• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A simple derivative spectrophotometric method for simultaneously detecting nitrate and nitrite in plasma treated water

    2022-09-14 08:18:14LiangshengXU許良勝HuihongWU吳匯鴻XinWANG王新QiangCHEN陳強(qiáng)andKostyaKenOSTRIKOV
    Plasma Science and Technology 2022年8期
    關(guān)鍵詞:王新陳強(qiáng)

    Liangsheng XU (許良勝),Huihong WU (吳匯鴻),Xin WANG (王新),Qiang CHEN (陳強(qiáng)) and Kostya (Ken) OSTRIKOV

    1 Shenzhen Research Institute of Xiamen University,Institute of Electromagnetics and Acoustics,Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance,Key Laboratory of Electromagnetic Wave Science and Detection Technology,Xiamen University,Xiamen 361005,People’s Republic of China

    2 School of Chemistry and Physics and QUT Centre for Materials Science,Queensland University of Technology (QUT),Brisbane QLD 4000,Australia

    Abstract A spectrophotometric technique is developed to simultaneously quantify nitrate and nitrite in plasma treated water.The measurement is based on examining the inflection points(wavelengths) in the derivative absorbance of the nitrate or nitrite solution.At the inflection points of the pure nitrate solution,the derivative absorbance is zero and independent of the nitrate’s concentration,and thus the nitrite’s concentration in a mixed nitrate and nitrite solution can be obtained by using the Beer’s law at these points.The nitrate’s concentration can also be achieved from the inflection points of nitrite in the same manner.The relation between the tested substance’s (nitrate or nitrite) concentration and the second- or the third-order absorbances is obtained at these inflection points.Test measurements for mixed aqueous solutions of nitrate and nitrite with or without hydrogen peroxide confirm the reliability of this technique.We applied this technique to quantify the nitrate and nitrite generated in air plasma treated aqueous solutions.The results indicate that both nitrate and nitrite concentrations increase with the plasma treatment time,and the nitrite species is found to be generated prior to the nitrate species in the air plasma treated aqueous solution.Moreover,the production rate of total nitrogen species is independent of the solutions’pH value.These results are relevant to diverse applications of plasma activated solutions in materials processing,biotechnology,medicine and other fields.

    Keywords: nitrate,nitrite,derivative spectrophotometry,inflection point,plasma treated water

    1.Introduction

    Discharge plasma contains free electrons,photons,ions as well as radicals from which the plasma obtains high reactivity and finds various applications in diverse fields [1].When the discharge plasma is in contact with a liquid,a plasma-liquid interface is formed.Across this interface,the plasma and liquid componenets are transferred and exchanged via the multitude of physical and chemical processes,such as sputtering,evaporation,diffusion,and decomposition of the components [2–6].These physical and chemical processes at the plasma-liquid interface provide an exotic parameter space for many chemical and physical reactions which are difficult or even impossible to take place under conventional conditions.Therefore,the plasma-liquid interactions broaden the field of the discharge plasma research,enabling many applications,such as plasma-based water treatment[7–10],plasma medicine [11–13],elemental analysis [14–16],nanomaterial fabrication [2,17–21],nitrogen fixation [22–25],and several others.

    For plasmas in contact with an aqueous solution,the reactive species generated from the plasma-liquid interactions can be classified as short-lived and long-lived components based on their lifetimes.The most common short-lived aqueous species are dissolved hydroxyl (OHdis) radicals and hydrated electrons which are responsible for the fast processes in the plasma-treated solution,such as rapid oxidation or reduction.The most common long-lived species are hydrogen peroxide (H2O2),nitrate(N O?3),and nitrite (N O?2) [19,23–26]which are related to the long-term chemistry of the plasma-treated solution.Therefore,it is important to trace and quantify these species in order to control the chemistry of the plasma-treated solution.

    The short-lived species OHdisand hydrated electrons have often been investigated by the molecular probe method[26–33].A colorimetric method is usually used to quantify aqueous H2O2,using the reactions of Ti4++H2O2+2H2O→H2TiO4+4H+[34–38]or VO?3+4H++H2O2→V O32++3H2O [39–42],where the absorbance of H2TiO4at 410 nm or the VO32+cation at 450 nm is proportional to the H2O2concentration.Many techniques have been developed to quantify the NO?3and NO?2species,including spectrophotometric [43],fluorescent,chemiluminescent,and liquid chromatography [44,45]methods.At present,the spectrophotometric detection with Griess reagents [46]is the most commonly used method for the NO?3and NO?2detection.However,the above-mentioned techniques are either complicated in processing or demand toxic reagents,thus there is a requirement to develop a simple,fast and toxic reagent-free method for detecting the NO?3and NO?2species in the plasmatreated aqueous solutions.

