• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Surveillance of pine wilt disease by high resolution satellite

    2022-09-08 06:16:50HongweiZhouXinpeiYuanHuanyuZhouHengyuShenLinMaLipingSunGuofeiFangHongSun
    Journal of Forestry Research 2022年4期

    Hongwei Zhou · Xinpei Yuan · Huanyu Zhou ·Hengyu Shen · Lin Ma · Liping Sun · Guofei Fang ·Hong Sun

    Abstract Pine wilt disease caused by the pinewood nematode Bursaphelenchus xylophilus has led to the death of a large number of pine trees in China.This destructive disease has the characteristics of bring wide-spread, fast onset, and long incubation time.Most importantly, in China, the fatality rate in pines is as high as 100%.The key to reducing this mortality is how to quickly find the infected trees.We proposed a method of automatically identifying infected trees by a convolution neural network and bounding box tool.This method rapidly locates the infected area by classifying and recognizing remote sensing images obtained by high resolution earth observation Satellite.The recognition accuracy of the test data set was 99.4%, and the remote sensing image combined with convolution neural network algorithm can identify and determine the distribution of the infected trees.It can provide strong technical support for the prevention and control of pine wilt disease.

    Keywords Pine wilt disease · Satellite remote sensing image·Pest identification·Convolution neural network

    Introduction

    Pine wilt disease(PWD) caused by pine wood nematode(Bursaphelenchus xylophilus) (Yang 2010) is a global,destructive threat to forest ecosystems.PWD spreads quickly.After being infected by theB.xylophilusnematode,a healthy pine tree dies within 30 d (Fig.1).After an outbreak ofinfection, dead trees are fumigated, and felled and burnt to limit the spread of the disease, otherwise the entire pine forest could be infected within 3–5 years (Ye 2019),(Fig.2).PWD first appeared in North America and was accidentally introduced into China in 1982, and is now is widely distributed in the country.Currently, 18 provinces in China(cities and autonomous regions) have PWD over an area of 1.12 million ha.Considering its destructive potential to forest resources (Zhao et al.2020) and the environment (Zhan 2014), PWD has been included in the internal and external forest plant quarantine objectives in China.

    Fig.1 Status of a tree infected with pine wilt disease on a July 9 and b August 7

    Fig.2 Development of pine wilt disease

    For PWD, the faster infected trees are found, the less forestry resources will be lost (Qin et al.2021).Therefore, it is obligatory to develop a feasible and effective approach to detect pine trees in the early stages ofinfection.Compared with the ground survey conducted by forest rangers, the detection method using satellite images has the advantages of short time, high efficiency and wide detection range.This low-cost and low-risk technology is beneficial for forestry departments to monitor forest diseases in real time and formulate strategies to control the speed and area of disease transmission.

    Before introducing the new method, we refer to the research of other scholars on PWD,B.xylophilusand related

    pest diseases.Yin et al.( 2015) used support vector machine(SVM) to detecttomato early blightby hyperspectral remote sensing data.The training accuracy was 84.6%, and the prediction accuracy got 80.7%.Kong et al.( 2020) UAV hyperspectral platform to obtain rice panicle neck blast canopy data of different disease grades.The random forest method was used to identify japonica rice panicle neck blast in alpine areas at an accuracy of 90.0%.Li et al.( 2020) analyzed the degree ofinfected trees through an image segmentation algorithm with a combination of an ultra-green feature factor, maximum inter-class variance, and a disaster grade analysis method of remote sensing panorama.The data were collected from the infected area by UAV.The recognition accuracy was 90.4%.Tao et al.(2020) proposed a threshold division method based on hue-saturation-brightness (HSV).This method improved the efficiency of manual investigation ofinfected pine trees.It provided a method support for using UAV images to monitor infected trees.With the development of artificial neural networks such as VGG (Xu et al.2021), ResNet (Wu et al.2019), Faster-R-CNN (Wan and Sotirios 2020), and U-Net (Falk et al.2019), other networks were proposed.These algorithms have also been used in agricultural and forestry image recognition.Zhang et al.( 2020) obtained a visible light image of an infected pine forest in a large area using aerial photography by drones.His team segmented the infected pine on the basis of these images and the U-Net deep learning segmentation network.The training and verification accuracy obtained by the experiment were 98.7 and 97.8%, respectively.Fang et al.( 2021)used Faster R-CNN framework to identify pine with different disease degrees, and the correct rate was 83.2%.It realizes the efficient and accurate discrimination of diseased pine in remote sensing images of a forest area, providing a reliable auxiliary means for the prevention and control of the disease.Li et al.( 2020) used Faster R-CNN target detection algorithm to automatically identify infected pine trees.After improving the original algorithm, the overall accuracy ofinfected tree recognition was improved from 75.6 to 82.4%.

