• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Engineering d-band center of nickel in nickel@nitrogen-doped carbon nanotubes array for electrochemical reduction of CO2 to CO and Zn-CO2 batteries

    2022-09-16 05:24:14ShujinShenChengHanBingWangYingdeWang
    Chinese Chemical Letters 2022年8期

    Shujin Shen, Cheng Han, Bing Wang, Yingde Wang

    Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

    ABSTRACT Self-supported transition-metal single-atom catalysts (SACs) facilitate the industrialization of electrochemical CO2 reduction, but suffer from high structural heterogeneity with limited catalytic selectivity.Here we present a facile and scalable approach for the synthesis of self-supported nickel@nitrogen-doped carbon nanotubes grown on carbon nanofiber membrane (Ni@NCNTs/CFM), where the Ni single atoms and nanoparticles (NPs) are anchored on the wall and inside of nitrogen-doped carbon nanotubes, respectively.The side effect of Ni NPs was further effectively inhibited by alloying Ni with Cu atoms to alter their d-band center, which is theoretically predicted and experimentally proved.The optimal catalyst Ni9Cu1@NCNTs/CFM exhibits an ultrahigh CO Faradic efficiency over 97% at ?0.7 V versus reversible hydrogen electrode.Additionally, this catalyst shows excellent mechanical strength which can be directly used as a self-supporting catalyst for Zn-CO2 battery with a peak power density of ~0.65 mW/cm2 at 2.25 mA/cm2 and a long-term stability for 150 cycles.This work opens up a general avenue to facilely prepare self-supported SACs with unitary single-atom site for CO2 utilization.

    Keywords:CO2 reduction Electrocatalysis Self-supported catalysts Single atom Zn-CO2 battery

    Electrochemical carbon dioxide (CO2) reduction reaction(CO2RR) to value-added chemicals by renewable electric energy offers a promising strategy to address global warming and energy shortage issues [1–3].Among the CO2RR products, C1chemicals such as carbon monoxide (CO) benefit from their simple kinetics process, high selectivity as well as low separation cost.Thus, it has more positive economic benefits for industrialization compared with C2or C3counterpart [4,5].To date, NiNxCysingle-atom catalysts (SACs) is one of most promising electrocatalysts for CO2RR to CO due to its high catalytic selectivity as a result from unfavorable competing hydrogen evolution reaction (HER) [6–12].Furthermore, previous research has shown that judiciously modified the architecture of SACs is of equal importance for CO2RR as it involves the consumption of gas and water [13–15].For example,several explorations demonstrated that incorporating single-atom moieties on self-supporting substrate to form self-supported SACs would increase the area of liquid-gas-solid interface and avoid the weak contacts between substrate and SACs in traditional powdery catalysts.Such structure would exhibit industrial-level current density and stability [16,17].

    Although the newly developed self-supported SACs integrated the advantages of SACs and self-supporting electrode to exhibit the prospect of industrialization, the current synthesis strategies for self-supported SACs are still limited by tedious synthetic steps,including the preparation and assemble process of SACs precursors [18,19].The top-down synthetic routes can directly convert the metal nanoparticles (NPs) into SACs at high temperature,which makes it possible to prepare self-supported SACsviaonepot method and greatly simplify the preparation process [20–22].Previous studies employed the Ni NPs loaded on self-supporting substrate such as carbon nanofibers (CNF) as seeds to grow Ndoped carbon nanotubes (NCNTs).Ni single-atom moieties has been trapped by the defects in NCNTs and then achieved simple and scalable fabrication of self-supported Ni SACs [23].However,the residual Ni NPs are prone to be enclosed by NCNTs to form Ni@C core-shell structure.

    Fig.1.(a, b) Top view and side view of the geometric structure of Ni@NC and Ni9Cu1@NC, where substrate hides behind metal atoms.(c) Calculated DOS and (d)the calculated free energy diagrams for HER on the surface of Ni@NC, Ni9Cu1@NC and Ni9Co1@NC.

    Moreover, these concomitantly generated graphite encapsulated Ni (Ni@C) would serve as heterogeneous active site to suppress catalytic selectivity [24–27].A few reports have been tried to remove the graphite encapsulated metal (M@C) NPs from SACs through high-temperature Cl2treatment, low-temperature NH4Cl treatment or leaching combined with ball-milling [28–30].Nevertheless, these harsh treatment processes inevitably damage the single-atom sites or self-supporting structures.In such case,achieving the simple and scalable preparation of self-supported SACs with only NiNxCymoieties active remains grand challenges through top-down synthetic route.

    Intrinsically, HER activity of Ni NPs is originated from the proper?H intermediates binding strength induced by its electronic structure [31].Hence, one can imagine that modulating the electronic structure of Ni@C may make them inactive to competing with HER, and then improve the catalytic selectivity without removing the M@C NPs.Practically, alloying Ni with a 3d transition metal (e.g., Fe, Co, Cu) has been found as an effective way for altering their electronic structure [32–34].To this end, we firstly sought to find Ni based alloy (NiM) with insufficient HER activity by theoretical calculations.Modeling shows that alloying Ni with Cu would enhance free energy for?H captured by alloy and inhibit HER.Inspired by this, we employed the Ni9Cu1alloy to replace pure Ni NPs as seeds to prepare selfsupported Ni9Cu1NPs/single-atom carbon nanofiber membrane catalyst (Ni9Cu1@NCNTs/CFM) through electrospinning combined top-down synthetic method.Electrochemical experiment described that Ni9Cu1@NCNTs/CFM presented an ultrahigh CO Faradic effi-ciency (FE) over 97% at ?0.7 Vvs.reversible hydrogen electrode(RHE).Benefit from the good mechanical properties and catalytic performance, Ni9Cu1@NCNTs/CFM was further demonstrated to be an efficient cathode catalyst for a high-performance Zn-CO2battery with a power density up to ~0.65 mW/cm2.