    It is known that many chemicals have specific absorption bands in their ultraviolet–visible (UV–vis)spectra,and thereby the UV–vis spectrometry is a powerful tool to trace and quantify chemical species [47].Recently,absorption spectrophotometry has been used to detect the NO?3and NO?2species in the plasma-treated aqueous solutions.Jun-Seok Oh et al [48–51]quantified the H2O2,NO?3and NO?2species in the plasma-liquid system by fitting the UV–vis spectra of the plasma-treated solution.He et al[52]developed a derivative absorption spectroscopic method to in situ quantify the H2O2,NO?3and NO?2species in an air plasma treated water,where a multivariable linear regression process is used to reduce the estimation error[53–55].In a similar manner to references [48–51],Liu et al [56]investigated the concentration and penetration depth of long-lived species by fitting the UV absorption spectra of the plasma-treated water,and they also considered the influence of the pH and cross reactivity on the studied UV absorption spectra.In this work,we substantially advance the derivative absorption spectroscopic method by taking advatange of the inflection points in the derivative spectra.This new approach does not rely on the commonly used laborious fitting of the absorption curves or multivariable linear regression processing.

    When several chemical species are present in an aqueous solution,the absorbance at wavelength λ (Aλ) for multi-component solution with m components can be expressed by equation (1) according to the principle of additivity,if the absorbances of all the components obey the Beer’s law:

    where Aλand l are the solution’s absorbance at wavelength λ and the optical path length of the sample,respectively.Aλ(i)is the absorbance contributed only by the ith component.εiλZ and Ciare the extinction coefficient at wavelength λ and the concentration for the ith component,respectively.This is the basis for the multi-component analysis using absorption spectrophotometry.

    2.Experimental method

    For a multi-component solution,the absorbance bands overlapping will decrease the discrimination among spectra of different components.Some baselines,scattering,or matrix interference are also possibly present in the absorption spectra.To solve these problems,derivative spectra are usually used,as a result,the selectivity of the assay will be improved.A substance’s absorbance (A) can be expressed in a general form as a function of the wavelength (equation (2)) [47]:

    where anis the absorption coefficient of the substance at the wavelength λ.

    Any interference with a directly proportional relationship to different orders of wavelength can be removed using higher orders of absorbance.Thus,derivative spectra can reduce or remove the background interference from many sources such as scattering,matrix etc.Moreover,it is known that the amplitude (Dn) of the nth-order absorbance is inversely proportional to the original bandwidth(W)raised to the nth order as expressed by equation (3) [47]

    This fact will sharpen the band of the derivative absorbance,and consequently the discrimination among the spectra of different components is enhanced.

    The derivative spectra can be obtained by performing the differentiation operation on equation (1)

    Suzuki et al [57]have used the inflection points of second-order derivative spectrophotometry to estimate the concentrations of NO?3and NO?2.The principle is as follows.

    If we consider the second-order derivative spectra,for aqueous solution of NO?3and NO?2,equation (4) turns to be equation (5),

    Suzuki et al [57]found the wavelengths called inflection points in the second-order derivative spectra,and they are 215.8 nm for pure NO?3solution and 223.2 nm for pure NO?2solution.At the inflection points,the intensity of the secondorder derivative spectrum for NO?3or NO?2is zero and independent of the concentration of the NO?3or NO?2species.Therefore,at the inflection point of the N?O3in the second-order derivative spectraequation (5) turns to be

    The NO?2concentration can be estimated from equation (6)can be obtained by measuring the secondat this inflection point (215.8 nm),provided that order derivative spectra for several known concentrations of the NO?2solutions.On the other hand,the NO?3concentration can also be obtained in a similar manner.However,the authors incorrectly referred to the inflection points as isosbestic points[57].In fact,the isosbestic point is a specific wavelength at which the absorbance of a sample is invariant during a chemical or a physical change of the sample [58].In this work,we develop a method that is applicable to the solutions containing H2O2 species and also consider the influence of the solution’s pH value.

    If a solution contains the NO?3,NO?2and H2O2species,which is often the case for the plasma-treated water,the nth order of the derivatives for the solution absorbance at the wavelength λ will be

    Provided that the inflection point in the derivative absorbance of the NO?3solution is λaequation (7) turns to be

    Thus,we have

    Thereby,can be obtained,ifCH2O2in the solution is measured.The value ofCNO?3can also be obtained in a similar way at the inflection points of the derivative absorbance for the NO?2solution.

    Another issue required to be addressed is the pH influence on the band shape and position of the absorbance curve.In an aqueous solution,a chemical species HA is in an equilibrium state (equation (13)),the acid dissociation constant (pKa) is expressed as equation (14),

    where[HA],[H+],and[A?]are the concentrations of HA,H+,and A?in the solution,respectively.

    From equation (14),we can derive equation (15) for monoprotic acids that are able to produce one proton per molecule during the dissociation,

    The H2O2,HNO3and HNO2are monoprotic acids,and thus we can find the ratio of the molecular state of HA in the solution as a function of the pH value,if we know pKa.Figure 1 presents the ratios of the molecular state for the H2O2,HNO3and HNO2species as a function of the pH value.It can be observed that most of the HNO3or HNO2species are in the ionic state(N O?3or NO?2anions,respectively)in the pH range of 5.5–14,while the H2O2species is predominantly in its molecular state in the pH range of 0–10.5.The band shape and position of the absorbances of the considered species will be influenced by the pH values,especially for the N?O2species,which has been reported by Tachibana et al[59]and Ng et al[60]in plasma-activated water.Therefore,to obtain reasonable results from the UV–vis absorption spectra,one must consider the pH influence.We choose to measure the absorbance of the solution in the pH range of 6–10 where the absorbance originates from the H2O2molecules,the NO?3and NO?2ions and the absorbances will not vary with the pH value.

