• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Recent advances on carborane-based ligands in low-valent group 13 and group 14 elements chemistry

    2022-09-16 05:24:06HaoWang
    Chinese Chemical Letters 2022年8期

    Hao Wang

    School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China

    ABSTRACT Carboranes are a class of polyhedral boron-carbon molecular clusters, they can serve as versatile ligands in stabilizing low-valent main group element compounds, due to their exceptionally thermal and chemical stabilities, easy modifications at the cage carbon vertices, as well as large spherical steric effects.These carborane-based ligands provide interesting opportunities for the synthesis of low-valent main group element compounds with novel structure and reactivity, which indeed enrich the chemistry of low-valent element main group compounds.This review summarizes the recent advances in the chemistry of lowvalent group 13 and group 14 element compounds supported by carborane-based ligands.Achievements and perspectives in this new and flourishing field are discussed in this review.

    Keywords:Carborane Borylene Carbene Silylene Main group chemistry

    1.Introduction

    Tremendous advances have been achieved in low-valent main group chemistry during the past three decades.Benefit from the appropriate design of ligands and synthetic strategies, a variety of low-valent main group element compounds, such as carbenes[1–5], silylenes [6–10], germylenes [6,7], borylenes [11], alanediyl[12], aluminyl anions [13], as well as boryl anions [14–17], which were long-considered as transient species have been synthesized and isolated in laboratory conditions.In this context, sterically and electronically demanding ligands are crucial, which affect not only the stability, but also the chemical and physical properties of such highly reactive species.Among them,N-heterocyclic ligand systems, such asβ-diketiminato (“NacNac”) [18,19], ene-diamide[14,20,21], amidinate [22,23], amidophosphine [24], as well as monodentate ligand,m-terphenyl [12,25] are the most commonly utilized resulting from the facile modifiability of the ligand frameworks (Fig.1).

    Fig.1.Selected low-valent group 13 and group 14 element compounds supported by N-heterocyclic and m-terphenyl ligand systems.

    Carboranes are a class of polyhedral boron-carbon molecular clusters, which have long been employed as versatile ligands for transition metals, leading to the formation of a new class of organometallic complexes with interesting structural features[26–33].In contrast, carborane-based ligands were employed in main group chemistry only in recent years.On the other hand,carboranes can also be considered as an alternative ligand system for low-valent main group element compounds attributed to their exceptionally thermal and chemical stabilities, easy modifications at the cage carbon vertices, large spherical steric effects, as well as theexo-π-bonding interactions between low-valent main group elements and cage carbons [34–37].This review summarizes recent achievements in the application of carborane-based ligands in lowvalent group 13 and group 14 elements chemistry.

    2.Application in low-valent group 13 elements chemistry

    Borylenes (R-B:), the boron(I) derivatives analogous to carbenes,are extremely electron-deficient and reactive arising from their structural features, only one substituent, but two vacant orbitals.In fact, free borylenes have not been isolated thus far, nevertheless, a series of Lewis bases-stabilized borylenes were synthesized[38].

    In 2015, Xie and coworkers investigated the application ofocarborane ligand in stabilization of borylenes by an iminocarborane 1 featuring an imino group attached to one cage carbon[39].Treatment of 1 withn-BuLi in toluene, followed by the addition of BBr3resulted in the formation of iminocarboranyldibromoborane 2.The desired iminocarboranylborylene 3 was prepared and isolated by reduction of 2 with potassium graphite in the presence of 1,3-diisopropyl-4,5-dimethylimidazole-2-ylidene in 57%yield (Scheme 1).Both X-ray analyses and density functional theory (DFT) calculations illustrate the presence of ligand-to-boronσdonation and boron-to-ligandπ-backdonation, which plays a crucial role for the stabilization of borylene 3.

    Scheme 1.Synthesis of iminocarboranylborylene.

    The presence of a lone pair of electrons at boron implies the potential of 3 to behave as a Lewis base, however, no reactions of 3 were observed with various transition metals,such as Ni(COD)2, Pd(PPh3)4, Pd(dba)2and ZnMe2(COD = 1,5-cyclooctadiene, dba = dibenzylideneacetone), probably because of the steric hindrance around boron.Nevertheless, the 2e?oxidation reaction of 3 with 2 equiv.of AgOAc in THF proceeded smoothly at room temperature, which afforded the formation of the expected trivalent boron compound 4 and silver metal [39].To probe the above reaction process, the oxidation of 3 was assessed electrochemically, and the cyclic voltammogram of 3 shows a reversible 1e?oxidation atE1/2= ?1.09 V (versusFc/Fc+), which implied the oxidation reaction might involve a radical cation intermediate.Indeed, the corresponding azaborolyl radical cations [5]2[Cu2I4] or[5][CuCl2] were obtained as NMR-silent dark red crystals by treatment of 3 with CuI or CuCl in THF at room temperature [40], in addition, the radical cations could be fully converted back to 3viathe reaction with K[CpFe(CO)2] (Scheme 2).DFT calculations show that the electron is delocalized over the BNC moiety, and the spin density is mainly localized at carbon (~73%) and boron (~25%).On the other hand, an unexpected oxidative deboration reaction was observed when 3 reacts with elemental sulfur in THF, leading to the formation of an unprecedented carbene-stabilized dicarbollylfused azaborole 6, rather than the compound with a “B=S” double bond [41–46].Both X-ray analyses and DFT calculations clearly illustrate the existence ofπ-conjugation between the azaborole ring and dicarbollyl ring.

