃奶| 一区二区三区免费毛片| 日日摸夜夜添夜夜添av毛片| 2018国产大陆天天弄谢| 精品亚洲乱码少妇综合久久| 26uuu在线亚洲综合色| 欧美xxxx性猛交bbbb| 国产在线免费精品| 丰满迷人的少妇在线观看| 丝袜喷水一区| 国产精品秋霞免费鲁丝片| 少妇人妻精品综合一区二区| 亚洲av日韩在线播放| 91精品伊人久久大香线蕉| 热99久久久久精品小说推荐| 一级a做视频免费观看| 亚洲美女搞黄在线观看| 欧美日韩视频精品一区| 亚洲人与动物交配视频| 大话2 男鬼变身卡| 精品卡一卡二卡四卡免费| 亚洲欧美成人精品一区二区| 免费久久久久久久精品成人欧美视频 | 一本一本综合久久| 你懂的网址亚洲精品在线观看| 久久午夜综合久久蜜桃| 秋霞伦理黄片| 日韩中文字幕视频在线看片| 亚洲国产精品国产精品| 精品国产乱码久久久久久小说| 久久久久网色| 天堂中文最新版在线下载| 少妇猛男粗大的猛烈进出视频| 日韩精品免费视频一区二区三区 | 日韩av免费高清视频| 高清毛片免费看| 成人手机av| 国产成人aa在线观看| 成人免费观看视频高清| 久久精品久久久久久噜噜老黄| 在线观看美女被高潮喷水网站| 午夜福利影视在线免费观看| 婷婷色av中文字幕| 亚洲人成网站在线观看播放| 男的添女的下面高潮视频| 大片电影免费在线观看免费| 国产精品一区www在线观看| 久久久欧美国产精品| 男女啪啪激烈高潮av片| 少妇的逼好多水| 亚洲欧美中文字幕日韩二区| 欧美变态另类bdsm刘玥| 只有这里有精品99| 国产黄片视频在线免费观看| 男人爽女人下面视频在线观看| 久久狼人影院| 日本wwww免费看| 国产精品久久久久久精品古装| 寂寞人妻少妇视频99o| 国产免费一区二区三区四区乱码| 人妻制服诱惑在线中文字幕| 狂野欧美激情性xxxx在线观看| 亚洲美女搞黄在线观看| 视频区图区小说| 天堂俺去俺来也www色官网| 国产成人精品无人区| av国产久精品久网站免费入址| 尾随美女入室| 免费av中文字幕在线| 免费少妇av软件| 亚洲伊人久久精品综合| 精品人妻一区二区三区麻豆| 九九久久精品国产亚洲av麻豆| 国产69精品久久久久777片| 在线看a的网站| 99九九在线精品视频| 国产在线视频一区二区| 亚洲,一卡二卡三卡| 欧美激情 高清一区二区三区| 欧美精品国产亚洲| 精品亚洲成国产av| 99久久中文字幕三级久久日本| 91精品国产九色| 日韩一本色道免费dvd| 一区二区三区乱码不卡18| 亚洲精品美女久久av网站| 9色porny在线观看| 久久av网站| 中国国产av一级| 少妇被粗大的猛进出69影院 | 国产精品三级大全| 国产淫语在线视频| 九色成人免费人妻av| 国产一区有黄有色的免费视频| 欧美bdsm另类| 亚洲av综合色区一区| 久久久午夜欧美精品| 五月天丁香电影| 欧美xxⅹ黑人| 亚洲欧美中文字幕日韩二区| 日韩一本色道免费dvd| 免费日韩欧美在线观看| 我的老师免费观看完整版| 99久国产av精品国产电影| 国产av码专区亚洲av| 99久久综合免费| 亚洲经典国产精华液单| 国产av国产精品国产| 国产精品99久久久久久久久| 夫妻午夜视频| 日韩成人伦理影院| 久久久久久久精品精品| 五月开心婷婷网| 91在线精品国自产拍蜜月| 亚洲精华国产精华液的使用体验| 国国产精品蜜臀av免费| 精品视频人人做人人爽| 男女国产视频网站| 午夜福利,免费看| av一本久久久久| 久久久精品免费免费高清| 亚洲内射少妇av| 