    Figure 1.Ratios of the molecular state for the H2O2,HNO3 and HNO2 species as a function of the pH value.The values of pKa at 25°C for the H2O2,HNO3 and HNO2 species are 11.62,?1.38 and 3.25,respectively [61,62].

    To quantify the NO?3and NO?2in a solution,we first performed a calibration process by which the absorbances of known concentrations of pure H2O2,NaNO3and NaNO2were measured,separately.The absorbance of solutions was measured by a UV–vis Spectrophotometer (UV-1780,SHIMADZU) with a resolution of 0.5 nm.The used chemicals(analytical grade)of NaNO2and NaNO2were purchased from Sinopharm Chemical Reagent Co.,Ltd.H2O2(30% w/w)was purchased from Xilong Scientific Co.,Ltd.A pH detector(Yesmylab SX620) was used to measure the pH value of the solutions.

    To trace and quantify the NO?3and NO?2species in atmospheric pressure air DC discharge plasma-treated solution,we prepared three solutions with pH values of 2.80,6.78,and 8.86.Solutions with pH values of 6.78 and 8.86 were phosphate buffers (10 mM in buffer strength).The solution with the pH value of 2.80 was adjusted by diluted H2SO4solution.The atmospheric pressure air discharge plasma reactor is similar to that used in our previous study[63],and the detailed parameters of the reactor can be found there.Briefly,the plasma treated solution (120 ml,at 25 °C)was circulated by a peristaltic pump with a flow rate of 100 ml min?1in a cylinder-like plasma reactor.2 ml of solution was sampled every 2 min through a T-joint connector in the circulating path.The discharge current was 20 mA,the discharge gap was 3 mm,and the solution acted as a cathode.

    The desired derivative absorbance spectrum can be calculated by directly or consecutively differentiating the original absorbance.Because a progressive generation of derivative absorbance can improve the signal-to-noise ratio in the derivative spectrum [64],we use the latter method to obtain the desired derivative absorbance by performing a Savitzky–Golay algorithm.

    3.Results and discussion

    Figure 2 presents zero-,second-,and third-order absorbances of known concentrations of pure H2O2,NaNO3and NaNO2solutions with the pH values in the range of 6–10 in which the absorbances are not affected by the pH values.We find that there exist inflection points in the derivative absorbances of the NaNO3and NaNO2solutions.In principle,we can obtainfrom fitting equations(8)–(10),while in practice intercepts will be usually introduced to these linear relationships when we perform the fitting process.Table 1 summarizes the inflection points and the linear relationships between the absorbance intensities at these inflection points and the related H2O2,NaNO3and NaNO2concentrations.In addition,the second- and thirdorder absorbances of the H2O2solution are relatively small compared with those of the NaNO3and NaNO2solutions,and the inflection points in the second- and third-order absorbances of the H2O2solution are at the wavelengths of 199.5 nm and 225.0 nm,respectively.Because the absorbances at shorter wavelengths of inflection points for pure NaNO3or pure NaNO2solution are deviated from the Beer’s law at the concentration of 25–100 mg l?1,and the absorbances at longer wavelengths of inflection points are too low,solutions with NaNO3or NaNO2concentration in the range of 25–100 mg l?1need to be diluted to satisfy the Beer’s law before the measurement.

    Figure 2.The zero-,second-,and third-order derivative absorbances for different concentrations of (a) H2O2,(b) NaNO3,and (c) NaNO2 solutions.The pH values of these solutions are in the range of 6–10.

    Table 1.The slope/intercept in the linear relationships of the absorbance intensities at the inflection points and the concentrations of H2O2,NaNO3,and NaNO2.

    Figure 3.The zero-,second-,and third-order absorbances of the mixed NaNO3 and NaNO2 solutions with different volume ratios.

    Figure 4.The H2O2 concentration as a function of the plasma treatment time in solutions with pH values of 2.80,6.78,and 8.86.

    We prepared a series of aqueous solutions with known concentrations of NaNO3and NaNO2with or without the presence of H2O2.Figure 3 presents the typical zero-,second-,and third-order absorbances of several mixed NaNO3and NaNO2solutions with known concentrations.

    Using the method described in the introduction section,we can calculate the NaNO3and NaNO2concentrations in the solutions.The results of all the prepared solutions without H2O2are summarized in table 2.Table 3 provides the calculated NaNO3and NaNO2concentrations of the solutions in the presence of H2O2,according to equation (9).In tables 2 and 3,we compared the actual results with the calculated ones,and the deviation of the calculated results from the real ones is affordable.Therefore,the above-proposed approach is reliable on estimating the NaNO3and NaNO2concentrations.

    Table 2.Actual and measured concentrations of aqueous mixtures of nitrate and nitrite.The inflection points in 2nd- and 3rd-derivative absorbances are selected to obtain the NaNO3 and NaNO2 concentrationsa.

    Table 3.Actual and measured concentrations of aqueous mixtures of nitrate and nitrite in the presence of H2O2.The inflection points in 2ndand 3rd-derivative absorbances are selected to obtain the NaNO3 and NaNO2 concentrationsa.The H2O2 concentration is 0.80 mM for B1–B4,and 2.20 mM for B5–B16.