    Scheme 2.Oxidation of 3.

    Scheme 3.Reversible photothermal isomerization between 3 and borirane 7.

    In 2017, the Xie group reported the reversible photothermal isomerization between 3 and borirane 7, an obvious color change was observed from deep purple to pale yellow, which afforded the first example of carborane-fused borirane 7 (Scheme 3) [47].DFT calculations show that 3 is thermodynamically more stable compared to borirane.It was noteworthy that, this reaction brought about a new avenue to approach carborane-main group elements threemembered ring.The B-C(cage) bond of 7 can be brokenviathe reaction with CuCl, HCl or elemental sulfur, resulting in the formation of ring-open and ring-expansion products 8, 9 and 10, respectively (Scheme 3).

    3.Application in low-valent group 14 elements chemistry

    3.1.Application in carbene chemistry

    In 2014, Lavallo and coworkers reported the isolation of a series of carborane anions-fusedN-heterocyclic carbenes (NHCs) featuring twoN-bound carborane anionsviacontrollable selective deprotonation of an anionic imidazolium salt precursor 11, including two dianionic and a trianionic NHC lithium adducts 12, 13 and 14,respectively (Scheme 4) [48].It is noteworthy that, 13 can be completely converted to 12 after heating the solution of 13 at 50 °C for 24 h, moreover, this isomerization can also be proton-catalyzed by 11.This study demonstrates that introduction of carboranes into NHC readily results in the change of chemical behavior, which undoubtedly broaden the NHC family.

    Scheme 4.Synthesis of carborane anions-fused N-heterocyclic carbenes.

    Scheme 5.Synthesis of unsymmetrical carborane anion-fused NHCs.

    As an extension of this study, the Lavallo group subsequently reported the synthesis of unsymmetrical NHCs 16, 17 and 18 featuring one carboraneN-substituent and one hydrocarbonNsubstituent by controllable deprotonation of unsymmetrical zwitterionic imidazolium species 15 with bases, which was prepared by treatment of mesityl substituted oxazolinium cation with carborane anion amine, followed by reaction with acid (Scheme 5) [49].Interestingly, an obvious directing effect induced by the carborane anion substituent was observed in the reaction of 15 withn-BuLi,which leads to the selective formation of dianionic C-2/C-5 NHC lithium adduct 18.

    To investigate the ability of 12 and 16 to behave as viable ligands for transition metals, reactions of 12 and 16 with ClAuSMe2in a 1:1 ratio were performed in fluorobenzene, which indeed afforded the expected zwitterionic and anionic gold carbene complexes 19 and 20, respectively (Scheme 6) [50].

    In a related report [51], Lavallo and coworkers illustrated the suitability of thenido-carborane as anN-substituent for NHCs by isolation of anN-dicarbollide NHC 23viastep deprotonation of the precursor mono-nido-carboranyl imidazolium zwitterion 21, which was preparedviathe reaction of anionicnido-amine with mesityl substituted oxazolinium cation, followed by treatment with HBF4(Scheme 7).Recently, Xiao and coworkers reported the synthesis ofnido-carborane anion fused imidazolium zwitterions by reacting of the aminoo-carboranes with triethyl orthoformate and HBF4·Et2O[52].

    Scheme 6.Synthesis of carborane anion-fused NHC Au(I) complexes.

    Scheme 7.Synthesis of N-dicarbollide NHC dianion.

    Scheme 8.Synthesis of polyhalogenated carboranyl NHCs.

    In 2020, the Lavallo group reported the synthesis of polyhalogenated carboranyl NHCs 26 and 27, by deprotonation of the corresponding polyhalogenated imidazolium anions, which were obtained by treatment of 11 with Br2or IClviaselectively bromination or iodination (Scheme 8) [53].As an exploration of the implementation of carboranyl NHCs, the Au(I) carbene complexes were found to behave as weakly coordinating anions (WCAs) and catalysts (Scheme 9).

    Scheme 9.Synthesis of silver and iridium salts.

    Scheme 10.Synthesis of carboranyl-fused triazolium.

    In 2016, Willans and coworkers reported the synthesis of a series ofo-carboranyl imidazolium salts 33, 34, 35 and imidazoliumnido-carborane zwitterion 36 by treatment ofN-tbutyl orN-methylimidazole with bromoethylcarborane in toluene (Fig.2)[54,55], which showed unique and versatile coordination modes to give a series ofo-carboranyl carbene rhodium, iridium and ruthenium complexes (Fig.3).

    Fig.2.Examples of o-carboranyl imidazolium salts and imidazolium nido-carborane zwitterion.

    Fig.3.Examples of o-carboranyl carbene transition metal complexes.

    In 2017, Zeitler and coworkers reported a novel carboranylfused triazolium 43 through the reaction of carboranyl hydrazinium salt with lactim ether (Scheme 10) [56], which showed excellent catalytic activity in a wide range of C-C bond-forming reactions.

    3.2.Application in silylene chemistry

    In 2016, Driess and coworkers demonstrated the isolation ofocarborane-substituted bis(silylene) 44 by treatment ofo-carboranyl lithium salt withN,N’-di-tert-butyl(phenylamidinato)chlorosilylene[57,58] in a 1:2 ratio [59] (Scheme 11).Similarly, in 2018,the Xie group reported the synthesis of a carborane-fused silylene 45viathe metathesis reaction ofo-carboranyl lithium salt withN,N’-di-tert-butyl(phenylamidinato)chlorosilylene in a 1:1 ratio (Scheme 11) [60].

