• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一鍋法制備S型異質(zhì)結(jié)光催化劑Fe2O3/Fe2TiO5及其高效降解有機污染物性能

    2022-09-16 09:29:18趙英杰壽幼平王江南石婷婷
    無機化學(xué)學(xué)報 2022年9期
    關(guān)鍵詞:英杰水運光催化劑

    常 方 趙英杰 壽幼平 張 騄 王江南 石婷婷

    (交通運輸部天津水運工程科學(xué)研究院,天津 300000)

    0 Introduction

    Water is one of the important resources that human beings depend on for survival and development.However,nearly a third of the population worldwide is estimated to lack access to safely managed drinking water services[1-2].In the last years,water pollution is becoming a major concern due to novel and dangerous anthropogenic pollutants.Reducing the release of wastewater into the environment and degrading the contaminants from wastewater are important strategies for water environment purification[3-5].

    Many water treatment ways have been employed to degrade organic pollutants,such as physical absorption,biological purification,advanced oxidation processes(AOPs),electrochemical processes,and photocatalytic degradation.Among them,photocatalytic degradation is a kind of AOPs.Compared to traditional AOPs,the active-oxidizing species HO· or·O2-isin-situproduced by semiconductor photocatalysis[6-14].Semiconductor photocatalysts can be excited by light with energy higher than their band gap values,and then generate electron-hole pairs.Hole-electron pairs separate and transfer to the photocatalyst surface,produce HO· or·O2-,and then lead to the oxidation of organic pollutions.To obtain high photocatalytic efficiency,a semiconductor should have a small band gap enabling the utilization of a wide range of solar light[15-20].Fe2O3with a narrow band gap ofca.2.0 eV,can absorb a large amount of visible sunlight.Besides,Fe2O3has many other advantages,such as being lowcost,and non-toxic,making it a promising photocatalyst material.However,Fe2O3exhibits low conductivity and over-positive conduction band position,which are adverse to its photocatalytic efficiency.

    Many strategies were employed to overcome these problems and improve photocatalytic efficiency on Fe2O3.Nano-engineering,intentional n-type doping,and electrocatalyst loading have been often used to improve charge separation efficiency or the surface oxidation rate[21-24].Besides,constructing heterojunction with another semiconductor material is an effective way to improve the separation of electron-hole pairs by the built-in electric field.This strategy has been successfully applied to many semiconductors[21-26],including BiVO4,WO3,TiO2,and so on.

    Constructing heterojunction between Fe2O3particles and another semiconductor with a suitable band position benefits the separation of photo-generated carriers.Fe2TiO5is such a semiconductor with a band gap ofca.2.0 eV and similar to Fe2O3while showing higher conduction and valence band levels,which can form staggered band positions with Fe2O3,therefore,effective step-scheme(S-scheme)heterojunction can be developed between Fe2O3and Fe2TiO5[27-29].Moreover,Fe2TiO5exhibits a high conduction band level located atca.-0.2 eV vs reversible hydrogen electrode,making the composite materials propose the capacity to reduce O2to·O2-and further improve the photocatalytic properties.In previous reports,Fe2O3/Fe2TiO5composites were commonly applied in oxygen evolution[30-32],and rarely seen in pollution degradation[33].The preparing Fe2O3/Fe2TiO5composite was mainly by an ion-exchange method,i.e.employing Fe2O3or TiO2as the substrate to inter-react with Ti or Fe precursors at high temperature[30,32-33].Yu and Waqas fabricated Fe2O3/Fe2TiO5composite utilizing sol-gel and calcination method[31,34].

    In this work,for the first time,Fe2O3/Fe2TiO5composite materials were prepared by a one-pot solvothermal method.Compared to the pure Fe2O3and pure Fe2TiO5,the photocatalytic properties toward removing methylene blue(MB)were significantly improved,which is mainly due to the promoted charge separation efficiency and the preserved higher-energy electrons from Fe2TiO5caused by the S-scheme heterojunction.

    1 Experimental

    1.1 Preparation of Fe2O3/Fe2TiO5 heterojunction particles

    Fe2O3/Fe2TiO5heterojunction particles were fabricated by a solvothermal method.Firstly,2.51 mmol Fe(NO3)3·9H2O was added to 50 mL isopropanol.Under stirring,0.625 mmol of titanium isopropoxide was immediately added to the above solution.The precursor solution,after further being stirred for another 1 h,was transferred into a 100 mL Teflon-line stainless steel autoclave.Then the autoclave was sealed and heated in an oven at 150℃for 12 h.After cooling down naturally,the prepared precipitates were washed with deionized water four times.As-prepared precipitates were dried at 80℃overnight,then dried precipitates were annealed in air at 550℃for 2 h and then 700℃for 10 min.Then the Fe2O3/Fe2TiO5heterojunc-tion particles were obtained.

    Fe2O3was prepared by the same steps employed for Fe2O3/Fe2TiO5fabrication, except that only Fe(NO3)3·9H2O was added to the precursor solution without titanium isopropoxide.Fe2TiO5was also prepared by this solvothermal method[31].In the precursor solution,2.51 mmol Fe(NO3)3·9H2O and 1.25 mmol of titanium isopropoxide were added in sequence.Other steps were the same as that of Fe2O3/Fe2TiO5fabrication.The photoelectrodes based on the prepared Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5were also fabricated with the same process.Firstly,10 mg of each sample was dispersed in 1 mL glycol.20 μL solution was spincoating on F-doped SnO2coated glass(FTO),then another 20 μL solution was immediately dropped on the above FTO.After drying at 150℃for 30 min,the film was calcined at 600℃for 1 h.

