• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extending aromatic acids on TiO2 for cooperative photocatalysis with triethylamine: Violet light-induced selective aerobic oxidation of sulfides

    2022-09-16 05:24:16HuiLiXiaLiJunZhouWenlongShengXianjunLang
    Chinese Chemical Letters 2022年8期

    Hui Li, Xia Li, Jun Zhou, Wenlong Sheng, Xianjun Lang

    Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China

    ABSTRACT Designing visible light photocatalysts with a metal oxide semiconductor as the starting material could expand a new horizon for the conversion and storage of solar energy.Here, the benchmark photocatalyst TiO2 was used to pursue this goal by anchoring aromatic acids.Extending the aromatic acid was strategically deployed to design TiO2 complexes with violet light-induced selective aerobic oxidation of sulfide as the probe reaction.With benzoic acid (BA) as the initial molecule, horizontally extending one or two benzene rings furnishes 2-naphthoic acid (2-NA) and 2-anthracene acid (2-AA).Moreover, triethylamine(TEA), an electron transfer mediator, was introduced to maintain the integrity of the anchored aromatic acids.Notably, there was a direct correlation between the π-conjugation of aromatic acid ligand and the selective aerobic oxidation of sulfides.Among the three aromatic acids, 2-AA delivered the best result over TiO2 due to the most extensive π-conjugated system.Ultimately, violet light-induced selective aerobic oxidation of sulfides into corresponding sulfoxides was conveniently realized by cooperative photocatalysis of 2-AA-TiO2 with 10 mol% of TEA.This work affords an extending strategy for designing the next-generation ligands for semiconductors to expand visible light-induced selective reactions.

    Keywords:Aromatic acid Extending π-conjugation Complex photocatalyst Oxidation of sulfides Cooperative photocatalysis

    The development of solar energy conversion and storage is essential for alleviating the looming energy and environmental crisis triggered by the global population explosion and unprecedented economic growth [1–4].However, the intermittent and diffuse nature of solar energy leave ample space to further developments.Increasingly, semiconductor photocatalysis can expand a new horizon for harnessing solar energy [5,6].Whereas visible light utilization rate in the solar spectrum still imposes restrictions on the available scope of transition metal oxides on Earth [7,8].For instance, TiO2can only absorb approximately 5% of natural sunlight owing to its wide bandgaps (3.0 eV for rutile, 3.2 eV for anatase)[9,10].Nevertheless, TiO2turns out to be a stepping stone to new photocatalysts that close the energy gap [11,12].

    Particularly, surface-modified TiO2with carboxyl, hydroxyl containing ligands such as ethylenediaminetetraacetic acid [13,14], salicylic acid [15,16], catechol [17,18], glucose [19,20], and cyclodextrin [21,22] have aroused great interest on account of their high absorption of visible light and low recombination of electron-hole to achieve photocatalytic reactions efficiently.Besides, the properties of the TiO2complexes, such as photochemical stability, optical response, and binding mode, are closely associated with the structure of ligands [23–25].Generally, aromatic organic acids containing other functional groups like hydroxyl can form more stable surface complexes than aromatic monocarboxylic acids [26].Nevertheless, theπ-conjugation of aromatic monocarboxylic acid ligands also strongly affects the complex’s stability, surface binding,and charge transfer [27,28].Therefore, one can embrace the concept of molecular design to select redox-active ligand based on a previously disclosed strategy [29].

    Hereby, with benzoic acid (BA) as the initial molecule, horizontally extending one or two benzene rings furnish 2-naphthoic acid (2-NA) and 2-anthracene acid (2-AA) which could be anchored onto TiO2for the photocatalytic selective oxidation of sulfides.It is worth noting that the selective oxidation of organic sulfides has recently attracted much interest [30,31] because the resultant sulfoxides are vital intermediates for agrochemicals, pharmaceuticals, and valuable fine chemicals [32–36].Meanwhile, TEA, an electron transfer mediator [37], maintains the integrity of these surface ligands on TiO2.Additionally, TEA also stands out for its low boiling point in consideration of the subsequent separation and purification of sulfoxides [38].Hence, cooperative photocatalysis of 2-AA-TiO2with TEA in solution is establishedviacollisional electron transfer.

    Fig.1.(a) Horizontally extending the benzene ring of BA obtains 2-NA and 2-AA.(b) UV–vis DRS of TiO2, BA-TiO2, 2-NA-TiO2, 2-AA-TiO2.(c) Violet light-induced selective aerobic oxidation of phenyl methyl sulfide over BA-TiO2, 2-NA-TiO2, 2-AA-TiO2.Reaction conditions: CH3OH (1 mL), ligand (1.2 × 10?3 mmol), TiO2 (40 mg), TEA (0.03 mmol),phenyl methyl sulfide (0.35 mmol), aerial O2, violet LEDs (3 W × 4).(d) FTIR spectra of TiO2, 2-AA, and 2-AA-TiO2.