    Scheme 11.Synthesis of o-carborane-substituted silylenes.

    Scheme 12.Reaction of 44 with carbon monoxide and 2,6-dimethylphenyl isocyanide.

    The Driess group investigated the reactivity ofo-carboranesubstituted bis(silylene) 44 toward carbon monoxide and 2,6-dimethylphenyl isocyanide [61], whereby selective CO and isocyanide activation proceeded affording the head-to-head of CO and head-to-tail of isocyanide homocoupling products 46 and 47, respectively (Scheme 12).

    Compound 45 reacts with elemental sulfur and benzophenone resulting in the formation of the corresponding carborane-fused silanethione 48 and silaoxirane 49, respectively.On the other hand, treatment of 45 with 2-benzoylpyridine afforded the 2-benzoylpyridine homocoupling product 50 with a SiC2O2fivemembered ring (Fig.4) [60].

    Fig.4.Examples of carborane-fused silanethione and silaoxirane.

    The Driess group investigated theo-carborane-substituted bis(silylene) 44 as a viable ligand for transition metals, which is confirmed by the formation of silylene nickel complexes 51 and 52, respectively (Fig.5) [59].

    Fig.5.Examples of o-carborane-substituted bis(silylene) nickel complexes.

    Apart from transition metal chemistry,o-carborane-substituted bis(silylene) 44 can also be utilized in main group chemistry.In 2017, Xie, Lin and coworkers reported the first example of bis(silylene)-stabilized bromoborylene 53 by reduction of bis(silylene)-BBr3adduct with potassium graphite in THF at room temperature [62].Bromoborylene 53 reacts with CuCl at room temperature resulting in the formation of the expected borylenecopper complex 54.In sharp contrast, treatment of 53 with W(CO)6in THF at 80 °C afforded an unprecedented bis(silylene)-CO-stabilized borylene cation 55 (Scheme 13).

    Scheme 13.Synthesis and reactivity of bis(silylene)-stabilized bromoborylene.

    Scheme 14.Reaction of 55 with nucleophiles.

    As an extension of this study, Xie, Lin and coworkers investigated the reactivity of 55 toward [PPN]Cl (PPN = Ph3P=N=PPh3),KOtBu, as well as LiN(SiMe3)2, whereby migration and complete cleavage of CO proceeded affording a series of novel silylenestabilized carbonyl, silyl borylenes, 56, 57 and 58 respectively(Scheme 14) [63].On the other hand, treatment of 55 with 9-borabicyclo[3.3.1]nonane (9-BBN) gave a cationic borane 59viaCO reduction.It is noteworthy that, the borylene cation 55 can cleave dihydrogen to form the corresponding boronium species 60(Scheme 15) [62].

    Scheme 15.Reaction of 55 with 9-BBN and dihydrogen.

    Scheme 16.Reduction of bromoborylene.

    In 2018, Xie and coworkers investigated the reduction of bromoborylene 53 by 2 equiv.of sodium naphthalenide in THF, which leads to the formation of an unexpected diborane derivative 61 with a B-B(cage) single bond [64].To probe the mechanism, reaction of 53 with 1 equiv.of sodium naphthalenide in THF was carried out, which affords a bis(silylene)-stabilized boron-centered radical cation 62 (Scheme 16).Further one electron reduction of 62 with sodium naphthalenide can also give 61.Based on the experimental and DFT calculations, insertion ofin situgenerated borylene into B(cage)-H bond resulting in the formation B-B single bond was proposed, which paves a new way for the synthesis of diborane derivatives featuring an electron-precise B-B single bond.

    In 2020, Driess and coworkers reported the isolation of a remarkable bis(silylium) NIcomplex 63 featuring an open-cage dianionicnido-carborane through the reaction ofo-carboranesubstituted bis(silylene) 44 with adamantly azide [65].Oneelectron reduction of 63 with potassium graphite leads to the formation of the remarkable bis(silylene)-stabilized NIcomplex 64 with the liberation of N2and adamantine, and the regeneration of silylenes.On the other hand, one-electron oxidation of 63 with AgOTf affords the cationic bis(silylene) NIcomplex 65, which reacts with potassium graphite to form the neutral NIradical complex 66(Scheme 17).In addition, 66 can be also achieved by treatment of 64 with AgOTf or 65.

    In 2020, the Driess group reported ano-carborane-substituted bis(silylene)-stabilized silylone 68 by treatment of dianionicnidocarboranyl bis(silylene) 67 with NHC-SiCl2[66] (NHC = {[HCN(2,6-iPr2C6H3)]2C:}) in THF [67].It was noteworthy that, the dianionicnido-carboranyl bis(silylene) 67 behaved as a 2e?reductant in the above reaction.Additionally, one electron reduction of 68 results in the isolation of an unexpected bis(silylene)-stabilized [Si2]2+complex 69 with a Si-Si bondviathe homocoupling of an elusive bis(silylene)-stabilized SiIradical cation generated from the intramolecular one electron transfer from the Sioatom to the carborane cage (Scheme 18).

    Scheme 17.Synthesis of bis(silylene)-stabilized NI radical complex.