    Density functional theory (DFT) studies were firstly established to investigate two types of Ni based alloy (i.e., NiCu and NiCo).Since the doping metal atoms may also dispersed in NCNTs to generate NiNxCymoieties, the content of doping metal atoms was controlled at a low level to avoid forming abundant doping metal single-atom moieties on NCNTs and affecting the selectivity [20,35,36].As shown in Figs.1a, b and Fig.S1 in Supporting information, the models for the N-doped graphene encapsulated Ni, Ni9Cu1and Ni9Co1(Ni:M = 9:1) sites were constructed.We queried the projected density of states (PDOS) of Ni 3d, Cu 3d and Co 3d to investigate the effect of alloying on their d-band center.As shown in Fig.1c and Fig.S2 in Supporting information, introducing Cu atoms into Ni NPs regulates the PDOS of obtained sample, inducing a left shift of PDOS of 3d orbitals and a deeper dband center of Ni9Cu1@NC (?2.17 eV) compared to those on Ni@NC(1.21 eV), whereas the d-band center of Ni9Co1@NC shift right to?1.06 eV.On the basis of d-band center theory, the binding of the intermediates on Ni9Cu1@NC and Ni9Co1@NC may be weakened and enhanced, respectively [37].In light of this, we then simulated the Gibbs free energy of key reaction path ways for HER in various catalysts.As shown in Fig.1d, the adsorption free energy of hydrogen (ΔGH?) in Ni9Cu1@NC is calculated to be 1.11 eV, higher than that of Ni@NC (0.96 eV).On the other hand, Ni9Co1@NC exhibited the surprisingly lowerΔGH?of 0.11 eV for HER.Generally,ΔGH?was used to evaluate the electrocatalytic activity of HER.In principle, moderate hydrogen adsorption (ΔGH?= 0) would deliver the optimal HER activity [38].Collectively, the introduction of Cu into Ni NPs may lead to a suppressed HER activity of alloy NPs, and then improve the CO selectivity of Ni9Cu1@NCNTs/CFM.

    Fig.2.(a) Schematic illustration of synthesis of Ni9Cu1@NCNTs/CFM catalysts.(b,c)top view and (d) cross-sectional SEM images of Ni9Cu1@NCNTs/CFM.(e) TEM and(h) corresponding element maps images of Ni9Cu1@NCNTs/CFM.(f) the magnified TEM image of Ni9Cu1 NPs.(g) HAADF-STEM images of Ni9Cu1@NCNTs/CFM.

    Fig.3.(a) XRD patterns of various catalysts.(b) Ni 2p XPS spectra of Ni9Cu1@NCNTs/CFM.(c) Ni K-edge XANES spectra and (d) the Fourier transform of EXAFS data of Ni9Cu1@NCNTs/CFM, Ni foil, and NiO samples.(e) Cu K-edge XANES spectra and (f) the Fourier transform of EXAFS data of Ni9Cu1@NCNTs/CFM, Cu foil, and CuO samples.

    To experimentally realize the concept of DFT predictions, the Ni9Cu1@NCNTs/CFM was prepared as shown in Fig.2a.Initially,a precursor solution containing certain amount of nickel acetoacetate, copper acetoacetate and polyacrylonitrile (PAN) were electrospun to Ni9Cu1@PAN pristine nanofibers.Subsequently, the resulting nanofibers were pre-oxidated in air and carbonized with enough melamine on upstream in Ar atmosphere successively.In this process, the NiCu oxide NPs supported on CNF were reduced to NiCu alloy NPs by C and N-contained gas molecules and then served as seeds to catalyze the growth of NCNTs, and form Ni9Cu1@NCNTs/CFM eventually.The morphology of the obtained catalysts was characterized by scanning electron microscope(SEM).As shown in Figs.2b–d, Ni9Cu1@NCNTs/CFM comprises selfsupporting CNF and densely covered NCNTs with a length of ca.hundreds of microns.This composite structure has good mechanical properties and can be directly used as self-supporting catalyst(Figs.S3 and S4 in Supporting information).Transmission electron microscopy (TEM) image in Fig.2e shows NCNTs with a diameter about 30–50 nm.A closer high-resolution TEM image in Fig.2f demonstrate that Ni9Cu1alloy NPs are enclosed by multiple carbon layers in NCNTs, which is because these encapsulated metal NPs are stable and not easily removed by leaching in dilute acid.The measured lattice spacing of the alloy (0.206 nm) is slightly larger than that of Ni NPs, indicating the formation of Ni9Cu1alloy.The corresponding mapping image in Fig.2h demonstrated the homogenous distribution of Ni, Cu, N, C species across the tube wall of NCNTs without observable metal clusters or NPs, suggesting the existence of atomically dispersed metal atoms.An aberrationcorrected high-angle annular dark-field (HAADF) STEM image in Fig.2g exhibited isolated bright spots on the NCNTs, which confirmed this suggestion as prior literatures conclusively show that these bright spots correspond to isolated Ni atoms due to the positive correlation between brightness and atomic number [39,40].

