• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Argon plume transition from a hollow swell to a diffuse swell with increasing amplitude of a trapezoidal voltage

    2022-09-14 08:18:10JunyuCHEN陳俊宇FurongZHANG張芙蓉PengyingJIA賈鵬英NaZHAO趙娜KaiyueWU吳凱玥JiacunWU武珈存JunxiaRAN冉俊霞XuexiaPANG龐學(xué)霞andXuechenLI李雪辰
    Plasma Science and Technology 2022年8期
    關(guān)鍵詞:芙蓉

    Junyu CHEN (陳俊宇),Furong ZHANG (張芙蓉),Pengying JIA (賈鵬英),Na ZHAO (趙娜),3,Kaiyue WU (吳凱玥),Jiacun WU (武珈存),Junxia RAN(冉俊霞),Xuexia PANG(龐學(xué)霞), and Xuechen LI(李雪辰),,?

    1 College of Physics Science&Technology,Hebei University,Baoding 071002,People’s Republic of China

    2 Institute of Life Science&Green Development,Hebei University,Baoding 071002,People’s Republic of China

    3 School of Mathematics and Physics,Handan University,Handan 056005,People’s Republic of China

    Abstract Atmospheric pressure plasma jets can generate a remote plasma plume,which usually presents a conical or cylindrical morphology.Despite a few morphologies being observed,efforts should be made to obtain more plume structures because streamer dynamics may be revealed from them.For this purpose,an argon plasma plume excited by a trapezoidal voltage is investigated,which presents two kinds of swells (a hollow swell and a diffuse swell)with increasing voltage amplitude(Vp).The results indicate that there are two positive discharges(Dp1 and Dp2)and one negative discharge (Dn) per voltage cycle for both of the swells.With increasing Vp,the inception voltage and discharge intensity increase for every positive discharge,while they decrease for the negative discharge.Fast photography reveals that the positive streamer (Dp2)leaves different tracks in the two swells,which are curved in the hollow swell and randomly branched in the diffuse swell.The different tracks of Dp2 are explained with the consideration of applied field strength and residual positive ions of Dp1.The existence of residual positive ions is finally verified from optical emission spectra.

    Keywords: plasma jet,plume morphology,streamer behavior,optical emission spectra

    1.Introduction

    A plasma jet can generate a remote plasma plume in open space rather than in a confined gap.Thus,it can be used for direct treatment and there is no limitation on the size of the object to be treated[1].Given this advantage,a plasma jet has become a very attractive tool in various application fields,such as surface modification [2–4],biomedicine [5],water purification[6,7],material growth[8],etching[9],and so on.Although a plasma plume fed by inert gas looks continuous to the naked eye [10–13],it is essentially composed of discrete emission layers (also referred to as a plasma bullet) [14],which propagates at a velocity in the order of 103–105m s?1[10,14–16].The fast plasma bullet originates from positive or negative streamers propagating along the working-gas stream [11,13,17].The head of a streamer is a highly effective chemical reactor that can produce active species for diversified applications [16,18,19].The timeintegrated track of streamers is the emission profile (morphology) of a plasma plume,which is one of the major characteristics of a plasma jet [20].Under most circumstances,streamers propagate repeatedly along the stream axis[10,21],leading to a cylindrical plume [14].Due to the inclusion of diffused air,the diameter of repeated streamers decreases with increasing propagation distance,resulting in a solid plume with a conical shape [10].The repeatability of streamers deteriorates with seed electrons left by the previous discharge less than 109cm?3[22,23].That is to say,the solid cone may vary its morphology with decreasing driving frequency.In fact,the solid cone transited to a hollow cone,which originated from the propagation of branched streamers in the interfacial layer between the argon stream and the ambient air[11].At the tail of a conical plume,a fork-like structure was created since streamers tended to follow the neon channel,which was branched by turbulence at plume tail[24].Besides,a feather-like plume was witnessed with argon or helium used as working gas [25,26],which was attributed to dim streamers surrounding the central bright streamer due to Penning ionization.

    A striated plume was observed inside the tube of a pulsed argon plasma jet [27].Outside the tube,a striated plume was formed with helium or neon used as working gas [28–30].Droplet striations,also referred to as multiple swells,were formed in an argon or neon plume [31,32],which were attributed to the turbulence of the working gas [33].Multiple swells were formed under a laminar flow[34],which resulted from the periodical diameter variation of propagating streamers due to discharge enhancement by active species.Besides multiple swells,a single swell was produced near the jet nozzle [35],which resulted from the distinct dynamic behaviors of different streamers in one voltage pulse.All in all,streamer dynamics can be revealed through exploring the formation mechanism of plume morphologies.Despite a few morphologies being observed,efforts should be made to obtain more plume structures.

    In this work,two kinds of single swells,namely a hollow swell and a diffuse swell,are generated at the argon plume tail excited by a trapezoidal voltage.Using fast photography,distinct streamer dynamics are revealed for the two kinds of swells.