    1.2 Characterization

    The crystal structures of the prepared samples were probed by a powder X-ray diffraction(XRD)on a Bruker diffractometer system,using CuKαradiation(λ=0.154 18 nm)with a working voltage and current of 40 kV and 40 mA,respectively.The scan rate was 0.04(°)·s-1in a 2θrange of 5°-70°.The morphology test of the samples was carried out on a field emission scanning electron microscope(SEM;JEOL,JSM-6700F with an accelerating voltage of 5 kV).The working voltage for SEM-EDS(EDS=energy dispersive X-ray spectroscopy)mapping was 20 kV.Transmission electron microscope(TEM)images were recorded on a transmission electron microscope(HT7700).Highresolution TEM(HRTEM)was conducted at 200 kV.The optical absorption spectra of the samples were performed on a UV-visible(UV-Vis)spectrophotometer(Shimadzu,UV-Vis 2550).Electrochemical impedance spectra(EIS)of the three photoelectrodes were measured at 0.9 V(vs RHE)using an electrochemical workstation(Shanghai Chenhua,660E)with a 10 mV amplitude perturbation and frequencies between 0.1 Hz and 1 MHz.

    1.3 Photocatalytic property measurements

    20 mg Fe2O3/Fe2TiO5was added into a 100 mL water solution with an MB concentration of 10 mg·L-1.After 40 min absorption,3 mL solution was filtrated and taken for the test.Then the remained solution was stirred and irradiated under light with a power of 100 mW·cm-2.TThe area of the beaker exposed to the light wasca.20 cm2.The light source used in this work was a 100 W LED lamp.The reaction solution was cooled by running water during the whole irradiating process to exclude the thermal effect.3 mL solution was taken every 30 min.Current-potential curves were tested on an electrochemical workstation using a three-electrode system.

    2 Results and discussion

    2.1 Characterization of Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5

    To investigate the crystallinity and phase of asprepared samples,XRD was carried out(Fig.1).All the peaks of the black curve at 24.2°,33.3°,35.7°,40.9°,49.5°,54.1°,57.6°,62.4°,and 64.1°can be assigned to Fe2O3(hematite,PDF No.33-0664),while all peaks of the red curve belong to the pseudobrookite Fe2TiO5(PDF No.41-1432).The results indicate that Fe2O3and Fe2TiO5have been successfully prepared.Both XRD peaks of Fe2O3and Fe2TiO5were observed in Fe2O3/Fe2TiO5,demonstrating that Fe2O3/Fe2TiO5was obtained by the one-pot solvothermal method.Moreover,the high peak intensity of the three samples indicates their well crystalline nature.Note that the prepared Fe2O3/Fe2TiO5composite showed only two relatively low peaks at 18.1°and 25.6°.To evaluate the contents of Fe2O3and Fe2TiO5in the composite,EDS has been per-formed.Elemental Ti was not observed in the pure Fe2O3,while in Fe2TiO5,both Fe and Ti were detected with an atomic ratio of 1.93 which is close to the Fe/Ti stoichiometric proportion in Fe2TiO5.In terms of Fe2O3/Fe2TiO5composite,the atomic ratio of Fe/Ti was 3.99,which is the same as the feed proportion,indicating the content of Fe2O3and Fe2TiO5was equal in molar quantity.EDS mapping on the three samples has also been tested and the results are shown in Fig.2.For Fe2O3/Fe2TiO5,Fe,O,and Ti were uniformly distributed in the sample,demonstrating that Fe2O3or Fe2TiO5can contact each other well.

    Fig.1 XRD patterns of Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5

    Fig.2 SEM-EDS element mapping images of(a)Fe2O3,

    TEM was performed to further investigate the crystallinity and phase of the Fe2O3/Fe2TiO5composite.As shown in Fig.3b-3d,elemental Fe was evenly distributed in the particles,while elemental Ti is mainly distributed on the particle surface and interface.HRTEM has also been measured and the results are shown in Fig.3e and 3f.Fringe spacing of 0.251 and 0.247 nm can be indexed to the(110)plane of Fe2O3and(301)plane of Fe2TiO5,especially,demonstrating the formation of heterojunction between Fe2O3and Fe2TiO5.In addition,Fe2O3is well crystalline in the whole Fe2O3sample,while the crystalline region in Fe2TiO5is relatively small and enshrouded with an amorphous phase.This result indicates that Fe2TiO5spreads over the surface of Fe2O3,and the crystallinity of Fe2TiO5is restricted to some extent.Moreover,the TEM-EDS results suggest that the atomic ratio of Fe and Ti wasca.5.6,which is larger than the feed proportion and SEM-EDS values.It is understandable considering that part of small Fe2TiO5particles falls away from Fe2O3during the ultrasonic process.Overall,the results of XRD,SEM-EDS,and TEM demonstrate that Fe2O3/Fe2TiO5heterojunction composites have been successfully prepared.