    As comparisons, we also produced Ni@NCNTs/CFM and Ni9Co1@NCNTs/CFM, which were synthesized by changing Ni9Cu1to Ni or Ni9Co1(Figs.S5 and S6 in Supporting information).The above results demonstrated that introducing doping metal salt in the precursor successfully tuned the final composition of obtained encapsulated NPs.As discussed in introduction, this composition control may provide a solution to inactivate the encapsulated Ni NPs to enable the MNxCymoieties active only in self-supported Ni NPs/single-atom catalyst.

    The crystal structure of the as-prepared catalysts was investigated by X-ray diffraction (XRD) spectra.As shown in Fig.3a, all samples comprised mixed crystal patterns including Ni NPs and graphite, which further confirmed that all catalysts have similar structures.The chemical compositions and elemental states of catalysts were further analyzed by X-ray photoelectron spectroscopy(XPS).The survey-scan spectrum (Fig.S7 in Supporting information) reveals the existence of Ni, N, C and doping metal atoms in all samples.The undetectable signal of doping metal atoms implies their low concentration (Fig.S8 in Supporting information),and the specific contents were estimated by XPS.As shown in Table S1 in Supporting information, the content of doping metal(~0.2 at%) is much lower than that of Ni (~1.2 at%), which suggest that the effect of doping atoms can be ignored.The binding energies of Ni 2p3/2(Fig.S9 in Supporting information) located between metallic Ni0(853.5 eV) and Ni2+(855.8 eV), suggesting a low-valent state of Ni species in Ni9M1@NCNTs/CFM catalysts.In addition, the high-resolution XPS N 1s spectra (Fig.3b) could deconvolute into pyridine N (398.8 eV), Ni/M-N (~399.8 eV), pyrrole(400.5 eV), graphitic (401.3 eV) and oxidized (403.0 eV) N species.From the above XPS results, we infer that the isolated metal atoms in Ni9M1@NCNTs/CFM catalysts is bonded with N atoms.To further verify the chemical identity of the Ni and Cu atoms in the catalysts,Ni and Cu K-edge X-ray absorption near edge structure (XANES)spectra were performed.As shown in Fig.3c, the edge location of Ni9Cu1@NCNT/CFM is higher than Ni foil but lower than the Ni2+atoms in NiO, which shows the oxidation of the Ni species, consistent with Ni XPS.Similarly, in the Cu XANES spectrum as shown in Fig.3e, the edge location situated between Cu foil and CuO references can be attributed to the unsaturated valence state of Cuδ+.Furthermore, the coordination environment of the Ni or Cu species in Ni9Cu1@NCNT/CFM was assessed by extended X-ray absorption fine structure (EXAFS).The peaks centered at 1.35 and 2.14were observed in Fig.3d, which can be attributed to disperse Ni-Nxsites and encapsulated metal NPs, respectively.Similarly, in the Cu EXAFS spectrum as shown in Fig.3f, the peak around 1.12 and 2.21have been considered to correspond to Cu-N coordination and Cu-Ni/Cu metal bond, respectively.This observation is also in accordance with the XPS results.Similar to the previous literatures, the accurate local coordination structure of Ni single-atom moieties may not be acquired by further fitting EXAFS data as the fitting process is limited by the strong peak of Ni-Ni [21–23].However,the above results undoubtedly confirm the existence of single-atom moieties with M-N coordination in the catalysts.

    To investigate the effect of alloying on the electrocatalytic activity of Ni@C NPs.Linear sweep voltammetry (LSV) was used to evaluate the CO2RR and HER activity of all catalysts on a rotating ring-disk electrode.As shown in Fig.S13 (Supporting information), the current density recorded in CO2-saturated KHCO3solution was higher than that in the N2-saturated electrolyte, suggesting that all samples possess good CO2RR activity.Note that Ni9Cu1@NCNTs/CFM exhibited a lower current density compared with others (Fig.S14 in Supporting information).This decline in total current density is likely the result of suppressed HER activity of Ni9Cu1@C NPs.

    Fig.4.(a) CO FE in CO2-saturated KHCO3 electrolyte, (b) partial current densities for H2 and (c) LSV curves in N2-saturated KHCO3 electrolyte of various catalysts, (d) Tafel plots, (e) CO FE of various catalysts ground in HCl, (f) stability test of Ni9Cu1@NCNTs/CFM at ?0.8 V vs. RHE for 20 h, (g) schematic illustration for Zn-CO2 battery, (h)discharge polarization and power density curves of Zn-CO2 battery, (i) galvanostatic discharge-charge cycling curves at 0.5 mA/m2 for 150 cycles.