    2.Experiment setup

    Figure 1 presents a schematic diagram of the experimental setup.The single-electrode jet is composed of a tungsten rod(6.0 cm in length,1.0 mm in diameter,and 0.5 mm in tip radius),which is centered in a glass tube (inner and outer diameters of 5.0 mm and 8.0 mm,respectively).The rod tip is aligned with the nozzle of the jet,which is fed with argon(99.999% purity) after being regulated by a mass flow controller (Sevenstar CS200A).Plume images are captured by a digital camera (Canon EOS 5D Mark IV) with different exposure time (texp).Applied voltage to the jet is detected by a high voltage probe(Tektronix P6015A),which is defined as real voltage (as will be mentioned later).Electric current in the circuit is measured by a coil (Pearson 8600).Waveforms of real voltage and electric current are simultaneously recorded by an oscilloscope (Tektronix DPO4104).Mounted with an intensified charge-coupled devices (ICCD,PI MAX4),a spectrometer (ACTON SP2750) with a grating of 2400 grooves per mm is utilized to collect spatially resolved spectrum through the varying detection position of a fiber.A signal generator (Tektronix AFG 3052C) produces two synchronized 6.0 kHz signals,one of which is a trapezoidal wave used to excite the jet after 2000 times amplification by an up-voltage amplifier (TREK 20/20).The other is a transistor transistor logic(TTL)signal to trigger two independent ICCDs.One ICCD(Andor DH334T)is used to take discharge images and the other ICCD (PI MAX4) is utilized to collect spectrum with short texp.Moreover,the TTL signal is displayed by the oscilloscope along with the current waveform.By subtracting the time lag between the TTL and the electric current,the ICCD can be synchronized with the discharge.Temporally resolved images or spectrum can then be obtained by varying gate moment of the ICCD.

    Figure 1.Schematic diagram of the experimental setup.

    Figure 2.Side-view (left) and end-view (right) images with varying Vp of 3.2 kV (a),3.6 kV (b),4.0 kV (c),and 4.4 kV (d).The endview images are focused on the middle of the swell.Q is 2.0 l min?1,and texp is 0.1 s.

    Figure 3.Waveforms of voltage and current.(a)–(d) Corresponding to figures 2(a)–(d),respectively.

    Figure 4.Inception voltage (a) and current intensity (b) of every discharge pulse as functions of Vp.Q is 2.0 l min?1.

    Figure 5.Single-shot ICCD images exposed to Dn,Dp1,and Dp2 for the hollow swell(figure 2(c))(the left)and the diffuse swell(figure 2(d))(the right).The bottom image is the superposition of the two false-color images exposed to Dp1 and Dp2.c.

    3.Results and discussion

    As presented in figure 2,a diffuse plume with a central filament,similar to that reported previously [12],is firstly generated downstream of the jet nozzle with increasing amplitude of the trapezoidal voltage (Vp).Due to the ingredient of diffused air[10],the plume(3.2 kV)is conical,which elongates along the argon stream with increasing Vp.When Vpreaches 3.6 kV,a purple hollow swell is formed near the plume tail.The hollow structure is clear in the end-view image,where a dim void exists between the purple ring and the central spot.The hollow swell slightly grows with increasing Vp(4.0 kV).The hollow structure disappears and a diffuse swell is formed when Vpsurpasses about 4.4 kV.Hence,two kinds of single swells including the hollow swell and the diffuse swell have been observed at the plume tail.

    During the morphology evolution with varying Vp,waveforms of voltage and electric current are recorded,as illustrated in figure 3.Here,the ideal voltage is obtained through multiplying the output of the signal generator by 2000,whose amplitude is the aforementioned Vp.In addition,electric current(discharge current)in figure 3 is obtained from total current by subtracting displacement current,which is directly measured in the circuit when discharge does not initiate without argon flow.Due to the restriction of the amplifier,there is distortion between ideal voltage and real voltage.For this reason,it is impossible to generate a real triangle wave because the triangle apex will be clipped to make it more like a trapezoidal wave.Even though a plume with a well can also be excited by a sinusoidal voltage,there are too many discharge pulses (at least 5 pulses) per voltage cycle,which increases the difficulty in revealing the plume dynamics.Hence,a tailored trapezoidal voltage is used to drive the plasma jet.Obviously,real voltage amplitude increases with increasing Vp.It can be seen in figure 3(a)that there is one positive discharge (Dp1) and one negative discharge (Dn) per voltage cycle for the diffuse plume.Besides,Dp1has a higher intensity than Dn.As indicated in the enlarged current in figure 3(b),the pulse duration is 160 ns for Dp1,200 ns for Dp2,and 240 ns for Dn.The time interval between Dp1and Dp2is about 5.36 μs.For the hollow swell(figures 3(b) and (c)) or the diffuse swell (figure 3(d)),there are two positive discharges (Dp1and Dp2) and one Dnper voltage cycle.Among these discharge pulses,Dp2has the highest intensity.In other words,the number of positive discharges is mainly influenced by Vp,which is one under a low Vpand two with a high Vp.

    From figure 3,it can also be found that inception voltage(Vin,absolute value of real voltage when one discharge initiates) and discharge intensity of every discharge change with increasing Vp.Vinwas used to describe partial discharge(also referred to as a dielectric barrier discharge),which is the value of applied voltage when the first discharge initiates during one half cycle.Here,the concept of Vinis used in the discharge of the plasma jet [12,36].For example,Vinof Dp1means the voltage value when Dp1just initiates.Inception voltages and discharge intensities as functions of Vphave been investigated,as illustrated in figure 4.It is found that Vinincreases for Dp1and Dp2,while decreases for Dnwith increasing Vp.Similarly,discharge intensity increases for Dp1and Dp2,while it decreases for Dnwith increasing Vp.