    Fig.3 TEM-EDS element mapping images(a-d),and HRTEM images(e,f)for Fe2O3/Fe2TiO5

    Light absorption properties show a great effect on the final photocatalytic degradation performance.Therefore,UV-Vis diffuse reflectance spectra(DRS)of the prepared samples were measured to evaluate their absorption properties.The UV-Vis DRS results have been converted to absorption form using the Kubelka-Munk function as shown in Fig.4a.Besides,the curves have been normalized.As shown in Fig.4a,all samples exhibited absorption regions from UV to visible wavelengths.Fe2O3exhibited the widest light absorption,while the absorption edge of Fe2TiO5blue shift compared to Fe2O3and proposed the narrowest light absorption region.While,from 500 to 600 nm,the absorption of Fe2O3/Fe2TiO5was higher than that of Fe2TiO5and smaller than the absorption of Fe2O3.The band gaps of Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5were estimated by drawing Tauc plots,which are shown in Fig.4b.In the ordinate of the curves,n=2 represents the direct band gap,whilen=1/2 represents the indirect band gap[13,35].As Fe2O3and Fe2TiO5are indirect band gap semiconductors,n=1/2 was employed here to calculate their band gaps.The band gaps of the three samples were similar with the values of 2.05-2.08 eV,which match the previously reported values[31].

    Fig.4 (a)Absorption spectra and(b)Tauc plots of Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5

    Morphologies of the prepared samples were analyzed by SEM.As shown in Fig.5,all the samples show an ellipsoidal shape with uniform distribution.The particle size of the nanoparticles was less than 50 nm.The small particle size enables a large semiconductor/solution interface,facilitating the injecting of photoexcited charges into the solution.In consideration of the similar shape and size of Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5,their MB absorption amount should be a little different,which is following the MB absorption experiment.

    Fig.5 SEM images of(a)Fe2O3,(b)Fe2TiO5,and(c)Fe2O3/Fe2TiO5

    2.2 Photocatalytic performance

    To evaluate the performance of Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5,the photocatalytic degradation of MB organic pollutants experiments was performed.10 mg·L-1MB aqueous solution was employed in this experiment,the concentration of the three samples was 20 mg per 100 mL MB aqueous solution.The filter for filtering Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5was saturated by MB first.After 40 min of adsorption-desorption equilibrium,the photocatalytic degradation experiment was carried out by exposing the illumination solution.2 mL solution was taken out from the MB solution every 30 min using a disposable syringe with the filter.The MB degradation rates on Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5are shown in Fig.6a.Fe2O3/Fe2TiO5exhibited the highest degradation rate.The degradation efficiencies of the three samples were also calculated according to the formula of(c0-ct)/c0,wherec0is the initial concentration after adsorption-desorption equilibrium,ctis the concentration atttime.After 150 min irradiation,MB degradation efficiency of Fe2O3/Fe2TiO5reached 98.4%,while the efficiencies of Fe2O3and Fe2TiO5were just 50.9% and 62.9%,respectively.As discussed above,though the light absorption property of Fe2O3was better than that of Fe2TiO5,their photocatalytic activity was similar.This is because the conduction band minimum(CBM)of Fe2TiO5was higher and can reduce O2to·O2-,which provides another pathway for degradation,except for oxidizing MB by the hole in valence band maximum(VBM).Among the three samples,Fe2O3/Fe2TiO5presented the highest degradation rate and highest degradation efficiency.To further understand the photocatalytic degradation process,the data were fitted by a first-order kinetic equation,ln(c0/ct)=kt,which is commonly used as a mode to analyze organic pollutant degradation[35].The results are shown in Fig.6b,and the degradation rate constantkwas fitted from the slope of the line.Thekvalue of Fe2O3/Fe2TiO5was 2.787×10-2min-1,which is significantly higher than that of Fe2O3(5.06×10-3min-1)and Fe2TiO5(7.47×10-3min-1).

    Fig.6 (a)Degradation performance of MB over the different samples;(b)Plots of ln(c0/ct)vs illuminated time;(c)Stability of Fe2O3/Fe2TiO5on MB degradation

    To evaluate the stability of Fe2O3/Fe2TiO5,cycle tests for the photocatalytic degradation of MB were tested.The solid particles should be relatively evenly dispersed in the solution after ultrasonic dispersion before the reaction and agitation during the reaction.Moreover,the intermediate solution was taken each time.Therefore,after the first cycle,since the 10 mL solution has been taken out,ca.1/10 of Fe2O3/Fe2TiO5has also been taken out along with the solution.Therefore,we just added MB into the remained 90 mL solution to keep MB and the catalyst concentrations still at 10 and 0.2 mg·mL-1,respectively.As shown in Fig.6c,compared with the 1st cycle,although the degradation rates of the 2nd and 3rd cycles slightly decreased,degradation rates were still high.This result indicates the high stability of as-synthesized Fe2O3/Fe2TiO5composite material.

    2.3 Mechanism for the improvement

    Photocatalytic performance highly depends on light absorption of the semiconductor and charge separation in the bulk semiconductor.As discussed above,the light absorption property of Fe2O3/Fe2TiO5was not the best,the highest photocatalytic property of Fe2O3/Fe2TiO5must result from the significantly improved charge separation efficiency.Moreover,in Fe2O3/Fe2TiO5,besides the preserved higher-energy holes from Fe2O3which oxidize MB,the preserved higherenergy electrons from Fe2TiO5which provide another pathway for MB degradation.