    In general, the aromatic monocarboxylic acid-modified TiO2complex is implemented by the acidolysis and exchange of the surface hydroxyl groups of TiO2with carboxylate anions, forming the RCOO-Ti bond [26].However, theπ-conjugated system in aromatic monocarboxylic acids can greatly affect the electrostatic attraction of carboxylate anions to the titanol group, thus affecting the stability and photocatalytic activity of the ligand-modified TiO2.With BA as the initial molecule, horizontally extending theπ-conjugation affords two monocarboxylic acids ligands, namely 2-NA and 2-AA(Fig.1a).In this work, Aeroxide P25 TiO2was adopted as the starting metal oxide to anchor BA, 2-NA, and 2-AA.

    Based on the ultraviolet (UV)–visible absorption spectra (Fig.S1a in Supporting information), it can be found that compared with BA, there is no absorption response to visible light completely in 2-NA, while 2-AA can harvest a band of visible light at approximately 400–420 nm.When they were assigned as redox-active ligands for the surface of TiO2, UV–visible diffuse reflectance spectra (UV–vis DRS) (Fig.1b) show that the difference between BATiO2, 2-NA-TiO2, and pristine TiO2is relatively small.Conversely,the difference between 2-AA-TiO2and pristine TiO2is rather obvious.Compared with TiO2,which can only absorb UV light, the response range of 2-AA-TiO2has an obvious redshift.In addition,combining with Fig.S1b (Supporting information), Fig.1b reveals that the light-emitting spectrum of the violet LED overlaps with the absorbance of 2-AA-TiO2.Despite the loading of these ligands,there was no change in the powder X-ray diffraction (PXRD) peaks of rutile and anatase TiO2(Fig.S1c in Supporting information).

    Subsequently, these complexes were applied to the violet lightinduced selective oxidation of phenyl methyl sulfide (Fig.1c).It is intriguing to find a correlation between the conversions of phenyl methyl sulfide and the structure of these monocarboxylic acid ligands.With only one benzene ring, the photocatalytic activity of BA-TiO2was almost zero under the standard conditions.With the augment ofπ-conjugation, the violet light-induced conversion of phenyl methyl sulfide increased from 26% over 2-NA-TiO2to 86%over 2-AA-TiO2for 1 h, which was attributed to the more stabilized binding of carboxyl from 2-AA with the surface hydroxyl group of TiO2.Compared with anatase TiO2(ST-01) or rutile TiO2with much higher specific surface areas, Aeroxide P25 TiO2with 2-AA was the best complex photocatalyst (Table S1 in Supporting information).

    Next, the chemical states of Ti, O, and C in 2-AA-TiO2were measured by X-ray photoelectron spectroscopy (XPS) (Fig.S2 in Supporting information).The Ti 2p1/2(464.4 eV) and Ti 2p3/2(458.5 eV) peaks conform to the results of Ti 2p (Fig.S2a), which are consistent with a previous investigation [37].Meanwhile, in Fig.S2b, the XPS data of O 1s can be split into O?Ti at about 529.6 eV,O=C at about 530.9 eV, O?C at about 531.8 eV, which might be due to the presence of excessive 2-AA on the surface of the 2-AATiO2.According to the C 1s XPS (Fig.S2c), the carboxylate group from 2-AA successfully combined with the titanol group of TiO2to generate the 2-AA-TiO2complex.

    On the other hand, the formation of 2-AA-TiO2complex was explored by Fourier-transform infrared (FTIR) spectroscopy.In Fig.1d,the two broad peaks at 1423 cm?1and 1403 cm?1were attributed to the stretching vibrations of –COOTi– group.The peak (1423 cm?1) in the FTIR spectrum of 2-AA corresponded to the symmetric stretching of the hydroxy group in a carboxyl group.Therefore, it is reasonable to accept that 2-AA is successfully adsorbed on the surface of TiO2.Nevertheless, a more profound analysis is required to further determine whether the binding mode of 2-AATiO2is through bidentate or monodentateviathe carboxylate ligand.The FTIR spectra of pristine TiO2and 2-AA were also presented in Fig.1d.The primary signal peak of the carboxylic group in 2-AA are analyzed as following: 1683 cm?1is the stretching vibration peak of C=O; the signal peaks at 1582 cm?1, 1481 cm?1,and 1461 cm?1are assigned to C=C skeleton stretching mode;the signal peak at 1423 cm?1is the vibration peak of O?H in carboxylate group; the strong peak at 1290 cm?1is the stretching vibration peak of C?O [39,40].If the 2-AA-TiO2possesses the monodentate mode, the FTIR spectrum of 2-AA-TiO2should show the vibration peak of C=O.However, the actuality that the peak of C=O was vacant in the curve, revealed that 2-AA-TiO2was more tend to the bidentate binding mode.Meanwhile, the peak of?C?O?Ti?presented in the FTIR spectrum of 2-AA-TiO2and the slightly shifted peak position further manifested that the two oxygen atoms in the ?COO?connected to the adjacent surface Ti sites respectively and formed the bridging bidentate mode.Furthermore,the FTIR spectra of BA-TiO2and 2-NA-TiO2are also shown in Fig.S3a (Supporting information).