    To verify this, chronoamperometric measurements were carried to assess CO selectivity.CO and H2was the only gaseous product and no liquid product can be detected (Fig.S15 in Supporting information).As shown in Fig.4a, Ni9Cu1@NCNTs/CFM exhibited a higher CO FE with respect to the others.Specifically, when the potential was ?0.7 V vs.RHE, the CO FE reached up to 97% and can be maintained above 90% in a wide potential window from?0.6 to ?0.9 V.As to Ni9Co1@NCNTs/CFM, the CO FE declined obviously to ~75% from 85% compared to Ni@NCNTs/CFM.Furthermore, Ni9Cu1@NCNTs/CFM showed a similarjCObut decreased jH2compared to others (Fig.4b and Fig.S14 in Supporting information).

    To explore the origin of the suppressed HER activity in Ni9Cu1@NCNTs/CFM, the activity of M@C NPs and single-atom moieties was separately evaluated.We firstly compared the current density of various catalysts in N2-saturated electrolyte as the current density obtained under CO2free condition will directly reflect the HER performance of catalysts.As shown in Fig.4c, unlike Ni9Co1@NCNTs/CFM, Ni9Cu1@NCNTs/CFM exhibited an inferior HER activity compared to Ni@NCNTs/CFM.NiNxCymoieties has been proved to be almost inactive to HER [6,21], thus the declined HER activity can be attributed to the difference of M@C NPs.Since previous reports demonstrated that forming heterodiatomic moieties may affect their catalytic activity compared with single-atom moieties counterpart [41,42], the effect of introducing another single-atom moiety on CO2RR performance was analyzed by ball milling the catalysts in HCl to remove M@C NPs.As shown in Fig.4d, the similar Tafel slope observed in catalysts ground with HCl (H-Ni9M1@NCNTs/CFM) suggests that introducing doping atoms has a negligible effect on CO2RR performance of single-atom moieties, which is further confirmed by similar CO FE in H-Ni9M1@NCNTs/CFM catalysts (Fig.4e).This phenomenon was probably caused by the very low content of doping atoms.Collectively, these results jointly confirm that the enhanced CO selectivity in Ni9Cu1@NCNTs/CFM originate from suppressed HER in Ni9Cu1@C NPs, consistent with the DFT simulations.In addition,Ni9Cu1@NCNTs/CFM showed stable current density and almost invariable CO FE during a 20 h operation at ?0.8 V, indicating the good stability (Fig.4f).

    In view of the highly efficient CO2RR performance and selfs-upporting structure of Ni9Cu1@NCNTs/CFM, we directly used Ni9Cu1@NCNTs/CFM as cathode to assemble a liquid rechargeable Zn-CO2battery by using 6.0 mol/L KOH with 0.2 mol/L Zn(Ac)2as anodic electrolyte and 0.5 mol/L KHCO3cathodic electrolyte.The bipolar membrane was used to maintain the different pH of two compartments [43,44].As shown in Fig.4g, CO2RR occurs on the cathode and Zn was dissolved into the anode electrolyte in the discharge.During the charge process, oxygen evolution reaction occurred on the cathode, accompanied by Zn deposition on the anode.Fig.S19 in Supporting information shows the discharge and charge polarization curves for Zn-CO2battery, confirming the rechargeable feature of the battery.Besides, the peak power density reached ~0.65 mW/cm2at 2.25 mA/cm2(Fig.4h), indicating that its practical application potential.Furthermore, the Zn-CO2battery was continuously recycled at a constant current density of 0.5 mA/cm2with delivered discharge voltage of 0.7 V and charge voltage of 2 V for 150 cycles, demonstrating the excellent durability of the Zn-CO2battery (Fig.4i).

    In summary, as predicted by the DFT calculations, incorporating Cu atoms into Ni NPs can tune its d-band center and theoretically suppress the HER activity.In light of this, we employed the Ni9Cu1alloy on CNF as seeds to facilely prepare a self-supported Ni9Cu1NPs/single-atom catalyst through electrospinning combined top-down synthetic method.The optimized Ni9Cu1@NCNTs/CFM catalyst presents an ultrahigh CO FE over 97% at ?0.7 V.The subsequent comparative experiments revealed that this excellent CO selectivity originate from suppressed HER activity of encapsulated Ni9Cu1NPs.Furthermore, Zn-CO2battery based on the Ni9Cu1@NCNTs/CFM cathode were devised to show a peak power density of ~0.65 mW/cm2, and an excellent long-term operation stability.Our discoveries provide a guidance for facile and scalable preparation of self-supported Ni SACs with unitary single-atom active sites for many potential applications, including Zn-CO2battery and beyond.

    Declaration of competing interest

    All authors approved this submission and there are no conflicts to declare.We confirm that this work is original and has not been published, and is not being submitted to any other journals during this submission.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (Nos.51773226, 61701514) and the Natural Science Foundation of Hunan Province (No.2018JJ3603).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.10.063.