日韩视频在线欧美| 免费久久久久久久精品成人欧美视频 | 亚洲国产欧美日韩在线播放| 制服诱惑二区| 国产爽快片一区二区三区| 少妇人妻 视频| 免费黄网站久久成人精品| 日本午夜av视频| 中文字幕亚洲精品专区| 亚洲伊人久久精品综合| 国产成人精品一,二区| 久久久久视频综合| 中文字幕久久专区| 亚洲精品国产色婷婷电影| 欧美变态另类bdsm刘玥| 黄片播放在线免费| 久久鲁丝午夜福利片| 啦啦啦中文免费视频观看日本| 欧美激情国产日韩精品一区| 黄片播放在线免费| 少妇高潮的动态图| 免费观看无遮挡的男女| 大香蕉久久网| 一区二区三区免费毛片| 国产有黄有色有爽视频| 日本欧美国产在线视频| 边亲边吃奶的免费视频| 97精品久久久久久久久久精品| 天天操日日干夜夜撸| av女优亚洲男人天堂| 天堂中文最新版在线下载| 亚洲精品日本国产第一区| 寂寞人妻少妇视频99o| 欧美日韩av久久| 婷婷色麻豆天堂久久| 韩国av在线不卡| 2022亚洲国产成人精品| 晚上一个人看的免费电影| 欧美bdsm另类| 久久精品国产a三级三级三级| 看非洲黑人一级黄片| 99热这里只有精品一区| 亚洲国产精品专区欧美| 国产成人精品一,二区| 免费久久久久久久精品成人欧美视频 | 久久久久久久大尺度免费视频| 欧美精品一区二区免费开放| 熟妇人妻不卡中文字幕| 国产成人免费观看mmmm| 国产色婷婷99| 国产精品免费大片| 人人妻人人爽人人添夜夜欢视频| 天堂8中文在线网| 黄色配什么色好看| 卡戴珊不雅视频在线播放| 国产av精品麻豆| 国产精品熟女久久久久浪| 午夜福利网站1000一区二区三区| 五月天丁香电影| 亚洲精品亚洲一区二区| 国产69精品久久久久777片| 如日韩欧美国产精品一区二区三区 | 国产成人一区二区在线| 综合色丁香网| 国产高清不卡午夜福利| 热99国产精品久久久久久7| 男女边摸边吃奶| 在线观看www视频免费| 欧美人与性动交α欧美精品济南到 | 中国三级夫妇交换| 80岁老熟妇乱子伦牲交| 国产在线免费精品| 亚洲精品色激情综合| 九九爱精品视频在线观看| 久久久亚洲精品成人影院| 美女内射精品一级片tv| 美女中出高潮动态图| 亚洲av男天堂| 久久久精品区二区三区| 国产成人精品在线电影| 9色porny在线观看| 欧美变态另类bdsm刘玥| av免费观看日本| 亚洲成人一二三区av| 欧美人与善性xxx| 五月玫瑰六月丁香| 久久精品久久久久久久性| 国产精品国产三级专区第一集| 热re99久久国产66热| 麻豆成人av视频| 久久久久久久久大av| 亚洲欧美日韩另类电影网站| 亚洲成色77777| 制服人妻中文乱码| 国产深夜福利视频在线观看| 日韩av在线免费看完整版不卡| 亚洲欧美清纯卡通| 三上悠亚av全集在线观看| 日本与韩国留学比较| 男男h啪啪无遮挡| 亚洲av二区三区四区| 香蕉精品网在线| 夫妻性生交免费视频一级片| 丰满迷人的少妇在线观看| av线在线观看网站| 久久久久精品久久久久真实原创| 午夜福利影视在线免费观看| 成人亚洲欧美一区二区av| 成人影院久久| 亚洲av在线观看美女高潮| 日本vs欧美在线观看视频| 日韩一区二区三区影片| 免费人妻精品一区二区三区视频| 日日摸夜夜添夜夜爱| 国产在线视频一区二区| 亚洲国产欧美在线一区| av在线app专区| 亚洲激情五月婷婷啪啪| 一级黄片播放器| 欧美精品一区二区大全| 在线观看国产h片| 欧美老熟妇乱子伦牲交| 激情五月婷婷亚洲| 亚洲少妇的诱惑av| 