    Fig.2.(a) Quenching experiments to identify the ROS for the violet light-induced selective aerobic oxidation of phenyl methyl sulfide.Standard reaction conditions: CH3OH(1 mL), 2-AA (1.2 × 10?3 mmol), TiO2 (40 mg), TEA (0.03 mmol), phenyl methyl sulfide (0.35 mmol), aerial O2, violet LEDs (3 W × 4), 40 min.The EPR signals recoded during the violet light-induced selective aerobic oxidation of phenyl methyl sulfide over the 2-AA-TiO2 photocatalyst, (b) eCB?of 2-AA-TiO2 and (c) O2?– captured by DMPO.

    After confirming 2-AA-TiO2complex, various control experiments were conducted for the selective aerobic oxidation of sulfide into sulfoxide.It can be found that photocatalyst synthesizedin situis more effective than the pre-prepared 2-AA-TiO2for the selective aerobic oxidation of phenyl methyl sulfide to sulfoxide (Table S2 in Supporting information).Meanwhile, kinetic studies have shown that there is no induction time when aromatic acids modified TiO2wasin situformed (Fig.S3b in Supporting information).Hereafter, the exploration of the effect of different wavelengths of LEDs is stated in Fig.S4a (Supporting information), proposing that the corresponding conversion is commensurate to the UV–vis DRS of 2-AA-TiO2.In Fig.S4b (Supporting information), it was found that very few sulfide were transformed into the corresponding sulfoxide with 2-AA.When 2-AA was loaded onto the surface of TiO2to form a complex photocatalyst, the conversion of phenyl methyl sulfide was significantly improved (Fig.S4b).Synchronously, the recycling tests were implemented to testify the durability of the 2-AA-TiO2photocatalyst (Fig.S4c in Supporting information).The recovered 2-AA-TiO2was also reused twice with the temperate refurbishing of 2-AA, implying its superior endurance.

    Importantly, all the components of the photocatalytic system were indispensable based on the thorough control experiments.Further, the effect of the amounts of aromatic acids was explored(Fig.S5a in Supporting information).The conversion of phenyl methyl sulfide sharply increased once 2-AA was added.However,with the further increase of the dosage of 2-AA, the conversion of phenyl methyl sulfide increased slightly.With the amount of TiO2enhanced, the yield of phenyl methyl sulfoxide advanced gradually and the selectivity of the product declined slightly (Fig.S5b in Supporting information).TEA, the electron transfer mediator, exhibited a considerable effect on the violet light-induced selective aerobic oxidation of sulfide over the 2-AA-TiO2photocatalyst (Fig.S5c in Supporting information).Furthermore, when TEA was replaced by trimethylamine, the conversion of phenyl methyl sulfoxide decreased slightly (Table S3 in Supporting information).CH3OH, as a redox-active solvent, plays an important role in the formation of phenyl methyl sulfoxide (Table S4 in Supporting information).With the increasing power of violet LEDs, the conversion of phenyl methyl sulfide presented an increasing trend (Fig.S5d in Supporting information).

    Next, different scavengers were introduced into the system to determine the reactive oxygen species (ROS) (Fig.2a).First, a singlet oxygen (1O2) scavenger, 1,4-diazabicyclo[2.2.2]octane (DABCO)was added to the reaction system.The slightly reduced conversion indicated that1O2did not produce a decisive impact on the reaction.In contrast, whenp-benzoquinone (p-BQ) was introduced to capture O2?–, the selective oxidation of sulfide was almost completely restrained, suggesting that O2?–was the pivotal ROS.Nevertheless, no reaction occurred in an atmosphere of N2, suggesting O2is the terminal oxidant.Besides, AgNO3completely restrained the reaction by capturing eCB?.Furthermore, according to Fig.S6a(Supporting information), the flat band potential that is closely related to the conduction band (CB) potential could be linearly fitted to be ?0.85 Vvs.Ag/AgCl from the intercept of the x-axis, which is negative than the potential of O2/O2?–(?0.48 Vvs.Ag/AgCl).According to the value of the bandgap and the CB potential, the valence band (VB) potential was calculated as +1.9 Vvs.Ag/AgCl (Fig.S6b in Supporting information).

    To better comprehend the reaction process, electron paramagnetic resonance (EPR) experiments were then carried out.The eCB?signal of 2-AA-TiO2gradually increased with the prolongation of exposure time in the absence of O2(Fig.2b).Once O2was poured,the eCB?signal reduced to the initial state, indicating the relevance between O2and eCB?.The EPR signal of O2?–was then tested with 5,5-dimethyl-1-pyrrolineN-oxide (DMPO) as the capturing agent(Fig.2c).The EPR signal of O2?–dramatically increased under violet light irradiation from 0 min to 2 min and continued to slightly increase at 4 min, suggesting that O2?–captured by DMPO was accumulated and maintained after switching off the light.