    国产高清有码在线观看视频| 国产成人av教育| 一卡2卡三卡四卡精品乱码亚洲| www.熟女人妻精品国产| 中文字幕av在线有码专区| h日本视频在线播放| 午夜福利在线在线| 久久精品综合一区二区三区| 亚洲欧美一区二区三区黑人| 国产97色在线日韩免费| 亚洲人成网站高清观看| 国产毛片a区久久久久| 精品一区二区三区视频在线观看免费| 男人舔女人下体高潮全视频| 国产精品精品国产色婷婷| 最后的刺客免费高清国语| 性欧美人与动物交配| 天堂av国产一区二区熟女人妻| 成人国产综合亚洲| www日本黄色视频网| 久久香蕉国产精品| av女优亚洲男人天堂| 国产成人啪精品午夜网站| 亚洲一区二区三区不卡视频| 99国产极品粉嫩在线观看| 亚洲av美国av| 在线观看午夜福利视频| 国产精品 欧美亚洲| 国产亚洲精品一区二区www| 老汉色∧v一级毛片| 国产主播在线观看一区二区| 免费搜索国产男女视频| 一卡2卡三卡四卡精品乱码亚洲| 中文资源天堂在线| 日本免费一区二区三区高清不卡| 久久精品国产清高在天天线| 久久精品91无色码中文字幕| 国产久久久一区二区三区| 好看av亚洲va欧美ⅴa在| 亚洲成人久久性| 免费av毛片视频| 日韩欧美免费精品| 美女 人体艺术 gogo| 国产色爽女视频免费观看| 色老头精品视频在线观看| 日韩欧美国产一区二区入口| 国产一区二区三区在线臀色熟女| 国产成人aa在线观看| 最新美女视频免费是黄的| 成人国产综合亚洲| 热99在线观看视频| 久久天躁狠狠躁夜夜2o2o| 成年女人毛片免费观看观看9| 天堂网av新在线| 免费av不卡在线播放| 亚洲国产精品999在线| 久久精品综合一区二区三区| 国产中年淑女户外野战色| 免费观看精品视频网站| 熟女电影av网| 欧美黄色片欧美黄色片| 欧美成狂野欧美在线观看| svipshipincom国产片| 99国产精品一区二区三区| 此物有八面人人有两片| a级毛片a级免费在线| 1024手机看黄色片| 日日摸夜夜添夜夜添小说| 三级国产精品欧美在线观看| 国产一区二区在线av高清观看| 亚洲五月婷婷丁香| 国内精品久久久久精免费| 手机成人av网站| 久久国产乱子伦精品免费另类| 99久国产av精品| 高潮久久久久久久久久久不卡| 久久国产精品影院| 色吧在线观看| 毛片女人毛片| 欧美最黄视频在线播放免费| 久久久久久人人人人人| 久久香蕉国产精品| 桃色一区二区三区在线观看| 在线国产一区二区在线| 免费看a级黄色片| 亚洲内射少妇av| 成年人黄色毛片网站| 精品人妻一区二区三区麻豆 | 久久精品影院6| 欧美黑人巨大hd| 色综合欧美亚洲国产小说| 香蕉久久夜色| 国内揄拍国产精品人妻在线| 在线观看午夜福利视频| 啦啦啦观看免费观看视频高清| 午夜两性在线视频| 亚洲av成人av| 午夜激情欧美在线| 国产精品亚洲美女久久久| av天堂在线播放| 久久久国产精品麻豆| 无人区码免费观看不卡| 亚洲一区二区三区不卡视频| 一区福利在线观看| 午夜老司机福利剧场| svipshipincom国产片| 亚洲精品一卡2卡三卡4卡5卡| 欧美bdsm另类| 午夜老司机福利剧场| 日韩欧美国产在线观看| 人妻夜夜爽99麻豆av| 天堂动漫精品| 黄色片一级片一级黄色片| 窝窝影院91人妻| 在线观看av片永久免费下载| 叶爱在线成人免费视频播放| 欧美一级毛片孕妇| 变态另类成人亚洲欧美熟女| 日本精品一区二区三区蜜桃| 18禁黄网站禁片午夜丰满| 国产精品电影一区二区三区| 亚洲真实伦在线观看| 最近视频中文字幕2019在线8| 国产中年淑女户外野战色| 在线国产一区二区在线| 色噜噜av男人的天堂激情| 岛国在线免费视频观看| 久久国产精品人妻蜜桃| 精品电影一区二区在线| 狠狠狠狠99中文字幕| 校园春色视频在线观看| 全区人妻精品视频| 琪琪午夜伦伦电影理论片6080| 午夜激情欧美在线| 欧美不卡视频在线免费观看| 免费电影在线观看免费观看| 亚洲人成电影免费在线| 久久精品亚洲精品国产色婷小说| 国产高清激情床上av| 日本 欧美在线| 国内久久婷婷六月综合欲色啪| h日本视频在线播放| www.