• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Classification of steel based on laserinduced breakdown spectroscopy combined with restricted Boltzmann machine and support vector machine

    2022-09-14 08:18:08QingdongZENG曾慶棟GuanghuiCHEN陳光輝WenxinLI李文鑫ZitaoLI李孜濤JuhongTONG童巨紅MengtianYUAN袁夢甜BoyunWANG王波云HonghuaMA馬洪華YangLIU劉洋LianboGUO郭連波andHuaqingYU余華清
    Plasma Science and Technology 2022年8期
    關(guān)鍵詞:劉洋光輝

    Qingdong ZENG(曾慶棟),Guanghui CHEN(陳光輝),Wenxin LI(李文鑫),Zitao LI (李孜濤),Juhong TONG (童巨紅),Mengtian YUAN (袁夢甜),Boyun WANG (王波云),Honghua MA (馬洪華),Yang LIU (劉洋),Lianbo GUO (郭連波) and Huaqing YU (余華清),?

    1 School of Physics and Electronic-information Engineering,Hubei Engineering University,Xiaogan 432000,People’s Republic of China

    2 Wuhan National Laboratory for Optoelectronics (WNLO),Huazhong University of Science and Technology,Wuhan 430074,People’s Republic of China

    3 Faculty of Physics and Electronic Science,Hubei University,Wuhan 430062,People’s Republic of China

    Abstract In recent years,a laser-induced breakdown spectrometer (LIBS) combined with machine learning has been widely developed for steel classification.However,the much redundant information of LIBS spectra increases the computation complexity for classification.In this work,restricted Boltzmann machines(RBM)and principal component analysis(PCA)were used for dimension reduction of datasets,respectively.Then,a support vector machine (SVM) was adopted to process feature information.Two models(RBM-SVM and PCA-SVM)are compared in terms of performance.After optimization,the accuracy of the RBM-SVM model can achieve 100%,and the maximum dimension reduction time is 33.18 s,which is nearly half of that of the PCA model(53.19 s).These results preliminarily indicate that LIBS combined with RBM-SVM has great potential in the real-time classification of steel.

    Keywords: laser-induced breakdown spectroscopy,restricted Boltzmann machines,classification,special steel

    1.Introduction

    The steel industry has brought economic benefits,but it also results in environmental pollution [1].Compared with virgin iron ore,using recycled steel as the raw material can reduce the energy consumption of steel production uo to 10%;CO2emissions will also be reduced significantly [2].Therefore,the rapid classification of recycling steel is vital for social development and economic construction [3].However,the conventional analysis methods to identify the quality of steels including X-ray [4],spark optical emission spectroscopy(Spark OES) [5],and inductively coupled plasma-mass spectrometry (ICP-MS) [6]have the disadvantages of complex sample preparation,comparatively long analysis time and the production of toxic waste.Thus,they are not suitable for real-time and online screening analyses in the recycling progress.

    Laser-induced breakdown spectroscopy (LIBS) is a multi-element detection technology in that the elemental composition and contents of samples are detected by analyzing the plasma emission produced by laser pulse[7–9].Considering the advantages of LIBS,such as no or minimal sample preparation,rapid analysis,online analysis,no waste production,and multi-element analysis,LIBS is widely used in biomedical [10],food [11],geological [12],and industrial fields[13,14].In recent years,the combination of LIBS with machine learning algorithms has become a feasible solution for achieving highly precise steel identification [15–17].However,the high-dimensional spectra obtained in LIBS measurements include not only useful information but also redundant information,such as spectral interference and background noise.Especially,the spectrum of steel is complex,because many spectra lines of alloying elements lead to mutual interference [18],which affects the efficiency of analysis for classification.To improve the modeling efficiency,multivariate data analysis methods were used to extract feature information.

    According to our literature research,principal component analysis(PCA)is widely applied to the processing of spectral data in the LIBS community [19].For example,compared with full-spectra PCA,Sungho et al [20]utilized PCA to select the important spectral lines of constituent elements as input variables for metals classification,which significantly reduced the computation time without loss of the classification accuracy.Vors et al[21]achieved the high robustness of the identification of alloys by applying both soft independent modeling of class analogy (SIMCA) and PCA.Narla et al[22]used PCA combined with SVM to identify alloys,and great classification accuracy was achieved.However,PCA has a limitation in dimensionality reduction for large datasets,because PCA needs to load the full dataset to memory at once[23,24],which leads to high computing power and long computation time.Moreover,for similar steel samples with slight differences in concentration,PCA only focuses on the variances among original input,thereby easily mitigating some smaller differences among the data [19].