    Very recently, Driess and coworkers reported the implementation ofo-carborane-substituted silylene in low-valent germanium chemistry [68].Treatment ofo-carboranyl phosphine-silylene 70 with GeCl2·dioxane afforded the novel Ge2and Ge4complexes 72 and 73, respectively.Additionally, the Ge2complex 72 can be also preparedviathe reaction ofo-carboranyl silylene lithium complex 71 with GeCl2·dioxane in good yield.Further reduction of complexes 72 or 73 with potassium graphite yielded the novel Ge2complex 74 featuring a localized dative Ge(0)→Ge(II) bond or Ge4complex 75 bearing a four-membered Ge4ring with significantσelectron delocalization over the Ge4moiety (Scheme 19).

    In 2017, Xie and coworkers reported the isolation of a carbenestabilized cyclic amino(carboranyl) silylene 77 by treatment of cyclic amino(carboranyl) chlorosilane 76 withN-heterocyclic carbene [69].While the reaction of 77 with borane leads to the formation of a Lewis acid-base adduct 78, the reactions of 77 with unsaturated molecules, such as diphenylacetylene and benzophenone afford cycloaddition products 79 and 80, respectively(Scheme 20).

    Scheme 18.Synthesis of bis(silylene)-stabilized silylone and [Si2]2+ complex.

    Very recently, Driess and coworkers investigated the influence of the redox non-innocent carborane on the reactivity of ano-carborane-substituted bis(silylene) stabilized germylone 81 towards reductants and oxidants [70].In this context, one electron oxidation of 81 with [Cp2Fe][B{C6H3(CF3)2}4] affords the GeIGeIhomocoupling product, bis(silylene)-stabilized diatomic Ge2complex 82, while one electron reduction of 81 with potassium naphthalenide also results in the formation of the unexpected bis(silylene)-stabilized diatomic Ge2complex 83viaone electron oxidation of Ge0to GeIand two electron reduction of the carborane cage.Moreover, a neutral Ge2complex 85 with a triplet diradical ground state was prepared by treatment of germylenestabilized GeCl284 with potassium naphthalenide (Scheme 21).

    Scheme 19.Synthesis and reduction of the dinuclear germyl-germyliumylidine chloride and tetranuclear digermyl-digermylene.

    Scheme 20.Synthesis and reactivity of carbene-stabilized cyclic amino(carboranyl)silylene.

    3.3.Application in germylene and stannylene chemistry

    In 2017, Xie and coworkers reported the synthesis of two iminocarboranyl germylenes 86 and 87 through the reactions of iminocarborane lithium salt with GeCl2·dioxane in a 1:1 ratio or 2:1 ratio [71].Chlorogermylene 86 reacts with trimethylamineNoxide or elemental sulfur in THF at room temperature to give theμ-oxo orμ-S dimer 88 and 89 featuring a four-membered Ge2O2or Ge2S2ring, respectively (Scheme 22).In addition, treatment of 86 with K[CpFe(CO)2] in toluene at room temperature afforded an iron-germylene complex 90.

    In 2010, the Edelmann group reported thatN,N’-dialkylcarbodiimides reacts witho-carboranyl lithium complexes to form the lithium carboranylamidinate 91, which underwent metathesis reaction with anhydrous SnCl2in THF in a 2:1 ratio to afford theo-carboranyl stannylene 92 [72].In a similar manner,the chlorogermylene 93 was prepared by treatment ofin situformed 91 with GeCl2·dioxane in a 1:1 ratio (Scheme 23) [73].

    Scheme 21.Synthesis of the novel Ge2 complexes.

    Scheme 22.Synthesis and reactivity of iminocarboranyl germylenes.

    Scheme 23.Synthesis of o-carboranyl stannylene and chlorogermylene.

    4.Conclusions and perspectives

    Employment of carborane-based ligands allowed the synthesis of a series of low-valent group 13 and group 14 element compounds with novel structure and reactivityviadifferent synthetic routes, which indeed enriched the chemistry of low-valent main group element compounds.To date, a variety of carboranebased ligands supported borylenes, carbenes, silylenes, germylenes and stannylenes have been successfully synthesized whereby varied types of new chemical transformations are observed.These achievements indicate that both the carboranyl and ancillary ligands are critical for the stabilization of reactive low-valent main group element compounds.Notwithstanding, in comparison to the large amount of carboranyl transition metal complexes, the utilization of carborane-based ligands in low-valent main group chemistry is still in its early stage.On the other hand, the types of carborane-based ligands suitable for the stabilization of low-valent main group element compounds are scarce, which undoubtedly restrict the application of carborane-based ligands in the field of low-valent main group element chemistry.Furthermore, the reported carborane-based ligands are all cage carbon fused, the synthesis of cage boron involved ligands has still remained challenging.

    The reported results show that the redox non-innocent character of carboranes can be served as reductants or oxidatants under different reaction conditions, which enables the adjustability of the electronic structure of low-valent main group element centers.Moreover, this unique electronic structure can enhance the ability of such carborane-based ligands supported low-valent main group element compounds to participate in the reactions involved multiple electrons transfer processes, such as catalysis and N2activation.It is quite possible that carborane-based ligands supported low-valent main group element compounds can achieve the abovementioned challenging tasks.

    Additionally, the unique feature of carborane implies the structural diversity of carborane-based ligands, since both cage boron and cage carbon vertices can be fused in the ligand frameworks,which enable the flexibility in ligand design.In fact, design and synthesis of new types of carborane-based ligands are crucial for the development of this new and flourishing field.In addition,the fine design of carborane-based ligands may allow the development of low-valent main group element compounds that participate in those chemical transformations which were long dominant by transition metals, such as small molecule activation, catalysis.