    As is well known,streamer regime is involved in plume discharge [12,13,37].Therefore,Dp1and Dp2are positive streamers,while Dnis a negative streamer.The tracks of these streamers are captured by the ICCD,as presented in figure 5.For the hollow swell or the diffuse swell,the negative streamer(Dn)leaves a conical plump track,while the positive streamers (Dp1and Dp2) leave filamentary tracks.In contrast to Dp1,Dp2can propagate a longer distance.Interestingly,Dp2repeats the track of Dp1and leaves a straight line in the left part.In the right part,Dp2tends to detour the tail of Dp1,leaving a curved track that constitutes the hollow swell.However,Dp2tends to cross the tail of Dp1,leaving random branches in the diffuse swell.Accordingly,the distinct morphologies of the hollow swell and the diffuse swell originate from the different propagating behaviors of the positive streamer (Dp2).

    Figure 6(a) presents optical emission spectrum scanned from 300 to 800 nm for the hollow swell (a similar spectrum for the diffuse well,hence not shown here).Spectral lines of Ar I (4p→4s transitions) are dominant in the long wavelength range.Besides Ar I,the second positive system of N2(C3Πu–B3Πg) and OH (A2Σ+–X2Π) can also be discerned[38].The intensity ratio of spectral lines (763.7 to 772.6 nm)is positively related to electron temperature,which is determined by electric field strength [39,40].Based on spatiotemporally resolved spectrum,spatial distribution of line intensity ratio(representing field strength)is obtained for Dp2,as plotted in figure 6(b).It can be found that there is a minimal field strength during the propagation of the positive streamer(Dp2)for both of the swells.In contrast to the hollow plume,the diffuse plume possesses higher maximal field strength during Dp2.

    Figure 6.(a) Optical emission spectrum scanned from 300 to 800 nm for the plasma plume (figure 2(c)).(b) Intensity ratio of Dp2 as a function of distance for the hollow swell (figure 2(c)) and the diffuse one (figure 2(d)).

    As is well known,charge separation between electrons and positive ions is a prerequisite for a streamer propagation[10].The applied field is reinforced by the induced field of separated charges.In a positive streamer,electrons drift towards and enter the needle anode[12,13,34],leading to the positive current in figure 3.Along with the entering electrons on the anode,the track of the positive streamer is positively charged by residual positive ions,which have been confirmed by numerical simulations[41–43].Although positive ions are considered to be stationary for a positive discharge,this is not the case for a negative discharge,especially near the needle cathode,where positive ions can be accelerated to a high velocity.Through ions bombarding,secondary electrons are produced from the cathode [44],resulting in the negative current in figure 3.It is reasonable to speculate that the track of a negative streamer is negatively charged accompanying the bombarding positive ions and the emitted electrons on the cathode.Before the subsequent discharge,residual electrons in the track can be neglected because of their high mobility.However,electrons can be attached by electronegative species,such as O2,OH,NO,NO2,O,etc to form negative charges [45–49].Compared with electrons,these negative charges have a lower mobility.Hence,a negative streamer can provide the forthcoming streamer with residual negative charges.

    Residual negative charges of Dndiminish with increasing Vp,which can be found from the weakening Dnwith Vp(figure 4).Residual negative charges of Dncan lower the field threshold for breakdown of the forthcoming discharge (Dp1)through releasing seed electrons [50,51].Less residual negative charges mean that a higher applied field is needed to initiate Dp1,leading to the rising Vinof Dp1with increasing Vp.As to the increasing intensity of Dp1with increasing Vp,the following two reasons can be considered.Firstly,applied field strength increases with increasing Vp,as mentioned above.A stronger discharge tends to initiate under a higher applied field [52].Therefore,intensity of Dp1increases with increasing Vp.Secondly,because the streamer head of Dp1is positively charged [10,53],residual negative charges can partly counteract or neutralize the charges in the streamer head,which results in the reduction of the induced field.Hence,less residual negative charges mean a higher induced field of Dp1with increasing Vp.That is to say,net field strength of Dp1increases with increasing Vp.As a result,intensity of Dp1increases with increasing Vpbecause discharge intensity of a streamer is determined by net field strength [42].

    As a positive streamer,Dp1leaves a positively-charged track[40,41],where residual positive charges become denser with increasing Vpdue to the increasing discharge intensity.The denser residual positive charges produce a higher field opposing the initiation of Dp2.Thus,a higher voltage is needed to initiate Dp2with increasing Vp.Therefore,Vinof Dp2increases with Vp.During the propagation of the positive streamer(Dp2),positive charges left by Dp1can enhance those of the positive streamer head,leading to a higher induced field.Apparently,the induced field increases when residual positive charges get denser with increasing Vp.In combination with the increasing Vin,it can be inferred that net field strength increases with increasing Vp.Hence,discharge intensity of Dp2increases with Vp.

    The stronger Dp2provides the forthcoming discharge(Dn) with denser residual positive charges,which produce a higher electric field to help the initiation of Dnafter voltage polarity is reversed.Hence,a lower voltage is needed to initiate Dnas Vpincreases.Consequently,Vinof Dndecreases with increasing Vp.Besides,negative charges in the negative streamer head can be partly counteracted by residual positive charges of Dp2.Hence,less negative charges are presented in the streamer head of Dnwith increasing Vp,which induce a weaker field,leading to the decreasing intensity of Dnwith increasing Vp.