    Tentatively, a mechanism of violet light-induced selective aerobic oxidation of sulfide over 2-AA-TiO2photocatalyst with TEA is proposed in Scheme 1.Firstly, the carboxyl group of 2-AA is in combination with the surface hydroxyl group of TiO2, constituting the 2-AA-TiO2photocatalyst, which enables the reaction to take place at the violet light range.Next, the charge separation is generated over the surface complex by the stimulation of violet light.2-AA would straightly infuse electrons into the CB of TiO2to form 2-AA?+, without running into an excited state of 2-AA?.Meanwhile, O2?–is generated by the reduction of O2at the CB of TiO2.Thirdly, the transition between TEA and TEA?+is driven by collisional electron transfer with 2-AA?+, and the resulted TEA?+interacts with phenyl methyl sulfide to deliver a sulfur-centered radical cation, which is pivotal to connect the TEA redox cycle and photocatalytic cycle.This connection can effectively prevent the 2-AA-TiO2photocatalyst from being undermined by ROS.Fourthly,the sulfur-centered radical cation combines with O2?–to generate phenyl methyl persulfoxide.Ultimately, protons from CH3OH terminate phenyl methyl persulfoxide to afford phenyl methyl sulfoxide.

    Scheme 1.A proposed mechanism of violet light-induced selective aerobic oxidation of phenyl methyl sulfide by cooperative photocatalysis of 2-AA-TiO2 with TEA.

    Then, the range of organic sulfides subjected to the photocatalytic protocol was investigated (Table 1).Phenyl methyl sulfide was oxidized to corresponding phenyl methyl sulfoxide in 88% selectivity and 85% conversion for 50 min (Table 1, entry 1).With a comparable reaction time, the sulfides containing electrondonating groups generally afforded higher conversions than that of phenyl methyl sulfide (Table 1, entries 2–4).On the contrary, conversions of sulfides containing electron-withdrawing groups were lower than that of phenyl methyl sulfide (Table 1, entries 7–12).The sulfides with anm–methoxy group or ano–methoxy group holding the fairly strong steric hindrance effect desired an extended reaction time (Table 1, entries 5 and 6).A similar trend was observed in sulfides containing electron-withdrawing groups(Table 1, entries 11 and 12).Therefore, affected by the steric effect,the required reaction time of the regioisomer augmented in the order ofpara < meta < orthoisomer.In addition, when the methyl group of phenyl methyl sulfide was replaced by an ethyl group or a phenyl group, longer reaction time was acquired (Table 1, entries 13 and 14).The selective oxidation of 2-naphthyl methyl sulfide took a longer time to reach a similar conversion (Table 1, entry 15).Moreover, the selective oxidation of aliphatic sulfides required less reaction time to achieve the considerable conversion (Table 1,entry 16) or achieved a higher conversion and selectivity with the standard reaction time (Table 1, entry 17).

    Table 1 Violet light-induced selective aerobic oxidation of sulfides into sulfoxides with air by cooperative photocatalysis of 2-AA-TiO2 with TEA.a

    Table 1 (continued)

    (continued on next page)

    In summary, extending theπ-conjugation of aromatic acids has been adopted to construct TiO2complex visible light photocatalysts.Intriguingly, with BA as the initial molecule, horizontally extending one or two benzene rings acquires 2-NA and 2-AA.Among three aromatic acids, 2-AA has delivered the best result over TiO2due to the most extendedπ-conjugation.Importantly, TEA maintains the integrity of anchored aromatic acids and accelerates electron transfer.Conveniently, violet light-induced selective aerobic oxidation of sulfides to sulfoxides has been realized by cooperative photocatalysis of 2-AA-TiO2with 10 mol% of TEA.This work extends the library of next-generation ligands for semiconductors to expand visible light-induced selective organic reactions.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgment

    This work was funded by the National Natural Science Foundation of China (Nos.22072108 and 21773173).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.10.068.