    Declaration of competing interest

    The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    I am grateful for the financial support from the National Natural Science Foundation of China (No.21901039), the Natural Science Foundation of Jiangsu Province (No.BK20190327).

    av视频免费观看在线观看| 免费搜索国产男女视频| 免费在线观看亚洲国产| 9色porny在线观看| 亚洲国产欧美网| 亚洲精品中文字幕在线视频| 午夜影院日韩av| 久久欧美精品欧美久久欧美| 日韩欧美三级三区| cao死你这个sao货| 成人亚洲精品av一区二区 | 亚洲精品久久成人aⅴ小说| 久久精品人人爽人人爽视色| 久久久国产成人免费| 国产高清国产精品国产三级| 欧美不卡视频在线免费观看 | 日本撒尿小便嘘嘘汇集6| 国产精品 欧美亚洲| 国产精品乱码一区二三区的特点 | 99国产综合亚洲精品| 国产国语露脸激情在线看| 亚洲欧美日韩高清在线视频| 夜夜看夜夜爽夜夜摸 | 久久精品国产99精品国产亚洲性色 | 欧美丝袜亚洲另类 | 欧美日本中文国产一区发布| 日韩人妻精品一区2区三区| 性少妇av在线| 丝袜美足系列| 国产高清视频在线播放一区| 天天影视国产精品| 黄色视频,在线免费观看| 午夜精品在线福利| 久久久久久久久免费视频了| 亚洲色图综合在线观看| 久久久久久久久中文| 国产在线精品亚洲第一网站| 夫妻午夜视频| 亚洲第一欧美日韩一区二区三区| 久久久久久亚洲精品国产蜜桃av| 欧美丝袜亚洲另类 | 亚洲激情在线av| 91精品三级在线观看| 免费高清视频大片| 国产精华一区二区三区| 成人18禁在线播放| 欧美不卡视频在线免费观看 | 久久久久久久精品吃奶| 欧美日韩乱码在线| 在线天堂中文资源库| 国产成人精品在线电影| 色综合站精品国产| 国产一区二区三区在线臀色熟女 | 久久久久精品国产欧美久久久| 国产高清videossex| 亚洲 欧美一区二区三区| 美国免费a级毛片| 免费看a级黄色片| 国产精品爽爽va在线观看网站 | 90打野战视频偷拍视频| www国产在线视频色| 国产成+人综合+亚洲专区| 新久久久久国产一级毛片| 午夜福利在线免费观看网站| 国产成人av教育| 免费一级毛片在线播放高清视频 | 国产三级黄色录像| 国产区一区二久久| 老司机在亚洲福利影院| 欧美黄色片欧美黄色片| 国产精品美女特级片免费视频播放器 | 99精品久久久久人妻精品| 亚洲男人天堂网一区| 99热只有精品国产| 老汉色av国产亚洲站长工具| 大陆偷拍与自拍| 欧美日韩视频精品一区| 亚洲一区高清亚洲精品| 成人18禁高潮啪啪吃奶动态图| 黄色a级毛片大全视频| 9191精品国产免费久久| 国产亚洲精品一区二区www| 亚洲一区中文字幕在线| 欧美+亚洲+日韩+国产| 天堂√8在线中文| 在线观看日韩欧美| 亚洲专区字幕在线| 午夜福利一区二区在线看| 麻豆av在线久日| 久久热在线av| 欧美日韩黄片免| 亚洲精品粉嫩美女一区| 99久久精品国产亚洲精品| 女人爽到高潮嗷嗷叫在线视频| 国产亚洲精品第一综合不卡| 51午夜福利影视在线观看| av网站在线播放免费| 国产精品一区二区精品视频观看| 精品国产美女av久久久久小说| 日韩大码丰满熟妇| 一级毛片女人18水好多| 精品久久久久久,| 亚洲aⅴ乱码一区二区在线播放 | 岛国视频午夜一区免费看| 夜夜爽天天搞| 夜夜夜夜夜久久久久| 亚洲欧洲精品一区二区精品久久久| 在线国产一区二区在线| 国产成人精品久久二区二区免费| 国产亚洲精品综合一区在线观看 | 国产免费现黄频在线看| 亚洲精品国产一区二区精华液| 一级a爱视频在线免费观看| 黄色女人牲交| 一区在线观看完整版| 男男h啪啪无遮挡| 新久久久久国产一级毛片| 高清黄色对白视频在线免费看| 欧美中文综合在线视频| 色哟哟哟哟哟哟| 视频区欧美日本亚洲| 久久久久久亚洲精品国产蜜桃av| 欧美日韩av久久| 一进一出好大好爽视频| aaaaa片日本免费| 免费在线观看视频国产中文字幕亚洲| 天天躁狠狠躁夜夜躁狠狠躁| 免费人成视频x8x8入口观看| 制服人妻中文乱码| 精品人妻1区二区| 日本a在线网址| www.