    To verify the mechanism proposed above,photoelectrodes based on Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5were prepared to evaluate their separation efficiency of the photogenerated charge carriers.The photoelectrodes were tested in a three-electrode system,where photoelectrode was used as a working electrode,Ag/AgCl was used as a reference electrode,and Pt was used as the counter electrode.The scan rate was 30 mV·s-1.The electrolyte was 1 mol·L-1NaOH.As shown in Fig.7,the Fe2O3/Fe2TiO5photoelectrode presented significantly higher photocurrents than that of Fe2O3and Fe2TiO5.The significantly increased photocurrent density of Fe2O3/Fe2TiO5can be attributed to the higher charge separation efficiency due to the formed heterojunction between Fe2O3and Fe2TiO5[27].

    Fig.7 Chopped current vs potential curves on Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5photoelectrodes

    EIS was also conducted to confirm the charge transport properties of the three samples.As shown in Fig.8,the Fe2O3/Fe2TiO5photoelectrode exhibited the smallest diameter,indicating the faster charge transfer kinetics in the film.This phenomenon can be attributed to the build-in field induced by the heterojunction between Fe2O3and Fe2TiO5since the built-in field can facilitate the separation of electron-hole pairs.It should be pointed out that the charge transfer resistance of Fe2O3is smaller than that of Fe2TiO5,which is consistent with the reported result[36].

    Fig.8 Nyquist plots of the Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5photoelectrodes

    A possible mechanism for photocatalytic degradation of MB by Fe2O3/Fe2TiO5is illuminated in Fig.9.Fe2TiO5has higher CBM and VBM levels than that Fe2O3.Under irradiation,Fe2O3and Fe2TiO5absorb light and generate electron-hole pairs,respectively.An S-scheme heterojunction[37]is formed between Fe2O3and Fe2TiO5.In this S-scheme heterojunction,electrons in CBM of Fe2O3and holes in VBM of Fe2TiO5can recombination with each other,while holes in VB of Fe2O3and electrons in CBM of Fe2TiO5separate and transfer to Fe2O3/solution and Fe2TiO5/solution surface,respectively.Due to the recombination electrons presenting relatively lower energy,the preserved electrons with higher energy in FeTiOcan reduce Oto·O-,2522and then produce·OH,which can degrade MB effectively.While the reserved holes in Fe2O3can degrade MB directly.Therefore,the Fe2O3/Fe2TiO5heterojunction can remove MB more effectively.

    Fig.9 Schematic diagram of charge carrier transfer process and possible photocatalytic mechanism of Fe2O3/Fe2TiO5

    3 Conclusions

    In summary,Fe2O3,Fe2TiO5,and Fe2O3/Fe2TiO5have been prepared by a facile one-pot solvothermal method.In Fe2O3/Fe2TiO5,Fe2O3and Fe2TiO5can form S-scheme heterojunction,and thus promotes the electrons in CB of Fe2TiO5and holes in VB of Fe2O3transfer to the surface.In this way,carriers with higher energy were preserved.Compared to Fe2O3and Fe2TiO5,the photocatalytic degradation rate and efficiency of Fe2O3/Fe2TiO5were significantly improved.This approach provides a facile way to achieve Fe2O3/Fe2TiO5S-scheme heterojunction materials and can offer a reference to construct heterojunction on other materials.

    Acknowledgments:The National Nonprofit Institute Research Grants of TIWTE(Grant No.TKS190408),Science and Technology Development Fund of Tianjin Waterway Engineering Research Institute,Ministry of Transport(Grant No.KJFZJJ190201),and Scientific Research Program of Shanghai Science and Technology Commission(Grant No.19DZ1204303).