    在线 av 中文字幕| 久久人人爽人人爽人人片va| 91久久精品电影网| 九草在线视频观看| 两个人视频免费观看高清| 亚洲精品日韩av片在线观看| 国产精品一区二区性色av| 亚洲精华国产精华液的使用体验| 欧美丝袜亚洲另类| 欧美成人a在线观看| 国产一区亚洲一区在线观看| 久久热精品热| .国产精品久久| 国产激情偷乱视频一区二区| 麻豆精品久久久久久蜜桃| 在线观看免费高清a一片| 国产精品精品国产色婷婷| 亚洲国产精品专区欧美| 日韩精品青青久久久久久| 三级男女做爰猛烈吃奶摸视频| 午夜视频国产福利| av线在线观看网站| 午夜精品国产一区二区电影 | 免费看不卡的av| 中文字幕亚洲精品专区| 精品欧美国产一区二区三| 国产亚洲午夜精品一区二区久久 | 国产黄片美女视频| 免费黄网站久久成人精品| 18禁裸乳无遮挡免费网站照片| 99九九线精品视频在线观看视频| 日本与韩国留学比较| 国产午夜福利久久久久久| 搞女人的毛片| av在线老鸭窝| 极品教师在线视频| 久久久久精品性色| 国精品久久久久久国模美| 免费播放大片免费观看视频在线观看| 国产爱豆传媒在线观看| 黄色日韩在线| 成人午夜精彩视频在线观看| 欧美97在线视频| 亚洲精品第二区| 97热精品久久久久久| 亚洲精品国产成人久久av| 久久久久精品久久久久真实原创| 国产成人精品久久久久久| 国产成人精品福利久久| 精品久久久久久久人妻蜜臀av| 精品国内亚洲2022精品成人| 亚洲真实伦在线观看| 亚洲精品亚洲一区二区| 七月丁香在线播放| 久久韩国三级中文字幕| 国产黄色小视频在线观看| 亚洲内射少妇av| 婷婷色麻豆天堂久久| 亚洲经典国产精华液单| 看黄色毛片网站| 尤物成人国产欧美一区二区三区| 97精品久久久久久久久久精品| 亚洲av一区综合| 最近最新中文字幕免费大全7| 日产精品乱码卡一卡2卡三| av福利片在线观看| 国产久久久一区二区三区| 一个人免费在线观看电影| 在线观看av片永久免费下载| 三级男女做爰猛烈吃奶摸视频| 国产精品不卡视频一区二区| 国产综合懂色| 美女高潮的动态| 国产淫片久久久久久久久| 一二三四中文在线观看免费高清| 精品午夜福利在线看| eeuss影院久久| 日韩人妻高清精品专区| 亚洲经典国产精华液单| 久久久精品免费免费高清| 蜜桃久久精品国产亚洲av| 免费在线观看成人毛片| 国产老妇伦熟女老妇高清| 丰满少妇做爰视频| 国产在视频线精品| 国模一区二区三区四区视频| 国产综合精华液| 黑人高潮一二区| 亚洲乱码一区二区免费版| 国产成人精品久久久久久| 成人亚洲精品一区在线观看 | 亚洲在久久综合| 可以在线观看毛片的网站| 高清毛片免费看| 如何舔出高潮| 久99久视频精品免费| 美女内射精品一级片tv| 成人特级av手机在线观看| 日韩大片免费观看网站| 国产真实伦视频高清在线观看| 国产精品一区二区性色av| 精品酒店卫生间| 久久亚洲国产成人精品v| 日日摸夜夜添夜夜添av毛片| 看黄色毛片网站| 国产免费又黄又爽又色| 成年av动漫网址| 熟女人妻精品中文字幕| 国模一区二区三区四区视频| 69人妻影院| 亚洲av成人av| 国产 亚洲一区二区三区 | 日韩精品青青久久久久久| 亚洲最大成人中文| 中文字幕人妻熟人妻熟丝袜美| 一级av片app| 国产美女午夜福利| 免费观看的影片在线观看| 久久97久久精品| 国产精品爽爽va在线观看网站| xxx大片免费视频| 日韩精品有码人妻一区| 亚洲真实伦在线观看| 亚洲av日韩在线播放| 一级毛片黄色毛片免费观看视频| 黄色配什么色好看| 久久久精品免费免费高清| 在线观看人妻少妇| 蜜桃久久精品国产亚洲av| 亚洲成人一二三区av| 久久人人爽人人片av| 久久99热6这里只有精品| 一级av片app| 亚洲精品国产av蜜桃| 亚洲精品乱码久久久v下载方式| 午夜福利成人在线免费观看| 久热久热在线精品观看| 中文字幕制服av| 国产69精品久久久久777片| 狂野欧美白嫩少妇大欣赏| 最近的中文字幕免费完整| 国产黄色视频一区二区在线观看| 亚洲av免费高清在线观看| 性色avwww在线观看| 午夜免费激情av| 欧美成人一区二区免费高清观看| 日本爱情动作片www.