成人国产麻豆网| 久久99热这里只频精品6学生| 18+在线观看网站| 最新中文字幕久久久久| 啦啦啦啦在线视频资源| 国产精品国产三级专区第一集| 精品久久久精品久久久| 一级毛片黄色毛片免费观看视频| 美女福利国产在线| 欧美激情 高清一区二区三区| 大码成人一级视频| 国产亚洲av片在线观看秒播厂| 日韩人妻高清精品专区| 国产精品久久久久久久电影| 亚洲精品av麻豆狂野| 欧美人与善性xxx| 亚洲国产精品一区三区| 亚洲国产精品成人久久小说| 日韩精品免费视频一区二区三区 | 欧美+日韩+精品| 激情五月婷婷亚洲| 久久毛片免费看一区二区三区| 在线观看三级黄色| 午夜影院在线不卡| 国产国拍精品亚洲av在线观看| 午夜影院在线不卡| 又粗又硬又长又爽又黄的视频| tube8黄色片| 777米奇影视久久| 精品人妻一区二区三区麻豆| 我的女老师完整版在线观看| 亚洲精品一区蜜桃| 国产成人91sexporn| 免费黄频网站在线观看国产| 精品久久蜜臀av无| 成年女人在线观看亚洲视频| 色哟哟·www| 午夜免费观看性视频| 国产精品欧美亚洲77777| 亚洲三级黄色毛片| 久久影院123| 国产av码专区亚洲av| 国产精品一二三区在线看| 色婷婷av一区二区三区视频| 欧美老熟妇乱子伦牲交| 免费观看的影片在线观看| 亚洲精品亚洲一区二区| 自线自在国产av| 男女高潮啪啪啪动态图| 最近中文字幕2019免费版| 日韩一区二区三区影片| 一本—道久久a久久精品蜜桃钙片| 久久毛片免费看一区二区三区| 91精品国产国语对白视频| 边亲边吃奶的免费视频| 欧美成人午夜免费资源| 国国产精品蜜臀av免费| 少妇高潮的动态图| 一本大道久久a久久精品| 国产一区二区三区av在线| 久久久a久久爽久久v久久| 亚洲国产精品一区三区| 天堂中文最新版在线下载| 欧美成人精品欧美一级黄| 中文精品一卡2卡3卡4更新| 国产探花极品一区二区| 亚洲精品国产av成人精品| 亚洲色图 男人天堂 中文字幕 | 日日摸夜夜添夜夜添av毛片| 我要看黄色一级片免费的| av免费观看日本| 午夜免费观看性视频| 国模一区二区三区四区视频| 这个男人来自地球电影免费观看 | 中文精品一卡2卡3卡4更新| 国产欧美亚洲国产| 97精品久久久久久久久久精品| 亚洲欧洲国产日韩| 热99久久久久精品小说推荐| 亚洲欧美清纯卡通| 91aial.com中文字幕在线观看| 久久久a久久爽久久v久久| 最近中文字幕高清免费大全6| 大话2 男鬼变身卡| 亚洲美女搞黄在线观看| 丰满迷人的少妇在线观看| 在线看a的网站| 黑人巨大精品欧美一区二区蜜桃 | 日韩一区二区三区影片| 日韩中文字幕视频在线看片| 精品酒店卫生间| 51国产日韩欧美| 视频区图区小说| a级片在线免费高清观看视频| 18禁在线无遮挡免费观看视频| 亚洲精品乱码久久久久久按摩| 亚洲av在线观看美女高潮| 免费大片18禁| 日本黄大片高清| 中文字幕免费在线视频6| 高清av免费在线| 久久久久久久久久人人人人人人| 人妻系列 视频| 欧美精品国产亚洲| 国产成人精品福利久久| 日韩一区二区三区影片| 国产成人精品婷婷| 亚洲成色77777| 亚洲精品中文字幕在线视频| 又大又黄又爽视频免费| 日本91视频免费播放| 天天操日日干夜夜撸| 天美传媒精品一区二区| 考比视频在线观看| 免费大片18禁| 女性生殖器流出的白浆| 中文字幕精品免费在线观看视频 | 日本-黄色视频高清免费观看| 国产成人a∨麻豆精品| 精品熟女少妇av免费看|