    A deep learning method was used to automatically detect dead pine trees infected withpine wilt diseasein high-resolution satellite remote sensing images.The research used unrelated data sets that contained a large number of dead and healthy trees to train the model.The method can significantly reduce manual work and improve recognition accuracy.

    Materials and methods

    Requirements and solutions of satellite remote sensing data

    Whether human or convolution neural networks, in order to accurately distinguish the objectives in the images, the images need to have specific resolution.The approach proposed requires images with sub-meter resolution and a short monitoring window period.First, the study assumes that the crown is round.Considering that the actual diameter may be 2 –5 m, it is difficult to distinguish infected trees from satellite images with a resolution more than one meter.In addition, PWD occurs brief ly and spreads quickly.Therefore,it is necessary to ensure the timeliness of satellite images.Fortunately, the successful launch of the Beijing 2 (BJ-2)satellite developed by China solved both these problems.

    BJ-2 is a high-resolution commercial remote sensing satellite, which consists of three optical remote sensing satellites.It operates in a solar synchronous orbit with an altitude of 647 km and an inclination of 97.8°.The three satellites are located in the same orbital plane, and the revisit period to any position of the earth is 1 day.The BJ-2 satellite uses the SSTL-300 S1 satellite platform, and the yaw maneuver range is up to ± 45°.The quality of the satellite is 447 kg,and the design life is 7 years.The satellite carries a highresolution imager, VHRI-100, with a panchromatic resolution of 1 m, a multispectral resolution of 4 m and a width of 23 km.The satellite has the ability of stereoscopic imaging along or crossing the orbit.The daily image acquisition area of a single satellite is 1,00,000 km2.In the long stripe imaging mode, the stripe imaging distance is up to 4000 km.This lays a foundation for satellite remote sensing image monitoring of pine wood nematode disease.At present, BJ-2 satellite has been widely used in many research fields (Fan et al.2021; Zhang et al.2018).

    General situation of the research area

    Datian County as the study area of this experiment is located in central of Fujian Province, on the west side of the Daiyunshan vein, between 25°29’ N–26°10’ N and 117°29’E–118°03’ E (Chen 2014).Datian County is one of the 12 priority ecological areas in Fujian Province, China, with a forest cover of 70.1%, approximately 2294 km2.The natural entity of Datian County is “Nine mountains, half water and half field”.As the source of the Minjiang, Jiulong and Jinjiang rivers, the land is fertile with abundant rain and rich in forest resources.However, in recent years, the proliferation of PWD has led to the death of pine trees over large areas.

    Data acquisition and marking

    The onset of PWD is an important starting point for selecting satellite images.In Datian County, the high incidence period of pine wilt disease occurs from mid-July to late October.In addition, degree of cloud content of satellite images determines the amount of useful information.This study assumes that the cloud content was inversely proportional to useful information.According to the above criteria, BJ-2 satellite images collected on September 7 and October 10, 2020 were selected as the experimental data (Fig.3).

    Fig.3 Satellite remote sensing image annotation a before marking and b after marking

    Data preprocessing

    The original data from BJ-2 was stored in a raster file (.pix)format with 4 channels.The original image data cannot be directly used as the input of the classification model.Therefore, it is necessary to carry out a preprocessing operation.The specific pretreatment steps are divided into the following steps, and the flow chart is shown in Fig.4.

    Fig.4 Data preprocessing flow chart

    · Original image clipping

    Cut the 4-channel 16-bit raster file (image size:38,947 × 37,263 × 4) into 3-channel 16-bit tagged image file (.tiff), namedImg16 (image size: 1024 × 1024 × 3).