    猜你喜歡
    英杰水運光催化劑
    Probability density and oscillating period of magnetopolaron in parabolic quantum dot in the presence of Rashba effect and temperature*
    Observe modern design works and taste traditional Chinese culture
    可見光響應(yīng)的ZnO/ZnFe2O4復(fù)合光催化劑的合成及磁性研究
    Special Property of Group Velocity for Temporal Dark Soliton?
    燕趙英杰
    軍工文化(2017年12期)2017-07-17 06:07:56
    圖說水運
    中國水運(2016年6期)2016-05-14 22:14:45
    圖說水運
    中國水運(2016年7期)2016-05-14 01:38:00
    圖說水運
    中國水運(2016年4期)2016-05-14 01:04:28
    Pr3+/TiO2光催化劑的制備及性能研究
    圖說水運
    中國水運(2015年4期)2015-05-11 15:59:45
    97超级碰碰碰精品色视频在线观看| 国产视频一区二区在线看| 国产精品亚洲一级av第二区| 丰满的人妻完整版| 久久久久久久精品吃奶| 性欧美人与动物交配| 亚洲在线自拍视频| 亚洲精品在线美女| 亚洲片人在线观看| 国产av一区二区精品久久| av欧美777| 美女黄网站色视频| 欧美一区二区国产精品久久精品 | 久久久久国内视频| 亚洲人与动物交配视频| 精品久久蜜臀av无| 日本撒尿小便嘘嘘汇集6| 狂野欧美激情性xxxx| 亚洲av电影不卡..在线观看| 色综合欧美亚洲国产小说| 亚洲一区高清亚洲精品| 亚洲免费av在线视频| 国产单亲对白刺激| 精品久久蜜臀av无| 99久久综合精品五月天人人| 可以免费在线观看a视频的电影网站| 成年免费大片在线观看| 法律面前人人平等表现在哪些方面| 亚洲天堂国产精品一区在线| 亚洲专区国产一区二区| 亚洲片人在线观看| 精品久久久久久久末码| 中文字幕最新亚洲高清| 久久久久久免费高清国产稀缺| 丰满的人妻完整版| 最近在线观看免费完整版| 精品第一国产精品| 国产一区二区三区视频了| 香蕉av资源在线| 男女视频在线观看网站免费 | 免费电影在线观看免费观看| 真人一进一出gif抽搐免费| 久久国产精品人妻蜜桃| 两个人的视频大全免费| 变态另类丝袜制服| 操出白浆在线播放| 欧美乱码精品一区二区三区| 国产三级在线视频| 欧美成人性av电影在线观看| 久久伊人香网站| 超碰成人久久| 国产av一区二区精品久久| 夜夜爽天天搞| 久久午夜综合久久蜜桃| 99久久久亚洲精品蜜臀av| 五月玫瑰六月丁香| 18禁黄网站禁片午夜丰满| 一级毛片高清免费大全| 精品久久久久久,| 亚洲九九香蕉| 成人三级做爰电影| 小说图片视频综合网站| 变态另类丝袜制服| 又爽又黄无遮挡网站| 国产午夜精品论理片| 午夜免费成人在线视频| 最近最新中文字幕大全免费视频| 成人三级做爰电影| 夜夜看夜夜爽夜夜摸| 香蕉av资源在线| 十八禁人妻一区二区| 精品久久久久久久久久久久久| 国产精品1区2区在线观看.| av欧美777| 亚洲精华国产精华精| 国产精品永久免费网站| 在线观看免费视频日本深夜| 国产精品免费一区二区三区在线| 一进一出抽搐动态| 国产伦在线观看视频一区| 神马国产精品三级电影在线观看 | 欧美不卡视频在线免费观看 | 两个人看的免费小视频| 黑人巨大精品欧美一区二区mp4| 国产av一区二区精品久久| 亚洲精华国产精华精| 午夜成年电影在线免费观看| 亚洲一区二区三区色噜噜| 亚洲熟妇中文字幕五十中出| 成年免费大片在线观看| 一级黄色大片毛片| 女生性感内裤真人,穿戴方法视频| 亚洲成人久久爱视频| 黄色毛片三级朝国网站| 欧美+亚洲+日韩+国产| 欧美性猛交╳xxx乱大交人| 国产成人av教育| 亚洲成av人片在线播放无| 亚洲乱码一区二区免费版| 欧美日韩亚洲综合一区二区三区_| 午夜激情福利司机影院| 国产精品一区二区三区四区免费观看 | 欧美日本视频| 午夜福利欧美成人| 亚洲欧美日韩高清专用| 国产精品野战在线观看| 深夜a级毛片| 亚洲欧美日韩卡通动漫| 国产成人精品一,二区 | 色视频www国产| 两性午夜刺激爽爽歪歪视频在线观看| 搡女人真爽免费视频火全软件| 午夜福利在线观看吧| 观看免费一级毛片| 永久网站在线| 成人漫画全彩无遮挡| 国产v大片淫在线免费观看| 人人妻人人澡人人爽人人夜夜 | 国产一级毛片七仙女欲春2| АⅤ资源中文在线天堂| 