    Restricted Boltzmann machines (RBM) [25]are a generated stochastic neural network that can capture feature information with high correlation from a dataset through batches,which can reduce the high computing power in the calculation process.Vrábel et al [24]performed RBM and PCA to reduce the dimension of a large dataset,and the results indicated that compared with PCA,RBM took less computation time,and only the reconstruction error was slightly worse.However,to the best of our knowledge,studies about LIBS combined with RBM are seldom reported.

    In this paper,we proposed a LIBS classification method of special steels based on the combination of RBM and SVM(RBM-SVM).Moreover,the classification performances of RBM-SVM and PCA-SVM were compared.

    2.Experimental set-up and methods

    2.1.Experimental set-up and sample

    A schematic of the experimental set-up is illustrated in figures 1(a) and (b).A compact Q-switch Nd:YAG pulsed laser (Bigsky Co.,Ltd;US) operating at 532 nm (repetition rate: 10 Hz,max pulse energy: 29 mJ) was used to produce plasma by ablating samples.After coupling with the optical fiber (Φ: 1 mm),the laser beam was reflected by a dichroic mirror and then focused through a UV-grade quartz lens(focal length: 100 mm,Φ: 25.4 mm) onto the steel sample surface.The optical emission of LIBS plasma was collected by a UV-grade quartz lens and via an optical fiber fed into a compact time-integrated AvaSpec-2048 spectrometer (spectral range: 295–1020 nm,spectral resolution: 0.08–0.11 nm).Then,the spectral data were transferred to a computer.The spectrally resolved lines were detected via a gated 2048-pixel CCD device (Sony 554).During the spectra acquisition,the delay for laser pulse and the integration time were 1.3 μs and 1.1 ms,respectively.

    Thirteen special steel samples (Inner Mongolia North Heavy Industries Group Corp.,Ltd) were used in this work.The concentration of matrix element (Fe) in the steel sample was over 90%.The concentration information of trace elements in steel samples is listed in table 1.The computer system is Intel?CoreTMi5-6200U CPU(2.30 GHz)and 8 GB of computer memory.The numerical analysis was implemented by MATLAB (MathWorks,R2017a).

    2.2.Data analysis algorithm

    RBM is an energy-based generative model that is used to compute the probability distribution through input data.The higher probabilities(low energy)of the specific training vectors can be raised by optimizing the parameters of the model [26].RBM consists of a visible layer of m units and a hidden layer of n units,where the units in different layers are connected with symmetric weights.To obtain the least energy model,RBM uses the energy function in equation (1) to assign the probability distribution through input data by encoder–decoder architecture.It could be applied to dimension reduction,classification,feature learning,and object recognition [27].

    where Wijis the connection weights between visible units vi,and hidden units hj,ai,and bjare the biases of visible and hidden units,respectively.The feature information(hidden variables)can be rapidly computed from input (visible variables) by batches,and the correlation between feature information and input can be assessed in the decoder progress.Generally,the dimension of hidden variables was lower than that of visible variables,which can avoid the redundancy of the input data.

    PCA is an unsupervised statistical method that is used for dimension reduction.It can extract low-dimensional new variables called principal components (PCs) by the orthogonal transformation of the high-dimensional input variables.According to the significance of each PCs,as ranked by their variance values,the obvious spectral variability information from the input can be retained in the first certain number of PCs.By selecting PCs rather than the original variables for mathematical modeling,the demands on the computing power and modeling time can be reduced [19,28].

    SVM is a typical supervised classification method that is widely applied for steel classification in the LIBS field[22,29].It can map the input data into a high-dimensional space by the radial basis function (RBF) kernel,and a separating hyperplane is used to identify the class of input data in a high-dimensional space[30].The performance of the SVM model can be improved by optimizing the penalty parameter C and kernel parameter g.In this work,we used SVM to classify steel samples by using new variables(extracted by RBM or PCA algorithm) as input,and the performances of RBM-SVM and PCA-SVM were compared.

    3.Results and discussion

    3.1.Data pre-processing

    To avoid the influence of inhomogeneity in the sample,each spectrum was an average of 10 LIBS measurements.Ninety spectra were collected for each sample from different positions on the sample surface.In total,1170 spectra were acquired from 13 steel samples for LIBS analysis.Then,10 spectra of each sample were randomly selected as test set(130 spectra),whereas the remaining spectra were divided into two groups of datasets: training set (832 spectra) and validation set(208 spectra).5-fold cross validation was used to evaluate the classification performance in this work.

    The LIBS spectra of 13 steel samples are shown in figure 2.Serious spectral interference and slight difference in spectral data of steel samples were observed,making their direct classification difficult.Considering the less and weaker spectral intensities of the original spectral data in the wavelength range of over 800 nm,the data were cropped to speed up the computing time,resulting in a spectrum with 8400 variables (spectral range: 291–797 nm).To reduce the spectral variations in LIBS data,the scale of peak intensities of each spectrum was normalized to the range of 0–1 by the equation (2).

    where the X and Y represent the original and normalized intensity values of the LIBS spectrum in each wavelength variable;Xmaxand Xminare the maximum and minimum of X,respectively.