    To apply the method to air DC plasma-treated aqueous solutions where the solutions act as a cathode,we prepared three aqueous solutions with pH values of 2.80,6.78,and 8.86.Plasma treated samples were taken every 2 min.The solutions with pH values of 6.78 and 8.86 are phosphate buffered solutions,and then the pH values of solutions after the plasma treatments are still in the range of 6–10,we can directly perform the absorbance measurements in these cases.However,for the solution with the pH value of 2.80,we must adjust the pH value of the sample to be in the range of 6–10 by the prepared phosphate buffer before performing the absorption measurements.The H2O2concentration in the plasma treated solutions is shown in figure 4 which is measured using the colorimetric method as mentioned in the introduction section.For the three solutions,the H2O2concentration in the solutions increases with increasing the plasma treatment time.

    Using equation(7),the data in table 1,and the results in figure 4,we can calculate the NO?3and NO?2concentrations in the plasma treated solutions from the measured absorbances.Figure 5 presents the time evolution of the NO?3and NO?2concentrations in the plasma treated solutions with pH values of 2.80,6.78,and 8.86.Both calculations from the second- and third-order derivative absorbances provide the smear results.For solutions with pH values of 6.78 and 8.86,the production rate of the N?O2species is much greater than that of the N?O3species.However,the production rate of the N?O2species for the solution with pH values of 2.80 is much smaller than that of the N?O3species.These results are consistent with our previous study [52]where we considered that the N?O2species will be converted to the N?O3species through the reactions described by equations (16) and (17) when the solution’s pH value is less than 3.3.These reactions might account for the difference of the production rate of the N?O3and the N?O2species in the plasma treated solutions with different pH values

    Figure 5.The time evolution of the NO?3 and NO?2 concentrations during the plasma treatment of solutions with pH values of(a)2.80,(b) 6.78,and (c) 8.86.The results are calculated from the second-and third-order absorbances.

    Figure 6.The time evolution of the total concentration for NO?3 and NO?2 during the plasma treatment of solutions with pH values of 2.80,6.78,and 8.86.Data are calculated from (a) second- and (b)third-order absorbances.

    When the total concentration of the NO?3and NO?2species in solutions is plotted as a function of the plasma exposure time,we can find that the total concentration of the NO?3and NO?2species is almost the same for solutions with different pH values(figure 6).It is well known that the reactive nitrogen species in the solutions originate from the dissolution of gaseous plasma species [65].Therefore,based on the data in figures 5 and 6,we assume that the dissolution of gaseous nitrogen species is of the similar magnitude and is independent of the solution’s pH value for the plasma discharge sustained with the same discharge current.In the solution,the generation of the N?O2species is prior to the generation of the N?O3species in the solution during the air plasma treatment,and most of the N?O3species in the solution originate from the transformation of the N?O2species.

    4.Conclusions

    A simple,fast,and toxic reagent-free method is developed to simultaneously measure the NO?3and NO?2species

    generated in plasma treated aqueous solutions.The operation is very simple,and only several wavelengths of the inflection points in the derivative absorbance for the considered solution should be examined.If a calibration process for the pure H2O2,NO?3and NO?2species is performed by measuring the known concentrations of the specific species’ absorbance,a simple relationship between the NO?3(or NO?2) concentration and the derivative absorbance at the inflection points can be deduced from the Beer’s law.It is worth pointing out that the measurement must be in a pH range of 6–10 due to the influence of pH values on the band shape and position of the absorbance,especially for the nitrite species.This method is not limited to the plasma treated solutions,and can be applied for the detection of NO?3and NO?2ions in drinking water and other industrial and environmental solutions.In a proof-of-principle application,we use the proposed approach to the plasma treated aqueous solutions with different pH values.The time evolution of the NO?3and NO?2in the solutions during the plasma treatment is investigated.The results indicate that the NO?2species are produced prior to the NO?3generation during the plasma treatment.

    Acknowledgments

    Q Chen thanks National Natural Science Foundation of China(No.52077185)and the Basic Research Program of Science and Technology of Shenzhen,China(No.JCYJ20190809162617137)for partial financial support.K Ostrikov thanks the Australian Research Council(ARC)and QUT Centre for Materials Science for partial support.