    As mentioned before,Dp2has a curved track in the hollow swell.In fact,the curved track was found for a streamer propagating in a tube [54,55],which was attributed to a turbulent flow[54].However,our gas flow is 2.0 l min?1,corresponding to a Reynolds number of 607,which is much lower than that of a turbulent flow[33].Hence,turbulent flow is not the cause for the curved track.The underlying physics of the curved track of Dp2is similar to the snake-like propagation of streamers in a meandering plume [56].In the following,the curved track will be explained from the influence of residual positive charges,which are left in the track of positive streamers [40,41].In fact,residual positive charges are not uniformly distributed in the track,and a large number of them are left at the streamer end where the positive streamer head stops propagating when no more secondary electron avalanches are induced to neutralize the positive streamer head [53].Take Dp1for example,one can deduce that there is a cloud of residual positive ions at the streamer end of Dp1.Due to low mobility of positive ions [57],the cloud of residual positive charges at the streamer end of Dp1can be thought as standing still,which will then influence the propagating behavior of Dp2.

    Electric field strength is reduced by the cloud of residual positive charges when the positive streamer (Dp2) is approaching.Maximal field strength will present at the periphery of the cloud,as pointed out by numerical simulations[43,58].Hence,secondary electron avalanches tend to initiate at the locations with maximal field strength[45],and Dp2will be deflected toward the periphery,leading to a curved propagation.When Dp2propagates away from the cloud of residual positive charges,maximal field strength will appear in the stream center leading to the backward deflection of Dp2[43,58].Hence,a curved track is left by Dp2due to its detouring the cloud of residual positive charges left by Dp1.

    When the applied field is strong enough (the case of the diffuse swell),field threshold for breakdown can be satisfied in the region near the cloud of residual positive charges even though electric field is reduced by the cloud.In this case,secondary electron avalanches can be induced near the cloud.Hence,the positive streamer(Dp2)crosses the cloud,which is similar to the crossing behavior of surface streamers [40].After crossing the ion cloud(at the right part of the ion cloud),a field is induced by the ion cloud,which is in the same direction as the applied field.Therefore,the electric field is greatly enhanced in the right part of the cloud,so that the field threshold for breakdown can be satisfied in lots of locations after crossing.Resultantly,secondary electron avalanches develop from different locations simultaneously,leading to the random branches of Dp2.This phenomenon is similar to the simulated and experimental results which account for the branching behavior of streamers under a high field [59,60].

    As analyzed above,residual positive charges of Dp1can reduce electric field strength when Dp2propagates in their left side.However,field strength is enhanced by them when Dp2propagates in their right side.Hence,a minimal field strength of Dp2appears near the cloud of residual positive charges of Dp1,which is in accordance with the result shown in figure 6(b).

    4.Conclusions

    In summary,using a trapezoidal wave,two types of single swells,including the hollow swell and the diffuse swell,are generated downstream of a single-electrode argon plasma jet,which present a transition from the hollow swell to the diffuse swell with increasing Vp.Results show that for both of the two kinds of swells,there are two positive discharges and one negative discharge per voltage cycle.With increasing Vp,inception voltage and discharge intensity increase for the positive discharges,while they decrease for the negative discharge.Fast photography reveals that the negative discharge is relatively diffuse and plump,and the positive discharges are filamentary.In addition,the hollow swell comes from the curved propagation of Dp2.In contrast,the diffuse swell results from the branched propagation of Dp2.The different behaviors of Dp2are analyzed after considering residual positive charges of Dp1.From optical emission spectrum,spatial distribution of electric field is obtained during the propagation of Dp2.There is a minimal field strength during Dp2propagation,which confirms the existence of residual positive charges of Dp1.Besides,inception voltage and discharge intensity as functions of Vphave also been qualitatively explained based on residual charges left in the track of the previous discharge.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China (Nos.51977057 and 11875121),the Natural Science Foundation of Hebei Province,China (Nos.A2020201025 and A2019201100),the Natural Science Interdisciplinary Research Program of Hebei University (Nos.DXK201908 and DXK202011),Post-graduate’s Innovation Fund Project of Hebei Province (Nos.CXZZBS2019023 and CXZZBS2019029),and Post-graduate’s Innovation Fund Project of Hebei University(Nos.HBU2021ss063 and HBU2021bs011).