    3.2.Reconstruction after dimension reduction

    A major drawback of PCA is that it assumes that the weights are orthogonal,which is in general not true.PCA,which may not be efficient enough to describe the nonlinear properties within the spectra,is a linear method and does not extract the complex features in the data.The feature extraction of PCA is time-consuming and storage-consuming if there is a large dataset while RBM does not have these problems.RBM is a generalization of nonlinear PCA,but it needs less storage space than PCA as only the training sets are required to store.In this work,the high-dimensional data matrix of the training set(832 rows and 8400 columns)was transformed into a lowdimensional feature information matrix and later reconstructed back.By reconstructing the original data matrix,we can obtain the reconstructed data matrix.The reconstruction error,which is used as a reference to compare the feature extraction ability between PCA and the RBM models,is the intensity value difference between the original spectrum and reconstructed spectrum in each wavelength variable.

    The RBM model with a hidden layer consisting of 25 units was designed to reconstruct the training set.The spectra were fed to the model in batches (one-thirteenth of the training set: 64 spectra).The values of momentum and learning rate are set to 0.05 and 0.5,respectively.Figure 3 shows the performance of the RBM model in the training progress.It can be found that the reconstruction error was obviously decreased in the first 10 epochs and reduced to the minimum value in the 100 epochs,whereas the computing time was only 22.02 s.Considering the small reconstruction error and the relatively low computing time,the epochs were set to 100 for the RBM model.Then,similar results were obtained for the training set,one of which is shown in figure 4.Figure 4 shows that the reconstructed spectrum has considerable overlap with the original spectrum in terms of specific features,such as line positions and normalized intensity.Only a few spectral intensities were slightly higher,which indicated that RBM has a good feature extraction ability for spectral data.

    Figure 1.Schematic of LIBS system.

    Figure 2.Spectrum signal obtained by LIBS set-up.

    Figure 3.The training progress of the RBM model.

    Figure 4.Comparison of the normalized intensity between the original spectrum and reconstructed spectrum.

    Figure 5.Comparison of the reconstruction errors between PCA and RBM models by reconstructing from feature information with different dimensions: (a) 5,(b) 10,(c) 15,and (d) 20 dimensions.

    To further validate the feature extraction ability of RBM for LIBS spectral data,PCA was used to compress the training set for feature extraction.Then,it was later reconstructed back.Considering the similar results for all data,the average errors of all reconstructed spectra(from sample No.1 in the training set) were used for evaluation.As shown in figures 5(a)–(d),the average reconstruction errors of PCA and RBM models were compared.The original data with 8400 variables were reduced to four reconstructed data in the lower dimension (5–20).

    In each experiment,the maximum absolute value of reconstruction error was obtained by the PCA model,and the value was basically higher than the RBM model in the spectral range from 400 to 450 nm.In contrast,except in this spectral range,the error reconstructed from relatively higher dimension (figures 5(c) and (d)) information by the PCA model could be ignored.These results indicated that RBM is more suitable for processing data with high spectra intensity.

    3.3.Classification with RBM-SVM and PCA-SVM

    We used SVM to classify steel samples by using different numbers of dimensions of extracted feature information as the input.The results were used to evaluate the performance of the RBM-SVM and PCA-SVM models.Considering the influence of penalty parameter C and kernel parameter g for classification performance,a grid search combined with a 3-fold cross-validation method was used to optimize these parameters of the SVM model.Table 2 shows the comparison results between the optimized RBM-SVM and PCA-SVM models with different numbers of dimensions (5–40) of the extracted feature information in three datasets.

    Table 1.Certified concentrations of trace elements in steel samples (wt.%).

    Table 2.Comparison results between RBM-SVM and PCA-SVM models.

    It can be seen that an accuracy of 100% could be achieved by the PCA-SVM model with increasing PCs as input,and the accuracy of the RBM-SVM model (ranging from 99%to 100%in most cases)was slightly lower than that of the PCA-SVM model in different datasets.However,PCA needed to load the full dataset to memory at once,which led to high computing power requirements and long computation time depending on the data size.A possible reason is that the correlations between hidden units are not explicitly fitted from the data,which means that the feature information extracted by the RBM model is not enough representative and useful.It causes the accuracy of the RBM-SVM model to be less than that of the PCA-SVM model.The more useful feature information for classification might be extracted in

    deep layers of the deep belief network (DBN) which is composed of multiple RBM layers and has good feature extraction ability.Section 3.2 shows that PCA only focused on the variances among original input data and had higher reconstruction error for strong spectral lines.Moreover,the dimension reduction time of the RBM model(18.80–33.18 s)was gradually increased with increasing numbers of the dimension of extracted information,but this was significantly lower than that of the PCA model (53.19 s).The reason for this result is that the computational process of RBM was trained in batches to reduce computing power requirements;thus,it was faster than PCA when the dimension of extracted information was low.All results indicated that the rapid and high-accuracy classification of special steels can be achieved by using the RBM-SVM model.