色视频.com| 午夜老司机福利剧场| 久久国产精品人妻蜜桃| 国产精品影院久久| 亚洲精品影视一区二区三区av| 国产精品永久免费网站| 99久久久亚洲精品蜜臀av| 亚洲精品粉嫩美女一区| aaaaa片日本免费| 亚洲无线观看免费| 九九久久精品国产亚洲av麻豆| 午夜福利在线观看吧| 久久伊人香网站| 在线观看免费视频日本深夜| 免费高清视频大片| 精品无人区乱码1区二区| 无限看片的www在线观看| 最新中文字幕久久久久| 国产亚洲精品久久久com| 淫妇啪啪啪对白视频| 麻豆久久精品国产亚洲av| 亚洲国产欧美人成| 亚洲第一欧美日韩一区二区三区| 久久国产精品影院| 19禁男女啪啪无遮挡网站| 无人区码免费观看不卡| 老司机在亚洲福利影院| 少妇的逼好多水| 久久久色成人| 亚洲无线观看免费| 高清日韩中文字幕在线| 一进一出抽搐动态| 国产黄片美女视频| 麻豆国产97在线/欧美| x7x7x7水蜜桃| 婷婷亚洲欧美| 国产国拍精品亚洲av在线观看 | 在线天堂最新版资源| 中文字幕人妻丝袜一区二区| 首页视频小说图片口味搜索| 免费av不卡在线播放| 天堂动漫精品| 国产v大片淫在线免费观看| 激情在线观看视频在线高清| 99精品欧美一区二区三区四区| 国产精品嫩草影院av在线观看 | 国产日本99.免费观看| 老司机深夜福利视频在线观看| av国产免费在线观看| 嫩草影院入口| 美女被艹到高潮喷水动态| 亚洲精品在线观看二区| 啪啪无遮挡十八禁网站| 日日夜夜操网爽| 色在线成人网| 午夜福利视频1000在线观看| 中文资源天堂在线| 国产主播在线观看一区二区| 51国产日韩欧美| 国产精品亚洲美女久久久| 国产伦精品一区二区三区视频9 | 动漫黄色视频在线观看| 午夜亚洲福利在线播放| 国产精品一区二区免费欧美| 欧美日本亚洲视频在线播放| 亚洲精华国产精华精| 国产成人a区在线观看| 成人国产一区最新在线观看| 一个人观看的视频www高清免费观看| 中文在线观看免费www的网站| 久久久成人免费电影| 黄片大片在线免费观看| 久久精品亚洲精品国产色婷小说| 亚洲精品色激情综合| 免费在线观看亚洲国产| 国产伦一二天堂av在线观看| 中文字幕人妻丝袜一区二区| 老司机福利观看| 亚洲电影在线观看av| 国产一区二区亚洲精品在线观看| 久久伊人香网站| 一进一出抽搐gif免费好疼| 国产精品精品国产色婷婷| 日本在线视频免费播放| 老熟妇仑乱视频hdxx| 69人妻影院| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 女人高潮潮喷娇喘18禁视频| 国产精华一区二区三区| 国产免费男女视频| 免费高清视频大片| 亚洲国产精品久久男人天堂| 亚洲av成人不卡在线观看播放网| 亚洲精品久久国产高清桃花| 国产熟女xx| 男女做爰动态图高潮gif福利片| 男人的好看免费观看在线视频| 人人妻人人看人人澡| 国产主播在线观看一区二区| 欧美色欧美亚洲另类二区| av天堂中文字幕网| 综合色av麻豆| 精品久久久久久久久久久久久| 一进一出抽搐gif免费好疼| 51午夜福利影视在线观看| 亚洲天堂国产精品一区在线| 亚洲美女黄片视频| 在线观看日韩欧美| 婷婷精品国产亚洲av| 岛国视频午夜一区免费看| 中文字幕精品亚洲无线码一区| 国产精品国产高清国产av| 黄色女人牲交| 狂野欧美激情性xxxx| 中文亚洲av片在线观看爽| 19禁男女啪啪无遮挡网站| 久久草成人影院| 在线天堂最新版资源| 90打野战视频偷拍视频| 观看免费一级毛片| 最新中文字幕久久久久| av片东京热男人的天堂| 国产一区二区三区视频了| 日韩欧美免费精品| a级一级毛片免费在线观看| 亚洲成人中文字幕在线播放| 欧美日韩福利视频一区二区| 在线a可以看的网站| 国产精品日韩av在线免费观看| 成熟少妇高潮喷水视频| 精品人妻偷拍中文字幕| 午夜老司机福利剧场| 中文资源天堂在线| 麻豆国产97在线/欧美| 99热这里只有精品一区| 神马国产精品三级电影在线观看| 男人的好看免费观看在线视频| 成人永久免费在线观看视频| 琪琪午夜伦伦电影理论片6080| 久久伊人香网站| 久久久久亚洲av毛片大全| 一区二区三区免费毛片| 欧美日本视频| 国产精品久久久人人做人人爽| 亚洲成人久久爱视频| 亚洲av五月六月丁香网| 免费大片18禁| 99久久精品一区二区三区| 在线观看一区二区三区| 女人被狂操c到高潮| 精品国产超薄肉色丝袜足j| 免费观看人在逋| 看免费av毛片| 国产伦精品一区二区三区视频9 | 波多野结衣高清无吗| 俺也久久电影网| 9191精品国产免费久久| 亚洲精品美女久久久久99蜜臀| 亚洲人成网站在线播| 日本免费一区二区三区高清不卡| 青草久久国产| 波野结衣二区三区在线 | 黑人欧美特级aaaaaa片| 97人妻精品一区二区三区麻豆| 久久午夜亚洲精品久久| 国语自产精品视频在线第100页| 国产欧美日韩精品亚洲av| 