国产亚洲欧美98| 亚洲欧美日韩东京热| 久久这里只有精品中国| 国产成人aa在线观看| 国产精品不卡视频一区二区| 久久婷婷人人爽人人干人人爱| 高清毛片免费观看视频网站| 波多野结衣巨乳人妻| 国产精品福利在线免费观看| 中国美女看黄片| 国产精品麻豆人妻色哟哟久久 | 欧美日韩一区二区视频在线观看视频在线 | 午夜老司机福利剧场| 精品久久久噜噜| 大型黄色视频在线免费观看| 69人妻影院| 久久精品国产亚洲av天美| 成年女人看的毛片在线观看| 免费观看人在逋| 99热这里只有精品一区| 波野结衣二区三区在线| 亚洲精品粉嫩美女一区| 午夜精品国产一区二区电影 | 久久韩国三级中文字幕| 99精品在免费线老司机午夜| 国产不卡一卡二| 免费人成视频x8x8入口观看| 久久久久久久亚洲中文字幕| 少妇人妻一区二区三区视频| 六月丁香七月| 亚洲在线自拍视频| www日本黄色视频网| 最后的刺客免费高清国语| 中文字幕久久专区| 色噜噜av男人的天堂激情| 18禁裸乳无遮挡免费网站照片| 大又大粗又爽又黄少妇毛片口| 欧美又色又爽又黄视频| 一本久久中文字幕| 亚洲av中文字字幕乱码综合| av国产免费在线观看| 男人的好看免费观看在线视频| 日韩一区二区视频免费看| 黄片无遮挡物在线观看| 国内精品宾馆在线| 国产探花极品一区二区| 有码 亚洲区| 成人鲁丝片一二三区免费| 亚洲av二区三区四区| 亚洲av成人av| 99热这里只有精品一区| 日产精品乱码卡一卡2卡三| 一个人观看的视频www高清免费观看| 国产亚洲av片在线观看秒播厂 | 成人午夜精彩视频在线观看| 国产伦精品一区二区三区视频9| 99久国产av精品国产电影| 国产亚洲精品av在线| 久久精品久久久久久噜噜老黄 | 久久人妻av系列| 99久久久亚洲精品蜜臀av| 午夜亚洲福利在线播放| 蜜桃久久精品国产亚洲av| 悠悠久久av| 我要搜黄色片| 99精品在免费线老司机午夜| 色综合亚洲欧美另类图片| 精品人妻熟女av久视频| 人体艺术视频欧美日本| 亚洲最大成人av| 欧美成人免费av一区二区三区| 亚洲人成网站在线播放欧美日韩| 精品久久久久久久久av| 女的被弄到高潮叫床怎么办| 久久热精品热| 亚洲va在线va天堂va国产| 亚洲成av人片在线播放无| 热99在线观看视频| 午夜激情欧美在线| 亚洲人成网站在线播放欧美日韩| 久久久久久国产a免费观看| 极品教师在线视频| 99视频精品全部免费 在线| 国国产精品蜜臀av免费| 国产 一区 欧美 日韩| 国产av在哪里看| 好男人视频免费观看在线| 久久这里有精品视频免费| 26uuu在线亚洲综合色| 国产精品嫩草影院av在线观看| 欧美日韩国产亚洲二区| 国产国拍精品亚洲av在线观看| 嘟嘟电影网在线观看| 欧美三级亚洲精品| 欧美一区二区亚洲| 日韩一区二区视频免费看| 一区福利在线观看| 午夜激情欧美在线| 国产精品一区二区性色av| 少妇裸体淫交视频免费看高清| 精品久久久久久久久久久久久| 日日啪夜夜撸| 精品欧美国产一区二区三| 两性午夜刺激爽爽歪歪视频在线观看| 综合色av麻豆| 天堂网av新在线| 哪个播放器可以免费观看大片| 久久国内精品自在自线图片| 国产精品国产高清国产av| 国产私拍福利视频在线观看| 亚洲欧美精品综合久久99| 99久久久亚洲精品蜜臀av| 夜夜爽天天搞| 尾随美女入室| 长腿黑丝高跟| 欧美另类亚洲清纯唯美| 免费看a级黄色片| 99久久精品国产国产毛片| 欧美+日韩+精品| 五月玫瑰六月丁香| 天堂影院成人在线观看| 欧美日韩精品成人综合77777| 简卡轻食公司| 成年女人看的毛片在线观看| av卡一久久| 久久久久久久久中文| 99久久精品热视频| 欧美3d第一页| 2022亚洲国产成人精品| 亚洲国产色片| 亚洲电影在线观看av| 校园人妻丝袜中文字幕| 亚洲成av人片在线播放无| 国产精品免费一区二区三区在线| 欧美成人免费av一区二区三区| 国产精品综合久久久久久久免费| 亚洲精品国产av成人精品| 久久久久久久久久成人| 最近视频中文字幕2019在线8| 又黄又爽又刺激的免费视频.| 18禁黄网站禁片免费观看直播| 国产精品美女特级片免费视频播放器| 成年女人看的毛片在线观看| 一级毛片我不卡| 久久久久久久久久成人| 黄色视频,在线免费观看| 精品久久久久久久久久免费视频| 国产蜜桃级精品一区二区三区| 麻豆精品久久久久久蜜桃| 永久网站在线| 日本一二三区视频观看| 国产精品1区2区在线观看.