在线观看| 一级毛片久久久久久久久女| 搡老乐熟女国产| 欧美一区二区亚洲| 久久99热这里只频精品6学生| 国产高清有码在线观看视频| 最近中文字幕高清免费大全6| 国产黄色小视频在线观看| 久久综合国产亚洲精品| 国产视频首页在线观看| 欧美日韩视频高清一区二区三区二| 青春草亚洲视频在线观看| 偷拍熟女少妇极品色| 啦啦啦中文免费视频观看日本| 丝袜美腿在线中文| 亚洲婷婷狠狠爱综合网| videossex国产| 高清欧美精品videossex| 大香蕉97超碰在线| 成人av在线播放网站| 麻豆乱淫一区二区| 欧美 日韩 精品 国产| 久久99热6这里只有精品| 国产乱来视频区| 久久久久性生活片| 美女高潮的动态| 欧美丝袜亚洲另类| 一级av片app| 日韩欧美国产在线观看| 午夜精品一区二区三区免费看| 日韩欧美一区视频在线观看 | 天堂俺去俺来也www色官网 | 老女人水多毛片| 又黄又爽又刺激的免费视频.| 欧美一级a爱片免费观看看| 秋霞伦理黄片| 国产精品不卡视频一区二区| 伦理电影大哥的女人| 国产有黄有色有爽视频| h日本视频在线播放| 岛国毛片在线播放| 尾随美女入室| 亚洲av中文字字幕乱码综合| 99热这里只有是精品在线观看| 一二三四中文在线观看免费高清| 日本猛色少妇xxxxx猛交久久| 色吧在线观看| 色综合站精品国产| 激情 狠狠 欧美| 嫩草影院新地址| 国产综合精华液| 国精品久久久久久国模美| 亚洲va在线va天堂va国产| 狂野欧美白嫩少妇大欣赏| 秋霞在线观看毛片| 午夜福利成人在线免费观看| 精品99又大又爽又粗少妇毛片| 特大巨黑吊av在线直播| 久久久久久久久久久丰满| 国产高清三级在线| 天堂av国产一区二区熟女人妻| 国产成人午夜福利电影在线观看| 一个人看视频在线观看www免费| 国产精品.久久久| 最近中文字幕2019免费版| 精品一区二区三区人妻视频| 91久久精品电影网| 久久精品国产自在天天线| av免费在线看不卡| 一级a做视频免费观看| 久久久精品94久久精品| 国产高清有码在线观看视频| 好男人视频免费观看在线| 国产人妻一区二区三区在| 成人二区视频| 亚洲天堂国产精品一区在线| 成人一区二区视频在线观看| 一个人看视频在线观看www免费| 肉色欧美久久久久久久蜜桃 | 熟女电影av网| 国产精品综合久久久久久久免费| av国产免费在线观看| 国产成年人精品一区二区| 久久综合国产亚洲精品| 午夜免费激情av| 99久国产av精品| 久久久久久久亚洲中文字幕| 国产在线男女| 白带黄色成豆腐渣| 日韩精品青青久久久久久| 亚洲国产av新网站| 乱人视频在线观看| 亚洲综合精品二区| 久久精品久久久久久久性| 久久久久久久久久久丰满| 午夜视频国产福利| 波野结衣二区三区在线| 日韩av在线免费看完整版不卡| av免费观看日本| 久久精品综合一区二区三区| 亚洲国产精品成人综合色| 成人av在线播放网站| 91精品国产九色| 别揉我奶头 嗯啊视频| 亚洲av中文字字幕乱码综合| 成人亚洲精品一区在线观看 | 久久精品夜夜夜夜夜久久蜜豆| 国产 亚洲一区二区三区 | 一级a做视频免费观看| 日本av手机在线免费观看| 好男人在线观看高清免费视频| 色视频www国产| videos熟女内射| 一边亲一边摸免费视频| 国产精品三级大全| 亚洲欧美日韩卡通动漫| 美女cb高潮喷水在线观看| 啦啦啦啦在线视频资源| 亚洲在线自拍视频| 免费av观看视频| 亚洲国产高清在线一区二区三| 国产亚洲5aaaaa淫片| 美女黄网站色视频| av又黄又爽大尺度在线免费看| 日本免费a在线| 日韩亚洲欧美综合| 国产精品国产三级国产专区5o| 欧美日韩亚洲高清精品| 欧美xxxx黑人xx丫x性爽| 精华霜和精华液先用哪个| 欧美高清成人免费视频www| 人妻系列 视频| 国产精品久久视频播放| 禁无遮挡网站| 国产在线一区二区三区精| 伦精品一区二区三区| 精品熟女少妇av免费看| 日本色播在线视频| 美女国产视频在线观看| 久久人人爽人人爽人人片va| 丝袜美腿在线中文| 简卡轻食公司| 别揉我奶头 嗯啊视频| 亚洲国产日韩欧美精品在线观看| 大陆偷拍与自拍| 男女边摸边吃奶| 亚洲国产精品专区欧美| or卡值多少钱| 免费观看性生交大片5| 一二三四中文在线观看免费高清| 国产淫片久久久久久久久| 亚洲国产成人一精品久久久| 美女被艹到高潮喷水动态| 精品少妇黑人巨大在线播放| 国产熟女欧美一区二区| 黄片无遮挡物在线观看| 欧美精品国产亚洲| 免费观看性生交大片5| av女优亚洲男人天堂| 99热这里只有精品一区| 精品国内亚洲2022精品成人| 国产成人精品福利久久| 日日啪夜夜撸| 亚州av有码| 97热精品久久久久久| 