    猜你喜歡
    芙蓉
    彎彎歌
    俞百圣《臨風》《清水出芙蓉》《風竹》
    逢雪宿芙蓉山主人
    培育芙蓉李摘窮帽,拓展鄉(xiāng)村游奔小康
    紅土地(2018年11期)2018-12-19 05:10:54
    我的芙蓉李樹
    快樂語文(2018年12期)2018-06-15 09:11:18
    金菊對芙蓉 本意 (外二首)
    岷峨詩稿(2017年3期)2017-11-25 08:53:30
    清水芙蓉不自夸
    金秋(2016年24期)2016-05-03 18:15:20
    福州芙蓉園的文采風流
    故夢染上芙蓉色
    輕嗅芙蓉妝
    火花(2015年6期)2015-02-27 07:43:00
    欧美一区二区国产精品久久精品| 国产精品一区二区免费欧美| 99久久无色码亚洲精品果冻| 久久久国产精品麻豆| 国产高清激情床上av| 波多野结衣高清无吗| 日韩人妻高清精品专区| 99视频精品全部免费 在线 | 免费高清视频大片| 99久久精品热视频| 精华霜和精华液先用哪个| 久久久久久九九精品二区国产| 免费在线观看影片大全网站| 色哟哟哟哟哟哟| 欧美日韩黄片免| 国产亚洲精品久久久久久毛片| 一个人看的www免费观看视频| 亚洲一区二区三区不卡视频| 色综合婷婷激情| 亚洲av成人一区二区三| 亚洲无线观看免费| 亚洲无线观看免费| 国产成+人综合+亚洲专区| 波多野结衣巨乳人妻| 啦啦啦韩国在线观看视频| 啦啦啦观看免费观看视频高清| 制服人妻中文乱码| svipshipincom国产片| 欧美日韩亚洲国产一区二区在线观看| 久久久久性生活片| 99久久国产精品久久久| 国产亚洲av嫩草精品影院| 午夜精品在线福利| 亚洲精品久久国产高清桃花| 丝袜人妻中文字幕| 久久亚洲真实| 天天躁日日操中文字幕| 免费人成视频x8x8入口观看| 日日干狠狠操夜夜爽| 欧美性猛交黑人性爽| 国产精品亚洲av一区麻豆| 天天躁日日操中文字幕| 最近最新中文字幕大全免费视频| 久久久久久久精品吃奶| 99国产精品一区二区蜜桃av| 色播亚洲综合网| 欧美成人性av电影在线观看| 亚洲欧美一区二区三区黑人| 岛国在线免费视频观看| 母亲3免费完整高清在线观看| 一个人观看的视频www高清免费观看 | 婷婷精品国产亚洲av| 黄色日韩在线| 曰老女人黄片| 无限看片的www在线观看| 免费看光身美女| 一个人看视频在线观看www免费 | 岛国在线观看网站| 亚洲av五月六月丁香网| 黄色日韩在线| av在线蜜桃| 亚洲中文字幕日韩| 国产午夜福利久久久久久| 老熟妇仑乱视频hdxx| 日本黄大片高清| 男人舔女人的私密视频| 老熟妇仑乱视频hdxx| 国产精品综合久久久久久久免费| 欧美激情久久久久久爽电影| 在线观看免费视频日本深夜| 黄色 视频免费看| 不卡一级毛片| 日韩欧美 国产精品| 午夜福利高清视频| 最好的美女福利视频网| 巨乳人妻的诱惑在线观看| 国内揄拍国产精品人妻在线| 九九久久精品国产亚洲av麻豆 | 黄色视频,在线免费观看| 国产精品女同一区二区软件 | 久久中文字幕一级| 亚洲黑人精品在线| 十八禁人妻一区二区| 午夜精品在线福利| bbb黄色大片| 色播亚洲综合网| 两性夫妻黄色片| 99国产极品粉嫩在线观看| 我的老师免费观看完整版| 在线免费观看的www视频| 色噜噜av男人的天堂激情| 久久精品夜夜夜夜夜久久蜜豆| 亚洲,欧美精品.| 国产精品自产拍在线观看55亚洲| 国产伦人伦偷精品视频| 亚洲精品久久国产高清桃花| 真人一进一出gif抽搐免费| 操出白浆在线播放| 人妻久久中文字幕网| 亚洲国产中文字幕在线视频| 午夜久久久久精精品| 免费在线观看日本一区| 久久久久久久久中文| 国产精品国产高清国产av| 久久香蕉精品热| 日韩免费av在线播放| 男人舔女人下体高潮全视频| 色综合亚洲欧美另类图片| 亚洲,欧美精品.| 一个人免费在线观看的高清视频| 成人午夜高清在线视频| 国内毛片毛片毛片毛片毛片| 国产精品久久视频播放| 久99久视频精品免费| 国产单亲对白刺激| www.