| 青青草视频在线视频观看| 免费观看精品视频网站| 国产成年人精品一区二区| 精品久久久久久成人av| 美女大奶头视频| 日韩 亚洲 欧美在线| 国产精品美女特级片免费视频播放器| 不卡一级毛片| 18禁裸乳无遮挡免费网站照片| 成人高潮视频无遮挡免费网站| 国产视频首页在线观看| 国产av麻豆久久久久久久| 免费av毛片视频| 嘟嘟电影网在线观看| 国产精品一区二区性色av| 午夜福利在线观看吧| 成人高潮视频无遮挡免费网站| 狂野欧美激情性xxxx在线观看| 国产精品麻豆人妻色哟哟久久 | 2021天堂中文幕一二区在线观| 欧美色视频一区免费| av福利片在线观看| а√天堂www在线а√下载| 天堂av国产一区二区熟女人妻| 色吧在线观看| 国产精品久久电影中文字幕| 亚洲成人精品中文字幕电影| 美女高潮的动态| 又粗又爽又猛毛片免费看| 午夜免费激情av| 少妇高潮的动态图| 亚洲欧美日韩卡通动漫| 九草在线视频观看| av视频在线观看入口| 日日摸夜夜添夜夜添av毛片| 国产精品精品国产色婷婷| 99热精品在线国产| 波多野结衣高清作品| 国产精品永久免费网站| 色综合亚洲欧美另类图片| 晚上一个人看的免费电影| 2021天堂中文幕一二区在线观| 最近2019中文字幕mv第一页| 国产精品综合久久久久久久免费| 成人av在线播放网站| 日本黄色视频三级网站网址| 18禁裸乳无遮挡免费网站照片| 白带黄色成豆腐渣| 久久韩国三级中文字幕| 网址你懂的国产日韩在线| 日本免费a在线| 亚洲成av人片在线播放无| 男女边吃奶边做爰视频| 欧美变态另类bdsm刘玥| 综合色av麻豆| 91精品一卡2卡3卡4卡| 国产一区二区激情短视频| 精品久久久噜噜| 丰满人妻一区二区三区视频av| 久久精品国产鲁丝片午夜精品| 亚洲成人中文字幕在线播放| 91精品国产九色| 久久99精品国语久久久| a级毛色黄片| 又粗又爽又猛毛片免费看| 国产真实乱freesex| 亚洲第一区二区三区不卡| 18禁裸乳无遮挡免费网站照片| 国产精品1区2区在线观看.| 欧美在线一区亚洲| 成年版毛片免费区| 狠狠狠狠99中文字幕| 国产成人一区二区在线| 一夜夜www| 在线播放无遮挡| 国产精品爽爽va在线观看网站| 欧美潮喷喷水| 亚洲无线在线观看| 国产成人午夜福利电影在线观看| 日韩强制内射视频| 国产伦一二天堂av在线观看| 在线观看美女被高潮喷水网站| 国产伦理片在线播放av一区 | 大又大粗又爽又黄少妇毛片口| 五月玫瑰六月丁香| 99精品在免费线老司机午夜| 久久久精品94久久精品| 午夜免费男女啪啪视频观看| 国产精品精品国产色婷婷| 亚洲成av人片在线播放无| 日韩强制内射视频| 伦精品一区二区三区| 深爱激情五月婷婷| 看免费成人av毛片| 毛片一级片免费看久久久久| 成人亚洲欧美一区二区av| 欧美成人a在线观看| 99久久九九国产精品国产免费| 两个人视频免费观看高清| 日韩国内少妇激情av| 国产黄色小视频在线观看| 不卡视频在线观看欧美| 欧美激情在线99| 人妻制服诱惑在线中文字幕| а√天堂www在线а√下载| 久久鲁丝午夜福利片| 狠狠狠狠99中文字幕| 黄色配什么色好看| 一区二区三区免费毛片| 欧美日韩一区二区视频在线观看视频在线 | 乱码一卡2卡4卡精品| 99久久中文字幕三级久久日本| 国产大屁股一区二区在线视频| 美女黄网站色视频| 99精品在免费线老司机午夜| 亚洲最大成人av| 久久亚洲国产成人精品v| 成人漫画全彩无遮挡| 久久久久免费精品人妻一区二区| 一个人免费在线观看电影| 精品少妇黑人巨大在线播放 | 亚洲美女搞黄在线观看| 色吧在线观看| 亚洲丝袜综合中文字幕| 乱人视频在线观看| 亚洲国产日韩欧美精品在线观看| 国产黄色小视频在线观看| 国内精品一区二区在线观看| 好男人视频免费观看在线| 九九在线视频观看精品| 精品欧美国产一区二区三| 成人毛片a级毛片在线播放| 国产麻豆成人av免费视频| 亚洲精品乱码久久久久久按摩| 日韩一区二区三区影片| www日本黄色视频网| 九九爱精品视频在线观看| 国产伦精品一区二区三区视频9| av黄色大香蕉| 变态另类丝袜制服| 亚洲欧美成人精品一区二区| а√天堂www在线а√下载| 伦理电影大哥的女人| 中国美女看黄片| av.在线天堂| 国产片特级美女逼逼视频| 日韩av不卡免费在线播放| 国产视频内射| 欧美bdsm另类| 午夜久久久久精精品| 亚洲国产欧美在线一区| 日韩欧美在线乱码| а√天堂www在线а√下载| 三级经典国产精品| 免费观看的影片在线观看| 91久久精品电影网| 青春草国产在线视频 | 免费在线观看成人毛片| av免费观看日本| 亚洲不卡免费看| 亚洲av男天堂| 国产伦精品一区二区三区四那| 国产视频首页在线观看| 黄色配什么色好看| 日本一二三区视频观看| 亚洲激情五月婷婷啪啪| 婷婷色av中文字幕| 国产精品av视频在线免费观看| 国产大屁股一区二区在线视频| 精品久久久久久久人妻蜜臀av| 国产一区二区在线av高清观看| 国产在线男女| 亚洲av一区综合| 婷婷亚洲欧美| 禁无遮挡网站| 22中文网久久字幕| 色视频www国产| 少妇被粗大猛烈的视频| 日韩欧美国产在线观看| 精品久久久久久久久av| 在线播放无遮挡| 