久久精品国产亚洲网站| 国产 一区 欧美 日韩| 最近中文字幕2019免费版| 男人舔女人下体高潮全视频| 色综合站精品国产| 精品欧美国产一区二区三| 高清毛片免费看| h日本视频在线播放| 婷婷色综合大香蕉| 嫩草影院精品99| 人妻少妇偷人精品九色| 伊人久久国产一区二区| 看免费成人av毛片| 免费看a级黄色片| 亚洲精品乱久久久久久| 国产精品久久久久久av不卡| 色视频www国产| 看黄色毛片网站| 精品人妻偷拍中文字幕| 麻豆国产97在线/欧美| 免费观看的影片在线观看| 日日啪夜夜爽| 波野结衣二区三区在线| 欧美日韩精品成人综合77777| 久久综合国产亚洲精品| 一级黄片播放器| 国产在线男女| 欧美xxⅹ黑人| 在线免费观看的www视频| 欧美日韩国产mv在线观看视频 | 精品人妻偷拍中文字幕| 国产成年人精品一区二区| 国语对白做爰xxxⅹ性视频网站| 亚洲久久久久久中文字幕| 少妇熟女aⅴ在线视频| 精品人妻视频免费看| 一级二级三级毛片免费看| 麻豆av噜噜一区二区三区| 爱豆传媒免费全集在线观看| 青青草视频在线视频观看| 韩国高清视频一区二区三区| kizo精华| 中文欧美无线码| 听说在线观看完整版免费高清| 欧美丝袜亚洲另类| 中国美白少妇内射xxxbb| 亚洲精品久久久久久婷婷小说| 亚洲精品国产成人久久av| 国产美女午夜福利| 久久久欧美国产精品| 国产爱豆传媒在线观看| 亚洲熟妇中文字幕五十中出| 久久久久网色| 成人一区二区视频在线观看| 亚洲精品乱码久久久久久按摩| 亚洲国产欧美人成| 日韩一区二区三区影片| 伦精品一区二区三区| 在线观看一区二区三区| 一个人观看的视频www高清免费观看| 成人亚洲精品av一区二区| 黄色一级大片看看| 男人舔女人下体高潮全视频| 国产精品久久视频播放| 老女人水多毛片| 国产精品久久久久久av不卡| 久久精品国产亚洲网站| 国产伦在线观看视频一区| 哪个播放器可以免费观看大片| 久久6这里有精品| 伊人久久国产一区二区| 亚洲欧美一区二区三区黑人 | 国产精品99久久久久久久久| 国产av在哪里看| 午夜亚洲福利在线播放| 蜜桃久久精品国产亚洲av| 精品不卡国产一区二区三区| 97超视频在线观看视频| 国产精品一区www在线观看| 91狼人影院| 热99在线观看视频| 国产精品熟女久久久久浪| 国产精品人妻久久久久久| 亚洲熟女精品中文字幕| videossex国产| 精品久久久噜噜| 国产精品国产三级专区第一集| 日本av手机在线免费观看| 久久精品熟女亚洲av麻豆精品 | 一级a做视频免费观看| 色视频www国产| 一个人看的www免费观看视频| 七月丁香在线播放| 国产精品一区www在线观看| 国产伦在线观看视频一区| 99久久精品热视频| 熟女人妻精品中文字幕| 免费看光身美女| 亚洲av男天堂| 简卡轻食公司| 欧美激情国产日韩精品一区| 高清日韩中文字幕在线| 久久久久久久大尺度免费视频| 国产免费一级a男人的天堂| 丰满少妇做爰视频| 少妇的逼水好多| 亚洲国产精品sss在线观看| av国产久精品久网站免费入址| 联通29元200g的流量卡| 亚洲国产精品sss在线观看| 大香蕉97超碰在线| 国产午夜精品论理片| 国产精品av视频在线免费观看| 国产老妇伦熟女老妇高清| 亚洲无线观看免费| 久久久成人免费电影| 熟女人妻精品中文字幕| 国内精品一区二区在线观看| 亚州av有码| 欧美3d第一页| 人体艺术视频欧美日本| 91久久精品国产一区二区三区| 99热这里只有精品一区| 国产一级毛片七仙女欲春2| 最近视频中文字幕2019在线8| 高清毛片免费看| 国内少妇人妻偷人精品xxx网站| 日本爱情动作片www.在线观看| 丝袜喷水一区| 日产精品乱码卡一卡2卡三| 男女视频在线观看网站免费| 成人欧美大片| 久久精品国产自在天天线| 亚洲国产色片| 九草在线视频观看| 国产成人精品婷婷| 国产亚洲一区二区精品| 国产精品久久久久久久电影| 99九九线精品视频在线观看视频| 精品人妻一区二区三区麻豆| 国内精品美女久久久久久| 偷拍熟女少妇极品色| 精品久久久久久久久久久久久| 亚洲激情五月婷婷啪啪| 国产精品久久久久久av不卡| 波多野结衣巨乳人妻| 热99在线观看视频| 97精品久久久久久久久久精品| 免费无遮挡裸体视频| 麻豆国产97在线/欧美| 男人狂女人下面高潮的视频| 精品熟女少妇av免费看| 日韩成人av中文字幕在线观看| 又黄又爽又刺激的免费视频.