熟女人妻精品国产| 波多野结衣高清无吗| а√天堂www在线а√下载| 黑人猛操日本美女一级片| 精品国产亚洲在线| 久久久久久久午夜电影 | 18禁国产床啪视频网站| 两人在一起打扑克的视频| 欧美精品啪啪一区二区三区| 精品国产美女av久久久久小说| 亚洲一卡2卡3卡4卡5卡精品中文| 91九色精品人成在线观看| 午夜福利欧美成人| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品一卡2卡三卡4卡5卡| 日本撒尿小便嘘嘘汇集6| 亚洲精品中文字幕一二三四区| 一个人观看的视频www高清免费观看 | 长腿黑丝高跟| 日韩av在线大香蕉| 亚洲人成伊人成综合网2020| 欧美乱码精品一区二区三区| 18禁观看日本| 久久人妻熟女aⅴ| 国产人伦9x9x在线观看| 午夜精品国产一区二区电影| 免费观看人在逋| 日本三级黄在线观看| 999精品在线视频| 黄色视频,在线免费观看| 国产精品 欧美亚洲| 亚洲成人久久性| 午夜亚洲福利在线播放| 最近最新中文字幕大全电影3 | 亚洲中文日韩欧美视频| 久久精品aⅴ一区二区三区四区| 国产精品成人在线| 99国产精品一区二区三区| 一进一出好大好爽视频| 欧美丝袜亚洲另类 | 深夜精品福利| 免费不卡黄色视频| 麻豆成人av在线观看| 在线天堂中文资源库| 成年女人毛片免费观看观看9| 亚洲欧美激情在线| 国产亚洲精品久久久久5区| 级片在线观看| 久久久国产欧美日韩av| 这个男人来自地球电影免费观看| 真人做人爱边吃奶动态| 国产精品国产av在线观看| 精品熟女少妇八av免费久了| 欧美激情久久久久久爽电影 | 一级作爱视频免费观看| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成av片中文字幕在线观看| www.www免费av| 丰满迷人的少妇在线观看| 免费在线观看影片大全网站| netflix在线观看网站| 成人精品一区二区免费| 欧美日韩亚洲高清精品| 国产蜜桃级精品一区二区三区| 性色av乱码一区二区三区2| 午夜老司机福利片| 精品久久久久久久久久免费视频 | 久热这里只有精品99| 中文字幕人妻丝袜制服| 久99久视频精品免费| 两个人看的免费小视频| 国产精品免费视频内射| 一a级毛片在线观看| 精品国产乱码久久久久久男人| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久成人av| 在线十欧美十亚洲十日本专区| 午夜福利欧美成人| 中国美女看黄片| 久久人妻av系列| 丝袜在线中文字幕| 琪琪午夜伦伦电影理论片6080| 国产极品粉嫩免费观看在线| 人人妻人人添人人爽欧美一区卜| 亚洲熟女毛片儿| 日韩 欧美 亚洲 中文字幕| 精品国产乱码久久久久久男人| 国产亚洲精品综合一区在线观看 | 久久国产乱子伦精品免费另类| 亚洲成人国产一区在线观看| 这个男人来自地球电影免费观看| 国产片内射在线| 欧美精品啪啪一区二区三区| 日韩精品免费视频一区二区三区| 久久久国产精品麻豆| 中文亚洲av片在线观看爽| 成人三级黄色视频| 精品福利永久在线观看| 日日爽夜夜爽网站| 女人被躁到高潮嗷嗷叫费观| 久久精品影院6| 成人黄色视频免费在线看| 成人18禁高潮啪啪吃奶动态图| 夜夜看夜夜爽夜夜摸 | 老汉色av国产亚洲站长工具| 午夜精品在线福利| 国产精品 欧美亚洲| www日本在线高清视频| 日韩精品免费视频一区二区三区| 电影成人av| 精品国产一区二区久久| 成人影院久久| 亚洲欧美日韩另类电影网站| 视频区欧美日本亚洲| 国产熟女午夜一区二区三区| √禁漫天堂资源中文www| 亚洲专区字幕在线| 最好的美女福利视频网| 亚洲九九香蕉| av网站在线播放免费| 妹子高潮喷水视频| 成人亚洲精品一区在线观看| 大码成人一级视频| 午夜两性在线视频| 在线天堂中文资源库| 啪啪无遮挡十八禁网站| 三级毛片av免费| av国产精品久久久久影院| 日本免费一区二区三区高清不卡 | 久久久久久大精品| a级毛片在线看网站| 法律面前人人平等表现在哪些方面| 免费观看精品视频网站| 亚洲 欧美 日韩 在线 免费| 久久国产精品男人的天堂亚洲| 性色av乱码一区二区三区2| 亚洲一区高清亚洲精品| 久久久久国产精品人妻aⅴ院| 一区福利在线观看| 别揉我奶头~嗯~啊~动态视频| 国产精品1区2区在线观看.