女人十人毛片免费观看3o分钟| 变态另类成人亚洲欧美熟女| 99久国产av精品国产电影| 亚洲激情五月婷婷啪啪| 极品教师在线视频| 久久久久久久久大av| 日韩大尺度精品在线看网址| 中国国产av一级| 看免费成人av毛片| 男人的好看免费观看在线视频| 日本免费一区二区三区高清不卡| 成人二区视频| 不卡一级毛片| 久久精品国产亚洲网站| 色噜噜av男人的天堂激情| 精品人妻一区二区三区麻豆| 国产av不卡久久| 亚洲成av人片在线播放无| 欧美zozozo另类| 欧美日韩一区二区视频在线观看视频在线 | 国产又黄又爽又无遮挡在线| 亚洲精品粉嫩美女一区| 色5月婷婷丁香| 六月丁香七月| 一进一出抽搐gif免费好疼| 桃色一区二区三区在线观看| avwww免费| 国产在线精品亚洲第一网站| a级毛片a级免费在线| 天天一区二区日本电影三级| 高清毛片免费观看视频网站| 日韩精品青青久久久久久| 国产v大片淫在线免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 成人美女网站在线观看视频| 最近视频中文字幕2019在线8| www.av在线官网国产| 99久久精品国产国产毛片| 久久久午夜欧美精品| 成年av动漫网址| 亚洲国产欧美在线一区| 日韩在线高清观看一区二区三区| 69av精品久久久久久| 在线天堂最新版资源| 能在线免费观看的黄片| 婷婷色综合大香蕉| 国产综合懂色| 乱人视频在线观看| 国产黄片美女视频| 久久国内精品自在自线图片| 欧美日本亚洲视频在线播放| 99久久人妻综合| 变态另类丝袜制服| 看免费成人av毛片| 好男人在线观看高清免费视频| 中文欧美无线码| 又爽又黄a免费视频| 丰满乱子伦码专区| 成人高潮视频无遮挡免费网站| 免费观看的影片在线观看| av在线观看视频网站免费| 在线播放国产精品三级| 男女边吃奶边做爰视频| 欧美不卡视频在线免费观看| 简卡轻食公司| 在线观看一区二区三区| 国产色婷婷99| 日韩成人av中文字幕在线观看| 亚洲国产高清在线一区二区三| 亚洲成a人片在线一区二区| 美女国产视频在线观看| 在线国产一区二区在线| 美女内射精品一级片tv| 大型黄色视频在线免费观看| 亚洲精品乱码久久久v下载方式| 久久人人爽人人爽人人片va| 看免费成人av毛片| 麻豆成人午夜福利视频| 26uuu在线亚洲综合色| 国产探花在线观看一区二区| 亚洲av熟女| 一区二区三区高清视频在线| 成熟少妇高潮喷水视频| 精品久久国产蜜桃| 三级经典国产精品| 少妇人妻精品综合一区二区 | 亚洲一区高清亚洲精品| 黑人高潮一二区| 久久久久免费精品人妻一区二区| 午夜福利视频1000在线观看| 亚洲欧美日韩无卡精品| 日韩大尺度精品在线看网址| 亚洲av熟女| 22中文网久久字幕| 蜜桃久久精品国产亚洲av| 国产一区二区激情短视频| 国产黄片美女视频| 秋霞在线观看毛片| 国产精品,欧美在线| 伦精品一区二区三区| 亚洲av免费高清在线观看| av免费观看日本| 一级毛片aaaaaa免费看小| 一个人观看的视频www高清免费观看| 大型黄色视频在线免费观看| 国产av一区在线观看免费| 国产视频首页在线观看| 熟女电影av网| 一级av片app| 亚洲国产欧美在线一区| 岛国毛片在线播放| 狂野欧美白嫩少妇大欣赏| 久久这里只有精品中国| 在线播放无遮挡| 国产亚洲av嫩草精品影院| 国产 一区精品| 精品国内亚洲2022精品成人| 日日摸夜夜添夜夜爱| 亚洲精品亚洲一区二区| 老女人水多毛片| 精品免费久久久久久久清纯| 亚洲成人久久性| 国产久久久一区二区三区| 噜噜噜噜噜久久久久久91| 日本黄色视频三级网站网址| 极品教师在线视频| 久久久久久国产a免费观看| 在线a可以看的网站| 亚洲一区高清亚洲精品| 国产国拍精品亚洲av在线观看| 免费无遮挡裸体视频| 午夜激情福利司机影院| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 天堂√8在线中文| 日本熟妇午夜| 最近的中文字幕免费完整| 国产精品,欧美在线| 国产精品乱码一区二三区的特点| 国产精品久久久久久精品电影小说 | 在线免费观看的www视频| 日本熟妇午夜| 少妇人妻精品综合一区二区 | 别揉我奶头 嗯啊视频| 最近视频中文字幕2019在线8| 国产成人精品久久久久久| 精品日产1卡2卡| 国产视频首页在线观看| 天堂中文最新版在线下载 | 黄片无遮挡物在线观看| 啦啦啦韩国在线观看视频| 性插视频无遮挡在线免费观看| av在线观看视频网站免费| 免费观看精品视频网站| 午夜福利在线观看吧| 成人三级黄色视频| 国产激情偷乱视频一区二区| 18禁裸乳无遮挡免费网站照片| 亚洲精品成人久久久久久| 久久久欧美国产精品| 精品欧美国产一区二区三| 九九久久精品国产亚洲av麻豆| 搞女人的毛片|