    · Sample making

    ClipImg16 to pictureImgInputof size 31 × 31 × 3.The marking process of positive and negative samples is described above.4540 images of uninfected trees and 6000 images ofinfected trees were taken from allImgInputas training data.

    · Image mapping

    In view ofImgInputcan only be processed by GIS(Geographic Information system) software such as Arc-Map (Gorshkov and Novikova 2018), therefore, it was transformed to 8 bits image namedImg8 by linear mapping to make the calculation results easier to view.The mapping function is as follows:

    whereImgmaxis the maximum value of RGB in 3 channels.Figures 5 and 6 are processed samples of positive and negative classes, respectively.

    Improved LeNet neural network structure

    In 1994, Lecun et al.( 1998) proposed the LeNet neural network, which was the earliest convolution neural network and named “LeNet-5” “Gradient-Based Learning Applied to Document Recognition” (5 meaning having 5 layers)(Fig.7).It was first used to solve the visual task of handwritten digit recognition.Since then, the most basic architecture of convolution neural network (CNN) has been established:convolution layer, down sampling layer, and full connection layer.The purpose of this experiment is to detect infected individual trees, so the output results of the model should include healthy and infected individual trees.This is different from the task of handwritten digit recognition.Therefore,it is necessary to modify the original model.Specifically, a full connection layer with two outputs is added to the original model.In addition, the RELU activation function (Yarotsky 2017) is used to replace the activation function of the original model to obtain better training effect (Fig.8).

    Fig.5 Img8 31 × 31 × 3 infected tree

    Fig.6 Img8 31 × 31 × 3 healthy tree

    Fig.7 Model structure of LeNet

    Fig.8 Improved model structure

    The parameters of each layer are as follows:

    · Input layer

    The function of the input layer is to receive the information of the picture.The number of neurons is equal to the size of the picture 31 × 31 × 3.

    · Convolution layer

    The function of the convolution layer is to convolute the input image.With the size of 3 × 3 × 3, 32 channels’convolution kernels, characteristic images of 29 × 29 × 32 can be obtained.The number of neurons in the convolution layer is 29 × 29 × 32, i.e., 896 parameters.The output of the convolution layer goes through the RELU activation function as input to the subsequent model.The activation function can improve the nonlinear fitting ability of the model so that the model can approach any nonlinear function.

    · Convolution layer

    Using the convolution operation to further attend to the feature image, the feature map can be obtained with the size of 27 × 27 × 32.The operation uses 32 convolution cores of size 3 × 3 × 32.Therefore, there are a total of 9248 parameters.Similarly, the ReLU activation function is used to activate the output.

    · Maximum pooling layer

    The function of the pooling layer is to under sample the feature image.The window size of the maximum pooling layer is 2 × 2.Therefore, an output of size 13 × 13 × 32 can be obtained.

    · Flattening layer

    The flattening layer (Shin et al.2016) is used to “f latten” the input, i.e., to convert the multi-dimensional input into one-dimensional output.It is used in the transition from convolution layer to fully connected layer.In this model, the flattening layer flattens the 13 × 13 × 32 feature image into 5408 one-dimensional vectors.

    · Fully connected layer The fully connected layer consists of 100 neurons.The output result is used as the input of the classification layer by the RELU function.

    · Output layer-full connection layer

    There are two nodes in this layer and the softmax function is used to map the output of the neuron to the interval (0, 1).The closer the output result is to 0, the greater the probability that this region is uninfected.In contrast,the closer the output result is to 1, the greater the probability that this region is infected.This makes the process of target recognition model training.

    The function of the output layer is to classify according to the feature vector.It includes two neurons and Softmax function (Chen et al.2018).Softmax function is used to map the output of the neuron to the interval (0, 1).The closer the output result is to 0, the greater the probability that the individual tree is uninfected.In contrast, it indicates that the individual tree may be infected.

    Selection of meta parameters.