熟女人妻精品国产| 脱女人内裤的视频| 成人高潮视频无遮挡免费网站| 中文亚洲av片在线观看爽| 悠悠久久av| 亚洲成人精品中文字幕电影| 色噜噜av男人的天堂激情| 欧美黑人欧美精品刺激| 成年女人永久免费观看视频| 国产精品av久久久久免费| 久久亚洲真实| 麻豆成人午夜福利视频| 国产亚洲欧美98| 亚洲男人的天堂狠狠| 最新美女视频免费是黄的| 国产亚洲精品av在线| 老熟妇乱子伦视频在线观看| 国产99白浆流出| 此物有八面人人有两片| 精华霜和精华液先用哪个| 99久久精品国产亚洲精品| 成年人黄色毛片网站| 国产97色在线日韩免费| 伦理电影免费视频| 欧美日本视频| 亚洲精品一卡2卡三卡4卡5卡| 12—13女人毛片做爰片一| 午夜福利18| 久久99热这里只有精品18| 免费av毛片视频| or卡值多少钱| 男女视频在线观看网站免费| 一级作爱视频免费观看| 欧美一级毛片孕妇| 日韩欧美国产在线观看| 色综合婷婷激情| 精品国产超薄肉色丝袜足j| 午夜影院日韩av| 丰满人妻一区二区三区视频av | 久久欧美精品欧美久久欧美| 国产精品香港三级国产av潘金莲| 亚洲精品美女久久av网站| 啪啪无遮挡十八禁网站| 男人的好看免费观看在线视频| 香蕉丝袜av| 色精品久久人妻99蜜桃| 51午夜福利影视在线观看| 亚洲欧美激情综合另类| 天堂影院成人在线观看| 成人欧美大片| 在线观看免费视频日本深夜| 美女大奶头视频| 波多野结衣高清作品| 免费大片18禁| 两性夫妻黄色片| 国产精品亚洲av一区麻豆| 精品久久久久久久久久久久久| 搞女人的毛片| 免费在线观看影片大全网站| 一进一出好大好爽视频| 观看美女的网站| 久9热在线精品视频| 99久国产av精品| 可以在线观看毛片的网站| 国产精品98久久久久久宅男小说| av中文乱码字幕在线| www.999成人在线观看| 亚洲黑人精品在线| 午夜激情福利司机影院| 国内久久婷婷六月综合欲色啪| 亚洲av片天天在线观看| 亚洲精品在线美女| 丁香欧美五月| 久久久国产精品麻豆| 欧美乱妇无乱码| 色尼玛亚洲综合影院| 国产亚洲精品av在线| 两个人的视频大全免费| 国内揄拍国产精品人妻在线| 最近视频中文字幕2019在线8| 国产精华一区二区三区| 99久久综合精品五月天人人| 窝窝影院91人妻| 久久精品91蜜桃| 啦啦啦免费观看视频1| 床上黄色一级片| 免费观看的影片在线观看| 熟女少妇亚洲综合色aaa.| 韩国av一区二区三区四区| 亚洲一区二区三区色噜噜| 亚洲成人中文字幕在线播放| 国产精品日韩av在线免费观看| 一个人观看的视频www高清免费观看 | 黄片大片在线免费观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲av成人一区二区三| ponron亚洲| 亚洲熟妇中文字幕五十中出| 国产黄色小视频在线观看| 午夜激情欧美在线| 高潮久久久久久久久久久不卡| 精品福利观看| 精品久久久久久,| 国产精品爽爽va在线观看网站| 久9热在线精品视频| 国产高清videossex| 欧美日韩瑟瑟在线播放| 免费看a级黄色片| 欧美日韩中文字幕国产精品一区二区三区| 性色avwww在线观看| 法律面前人人平等表现在哪些方面| 亚洲中文日韩欧美视频| 午夜福利高清视频| 国产一区二区在线av高清观看| 免费观看的影片在线观看| 美女扒开内裤让男人捅视频| 国产午夜精品论理片| 91字幕亚洲| 久久久久久国产a免费观看| 99在线视频只有这里精品首页| 最新美女视频免费是黄的| 国产精品亚洲一级av第二区| 国产高清激情床上av| 性色av乱码一区二区三区2| 国产视频内射| 亚洲成av人片在线播放无| 精品电影一区二区在线| 深夜精品福利| 99riav亚洲国产免费| 日韩欧美国产在线观看| 亚洲欧美精品综合一区二区三区| 国产又色又爽无遮挡免费看| 性色av乱码一区二区三区2| 狂野欧美激情性xxxx| 国产伦一二天堂av在线观看| 人人妻人人澡欧美一区二区| 亚洲av日韩精品久久久久久密| 麻豆国产av国片精品| 在线播放国产精品三级| 国产免费男女视频| 午夜福利高清视频| 一二三四社区在线视频社区8| 国产亚洲av嫩草精品影院| 亚洲天堂国产精品一区在线| 老司机在亚洲福利影院| 国内揄拍国产精品人妻在线| 亚洲黑人精品在线| 特大巨黑吊av在线直播| 亚洲va日本ⅴa欧美va伊人久久| 日韩成人在线观看一区二区三区| 听说在线观看完整版免费高清| 一级作爱视频免费观看| 亚洲在线自拍视频| 国产精品亚洲一级av第二区| 国产高清激情床上av| 日本 欧美在线| 欧美国产日韩亚洲一区| 一二三四在线观看免费中文在| av国产免费在线观看| 免费人成视频x8x8入口观看| 蜜桃久久精品国产亚洲av| 亚洲午夜精品一区,二区,三区| 亚洲成人精品中文字幕电影| 免费观看人在逋| 91麻豆av在线| 国产亚洲精品一区二区www| 国产av在哪里看| 国内毛片毛片毛片毛片毛片| 成人鲁丝片一二三区免费| 国产成+人综合+亚洲专区| 日韩成人在线观看一区二区三区| 69av精品久久久久久| 夜夜夜夜夜久久久久| 精品久久久久久久人妻蜜臀av| 亚洲专区中文字幕在线| 国产亚洲欧美在线一区二区| 给我免费播放毛片高清在线观看| 精品一区二区三区av网在线观看| 999久久久精品免费观看国产| 国产精品一区二区三区四区久久| 久久性视频一级片| 亚洲av电影不卡..