    猜你喜歡
    王新陳強(qiáng)
    High-order field theory and a weak Euler-Lagrange-Barut equation for classical relativistic particle-field systems
    野菊花
    檢察官暖心挽救“求入獄”青年
    The low temperature growth of stable p-type ZnO films in HiPIMS
    Visualization of gold nanoparticles formation in DC plasma-liquid systems
    Stress in Young People
    速讀·中旬(2020年7期)2020-11-18 08:43:02
    太陽花
    詠蟬
    Bionic design of packaging under the concept of sustainable development
    不死的愛
    男人操女人黄网站| 只有这里有精品99| 女性被躁到高潮视频| 亚洲视频免费观看视频| 午夜福利影视在线免费观看| 欧美日韩国产mv在线观看视频| 精品一区二区三区四区五区乱码 | 亚洲精品在线美女| 国产免费一区二区三区四区乱码| 欧美国产精品一级二级三级| 99精品久久久久人妻精品| 少妇精品久久久久久久| 国产av国产精品国产| 丰满人妻熟妇乱又伦精品不卡| 精品欧美一区二区三区在线| 中文欧美无线码| 久久精品国产亚洲av高清一级| 欧美日韩综合久久久久久| 精品人妻在线不人妻| 亚洲成人免费av在线播放| 国产爽快片一区二区三区| 国产精品一区二区精品视频观看| 国产精品一区二区在线不卡| 欧美日韩亚洲国产一区二区在线观看 | 国产精品偷伦视频观看了| 国产精品.久久久| 一本一本久久a久久精品综合妖精| 女人高潮潮喷娇喘18禁视频| 亚洲欧美日韩另类电影网站| 欧美日韩av久久| 大片免费播放器 马上看| 国产高清国产精品国产三级| 十分钟在线观看高清视频www| 免费高清在线观看视频在线观看| 久久免费观看电影| 母亲3免费完整高清在线观看| 免费女性裸体啪啪无遮挡网站| 亚洲男人天堂网一区| 精品视频人人做人人爽| 91成人精品电影| 亚洲专区中文字幕在线| 少妇 在线观看| 女性被躁到高潮视频| 婷婷色综合www| 精品久久久精品久久久| 久久久久久久久免费视频了| 欧美少妇被猛烈插入视频| 中文字幕色久视频| 国产成人一区二区三区免费视频网站 | 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲男人天堂网一区| 在线观看免费视频网站a站| 国产又爽黄色视频| 日本欧美视频一区| 国产一区有黄有色的免费视频| 亚洲国产精品国产精品| 日韩制服丝袜自拍偷拍| 午夜两性在线视频| 天天躁夜夜躁狠狠躁躁| 999精品在线视频| 首页视频小说图片口味搜索 | 亚洲国产欧美日韩在线播放| 精品一区二区三卡| 免费在线观看完整版高清| 老鸭窝网址在线观看| 桃花免费在线播放| 久久精品久久精品一区二区三区| 2021少妇久久久久久久久久久| av天堂在线播放| 一区二区日韩欧美中文字幕| 日韩熟女老妇一区二区性免费视频| 免费观看a级毛片全部| 亚洲国产欧美在线一区| 真人做人爱边吃奶动态| 亚洲欧美激情在线| 一区二区三区激情视频| 久久久久久久大尺度免费视频| 午夜福利,免费看| 久久人妻福利社区极品人妻图片 | 首页视频小说图片口味搜索 | 午夜免费成人在线视频| videos熟女内射| 中文字幕亚洲精品专区| 十八禁高潮呻吟视频| 91成人精品电影| 亚洲国产看品久久| av视频免费观看在线观看| 亚洲成av片中文字幕在线观看| 99re6热这里在线精品视频| 亚洲av电影在线进入| 精品久久久久久久毛片微露脸 | 亚洲精品成人av观看孕妇| 热99国产精品久久久久久7| 亚洲自偷自拍图片 自拍| 亚洲国产最新在线播放| 亚洲欧美日韩高清在线视频 | 欧美黑人欧美精品刺激| 国产欧美日韩一区二区三 | 亚洲中文日韩欧美视频| 国产精品一区二区在线不卡| 日本av手机在线免费观看| 少妇猛男粗大的猛烈进出视频| 中文字幕高清在线视频| 精品少妇内射三级| 啦啦啦在线免费观看视频4| 国产免费视频播放在线视频| 欧美乱码精品一区二区三区| 精品第一国产精品| 国产99久久九九免费精品| 中文字幕最新亚洲高清| 色综合欧美亚洲国产小说| 首页视频小说图片口味搜索 | 丝袜在线中文字幕| 久久久久久免费高清国产稀缺| 亚洲图色成人| 乱人伦中国视频| 精品国产一区二区三区四区第35| 一个人免费看片子| 国产91精品成人一区二区三区 | 男女边吃奶边做爰视频| 久久这里只有精品19| 日本一区二区免费在线视频| 国产一区亚洲一区在线观看| www.