    4.Conclusions

    In this work,thirteen special steels from different brands were detected by LIBS technology.RBM was used to reduce the dimension of high-dimensional steel spectral data obtained by LIBS measurement.Its performance was compared with PCA under the same conditions.The absolute value of reconstruction error of the RBM model was basically lower than that of the PCA model in the spectral range with high spectral intensity.Compared with the PCA-SVM model,the accuracy of the RBM-SVM model can achieve over 99%,and the dimension reduction time of the best results was reduced to 22.02 s from 53.19 s.Furthermore,by optimizing the structure of the RBM model,a low reconstruction error of spectra was obtained in all variables,thereby indicating that high and stable classification accuracy can be achieved.These results preliminarily indicated that LIBS combined with RBM-SVM had great potential in the real-time classification of steel.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China (No.61705064),the Natural Science Foundation of Hubei Province (No.2021CFB607),the Natural Science Foundation of Xiaogan City(No.XGKJ202-1010003),and the Project of the Hubei Provincial Department of Education (No.T201617).

    ORCID iDs

    猜你喜歡
    劉洋光輝
    光輝的學(xué)習(xí)榜樣
    今日民族(2022年9期)2022-10-09 05:35:26
    A class of two-dimensional rational maps with self-excited and hidden attractors
    又見劉洋
    海峽姐妹(2020年6期)2020-07-25 01:26:10
    劉洋作品
    藝術(shù)家(2019年9期)2019-12-17 08:28:19
    春在飛
    就在家門口
    世界家苑(2018年11期)2018-11-20 10:50:58
    劉洋 藏石欣賞
    寶藏(2018年8期)2018-08-31 07:28:00
    劉洋作品
    小新筆記
    一次路遇