| 日韩欧美精品v在线| 国产亚洲av嫩草精品影院| 黄色日韩在线| 美女黄网站色视频| 女人被狂操c到高潮| 身体一侧抽搐| 在线观看免费高清a一片| 欧美变态另类bdsm刘玥| 久久久成人免费电影| 久久久久性生活片| 免费观看在线日韩| 两个人视频免费观看高清| 日韩欧美一区视频在线观看 | 美女主播在线视频| 亚洲欧美中文字幕日韩二区| 免费无遮挡裸体视频| 舔av片在线| 十八禁国产超污无遮挡网站| 久久99蜜桃精品久久| 亚洲va在线va天堂va国产| 久久亚洲国产成人精品v| 国产成人免费观看mmmm| 国产美女午夜福利| 99视频精品全部免费 在线| 美女xxoo啪啪120秒动态图| 欧美97在线视频| 亚洲怡红院男人天堂| 色视频www国产| 国产高潮美女av| 乱人视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 中文天堂在线官网| 午夜激情久久久久久久| 午夜爱爱视频在线播放| 网址你懂的国产日韩在线| 精品一区在线观看国产| 伊人久久国产一区二区| av播播在线观看一区| 久久久色成人| 九草在线视频观看| 97在线视频观看| 久久99热这里只频精品6学生| 伊人久久国产一区二区| 国产午夜精品久久久久久一区二区三区| 国内精品宾馆在线| 久久精品国产亚洲av涩爱| 国产精品人妻久久久影院| 成人亚洲精品av一区二区| 久久久久久九九精品二区国产| 亚洲国产最新在线播放| 亚洲无线观看免费| 国产黄a三级三级三级人| 日本三级黄在线观看| 免费高清在线观看视频在线观看| 久久久久网色| 成人亚洲欧美一区二区av| 观看美女的网站| 欧美3d第一页| 天堂中文最新版在线下载 | 亚洲在线自拍视频| 亚洲av成人精品一二三区| 超碰97精品在线观看| 22中文网久久字幕| 毛片女人毛片| 夫妻性生交免费视频一级片| 美女xxoo啪啪120秒动态图| 久久这里有精品视频免费| 免费不卡的大黄色大毛片视频在线观看 | 国模一区二区三区四区视频| 免费大片黄手机在线观看| 亚洲av电影在线观看一区二区三区 | 搡老妇女老女人老熟妇| 大又大粗又爽又黄少妇毛片口| 精品一区二区免费观看| 亚洲av电影不卡..在线观看| 亚洲欧美精品专区久久| 99热全是精品| 成人毛片60女人毛片免费| 亚洲国产最新在线播放| 欧美不卡视频在线免费观看| av一本久久久久| 欧美潮喷喷水| 免费不卡的大黄色大毛片视频在线观看 | 国产色婷婷99| 亚洲av.av天堂| 高清在线视频一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久久大尺度免费视频| 蜜臀久久99精品久久宅男| 国产老妇伦熟女老妇高清| 国产成人精品久久久久久| 亚洲综合精品二区| 国产高清不卡午夜福利| 欧美成人a在线观看| 免费大片黄手机在线观看| 日韩成人av中文字幕在线观看| 色5月婷婷丁香| 一级毛片久久久久久久久女| 免费av观看视频| 狂野欧美激情性xxxx在线观看| 80岁老熟妇乱子伦牲交| 国国产精品蜜臀av免费| 亚洲人成网站高清观看| 久久久久久久久大av| 久久精品国产亚洲av天美| 黄片wwwwww| 中文字幕免费在线视频6| 3wmmmm亚洲av在线观看| 久久久久国产网址| 成人漫画全彩无遮挡| av在线亚洲专区| 青春草亚洲视频在线观看| 国产精品人妻久久久久久| 亚洲最大成人av| 国产午夜精品论理片| 噜噜噜噜噜久久久久久91| 久久久久久久久中文| 国产黄a三级三级三级人| 十八禁国产超污无遮挡网站| 精品午夜福利在线看| 亚洲av成人精品一区久久| 精品午夜福利在线看| 亚洲在线观看片| 国产成年人精品一区二区| 精品亚洲乱码少妇综合久久| 精华霜和精华液先用哪个| 在线免费观看不下载黄p国产| 黄色一级大片看看| 男女边吃奶边做爰视频| 天堂影院成人在线观看| 亚洲av中文av极速乱| 国产精品熟女久久久久浪| 欧美日韩综合久久久久久| 国产高清有码在线观看视频| 亚洲人成网站在线观看播放| 日韩三级伦理在线观看| 成人一区二区视频在线观看| 久久人人爽人人爽人人片va| 日韩电影二区| 综合色av麻豆| 国产成人一区二区在线| av在线播放精品| 国产黄片美女视频| 亚洲国产最新在线播放| 亚洲欧美一区二区三区黑人 | 午夜福利在线在线| 国产69精品久久久久777片| 国产一区二区三区av在线| 国产91av在线免费观看| 美女国产视频在线观看|