精华液| 久久午夜综合久久蜜桃| 国产片内射在线| www.熟女人妻精品国产| 色综合欧美亚洲国产小说| 亚洲情色 制服丝袜| 国产高清国产精品国产三级| 50天的宝宝边吃奶边哭怎么回事| 免费一级毛片在线播放高清视频 | 看免费av毛片| 脱女人内裤的视频| 最近手机中文字幕大全| 手机成人av网站| 亚洲中文字幕日韩| 一边摸一边做爽爽视频免费| 欧美 日韩 精品 国产| 亚洲黑人精品在线| 黄色一级大片看看| 久久鲁丝午夜福利片| 亚洲精品美女久久久久99蜜臀 | 黄色怎么调成土黄色| 亚洲国产精品一区三区| 国产1区2区3区精品| 久久精品久久精品一区二区三区| 国产成人精品久久二区二区免费| 欧美精品啪啪一区二区三区 | 久久久国产一区二区| 多毛熟女@视频| av天堂久久9| 好男人视频免费观看在线| 夜夜骑夜夜射夜夜干| 又紧又爽又黄一区二区| 18禁观看日本| 男女床上黄色一级片免费看| 亚洲av国产av综合av卡| 午夜老司机福利片| 免费一级毛片在线播放高清视频 | 女性生殖器流出的白浆| 老鸭窝网址在线观看| xxx大片免费视频| 中文字幕av电影在线播放| 啦啦啦啦在线视频资源| 考比视频在线观看| 亚洲人成77777在线视频| 超色免费av| 久久久精品94久久精品| 成年人午夜在线观看视频| 欧美av亚洲av综合av国产av| 亚洲av在线观看美女高潮| av欧美777| 久久鲁丝午夜福利片| 国产伦人伦偷精品视频| 视频在线观看一区二区三区| 操出白浆在线播放| 日韩av免费高清视频| 国精品久久久久久国模美| 99久久99久久久精品蜜桃| 日韩 亚洲 欧美在线| 999久久久国产精品视频| 国产av一区二区精品久久| 亚洲av日韩精品久久久久久密 | 最黄视频免费看| 少妇的丰满在线观看| 亚洲欧美日韩高清在线视频 | 一级毛片黄色毛片免费观看视频| 十八禁人妻一区二区| 少妇人妻久久综合中文| 在线观看国产h片| 一级毛片我不卡| 五月天丁香电影| 每晚都被弄得嗷嗷叫到高潮| 亚洲国产毛片av蜜桃av| 欧美黑人欧美精品刺激| 性色av乱码一区二区三区2| 欧美亚洲 丝袜 人妻 在线| 大片电影免费在线观看免费| 我的亚洲天堂| 不卡av一区二区三区| 婷婷成人精品国产| 国产精品久久久av美女十八| 一二三四社区在线视频社区8| 黄频高清免费视频| 国产熟女午夜一区二区三区| 亚洲欧洲日产国产| 日日摸夜夜添夜夜爱| 亚洲欧美一区二区三区国产| 日韩制服丝袜自拍偷拍| 久久天堂一区二区三区四区| 色网站视频免费| 亚洲av国产av综合av卡| 十分钟在线观看高清视频www| 黄色怎么调成土黄色| 一本大道久久a久久精品| 久久久精品区二区三区| 国产日韩欧美在线精品| 亚洲av电影在线进入| 亚洲五月婷婷丁香| 69精品国产乱码久久久| 欧美日韩福利视频一区二区| 日韩中文字幕视频在线看片| 黑人欧美特级aaaaaa片| 婷婷色综合www| 晚上一个人看的免费电影| 80岁老熟妇乱子伦牲交| av有码第一页| 一级,二级,三级黄色视频| 十分钟在线观看高清视频www| 校园人妻丝袜中文字幕| 一本大道久久a久久精品| 飞空精品影院首页| 精品人妻在线不人妻| 精品久久久久久久毛片微露脸 | 侵犯人妻中文字幕一二三四区| 亚洲 国产 在线| 熟女av电影| 久久精品国产亚洲av高清一级| 久9热在线精品视频| 亚洲免费av在线视频| 久久99热这里只频精品6学生| 天天躁日日躁夜夜躁夜夜| 看十八女毛片水多多多| 亚洲视频免费观看视频| 午夜福利免费观看在线| 国产一区二区三区av在线| 一边亲一边摸免费视频| 我要看黄色一级片免费的| 亚洲三区欧美一区| 日本欧美视频一区| 狠狠婷婷综合久久久久久88av| 精品国产一区二区久久| 欧美精品av麻豆av| a级毛片黄视频| 18禁观看日本| 国产精品二区激情视频| 亚洲精品自拍成人| 国产一区二区三区av在线| 国产视频首页在线观看| 老司机亚洲免费影院| 久久久久久免费高清国产稀缺| 在线观看免费视频网站a站| 成年美女黄网站色视频大全免费| 国产一区二区三区av在线| 久久热在线av| 一边摸一边做爽爽视频免费| 国产日韩欧美在线精品| 国产成人精品在线电影| 亚洲熟女精品中文字幕| 国产精品亚洲av一区麻豆| 高清不卡的av网站| 精品少妇一区二区三区视频日本电影| 亚洲精品久久成人aⅴ小说| 狠狠婷婷综合久久久久久88av| 国产麻豆69| av在线播放精品| 国产欧美日韩一区二区三区在线| 欧美老熟妇乱子伦牲交| 国产精品 国内视频| 国产男女内射视频| 精品高清国产在线一区| 亚洲精品国产区一区二| 人妻一区二区av| 