亚洲国产精品久久男人天堂| 18禁黄网站禁片免费观看直播| 最近在线观看免费完整版| 色老头精品视频在线观看| a级毛片a级免费在线| 黑人欧美特级aaaaaa片| 色综合亚洲欧美另类图片| 国产69精品久久久久777片| 每晚都被弄得嗷嗷叫到高潮| 午夜老司机福利剧场| 日韩国内少妇激情av| 色综合站精品国产| 国产精品电影一区二区三区| 99精品欧美一区二区三区四区| 亚洲久久久久久中文字幕| av中文乱码字幕在线| 最近在线观看免费完整版| 亚洲专区国产一区二区| 91久久精品国产一区二区成人 | 亚洲精品国产精品久久久不卡| av黄色大香蕉| 九九久久精品国产亚洲av麻豆| 国产69精品久久久久777片| 国产爱豆传媒在线观看| 青草久久国产| 在线天堂最新版资源| 香蕉丝袜av| 男女那种视频在线观看| 午夜福利高清视频| 久久亚洲精品不卡| 精品电影一区二区在线| 露出奶头的视频| 99热这里只有精品一区| 成年女人看的毛片在线观看| 麻豆国产97在线/欧美| 中出人妻视频一区二区| 三级男女做爰猛烈吃奶摸视频| 亚洲,欧美精品.| 麻豆成人午夜福利视频| 日本熟妇午夜| 色吧在线观看| 老司机午夜十八禁免费视频| 天天一区二区日本电影三级| 色综合亚洲欧美另类图片| 久久午夜亚洲精品久久| 亚洲成av人片在线播放无| 国产不卡一卡二| 在线免费观看不下载黄p国产 | 成人欧美大片| 亚洲精品色激情综合| 成人18禁在线播放| 男女做爰动态图高潮gif福利片| 蜜桃亚洲精品一区二区三区| 亚洲 国产 在线| 亚洲欧美日韩高清专用| 一区二区三区激情视频| 成人无遮挡网站| 又黄又爽又免费观看的视频| 免费av毛片视频| 美女 人体艺术 gogo| 亚洲欧美激情综合另类| 一进一出抽搐动态| 真人做人爱边吃奶动态| 免费无遮挡裸体视频| 热99在线观看视频| 亚洲aⅴ乱码一区二区在线播放| 欧美极品一区二区三区四区| 老熟妇乱子伦视频在线观看| 香蕉av资源在线| 欧美日韩福利视频一区二区| 久久精品国产亚洲av涩爱 | 亚洲成av人片在线播放无| eeuss影院久久| 美女cb高潮喷水在线观看| 小蜜桃在线观看免费完整版高清| 精华霜和精华液先用哪个| 99riav亚洲国产免费| 啦啦啦观看免费观看视频高清| 美女大奶头视频| 禁无遮挡网站| 搡老熟女国产l中国老女人| 一进一出好大好爽视频| 国产精华一区二区三区| 变态另类成人亚洲欧美熟女| 亚洲精品久久国产高清桃花| av福利片在线观看| www.www免费av| 在线观看66精品国产| 岛国在线免费视频观看| 激情在线观看视频在线高清| 母亲3免费完整高清在线观看| 日韩国内少妇激情av| 少妇裸体淫交视频免费看高清| 午夜视频国产福利| 亚洲狠狠婷婷综合久久图片| 午夜免费男女啪啪视频观看 | 99久久九九国产精品国产免费| 69人妻影院| 免费看光身美女| 天美传媒精品一区二区| 又黄又爽又免费观看的视频| 男女视频在线观看网站免费| 久久国产精品影院| 亚洲五月婷婷丁香| 精品国产超薄肉色丝袜足j| 男插女下体视频免费在线播放| 一级黄色大片毛片| 免费看十八禁软件| 亚洲电影在线观看av| 免费观看的影片在线观看| 国产精品亚洲一级av第二区| 高清毛片免费观看视频网站| 在线天堂最新版资源| 嫁个100分男人电影在线观看| 熟女电影av网| 久久久色成人| 中文字幕av成人在线电影| 国产成人aa在线观看| 三级国产精品欧美在线观看| 亚洲成人久久爱视频| 中文字幕av成人在线电影| 黄色片一级片一级黄色片| 亚洲精品亚洲一区二区| 日本黄色片子视频| 无遮挡黄片免费观看| 免费看日本二区| 日韩成人在线观看一区二区三区| 人妻久久中文字幕网| 亚洲乱码一区二区免费版| 99久久精品国产亚洲精品| 男女午夜视频在线观看| xxxwww97欧美| 日韩欧美精品v在线| 中出人妻视频一区二区| 国产高清激情床上av| 亚洲第一电影网av| 国产私拍福利视频在线观看| 人妻丰满熟妇av一区二区三区| 日本精品一区二区三区蜜桃| 99久久精品一区二区三区| 久久久久久大精品| 在线观看舔阴道视频| 我要搜黄色片| 成年版毛片免费区| 一区二区三区免费毛片| 在线播放国产精品三级| 搡女人真爽免费视频火全软件 | 国产一区在线观看成人免费| 欧美国产日韩亚洲一区| 午夜免费观看网址| www.