    The Adam optimizer (Kingma and Ba 2014) was selected in this study, with a 128 batch size and a 0.0001 learning rate for 30 training iterations.The positive and negative samples of the data set are 4540 and 6000, respectively.The data set was divided into training and verification at a proportion of 8:2, with an additional 1521 samples as test negative samples and 1501 samples as test positive samples.The problem in this experiment is two-classification problem, so the accuracy evaluation index chooses“Binary_accuracy”.It evaluates the model by checking whether the index corresponding to the maximum value of the picture label value encoded by one-hot is equal to the index corresponding to the maximum value of each output of the model.

    It is an accuracy that evaluates the model by checking whether the index corresponding to the maximum value of the picture label value encoded by one-hot is equal to the index corresponding to the maximum value of each output of the model.

    Fig.9 Training set and validation set accuracy

    Results

    Experimental environment

    The software for this experiment was Python3.6.7.The model was built by calling the Kera library (Hung et al.2020).The training method of the model was GPU.The computer was configured with Intl Xeon E5-2660 v2 2.2 GHz 4-core CPU with 32 GB memory.The graphics card was two NVIDIA P102-100 s, and the memory 20 GB.

    Identification of pine wilt disease

    Figure 9 shows that the training accuracy and verification accuracy of the model obtained by each iteration in the training process were > 98%.Figure 10 shows the model training loss and verification loss values obtained during each iteration of the training process are controlled within 0.05.With the increase ofiterations, the training accuracy of the model gradually improved.At the same time, with the increase in the number ofiterations, the loss value decreased gradually,and there was no over-fitting phenomenon.

    Figure 11 shows the detection results of anImg16 image.The detection process includes the following steps: first, the picture is clipped into a plurality ofImgInputpictures.It is then used as the input of the model, and the classification results are obtained.If the individual tree inImgInputwas infected, the coordinates ofImgInputinImg16 were recorded.After judging all theImgInput, the coordinates of the infected trees inImg16 were obtained.According to these coordinates, using bounding box (Rajchl et al.2017)to mark it inImg16 , the individual infected tree can be detected.

    Fig.10 Training set and validation set loss

    Fig.11 Location map of damaged wood using bounding box

    Discussion

    Satellite remote sensing is important technology.This approach is widely used to collect various data of the earth(Ma et al.2014).The satellite image data obtained have four characteristics: high spatial resolution, high temporal resolution, high spectral resolution and high radiation resolution.After the basic processing of remote sensing image processing platforms, such as information extraction, radiation correction and geometric correction, remote sensing images can provide more comprehensive and accurate information for national defense, national economy and even forest pest monitoring.The emergence of new technologies such as big data and artificial intelligence provides more innovative processing methods for processing remote sensing images.In the field of forestry, satellite data images have the advantages of wide area, speed, simultaneity, and economic feasibility.

    At present, the common monitoring methods of pine wilt disease in China are manual examination and UAV remote sensing.Manual examination is time-consuming and laborious, with a small review area.It is difficult to monitor the disease on a large scale.This method is often used in the verification of areas initially diagnosed as infected.The UAV remote sensing method can achieve high precision PWD detection in the designated area it is expensive.Compared with satellite images, the monitoring range is limited.In addition, the number of drone flights per unit time is limited.PWD has a short onset time, and UAV technology often misses the best time to prevent or control the disease.Satellite remote sensing technology is very suitable for PWD detection missions, and can cover most areas of the country,resulting in large-scale surveillance of the pine wood nematode disease.The use of satellite remote sensing technology to locate the incidence area and the accurate establishment of diseased plants by manual examination or UAV remote sensing is an effective method for the prevention and control of the disease.

    Conclusion

    In this study, the image recognition of damaged pine wood was completed with satellite image-based data and the deep learning method.The results show that the training and verification accuracy reached 98.3 and 95.9%, respectively.Therefore, the detection of PWD on this model is feasible,and the method of locating the infected trees is achieved.

    This approach can rapidly identify pine trees infected by PWD and is suitable for large-scale identification.In addition, this method can continuously track the development of PWD in areas, and provide timely and accurate information for forest managers and forest protectors.At the same time,it also provides an objective basis for the disaster loss assessment of PWD and the formulation of the disease control standards by pine forest management departments.

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,adaptation, distribution and reproduction in any medium or format,as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.To view a copy of this licence, visit http:// creat iveco mmons.org/ licen ses/ by/4.0/.