国产一区二区三区av在线| 欧美精品av麻豆av| 欧美日韩精品网址| 国产一区有黄有色的免费视频| 色网站视频免费| 亚洲av男天堂| 日韩免费高清中文字幕av| 亚洲国产毛片av蜜桃av| 成年美女黄网站色视频大全免费| 99热网站在线观看| 精品卡一卡二卡四卡免费| 国产成人欧美| 美女高潮到喷水免费观看| 别揉我奶头~嗯~啊~动态视频 | 男女高潮啪啪啪动态图| 又黄又粗又硬又大视频| 亚洲欧美一区二区三区国产| avwww免费| 日本91视频免费播放| 精品国产一区二区三区久久久樱花| 男的添女的下面高潮视频| 婷婷丁香在线五月| 在现免费观看毛片| 男人添女人高潮全过程视频| 看十八女毛片水多多多| 日韩一卡2卡3卡4卡2021年| 国产免费视频播放在线视频| 涩涩av久久男人的天堂| 国产av精品麻豆| 国产一区亚洲一区在线观看| 女性被躁到高潮视频| 一个人免费看片子| 最近最新中文字幕大全免费视频 | 黄网站色视频无遮挡免费观看| 久久亚洲精品不卡| 大型av网站在线播放| 婷婷丁香在线五月| 久久久久网色| 国产一区有黄有色的免费视频| 免费女性裸体啪啪无遮挡网站| 各种免费的搞黄视频| 水蜜桃什么品种好| 男女无遮挡免费网站观看| 国产女主播在线喷水免费视频网站| 七月丁香在线播放| 无限看片的www在线观看| 日本91视频免费播放| 波野结衣二区三区在线| 操出白浆在线播放| 高清不卡的av网站| 国产野战对白在线观看| 少妇裸体淫交视频免费看高清 | 岛国毛片在线播放| 欧美成狂野欧美在线观看| 亚洲欧美日韩高清在线视频 | 中文字幕人妻熟女乱码| 欧美日韩视频高清一区二区三区二| 婷婷色av中文字幕| 精品一品国产午夜福利视频| 日韩人妻精品一区2区三区| 欧美久久黑人一区二区| 伊人久久大香线蕉亚洲五| 人人妻人人澡人人爽人人夜夜| 人人妻人人澡人人看| 精品高清国产在线一区| 涩涩av久久男人的天堂| 国产女主播在线喷水免费视频网站| 国产一区二区 视频在线| 免费在线观看影片大全网站 | 麻豆国产av国片精品| 精品一区二区三区av网在线观看 | 美女主播在线视频| 9191精品国产免费久久| 男女无遮挡免费网站观看| 丝袜人妻中文字幕| 日日摸夜夜添夜夜爱| 国产亚洲av片在线观看秒播厂| 色网站视频免费| 成人三级做爰电影| 亚洲五月色婷婷综合| 亚洲,欧美,日韩| 欧美日韩福利视频一区二区| 一本久久精品| 午夜免费男女啪啪视频观看| 日本色播在线视频| 亚洲成人手机| 男女无遮挡免费网站观看| 汤姆久久久久久久影院中文字幕| 国产高清videossex| 亚洲专区中文字幕在线| 日本a在线网址| 91老司机精品| 乱人伦中国视频| 高清黄色对白视频在线免费看| 丰满人妻熟妇乱又伦精品不卡| 性色av一级| 五月开心婷婷网| 中文字幕色久视频| 久久久精品区二区三区| 美女脱内裤让男人舔精品视频| 一级片'在线观看视频| 久热爱精品视频在线9| 国产精品二区激情视频| 女人精品久久久久毛片| 一级a爱视频在线免费观看| 国产欧美日韩精品亚洲av| bbb黄色大片| 不卡av一区二区三区| 欧美黄色片欧美黄色片| 制服诱惑二区| 中文字幕精品免费在线观看视频| 国产主播在线观看一区二区 | 手机成人av网站| 亚洲久久久国产精品| 欧美日韩福利视频一区二区| 一区二区三区乱码不卡18| 国产不卡av网站在线观看| 黄色片一级片一级黄色片| 手机成人av网站| www.999成人在线观看| bbb黄色大片| 国产精品免费视频内射| 国产三级黄色录像| 亚洲国产欧美在线一区| 久久久精品区二区三区| 90打野战视频偷拍视频| 777米奇影视久久| 亚洲中文字幕日韩| 性高湖久久久久久久久免费观看| 桃花免费在线播放| 亚洲熟女毛片儿| 久久女婷五月综合色啪小说| 日韩av免费高清视频| 悠悠久久av| 国产女主播在线喷水免费视频网站| 搡老乐熟女国产| 日本五十路高清| 久久久亚洲精品成人影院| 91精品国产国语对白视频| 国产精品香港三级国产av潘金莲 | 国产黄色视频一区二区在线观看| 久久精品国产亚洲av涩爱| av片东京热男人的天堂| 亚洲欧美中文字幕日韩二区| 久久亚洲国产成人精品v| bbb黄色大片| 2021少妇久久久久久久久久久| 精品人妻熟女毛片av久久网站| 国产精品免费大片| 悠悠久久av| 国产成人精品无人区| 亚洲情色 制服丝袜| 亚洲国产精品国产精品| 最新的欧美精品一区二区| 国产成人精品久久二区二区免费| 国产免费又黄又爽又色| 美女主播在线视频| 亚洲av欧美aⅴ国产| 精品一区二区三区av网在线观看 | 欧美日本中文国产一区发布| 国产精品人妻久久久影院| 亚洲欧美日韩另类电影网站| 亚洲男人天堂网一区| 国产成人91sexporn| 国产视频一区二区在线看| 久久精品人人爽人人爽视色| 