在线观看| 国产精品一区二区精品视频观看| 午夜a级毛片| 亚洲精华国产精华精| 久久久久国产一级毛片高清牌| 99久久99久久久精品蜜桃| av天堂在线播放| 国产精品自产拍在线观看55亚洲| 欧美黄色淫秽网站| 日韩国内少妇激情av| 欧美av亚洲av综合av国产av| 99国产综合亚洲精品| 国内精品久久久久久久电影| 国产精品野战在线观看| 久久久久久人人人人人| 久久中文看片网| 亚洲五月婷婷丁香| av黄色大香蕉| 免费无遮挡裸体视频| 午夜a级毛片| 久久天躁狠狠躁夜夜2o2o| 国产综合懂色| 两个人的视频大全免费| 露出奶头的视频| 欧美3d第一页| 国产伦一二天堂av在线观看| 美女大奶头视频| 欧美激情在线99| 中文字幕最新亚洲高清| 国产精品久久久久久久电影 | 久久这里只有精品中国| 日本 欧美在线| 级片在线观看| 亚洲人成网站在线播放欧美日韩| 国产蜜桃级精品一区二区三区| 丝袜人妻中文字幕| 亚洲第一电影网av| 国产亚洲精品久久久久久毛片| 亚洲av成人av| 国产97色在线日韩免费| 日韩精品中文字幕看吧| 亚洲激情在线av| 久久九九热精品免费| 真人做人爱边吃奶动态| 无遮挡黄片免费观看| 亚洲av熟女| 国产高清videossex| 国产99白浆流出| 色综合站精品国产| 久久精品国产99精品国产亚洲性色| 91在线观看av| 成人三级黄色视频| 免费人成视频x8x8入口观看| 久久国产精品人妻蜜桃| 国产高清视频在线播放一区| 淫秽高清视频在线观看| 国产激情久久老熟女| 日本黄大片高清| 国产精品九九99| 老司机福利观看| 身体一侧抽搐| 亚洲国产欧美人成| 成人三级做爰电影| 国产午夜福利久久久久久| 听说在线观看完整版免费高清| 法律面前人人平等表现在哪些方面| 老汉色∧v一级毛片| 久久中文字幕一级| av黄色大香蕉| 日韩欧美国产一区二区入口| 亚洲欧美一区二区三区黑人| 中文字幕最新亚洲高清| ponron亚洲| 色精品久久人妻99蜜桃| 国产精品电影一区二区三区| av中文乱码字幕在线| 国产精品久久视频播放| 脱女人内裤的视频| 国产三级在线视频| 免费搜索国产男女视频| 日日夜夜操网爽| 午夜影院日韩av| 国产精华一区二区三区| 黑人操中国人逼视频| 久久99热这里只有精品18| 1024手机看黄色片| 黑人操中国人逼视频| 久久精品夜夜夜夜夜久久蜜豆| 男人和女人高潮做爰伦理| 看黄色毛片网站| 日韩欧美一区二区三区在线观看| 最近在线观看免费完整版| 国产亚洲精品av在线| 久久精品国产清高在天天线| 黄色片一级片一级黄色片| xxxwww97欧美| 国产精品一区二区三区四区免费观看 | 在线观看日韩欧美| 日韩欧美在线乱码| 婷婷六月久久综合丁香| 美女cb高潮喷水在线观看 | 国产精品,欧美在线| x7x7x7水蜜桃| 国语自产精品视频在线第100页| 国产高清视频在线观看网站| 97超级碰碰碰精品色视频在线观看| 成年版毛片免费区| 哪里可以看免费的av片| www国产在线视频色| 精品国产亚洲在线| 观看美女的网站| 欧美一级a爱片免费观看看| 少妇人妻一区二区三区视频| 国产亚洲精品久久久com| 欧美日韩国产亚洲二区| 国产精品免费一区二区三区在线| 日本撒尿小便嘘嘘汇集6| 黄色日韩在线| 亚洲无线在线观看| 亚洲国产中文字幕在线视频| 亚洲专区中文字幕在线| 亚洲精品中文字幕一二三四区| 精品一区二区三区av网在线观看| 日韩成人在线观看一区二区三区| 美女cb高潮喷水在线观看 | 国产一区二区在线av高清观看| 成人亚洲精品av一区二区| 久久久久久九九精品二区国产| a级毛片在线看网站| 久久久久久久久中文| 男女做爰动态图高潮gif福利片| 好男人在线观看高清免费视频| 老司机深夜福利视频在线观看| 99精品欧美一区二区三区四区| 精品久久蜜臀av无| 色哟哟哟哟哟哟| 天天躁日日操中文字幕| 欧美日本视频| 日韩欧美三级三区| 欧美3d第一页| 12—13女人毛片做爰片一| 99国产精品一区二区蜜桃av| 国产1区2区3区精品| 婷婷六月久久综合丁香| 久久这里只有精品19| 久久香蕉精品热| 日本a在线网址| 成人一区二区视频在线观看| 亚洲美女视频黄频| aaaaa片日本免费| 精品国产亚洲在线| 亚洲av第一区精品v没综合| 国产av麻豆久久久久久久| 久久亚洲精品不卡| 可以在线观看的亚洲视频| 曰老女人黄片| 嫩草影院精品99| 