    欧美黑人精品巨大| 亚洲av欧美aⅴ国产| 国产日韩欧美在线精品| 久久久欧美国产精品| 久久国产精品男人的天堂亚洲| 日韩视频在线欧美| 少妇精品久久久久久久| 久久久久久久大尺度免费视频| av一本久久久久| av女优亚洲男人天堂| 亚洲免费av在线视频| 免费女性裸体啪啪无遮挡网站| 成年人免费黄色播放视频| 国产精品99久久99久久久不卡 | 一本色道久久久久久精品综合| 亚洲,欧美,日韩| 男人舔女人的私密视频| 熟妇人妻不卡中文字幕| 国产无遮挡羞羞视频在线观看| 搡老岳熟女国产| 欧美久久黑人一区二区| 99国产综合亚洲精品| 一个人免费看片子| 亚洲图色成人| 成年av动漫网址| 亚洲精品中文字幕在线视频| 亚洲美女搞黄在线观看| 在线观看一区二区三区激情| 在线看a的网站| 日韩伦理黄色片| 啦啦啦在线观看免费高清www| 国产人伦9x9x在线观看| 最新的欧美精品一区二区| 人人妻,人人澡人人爽秒播 | 久久精品亚洲av国产电影网| 国产精品无大码| 看非洲黑人一级黄片| 熟女少妇亚洲综合色aaa.| av一本久久久久| 中国三级夫妇交换| 中文字幕最新亚洲高清| 国产日韩一区二区三区精品不卡| 毛片一级片免费看久久久久| 一级a爱视频在线免费观看| 国产爽快片一区二区三区| 日韩精品免费视频一区二区三区| 国产精品久久久人人做人人爽| 伦理电影大哥的女人| 久久精品国产亚洲av高清一级| 国产精品成人在线| 中文精品一卡2卡3卡4更新| 国产成人a∨麻豆精品| 久久人人爽人人片av| 国产精品久久久av美女十八| 国产成人一区二区在线| 成人亚洲欧美一区二区av| av在线观看视频网站免费| 中国三级夫妇交换| 热re99久久国产66热| 亚洲成人手机| 国产老妇伦熟女老妇高清| 99热全是精品| 久久人人爽人人片av| 涩涩av久久男人的天堂| 亚洲精品一二三| 欧美日韩一区二区视频在线观看视频在线| 国产一区二区三区综合在线观看| 亚洲成人av在线免费| 精品免费久久久久久久清纯 | 大话2 男鬼变身卡| 国产一区二区三区av在线| 观看美女的网站| 亚洲成人一二三区av| 日韩,欧美,国产一区二区三区| 亚洲精品自拍成人| 精品国产一区二区久久| 一级毛片 在线播放| 青草久久国产| 一级毛片黄色毛片免费观看视频| 精品国产露脸久久av麻豆| 国产男女超爽视频在线观看| 国产成人午夜福利电影在线观看| 日本黄色日本黄色录像| 日韩熟女老妇一区二区性免费视频| 美女扒开内裤让男人捅视频| 国产在线视频一区二区| 国产女主播在线喷水免费视频网站| 肉色欧美久久久久久久蜜桃| 99精品久久久久人妻精品| 中文字幕最新亚洲高清| 9热在线视频观看99| 国产欧美日韩一区二区三区在线| 欧美97在线视频| 看十八女毛片水多多多| 亚洲国产精品一区二区三区在线| 香蕉国产在线看| 国产熟女午夜一区二区三区| 女人精品久久久久毛片| 啦啦啦在线免费观看视频4| 亚洲国产精品成人久久小说| 亚洲精品国产av蜜桃| 久久久精品免费免费高清| 亚洲精品美女久久av网站| 天天躁夜夜躁狠狠久久av| 久久这里只有精品19| 伦理电影免费视频| 午夜福利视频精品| 女人爽到高潮嗷嗷叫在线视频| 国产无遮挡羞羞视频在线观看| 97精品久久久久久久久久精品| 妹子高潮喷水视频| 免费黄频网站在线观看国产| 日韩电影二区| 人体艺术视频欧美日本| 免费观看av网站的网址| 美女大奶头黄色视频| 精品国产一区二区久久| 