精品一区在线观看国产| 韩国精品一区二区三区| 久久久亚洲精品成人影院| 美国免费a级毛片| a级片在线免费高清观看视频| 精品国产乱码久久久久久小说| 婷婷色综合www| 亚洲第一青青草原| 99精品久久久久人妻精品| 免费日韩欧美在线观看| 一二三四社区在线视频社区8| 成人三级做爰电影| 纯流量卡能插随身wifi吗| 纵有疾风起免费观看全集完整版| 亚洲 欧美一区二区三区| 精品国产一区二区三区四区第35| 精品久久久久久久毛片微露脸 | 亚洲一码二码三码区别大吗| 啦啦啦在线免费观看视频4| 考比视频在线观看| 成年女人毛片免费观看观看9 | 50天的宝宝边吃奶边哭怎么回事| 美女视频免费永久观看网站| 国产福利在线免费观看视频| 热re99久久国产66热| 中文字幕人妻丝袜一区二区| 午夜激情久久久久久久| 午夜精品国产一区二区电影| 中国美女看黄片| 99久久99久久久精品蜜桃| 亚洲久久久国产精品| 激情五月婷婷亚洲| 韩国精品一区二区三区| 丝袜人妻中文字幕| 好男人视频免费观看在线| 黄片小视频在线播放| 国产男人的电影天堂91| 国产深夜福利视频在线观看| 免费高清在线观看视频在线观看| 亚洲自偷自拍图片 自拍| 大香蕉久久网| 久久影院123| 青春草视频在线免费观看| 国产麻豆69| 国产高清视频在线播放一区 | 最近中文字幕2019免费版| 精品一区在线观看国产| 精品一区二区三卡| 少妇人妻 视频| 亚洲精品中文字幕在线视频| 久久免费观看电影| 中文字幕高清在线视频| 久久av网站| 国产精品 欧美亚洲| 天天躁狠狠躁夜夜躁狠狠躁| 操出白浆在线播放| 亚洲中文字幕日韩| av网站免费在线观看视频| 国产成人免费无遮挡视频| 久久av网站| 一级毛片电影观看| 国产精品久久久av美女十八| 性少妇av在线| 伊人久久大香线蕉亚洲五| 欧美成狂野欧美在线观看| 国产精品国产三级国产专区5o| 精品福利永久在线观看| 不卡av一区二区三区| 99国产综合亚洲精品| 国产成人a∨麻豆精品| 十八禁网站网址无遮挡| 国产日韩一区二区三区精品不卡| 日本欧美视频一区| 国产精品亚洲av一区麻豆| 99久久人妻综合| 制服诱惑二区| 亚洲av综合色区一区| 青草久久国产| 欧美 亚洲 国产 日韩一| 久久人妻福利社区极品人妻图片 | 老汉色av国产亚洲站长工具| 国产人伦9x9x在线观看| 考比视频在线观看| 亚洲国产中文字幕在线视频| 日本91视频免费播放| 99久久精品国产亚洲精品| 精品人妻1区二区| 精品一区二区三区四区五区乱码 | 日韩,欧美,国产一区二区三区| 久久热在线av| 国产午夜精品一二区理论片| 久久久国产一区二区| 国产真人三级小视频在线观看| 一级毛片 在线播放| 精品亚洲乱码少妇综合久久| 精品国产乱码久久久久久小说| 每晚都被弄得嗷嗷叫到高潮| 麻豆国产av国片精品| 欧美亚洲日本最大视频资源| 中文欧美无线码| 婷婷成人精品国产| 成人手机av| 亚洲中文字幕日韩| 成人手机av| 另类精品久久| 麻豆国产av国片精品| 久久久久久人人人人人| 观看av在线不卡| 午夜视频精品福利| 欧美人与性动交α欧美精品济南到| 一区二区三区激情视频| 麻豆国产av国片精品| 亚洲国产欧美日韩在线播放| 18禁黄网站禁片午夜丰满| 蜜桃国产av成人99| 欧美亚洲 丝袜 人妻 在线| 亚洲国产精品成人久久小说| 日本a在线网址| 老司机亚洲免费影院| 99国产精品一区二区蜜桃av | 亚洲一区中文字幕在线| 精品福利永久在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 一区福利在线观看| 国产男女内射视频| 一区二区日韩欧美中文字幕| 搡老乐熟女国产| 人人妻人人爽人人添夜夜欢视频| 久久久久久久久免费视频了| 99re6热这里在线精品视频| av在线播放精品| 人人妻人人澡人人爽人人夜夜| 王馨瑶露胸无遮挡在线观看| 色94色欧美一区二区| 99久久99久久久精品蜜桃| 一级毛片黄色毛片免费观看视频| 在线 av 中文字幕| 男女边摸边吃奶| 黄网站色视频无遮挡免费观看| 超色免费av| 悠悠久久av| 国产成人91sexporn| 国产xxxxx性猛交| av网站在线播放免费| 赤兔流量卡办理| 丰满人妻熟妇乱又伦精品不卡| 国产又色又爽无遮挡免| 久久热在线av| 午夜福利免费观看在线| 丰满少妇做爰视频| 亚洲欧美精品自产自拍| 夜夜骑夜夜射夜夜干| 天天躁夜夜躁狠狠久久av| 亚洲三区欧美一区| 午夜av观看不卡| 中文字幕制服av| 日本vs欧美在线观看视频| 男女午夜视频在线观看| 亚洲国产欧美在线一区| 考比视频在线观看| 欧美大码av| 国产99久久九九免费精品| 欧美另类一区| 好男人视频免费观看在线| 国产一区二区三区综合在线观看|