    久久国产精品人妻蜜桃| 精品久久久久久久毛片微露脸| 制服丝袜大香蕉在线| 一本久久中文字幕| 老司机午夜十八禁免费视频| 人妻丰满熟妇av一区二区三区| 日本熟妇午夜| 欧美在线黄色| 国产精品精品国产色婷婷| 久9热在线精品视频| 亚洲第一电影网av| 欧美 亚洲 国产 日韩一| 欧美三级亚洲精品| 欧美激情 高清一区二区三区| 99国产精品一区二区蜜桃av| 真人一进一出gif抽搐免费| 首页视频小说图片口味搜索| 国产亚洲精品av在线| 国产成人欧美| 国产成年人精品一区二区| 免费搜索国产男女视频| 国产区一区二久久| 搡老熟女国产l中国老女人| 亚洲成人久久性| 91麻豆精品激情在线观看国产| av视频在线观看入口| 99热6这里只有精品| 国产在线精品亚洲第一网站| 国产午夜福利久久久久久| 久热这里只有精品99| 国产精品av久久久久免费| 可以在线观看的亚洲视频| 国产人伦9x9x在线观看| 国产亚洲精品久久久久久毛片| 精华霜和精华液先用哪个| 亚洲性夜色夜夜综合| 在线观看免费日韩欧美大片| 午夜久久久在线观看| 中文资源天堂在线| 国内少妇人妻偷人精品xxx网站 | 天天一区二区日本电影三级| 国产亚洲精品第一综合不卡| 黑丝袜美女国产一区| 国产av又大| 天堂影院成人在线观看| 国产精品1区2区在线观看.| 久久国产乱子伦精品免费另类| 国产三级黄色录像| 亚洲人成电影免费在线| 一级毛片女人18水好多| 精品电影一区二区在线| 欧美激情极品国产一区二区三区| 国产成人av教育| 黄色a级毛片大全视频| 精品福利观看| 国产高清激情床上av| 亚洲av美国av| 国产精品久久久久久人妻精品电影| 1024手机看黄色片| 欧美日韩福利视频一区二区| 18禁裸乳无遮挡免费网站照片 | 97碰自拍视频| 亚洲熟妇熟女久久| 真人一进一出gif抽搐免费| 久久人妻av系列| 黑人巨大精品欧美一区二区mp4| 久热这里只有精品99| 啪啪无遮挡十八禁网站| 国产aⅴ精品一区二区三区波| 欧美激情久久久久久爽电影| 国产又色又爽无遮挡免费看| 最近最新免费中文字幕在线| 欧美中文综合在线视频| 亚洲精品一卡2卡三卡4卡5卡| 午夜福利欧美成人| 中亚洲国语对白在线视频| www.精华液| 亚洲av五月六月丁香网| 久久精品国产清高在天天线| 午夜福利视频1000在线观看| 我的亚洲天堂| 少妇 在线观看| 久久亚洲精品不卡| 黄片大片在线免费观看| 日日夜夜操网爽| 亚洲成人久久性| 国产午夜精品久久久久久| 久久香蕉激情| 韩国av一区二区三区四区| 日韩欧美国产一区二区入口| 亚洲av电影在线进入| 在线看三级毛片| 国产亚洲精品综合一区在线观看 | 淫秽高清视频在线观看| 女人被狂操c到高潮| 91九色精品人成在线观看| 久久久久亚洲av毛片大全| 成人免费观看视频高清| 久久久精品国产亚洲av高清涩受| 亚洲自偷自拍图片 自拍| 午夜福利18| 国产精品精品国产色婷婷| 国产亚洲欧美98| 香蕉久久夜色| 亚洲成人精品中文字幕电影| 又大又爽又粗| 久久人妻av系列| 国产一区二区三区视频了| 中文字幕人妻丝袜一区二区| 1024手机看黄色片| 亚洲一区二区三区不卡视频| 国产男靠女视频免费网站| 露出奶头的视频| 99热6这里只有精品| 91九色精品人成在线观看| 在线视频色国产色| 中亚洲国语对白在线视频| 制服人妻中文乱码| 国内少妇人妻偷人精品xxx网站 | 久久久水蜜桃国产精品网| 午夜精品久久久久久毛片777| 怎么达到女性高潮| 亚洲精品一区av在线观看| 极品教师在线免费播放| 国内久久婷婷六月综合欲色啪| av免费在线观看网站| 国产私拍福利视频在线观看| 91国产中文字幕| 淫妇啪啪啪对白视频| 老司机靠b影院| 啦啦啦 在线观看视频| 99久久国产精品久久久| 在线十欧美十亚洲十日本专区| 中文字幕人成人乱码亚洲影| 最近最新免费中文字幕在线| 中文字幕av电影在线播放| 精品人妻1区二区| 午夜亚洲福利在线播放| 亚洲天堂国产精品一区在线| 日本黄色视频三级网站网址| 久久久精品欧美日韩精品| 亚洲成a人片在线一区二区| 熟妇人妻久久中文字幕3abv| 国产av在哪里看| 亚洲美女黄片视频| 亚洲一区高清亚洲精品| 欧美黑人巨大hd| 国产成人精品无人区| 这个男人来自地球电影免费观看| 1024视频免费在线观看| 欧美成狂野欧美在线观看| av片东京热男人的天堂| 看免费av毛片| 级片在线观看| 亚洲国产高清在线一区二区三 | 婷婷六月久久综合丁香| 日本a在线网址| 在线观看免费日韩欧美大片| x7x7x7水蜜桃| 中文字幕久久专区| 搡老熟女国产l中国老女人| 99久久久亚洲精品蜜臀av| 2021天堂中文幕一二区在线观 | 十分钟在线观看高清视频www| 久久青草综合色| 成人精品一区二区免费| 成人国产综合亚洲| 国产av在哪里看| 一a级毛片在线观看| 久久香蕉国产精品| 禁无遮挡网站| 亚洲av电影不卡..