一级毛片电影观看| 一级毛片我不卡| 国产精品熟女久久久久浪| 久久久久久人人人人人| 热re99久久精品国产66热6| 女人爽到高潮嗷嗷叫在线视频| 人人妻人人添人人爽欧美一区卜| 久久韩国三级中文字幕| 亚洲精品av麻豆狂野| 91精品国产国语对白视频| 一区二区三区乱码不卡18| 亚洲国产欧美在线一区| 99久久精品国产亚洲精品| 69精品国产乱码久久久| 欧美日韩成人在线一区二区| 精品国产乱码久久久久久男人| 男女下面插进去视频免费观看| 中国三级夫妇交换| 最近2019中文字幕mv第一页| av在线app专区| 久久久国产精品麻豆| 日韩精品有码人妻一区| 亚洲精品久久午夜乱码| 亚洲成人一二三区av| 日韩,欧美,国产一区二区三区| 如日韩欧美国产精品一区二区三区| 多毛熟女@视频| 777久久人妻少妇嫩草av网站| 秋霞伦理黄片| 欧美在线一区亚洲| 大香蕉久久成人网| 亚洲精品国产一区二区精华液| 不卡av一区二区三区| 丁香六月天网| 丝袜美腿诱惑在线| 狂野欧美激情性xxxx| 毛片一级片免费看久久久久| 999久久久国产精品视频| 人人妻人人爽人人添夜夜欢视频| 日韩一本色道免费dvd| 成人影院久久| 777久久人妻少妇嫩草av网站| 在线亚洲精品国产二区图片欧美| 日韩欧美一区视频在线观看| 少妇被粗大猛烈的视频| 中文字幕精品免费在线观看视频| 国产精品二区激情视频| 中文精品一卡2卡3卡4更新| 日韩中文字幕欧美一区二区 | 国产精品久久久久久人妻精品电影 | 国产成人av激情在线播放| 婷婷成人精品国产| 午夜福利网站1000一区二区三区| 国精品久久久久久国模美| 精品亚洲成a人片在线观看| 欧美精品人与动牲交sv欧美| 9191精品国产免费久久| 一区福利在线观看| 精品国产一区二区久久| 老司机在亚洲福利影院| 99精国产麻豆久久婷婷| 校园人妻丝袜中文字幕| 熟妇人妻不卡中文字幕| 一级片免费观看大全| 免费观看性生交大片5| 欧美av亚洲av综合av国产av | 美女视频免费永久观看网站| 老司机影院毛片| 午夜久久久在线观看| 99久国产av精品国产电影| 国产一级毛片在线| 免费不卡黄色视频| 欧美另类一区| √禁漫天堂资源中文www| 色播在线永久视频| 在线 av 中文字幕| 女人高潮潮喷娇喘18禁视频| 国产男女超爽视频在线观看| e午夜精品久久久久久久| 中文字幕高清在线视频| 麻豆乱淫一区二区| 国产成人一区二区在线| 人成视频在线观看免费观看| 欧美国产精品一级二级三级| kizo精华| 秋霞伦理黄片| 亚洲精品自拍成人| 黄色怎么调成土黄色| 天天躁夜夜躁狠狠躁躁| 99国产综合亚洲精品| 99热网站在线观看| 午夜日韩欧美国产| 中文字幕亚洲精品专区| 人体艺术视频欧美日本| 精品一区二区三区四区五区乱码 | 黑丝袜美女国产一区| 91国产中文字幕| 国产av国产精品国产| 另类精品久久| 久热这里只有精品99| 成人亚洲欧美一区二区av| av又黄又爽大尺度在线免费看| 一边摸一边抽搐一进一出视频| 精品一品国产午夜福利视频| 精品国产露脸久久av麻豆| 国产亚洲午夜精品一区二区久久| 欧美成人精品欧美一级黄| 精品国产露脸久久av麻豆| 亚洲成国产人片在线观看| 亚洲精品国产av成人精品| 精品一品国产午夜福利视频| a级毛片在线看网站| 国产成人av激情在线播放| 韩国精品一区二区三区| 亚洲成色77777| 极品人妻少妇av视频| 免费日韩欧美在线观看| 久久毛片免费看一区二区三区| 