| 日韩视频一区二区在线观看| 50天的宝宝边吃奶边哭怎么回事| 日韩欧美一区视频在线观看| 国产区一区二久久| 亚洲精品在线观看二区| 美女 人体艺术 gogo| 又紧又爽又黄一区二区| 天堂中文最新版在线下载| 国产成人免费无遮挡视频| 91麻豆精品激情在线观看国产 | 午夜福利,免费看| 欧美日韩亚洲国产一区二区在线观看| 搡老岳熟女国产| 美女 人体艺术 gogo| 在线观看www视频免费| 老鸭窝网址在线观看| 女人爽到高潮嗷嗷叫在线视频| 精品乱码久久久久久99久播| 操出白浆在线播放| 午夜日韩欧美国产| 999久久久国产精品视频| 欧美老熟妇乱子伦牲交| 欧美日韩视频精品一区| 中文字幕最新亚洲高清| 成人特级黄色片久久久久久久| 亚洲激情在线av| 国产欧美日韩一区二区精品| 成人永久免费在线观看视频| 免费少妇av软件| 国产精品久久视频播放| 午夜成年电影在线免费观看| 欧美成人午夜精品| 男女做爰动态图高潮gif福利片 | 丰满的人妻完整版| 黄片大片在线免费观看| 久久伊人香网站| 无限看片的www在线观看| 成人永久免费在线观看视频| 日韩精品免费视频一区二区三区| 亚洲黑人精品在线| 欧美中文日本在线观看视频| 亚洲中文字幕日韩| 国产欧美日韩一区二区三| 中亚洲国语对白在线视频| 久久午夜综合久久蜜桃| 激情视频va一区二区三区| 亚洲第一青青草原| 黄色片一级片一级黄色片| 无限看片的www在线观看| 亚洲国产精品999在线| av网站免费在线观看视频| 久久影院123| ponron亚洲| 夜夜爽天天搞| 午夜日韩欧美国产| 国产成人精品在线电影| 国产亚洲精品综合一区在线观看 | av电影中文网址| 国产精品爽爽va在线观看网站 | 久9热在线精品视频| 天堂俺去俺来也www色官网| 1024视频免费在线观看| 国产成+人综合+亚洲专区| 午夜福利欧美成人| 日韩欧美免费精品| 老司机福利观看| 美国免费a级毛片| 99国产极品粉嫩在线观看| 男女做爰动态图高潮gif福利片 | 国产99白浆流出| av在线天堂中文字幕 | 一区二区三区激情视频| 最近最新免费中文字幕在线| 色老头精品视频在线观看| 一夜夜www| 又黄又粗又硬又大视频| 免费观看人在逋| 香蕉久久夜色| 热99re8久久精品国产| 999精品在线视频| 国产精品成人在线| 老司机靠b影院| 久久精品亚洲av国产电影网| 精品国产超薄肉色丝袜足j| 日韩大码丰满熟妇| 妹子高潮喷水视频| 成人手机av| 久久精品亚洲熟妇少妇任你| 一二三四社区在线视频社区8| 亚洲一区高清亚洲精品| 中文字幕高清在线视频| 18禁观看日本| 久久久久久久精品吃奶| 久久午夜综合久久蜜桃| 久久国产乱子伦精品免费另类| 男人的好看免费观看在线视频 | 亚洲色图av天堂| 美女高潮喷水抽搐中文字幕| 国产国语露脸激情在线看| 日韩免费高清中文字幕av| 少妇被粗大的猛进出69影院| 久久久国产成人免费| 免费日韩欧美在线观看| 精品国产超薄肉色丝袜足j| 国产成人精品在线电影| 多毛熟女@视频| 国产高清激情床上av| 日韩欧美在线二视频| av欧美777| 欧美中文综合在线视频| 午夜免费观看网址| 国产高清videossex| 亚洲国产毛片av蜜桃av| 一区在线观看完整版| 国产亚洲精品一区二区www| 天天躁狠狠躁夜夜躁狠狠躁| 这个男人来自地球电影免费观看| 久久精品亚洲精品国产色婷小说| 日韩视频一区二区在线观看| 亚洲中文日韩欧美视频| 欧美黄色片欧美黄色片| 91麻豆av在线| 亚洲精品一区av在线观看| 国产色视频综合| 手机成人av网站| 90打野战视频偷拍视频| 一级毛片女人18水好多| 啦啦啦免费观看视频1| x7x7x7水蜜桃| 99久久久亚洲精品蜜臀av| 电影成人av| 老司机亚洲免费影院| 亚洲国产毛片av蜜桃av| 中文欧美无线码| 中文字幕精品免费在线观看视频| 免费在线观看完整版高清| 首页视频小说图片口味搜索| 麻豆成人av在线观看| 久久香蕉国产精品| 国产成人啪精品午夜网站| 成人国产一区最新在线观看| 18美女黄网站色大片免费观看| 国产激情欧美一区二区| 婷婷六月久久综合丁香| 精品无人区乱码1区二区| 亚洲精品国产区一区二| 亚洲五月天丁香| 女性被躁到高潮视频| 极品教师在线免费播放| 亚洲成国产人片在线观看| 一进一出抽搐动态| 亚洲午夜理论影院| www.999成人在线观看| 91麻豆av在线| 亚洲av成人不卡在线观看播放网| 国产av又大| 久久精品亚洲精品国产色婷小说| 日本精品一区二区三区蜜桃| 男女高潮啪啪啪动态图| 久99久视频精品免费| 美女国产高潮福利片在线看| av在线天堂中文字幕 | 国产片内射在线| 免费看a级黄色片| 国产亚洲精品第一综合不卡| 国产精品日韩av在线免费观看 | 国产精品一区二区精品视频观看| 一级毛片精品| 啦啦啦免费观看视频1| 操出白浆在线播放| 老汉色∧v一级毛片| 91国产中文字幕| 亚洲国产欧美网| 亚洲成人精品中文字幕电影 | 久久国产亚洲av麻豆专区| 亚洲精品粉嫩美女一区| 国产精品电影一区二区三区| 男女床上黄色一级片免费看| 久久影院123| 亚洲成人国产一区在线观看| 欧美中文综合在线视频| 国产av在哪里看| 99久久国产精品久久久| 国产高清视频在线播放一区| 亚洲人成电影免费在线| 