在线观看| 午夜免费鲁丝| 好看av亚洲va欧美ⅴa在| 国产视频一区二区在线看| 天天躁狠狠躁夜夜躁狠狠躁| 精品国产美女av久久久久小说| 19禁男女啪啪无遮挡网站| 亚洲欧美一区二区三区黑人| 久久久国产精品麻豆| 日韩大码丰满熟妇| 午夜激情福利司机影院| 久久天躁狠狠躁夜夜2o2o| 亚洲国产精品sss在线观看| 亚洲第一青青草原| а√天堂www在线а√下载| 1024视频免费在线观看| 十分钟在线观看高清视频www| 精品一区二区三区av网在线观看| 女人爽到高潮嗷嗷叫在线视频| 久久久久久免费高清国产稀缺| 黄色视频不卡| 亚洲成国产人片在线观看| 欧美日韩精品网址| 啦啦啦 在线观看视频| 性欧美人与动物交配| 777久久人妻少妇嫩草av网站| 日韩欧美三级三区| 欧美中文日本在线观看视频| 国产一级毛片七仙女欲春2 | 搞女人的毛片| 日韩三级视频一区二区三区| 首页视频小说图片口味搜索| 悠悠久久av| 午夜亚洲福利在线播放| 99精品在免费线老司机午夜| 一区福利在线观看| 99久久国产精品久久久| 亚洲熟女毛片儿| 91成年电影在线观看| 色av中文字幕| 黄色 视频免费看| 丝袜美腿诱惑在线| 精品一区二区三区av网在线观看| 男人舔女人下体高潮全视频| 欧美色视频一区免费| 成人永久免费在线观看视频| 国产成年人精品一区二区| 国产97色在线日韩免费| 动漫黄色视频在线观看| 少妇裸体淫交视频免费看高清 | 亚洲 欧美一区二区三区| 亚洲欧美日韩无卡精品| 麻豆国产av国片精品| 日韩国内少妇激情av| 宅男免费午夜| 亚洲第一欧美日韩一区二区三区| 亚洲成人久久性| 亚洲精品中文字幕一二三四区| 黄片播放在线免费| avwww免费| 亚洲色图 男人天堂 中文字幕| 淫妇啪啪啪对白视频| 日本黄色视频三级网站网址| 2021天堂中文幕一二区在线观 | 成人18禁高潮啪啪吃奶动态图| 欧美国产精品va在线观看不卡| 国产精品影院久久| 深夜精品福利| 久久精品成人免费网站| 色综合欧美亚洲国产小说| 高潮久久久久久久久久久不卡| 亚洲熟女毛片儿| 1024香蕉在线观看| 国产成人影院久久av| 日韩欧美在线二视频| 在线十欧美十亚洲十日本专区| av中文乱码字幕在线| 久久久久久久午夜电影| 久久九九热精品免费| 精品久久久久久久久久久久久 | 18禁黄网站禁片免费观看直播| 亚洲人成77777在线视频| 久久这里只有精品19| 看免费av毛片| 久久欧美精品欧美久久欧美| 淫秽高清视频在线观看| 久久久久久亚洲精品国产蜜桃av| 成人永久免费在线观看视频| 国产又色又爽无遮挡免费看| 最近最新免费中文字幕在线| 精品久久蜜臀av无| 久久精品亚洲精品国产色婷小说| 亚洲国产欧美日韩在线播放| 香蕉av资源在线| 国产色视频综合| 高清在线国产一区| 国产精品免费视频内射| 日韩精品免费视频一区二区三区| 黄频高清免费视频| 亚洲成a人片在线一区二区| 久久精品亚洲精品国产色婷小说| 老熟妇仑乱视频hdxx| 亚洲中文av在线| 成年人黄色毛片网站| 窝窝影院91人妻| 91成人精品电影| 亚洲无线在线观看| av福利片在线| 黄色毛片三级朝国网站| 国产精品亚洲一级av第二区| 亚洲成av片中文字幕在线观看| 国产色视频综合| 黑人欧美特级aaaaaa片| 日韩欧美 国产精品| 亚洲精品粉嫩美女一区| 国产精品美女特级片免费视频播放器 | 国产精品 欧美亚洲| 少妇 在线观看| 精品久久久久久久毛片微露脸| 久久国产精品人妻蜜桃| 丰满的人妻完整版| 欧美中文综合在线视频| 美女午夜性视频免费| 可以在线观看的亚洲视频| 又紧又爽又黄一区二区| 欧美成人性av电影在线观看| 亚洲专区字幕在线| 美女高潮到喷水免费观看| 日本在线视频免费播放| 一区福利在线观看| 成熟少妇高潮喷水视频| 搡老岳熟女国产| 精品无人区乱码1区二区| 欧美三级亚洲精品| 99久久无色码亚洲精品果冻| 中文资源天堂在线| videosex国产| 50天的宝宝边吃奶边哭怎么回事| 国产免费av片在线观看野外av| 在线av久久热| 2021天堂中文幕一二区在线观 | 欧美av亚洲av综合av国产av| 桃色一区二区三区在线观看| 亚洲精品在线观看二区| 