免费高清在线观看视频在线观看| 久久 成人 亚洲| 久久久国产欧美日韩av| 人人妻人人澡人人爽人人夜夜| 狂野欧美激情性xxxx| 国产精品熟女久久久久浪| 国产日韩欧美在线精品| 亚洲七黄色美女视频| 精品午夜福利在线看| 久久精品国产综合久久久| 999精品在线视频| 国产午夜精品一二区理论片| 亚洲熟女精品中文字幕| 91精品国产国语对白视频| 国产精品熟女久久久久浪| 日日啪夜夜爽| 老汉色av国产亚洲站长工具| 国产黄频视频在线观看| 日本爱情动作片www.在线观看| 另类精品久久| 午夜福利,免费看| 国产精品国产三级专区第一集| 国产人伦9x9x在线观看| 久久精品国产a三级三级三级| 亚洲精品久久久久久婷婷小说| 老司机深夜福利视频在线观看 | 精品人妻在线不人妻| 亚洲伊人久久精品综合| 999精品在线视频| 国产精品 国内视频| 美国免费a级毛片| 久久精品国产亚洲av涩爱| 国产精品 欧美亚洲| 乱人伦中国视频| 国产黄频视频在线观看| 国产 精品1| 在线天堂最新版资源| 精品少妇久久久久久888优播| 精品人妻在线不人妻| 中国三级夫妇交换| 成年av动漫网址| 国产精品成人在线| 狂野欧美激情性bbbbbb| 欧美激情极品国产一区二区三区| 国产97色在线日韩免费| 热99国产精品久久久久久7| 日本欧美视频一区| 日韩一本色道免费dvd| 精品一区二区三区av网在线观看 | 国产免费一区二区三区四区乱码| 韩国精品一区二区三区| 天堂中文最新版在线下载| 一级毛片电影观看| 久久国产精品男人的天堂亚洲| 久久精品久久久久久噜噜老黄| 国产精品一二三区在线看| 高清黄色对白视频在线免费看| 99九九在线精品视频| 不卡视频在线观看欧美| 国产成人av激情在线播放| 久久毛片免费看一区二区三区| 精品午夜福利在线看| 亚洲精品一区蜜桃| 少妇人妻久久综合中文| 黑人巨大精品欧美一区二区蜜桃| 亚洲天堂av无毛| 最近的中文字幕免费完整| 欧美日韩一区二区视频在线观看视频在线| 美国免费a级毛片| 性高湖久久久久久久久免费观看| 天美传媒精品一区二区| 国产成人一区二区在线| 91老司机精品| 国产伦理片在线播放av一区| 两个人看的免费小视频| 少妇被粗大的猛进出69影院| 男女边吃奶边做爰视频| 午夜免费观看性视频| 一本—道久久a久久精品蜜桃钙片| 纯流量卡能插随身wifi吗| 91国产中文字幕| 亚洲五月色婷婷综合| 交换朋友夫妻互换小说| 国产 精品1| 在线看a的网站| 又黄又粗又硬又大视频| 欧美日韩亚洲综合一区二区三区_| av在线播放精品| 亚洲久久久国产精品| av一本久久久久| 亚洲精品久久成人aⅴ小说| 最近最新中文字幕免费大全7| 999久久久国产精品视频| 亚洲天堂av无毛| 超碰97精品在线观看| 免费高清在线观看视频在线观看| 一区二区三区激情视频| 国产一区二区三区av在线| 黄网站色视频无遮挡免费观看| 亚洲精品视频女| 男人爽女人下面视频在线观看| 人体艺术视频欧美日本| 中文字幕精品免费在线观看视频| 精品国产一区二区三区久久久樱花| av卡一久久| 国产欧美亚洲国产| 午夜福利视频精品| 免费高清在线观看日韩| 午夜福利影视在线免费观看| 香蕉丝袜av| 精品国产国语对白av| 90打野战视频偷拍视频| 91精品伊人久久大香线蕉| 国产在线免费精品| 国产免费视频播放在线视频| 五月开心婷婷网| 精品国产一区二区三区久久久樱花| 亚洲成人手机| 人体艺术视频欧美日本| 久久精品亚洲熟妇少妇任你| 欧美精品一区二区大全| 一二三四在线观看免费中文在| 国产女主播在线喷水免费视频网站| 国产精品嫩草影院av在线观看| av.