国产激情欧美一区二区| 国产精品av视频在线免费观看| 午夜激情欧美在线| 久久精品91蜜桃| 国产精品 国内视频| 亚洲精品一区av在线观看| 亚洲av电影在线进入| 91老司机精品| 国产精品香港三级国产av潘金莲| 色视频www国产| 我的老师免费观看完整版| 丝袜人妻中文字幕| 国内精品一区二区在线观看| 亚洲无线在线观看| 精品一区二区三区av网在线观看| 久久精品国产亚洲av香蕉五月| 欧美成人免费av一区二区三区| 婷婷精品国产亚洲av在线| 亚洲人成电影免费在线| 成人特级黄色片久久久久久久| 国产成人影院久久av| 三级男女做爰猛烈吃奶摸视频| 亚洲黑人精品在线| 无限看片的www在线观看| 叶爱在线成人免费视频播放| 日韩欧美在线乱码| 琪琪午夜伦伦电影理论片6080| 在线播放国产精品三级| 久久亚洲精品不卡| 欧美一级毛片孕妇| 色在线成人网| 亚洲人成伊人成综合网2020| 亚洲一区二区三区色噜噜| 欧美成人一区二区免费高清观看 | 久久中文字幕人妻熟女| 亚洲中文日韩欧美视频| 琪琪午夜伦伦电影理论片6080| 日韩大尺度精品在线看网址| 亚洲精品色激情综合| 九色国产91popny在线| 91麻豆精品激情在线观看国产| 亚洲天堂国产精品一区在线| 国产精品免费一区二区三区在线| 黄色丝袜av网址大全| 久久99热这里只有精品18| 人妻久久中文字幕网| 巨乳人妻的诱惑在线观看| 婷婷丁香在线五月| 亚洲自拍偷在线| 国产视频内射| 亚洲真实伦在线观看| 精品熟女少妇八av免费久了| 国产极品精品免费视频能看的| 亚洲精华国产精华精| 成年版毛片免费区| 日日干狠狠操夜夜爽| 欧美乱色亚洲激情| 国产精品女同一区二区软件 | 黄色日韩在线| 给我免费播放毛片高清在线观看| 国产伦人伦偷精品视频| 香蕉国产在线看| 亚洲国产精品久久男人天堂| 国产激情欧美一区二区| 欧美另类亚洲清纯唯美| 亚洲av成人一区二区三| 一进一出抽搐gif免费好疼| 色吧在线观看| 亚洲欧美日韩高清专用| 国产在线精品亚洲第一网站| 在线a可以看的网站| 久久中文看片网| 给我免费播放毛片高清在线观看| 黄色丝袜av网址大全| 一a级毛片在线观看| 亚洲天堂国产精品一区在线| 日韩欧美三级三区| 亚洲av片天天在线观看| 欧美在线一区亚洲| 三级国产精品欧美在线观看 | 国产免费男女视频| 这个男人来自地球电影免费观看| 日韩人妻高清精品专区| 欧美中文日本在线观看视频| 国产91精品成人一区二区三区| 国产伦精品一区二区三区四那| 日本免费a在线| 国产精品一区二区精品视频观看| 国产淫片久久久久久久久 | 久久久久免费精品人妻一区二区| 亚洲五月天丁香| 日韩欧美 国产精品| 国产视频内射| 国产伦精品一区二区三区视频9 | 欧美绝顶高潮抽搐喷水| 一本久久中文字幕| 久久久久亚洲av毛片大全| 精品99又大又爽又粗少妇毛片 | 国产免费男女视频| 香蕉国产在线看| 成人三级黄色视频| 国产在线精品亚洲第一网站| 免费观看人在逋| 久久香蕉精品热| 很黄的视频免费| 99久久精品热视频| 99国产精品99久久久久| 国产精品久久久久久人妻精品电影| 亚洲一区二区三区色噜噜| 最新在线观看一区二区三区| 91麻豆精品激情在线观看国产| 在线国产一区二区在线| 亚洲精华国产精华精| 精品电影一区二区在线| 欧美另类亚洲清纯唯美| 色综合站精品国产| 精品福利观看| 国产麻豆成人av免费视频| avwww免费| 国产av麻豆久久久久久久| 亚洲欧美日韩卡通动漫| 1000部很黄的大片| 成年女人毛片免费观看观看9| 日韩欧美三级三区| 亚洲va日本ⅴa欧美va伊人久久| 两性夫妻黄色片| 在线视频色国产色| 淫妇啪啪啪对白视频| 欧美日韩乱码在线| 午夜福利在线观看免费完整高清在 | 又黄又粗又硬又大视频| 毛片女人毛片| 少妇人妻一区二区三区视频| 91老司机精品| 日本a在线网址| 麻豆久久精品国产亚洲av| 中出人妻视频一区二区| 国产欧美日韩精品亚洲av| 在线十欧美十亚洲十日本专区| 精品欧美国产一区二区三| 亚洲成人中文字幕在线播放| 看免费av毛片| 日韩av在线大香蕉| 国产乱人视频| 国内久久婷婷六月综合欲色啪| 久久久久久大精品| 日本成人三级电影网站| 日本撒尿小便嘘嘘汇集6| 国产精品一及| 亚洲一区二区三区不卡视频| 久久性视频一级片| 91av网一区二区| 精品国内亚洲2022精品成人| 日韩av在线大香蕉| 亚洲精品在线观看二区| 真实男女啪啪啪动态图| 亚洲av第一区精品v没综合| 久久久久久人人人人人| 日韩欧美国产在线观看| 观看美女的网站| 国产精品综合久久久久久久免费| 日本三级黄在线观看|