熟女人妻精品国产| 丁香欧美五月| bbb黄色大片| 18美女黄网站色大片免费观看| 国产aⅴ精品一区二区三区波| 伊人久久大香线蕉亚洲五| 日韩高清综合在线| 一级毛片女人18水好多| 日本五十路高清| 久久午夜亚洲精品久久| 国产毛片a区久久久久| 国产一区二区三区在线臀色熟女| 亚洲天堂国产精品一区在线| eeuss影院久久| 在线看三级毛片| 12—13女人毛片做爰片一| 一边摸一边抽搐一进一小说| 国产激情欧美一区二区| 黄色女人牲交| 国产69精品久久久久777片| 亚洲成人久久性| 日韩av在线大香蕉| 99热这里只有是精品50| 国产真人三级小视频在线观看| 成人av在线播放网站| 欧美最新免费一区二区三区 | 欧美+亚洲+日韩+国产| 性色avwww在线观看| 国产毛片a区久久久久| 深爱激情五月婷婷| 国产成人av激情在线播放| 国产蜜桃级精品一区二区三区| 少妇人妻精品综合一区二区 | 亚洲人成网站在线播| 亚洲 国产 在线| 久久久国产成人免费| 黄色成人免费大全| 国产精品日韩av在线免费观看| 麻豆成人午夜福利视频| 国语自产精品视频在线第100页| 听说在线观看完整版免费高清| 亚洲在线观看片| 久久精品国产清高在天天线| 欧美极品一区二区三区四区| 国产野战对白在线观看| 99精品久久久久人妻精品| 亚洲 欧美 日韩 在线 免费| 亚洲精品影视一区二区三区av| 亚洲国产日韩欧美精品在线观看 | 欧美另类亚洲清纯唯美| av天堂在线播放| 欧美色视频一区免费| av福利片在线观看| 成人午夜高清在线视频| 国产成+人综合+亚洲专区| 久久香蕉国产精品| 国内精品久久久久精免费| 丰满人妻一区二区三区视频av | 欧美日韩综合久久久久久 | 亚洲成人精品中文字幕电影| 成人无遮挡网站| 国产精品一区二区三区四区免费观看 | 亚洲欧美日韩无卡精品| 精品一区二区三区视频在线 | 国产亚洲av嫩草精品影院| 精品福利观看| 久久6这里有精品| 两性午夜刺激爽爽歪歪视频在线观看| 中文字幕熟女人妻在线| 看片在线看免费视频| 亚洲18禁久久av| 黑人欧美特级aaaaaa片| 91麻豆精品激情在线观看国产| 蜜桃久久精品国产亚洲av| 国产一区在线观看成人免费| 精品无人区乱码1区二区| 欧美一区二区精品小视频在线| 狂野欧美白嫩少妇大欣赏| 日韩成人在线观看一区二区三区| 精品久久久久久久久久久久久| 19禁男女啪啪无遮挡网站| 内射极品少妇av片p| 中亚洲国语对白在线视频| 国产精品综合久久久久久久免费| 亚洲精品456在线播放app | 男人舔女人下体高潮全视频| 国产成人av激情在线播放| av在线天堂中文字幕| 99久久精品一区二区三区| 国产精品三级大全| 日本一本二区三区精品| 国产蜜桃级精品一区二区三区| 亚洲精品456在线播放app | 亚洲一区高清亚洲精品| 成人国产一区最新在线观看| 桃红色精品国产亚洲av| 久久香蕉精品热| 国产精品久久久久久人妻精品电影| 好看av亚洲va欧美ⅴa在| 天天添夜夜摸| 好看av亚洲va欧美ⅴa在| 俄罗斯特黄特色一大片| 亚洲国产日韩欧美精品在线观看 | 亚洲国产日韩欧美精品在线观看 | 搡老熟女国产l中国老女人| 天天添夜夜摸| 精品久久久久久久人妻蜜臀av| 欧美一区二区国产精品久久精品| 天堂av国产一区二区熟女人妻| 90打野战视频偷拍视频| 中文字幕av在线有码专区| 欧美性猛交黑人性爽| 真人做人爱边吃奶动态| 国产成年人精品一区二区| 午夜久久久久精精品| 搡女人真爽免费视频火全软件 | 一卡2卡三卡四卡精品乱码亚洲| 国产一区二区在线观看日韩 | 三级男女做爰猛烈吃奶摸视频| 欧美xxxx黑人xx丫x性爽| 亚洲人成网站在线播放欧美日韩| 一边摸一边抽搐一进一小说| 中文亚洲av片在线观看爽| 久久九九热精品免费| 色哟哟哟哟哟哟| 欧美日韩福利视频一区二区| 大型黄色视频在线免费观看| 99热6这里只有精品| 最好的美女福利视频网| 国产单亲对白刺激| 3wmmmm亚洲av在线观看| 日韩欧美在线二视频| 国产私拍福利视频在线观看| xxx96com| 有码 亚洲区| 真人做人爱边吃奶动态| 母亲3免费完整高清在线观看| 精品电影一区二区在线| 亚洲精品乱码久久久v下载方式 | 欧美乱色亚洲激情| 高清毛片免费观看视频网站| 欧美日本亚洲视频在线播放| 男女那种视频在线观看| 国产黄色小视频在线观看| 三级国产精品欧美在线观看| 亚洲欧美精品综合久久99| 美女高潮喷水抽搐中文字幕| 国产探花极品一区二区| 亚洲最大成人手机在线| 美女免费视频网站| 国产精品电影一区二区三区| 最近最新中文字幕大全免费视频| 日本黄大片高清| 中出人妻视频一区二区| 亚洲内射少妇av| 国产毛片a区久久久久|