午夜老司机福利片| 伊人久久大香线蕉亚洲五| 亚洲五月婷婷丁香| 国产乱人伦免费视频| 91av网站免费观看| 中文字幕av电影在线播放| 精品乱码久久久久久99久播| 国产在线精品亚洲第一网站| av在线播放免费不卡| 最新在线观看一区二区三区| 人人妻人人澡欧美一区二区| 欧美色欧美亚洲另类二区| 每晚都被弄得嗷嗷叫到高潮| 黄片大片在线免费观看| 亚洲成人免费电影在线观看| 一边摸一边抽搐一进一小说| 国产精品99久久99久久久不卡| 免费女性裸体啪啪无遮挡网站| 亚洲中文日韩欧美视频| 久久久国产精品麻豆| 人妻丰满熟妇av一区二区三区| 日韩欧美一区视频在线观看| 女人被狂操c到高潮| 久久欧美精品欧美久久欧美| 午夜激情福利司机影院| 日本免费一区二区三区高清不卡| 国产欧美日韩一区二区精品| 亚洲精品国产区一区二| 国产欧美日韩一区二区精品| 悠悠久久av| 成人手机av| 白带黄色成豆腐渣| 亚洲av日韩精品久久久久久密| 91麻豆av在线| 老熟妇仑乱视频hdxx| 久久精品国产亚洲av香蕉五月| 两个人免费观看高清视频| 一边摸一边抽搐一进一小说| 法律面前人人平等表现在哪些方面| 老汉色∧v一级毛片| 99在线人妻在线中文字幕| 免费在线观看亚洲国产| 757午夜福利合集在线观看| 亚洲国产欧美日韩在线播放| 国产午夜福利久久久久久| 久久狼人影院| 免费看日本二区| 久久久久亚洲av毛片大全| 精品熟女少妇八av免费久了| 亚洲熟女毛片儿| 一级片免费观看大全| 久久精品亚洲精品国产色婷小说| 欧美日韩亚洲综合一区二区三区_| 波多野结衣巨乳人妻| 十八禁网站免费在线| 可以免费在线观看a视频的电影网站| 999精品在线视频| 久久久精品欧美日韩精品| www.熟女人妻精品国产| 999久久久国产精品视频| 最近最新中文字幕大全免费视频| www.熟女人妻精品国产| 美国免费a级毛片| 久久久久久国产a免费观看| 伦理电影免费视频| 久久国产精品男人的天堂亚洲| 久9热在线精品视频| 国产亚洲精品久久久久久毛片| 亚洲av电影在线进入| 精品久久久久久久久久免费视频| 波多野结衣av一区二区av| 国产真实乱freesex| 免费无遮挡裸体视频| 久久久国产精品麻豆| 我的亚洲天堂| 欧美黑人精品巨大| 夜夜夜夜夜久久久久| 午夜视频精品福利| 母亲3免费完整高清在线观看| 免费一级毛片在线播放高清视频| 在线免费观看的www视频| 欧美中文综合在线视频| 在线视频色国产色| bbb黄色大片| 欧美三级亚洲精品| 最近最新中文字幕大全免费视频| 国产成人精品久久二区二区免费| 国产一卡二卡三卡精品| 亚洲成a人片在线一区二区| 国产成人欧美| 久久精品91无色码中文字幕| 欧美乱色亚洲激情| 天堂动漫精品| 成人18禁在线播放| 欧美av亚洲av综合av国产av| 久久这里只有精品19| 国产精品1区2区在线观看.| 亚洲国产日韩欧美精品在线观看 | xxxwww97欧美| 精品国产亚洲在线| 国产一区二区在线av高清观看| 久久香蕉激情| 国语自产精品视频在线第100页| 日韩欧美一区视频在线观看| 欧美成狂野欧美在线观看| 色婷婷久久久亚洲欧美| 亚洲成人精品中文字幕电影| 久久久久九九精品影院| 国产又黄又爽又无遮挡在线| 亚洲全国av大片| 午夜福利一区二区在线看| 国产麻豆成人av免费视频| 亚洲精品一卡2卡三卡4卡5卡| 亚洲中文av在线| www国产在线视频色| 天天躁夜夜躁狠狠躁躁| 国产精华一区二区三区| 亚洲最大成人中文| 99热只有精品国产| 国产97色在线日韩免费| 大型黄色视频在线免费观看| 18美女黄网站色大片免费观看| 亚洲国产欧美网| 99在线人妻在线中文字幕| 日本三级黄在线观看| 国产1区2区3区精品| 老汉色∧v一级毛片| 黄频高清免费视频| 欧美最黄视频在线播放免费| 国产不卡一卡二| 18禁黄网站禁片午夜丰满| 精品少妇一区二区三区视频日本电影| 色综合站精品国产| 亚洲天堂国产精品一区在线| 亚洲国产精品sss在线观看| 99精品久久久久人妻精品| 在线观看66精品国产| 亚洲欧美一区二区三区黑人| 成人精品一区二区免费| 1024香蕉在线观看| 成人三级做爰电影| 亚洲 国产 在线| 男人的好看免费观看在线视频 | 老司机深夜福利视频在线观看| 久久精品影院6| 制服人妻中文乱码| 