999久久久精品免费观看国产| 中文欧美无线码| 精品一区二区三区视频在线观看免费 | 黄色女人牲交| 色综合欧美亚洲国产小说| 一级a爱片免费观看的视频| 少妇的丰满在线观看| 国产男靠女视频免费网站| 夜夜夜夜夜久久久久| av中文乱码字幕在线| 成人手机av| 国产精品乱码一区二三区的特点 | 18美女黄网站色大片免费观看| 国产免费男女视频| 99国产综合亚洲精品| 午夜日韩欧美国产| 99国产精品免费福利视频| 亚洲精品国产色婷婷电影| 日韩精品免费视频一区二区三区| 久久草成人影院| 一进一出抽搐gif免费好疼 | 12—13女人毛片做爰片一| 如日韩欧美国产精品一区二区三区| 少妇 在线观看| 夜夜爽天天搞| 国产精品国产高清国产av| 香蕉丝袜av| 女人爽到高潮嗷嗷叫在线视频| 午夜福利在线免费观看网站| 在线观看免费高清a一片| 欧美激情极品国产一区二区三区| 日韩大尺度精品在线看网址 | 香蕉丝袜av| 19禁男女啪啪无遮挡网站| 精品日产1卡2卡| 天天影视国产精品| 欧美成人免费av一区二区三区| 亚洲国产毛片av蜜桃av| 女人被狂操c到高潮| 波多野结衣av一区二区av| 国产97色在线日韩免费| 波多野结衣av一区二区av| 久久久国产成人精品二区 | 国产成人欧美在线观看| 日韩成人在线观看一区二区三区| 99热国产这里只有精品6| 午夜日韩欧美国产| 这个男人来自地球电影免费观看| 欧美亚洲日本最大视频资源| 黄频高清免费视频| 日本一区二区免费在线视频| 咕卡用的链子| 日韩欧美一区二区三区在线观看| 中文字幕人妻丝袜一区二区| 可以免费在线观看a视频的电影网站| 波多野结衣高清无吗| 亚洲av日韩精品久久久久久密| 91老司机精品| 男人舔女人下体高潮全视频| 中文字幕人妻熟女乱码| 国产精品一区二区精品视频观看| 久久久久久大精品| 在线观看免费高清a一片| 日韩三级视频一区二区三区| 成人影院久久| 日本欧美视频一区| 99在线视频只有这里精品首页| 亚洲成人久久性| 欧美日韩福利视频一区二区| 老司机靠b影院| 久久天躁狠狠躁夜夜2o2o| 在线十欧美十亚洲十日本专区| 最近最新中文字幕大全免费视频| 国产精品1区2区在线观看.| 欧美成人性av电影在线观看| 色老头精品视频在线观看| 久久精品国产亚洲av高清一级| 不卡av一区二区三区| 亚洲av第一区精品v没综合| 在线十欧美十亚洲十日本专区| 少妇裸体淫交视频免费看高清 | 日本一区二区免费在线视频| 亚洲精品中文字幕在线视频| 午夜精品久久久久久毛片777| 老司机靠b影院| 人人妻人人澡人人看| 日本黄色视频三级网站网址| 国产av又大| 97碰自拍视频| 亚洲欧美激情综合另类| 亚洲美女黄片视频| 亚洲成国产人片在线观看| 亚洲美女黄片视频| 久久久国产成人精品二区 | 国产成人欧美在线观看| 久久国产乱子伦精品免费另类| 成年女人毛片免费观看观看9| 国产真人三级小视频在线观看| 成熟少妇高潮喷水视频| 亚洲片人在线观看| 成人影院久久| 日本精品一区二区三区蜜桃| 看片在线看免费视频| 亚洲av电影在线进入| 久久精品亚洲精品国产色婷小说| 最近最新中文字幕大全免费视频| 国产视频一区二区在线看| 电影成人av| 女性被躁到高潮视频| 亚洲国产精品一区二区三区在线| 老司机在亚洲福利影院| a在线观看视频网站| 国产一区二区三区视频了| 亚洲色图 男人天堂 中文字幕| 欧美成狂野欧美在线观看| 757午夜福利合集在线观看| 69av精品久久久久久| 欧美激情久久久久久爽电影 | 亚洲人成伊人成综合网2020| 精品久久久久久,| 男女高潮啪啪啪动态图| 欧美午夜高清在线| 久久热在线av| 国产亚洲欧美在线一区二区| 午夜福利影视在线免费观看| 日韩av在线大香蕉| 曰老女人黄片| 成人手机av| 日韩免费av在线播放| 最新在线观看一区二区三区| 日本欧美视频一区| 亚洲精品国产色婷婷电影| 88av欧美| 国产亚洲精品综合一区在线观看 | 人妻久久中文字幕网| 少妇被粗大的猛进出69影院| 最近最新中文字幕大全电影3 | 日日摸夜夜添夜夜添小说| 成人亚洲精品一区在线观看| 亚洲专区字幕在线| 亚洲精华国产精华精| 亚洲精品中文字幕在线视频| 免费在线观看亚洲国产| 精品一区二区三卡| 搡老乐熟女国产| 99在线人妻在线中文字幕| 精品久久久精品久久久| 亚洲一码二码三码区别大吗| 黄色成人免费大全| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜免费成人在线视频| 成熟少妇高潮喷水视频| 欧美黑人欧美精品刺激| 我的亚洲天堂| 国产精品av久久久久免费| 激情在线观看视频在线高清| 这个男人来自地球电影免费观看| 一边摸一边做爽爽视频免费|