欧美激情极品国产一区二区三区| 搡老熟女国产l中国老女人| 狠狠狠狠99中文字幕| 国产精品98久久久久久宅男小说| 国产av又大| 久久精品人妻少妇| 免费看日本二区| 午夜福利一区二区在线看| 国产在线精品亚洲第一网站| 欧美性猛交黑人性爽| 91九色精品人成在线观看| 两个人视频免费观看高清| 一二三四在线观看免费中文在| a在线观看视频网站| 成人av一区二区三区在线看| 亚洲欧美激情综合另类| av欧美777| xxx96com| 淫秽高清视频在线观看| 欧美不卡视频在线免费观看 | 国产片内射在线| 亚洲成av片中文字幕在线观看| 男男h啪啪无遮挡| 久久人妻福利社区极品人妻图片| 国语自产精品视频在线第100页| 久久性视频一级片| 亚洲 国产 在线| 久久草成人影院| 国产欧美日韩一区二区三| 中文字幕久久专区| 国产精品精品国产色婷婷| 亚洲av五月六月丁香网| 国产色视频综合| 嫩草影视91久久| 精品久久蜜臀av无| 村上凉子中文字幕在线| e午夜精品久久久久久久| 熟女电影av网| 波多野结衣高清无吗| 午夜a级毛片| 久久久久精品国产欧美久久久| av在线播放免费不卡| 色综合欧美亚洲国产小说| 无遮挡黄片免费观看| bbb黄色大片| 好男人电影高清在线观看| x7x7x7水蜜桃| 亚洲成人久久性| 99久久国产精品久久久| 欧美+亚洲+日韩+国产| 美女 人体艺术 gogo| 99国产极品粉嫩在线观看| bbb黄色大片| 亚洲成人久久性| 最近在线观看免费完整版| 欧美亚洲日本最大视频资源| 别揉我奶头~嗯~啊~动态视频| 黄色 视频免费看| 一本一本综合久久| 变态另类成人亚洲欧美熟女| 亚洲七黄色美女视频| 曰老女人黄片| 国产成人精品无人区| 中文资源天堂在线| 天天添夜夜摸| 久久精品国产综合久久久| 嫩草影院精品99| 精品高清国产在线一区| 午夜福利免费观看在线| 波多野结衣巨乳人妻| 女性生殖器流出的白浆| 成人精品一区二区免费| 久久久国产精品麻豆| 麻豆一二三区av精品| 久久久久久国产a免费观看| 窝窝影院91人妻| 琪琪午夜伦伦电影理论片6080| 国产激情偷乱视频一区二区| 美女高潮到喷水免费观看| 成人欧美大片| 日本精品一区二区三区蜜桃| 国产成人av激情在线播放| 亚洲久久久国产精品| 黄片播放在线免费| 波多野结衣高清作品| 丰满人妻熟妇乱又伦精品不卡| 国产不卡一卡二| 久久久久国产一级毛片高清牌| 午夜福利18| 成人国语在线视频| 久久婷婷人人爽人人干人人爱| 在线播放国产精品三级| 久久99热这里只有精品18| 中文字幕最新亚洲高清| 日本 av在线| 黄色丝袜av网址大全| 久热这里只有精品99| 一卡2卡三卡四卡精品乱码亚洲| 男人舔女人下体高潮全视频| 国产v大片淫在线免费观看| www日本黄色视频网| 欧美日韩亚洲国产一区二区在线观看| 男女下面进入的视频免费午夜 | 国产久久久一区二区三区| 免费在线观看日本一区| www.999成人在线观看| 亚洲精品av麻豆狂野| 亚洲久久久国产精品| 可以在线观看毛片的网站| 变态另类丝袜制服| 一级毛片高清免费大全| 欧美性猛交╳xxx乱大交人| 亚洲最大成人中文| 日日干狠狠操夜夜爽| 日韩精品中文字幕看吧| 日韩有码中文字幕| 两个人免费观看高清视频| 亚洲av成人一区二区三| 嫁个100分男人电影在线观看| 波多野结衣av一区二区av| 夜夜躁狠狠躁天天躁| 午夜亚洲福利在线播放| 亚洲国产欧美日韩在线播放| 99热这里只有精品一区 | 日韩中文字幕欧美一区二区| 国产日本99.免费观看| 一进一出好大好爽视频| 亚洲专区字幕在线| 99在线视频只有这里精品首页| 午夜a级毛片| 精品久久久久久久人妻蜜臀av| 视频在线观看一区二区三区| 久久人人精品亚洲av| 精品第一国产精品| 亚洲欧美一区二区三区黑人| 午夜福利高清视频| 欧洲精品卡2卡3卡4卡5卡区| 久久久精品欧美日韩精品| 动漫黄色视频在线观看| 老司机福利观看| videosex国产| 亚洲国产高清在线一区二区三 | 欧美+亚洲+日韩+国产| 午夜久久久久精精品| 一夜夜www| 老司机靠b影院| 久久伊人香网站| 天天添夜夜摸| 亚洲一区二区三区色噜噜| 一卡2卡三卡四卡精品乱码亚洲| 90打野战视频偷拍视频| 动漫黄色视频在线观看| 校园春色视频在线观看| 天天添夜夜摸|