在线天堂| 欧美人与性动交α欧美软件| 永久免费av网站大全| 超碰成人久久| 伊人亚洲综合成人网| 欧美日韩精品网址| 国产黄色免费在线视频| 国产无遮挡羞羞视频在线观看| 国产精品成人在线| 久久久久久久大尺度免费视频| 99香蕉大伊视频| 亚洲五月色婷婷综合| 天堂中文最新版在线下载| 精品少妇内射三级| 日韩视频在线欧美| 欧美激情 高清一区二区三区| 免费人妻精品一区二区三区视频| 啦啦啦在线免费观看视频4| 精品一品国产午夜福利视频| 日日撸夜夜添| 久热爱精品视频在线9| 国产伦人伦偷精品视频| 久久 成人 亚洲| 欧美黄色片欧美黄色片| 一边亲一边摸免费视频| 国产日韩欧美亚洲二区| 看非洲黑人一级黄片| 欧美成人午夜精品| 欧美xxⅹ黑人| 一二三四中文在线观看免费高清| 国产日韩欧美亚洲二区| 街头女战士在线观看网站| 亚洲欧美一区二区三区国产| 叶爱在线成人免费视频播放| 久久韩国三级中文字幕| 啦啦啦 在线观看视频| av一本久久久久| 午夜福利视频在线观看免费| 最黄视频免费看| 青春草国产在线视频| 制服丝袜香蕉在线| 毛片一级片免费看久久久久| 99re6热这里在线精品视频| av网站在线播放免费| 久久精品国产a三级三级三级| 国产精品一国产av| 亚洲精品成人av观看孕妇| 制服丝袜香蕉在线| 国产av国产精品国产| 亚洲成人国产一区在线观看 | 如日韩欧美国产精品一区二区三区| 亚洲欧美中文字幕日韩二区| 丝袜美腿诱惑在线| 卡戴珊不雅视频在线播放| 国产成人一区二区在线| 亚洲综合色网址| 九九爱精品视频在线观看| 亚洲av中文av极速乱| 欧美日韩国产mv在线观看视频| 午夜福利,免费看| 免费久久久久久久精品成人欧美视频| 国产一区有黄有色的免费视频| 欧美精品一区二区免费开放| 国产精品久久久久久精品古装| 欧美日韩福利视频一区二区| 无遮挡黄片免费观看| 2018国产大陆天天弄谢| 国产精品国产av在线观看| 久久影院123| 亚洲精品美女久久av网站| 午夜日韩欧美国产| 成人毛片60女人毛片免费| 亚洲欧美日韩另类电影网站| 国产熟女午夜一区二区三区| 日韩制服丝袜自拍偷拍| 99久久精品国产亚洲精品| 天天影视国产精品| 国产男女内射视频| 亚洲久久久国产精品| 卡戴珊不雅视频在线播放| 精品国产乱码久久久久久男人| 亚洲一区中文字幕在线| 久久精品亚洲av国产电影网| 老熟女久久久| 亚洲精品国产一区二区精华液| 宅男免费午夜| av卡一久久| 制服丝袜香蕉在线| 日韩中文字幕欧美一区二区 | 亚洲成人手机| 国产成人精品无人区| 少妇人妻精品综合一区二区| 午夜av观看不卡| 丝瓜视频免费看黄片| 一本—道久久a久久精品蜜桃钙片| 秋霞伦理黄片| 啦啦啦中文免费视频观看日本| 色网站视频免费| 久久久久精品性色| 亚洲熟女精品中文字幕| 亚洲成人免费av在线播放| 多毛熟女@视频| 99国产精品免费福利视频| 国产成人a∨麻豆精品| 天堂中文最新版在线下载| 侵犯人妻中文字幕一二三四区| 成人黄色视频免费在线看| 日日啪夜夜爽| 欧美另类一区| 精品酒店卫生间| 99久国产av精品国产电影| 这个男人来自地球电影免费观看 | 色综合欧美亚洲国产小说| 免费看不卡的av| 久久 成人 亚洲| 51午夜福利影视在线观看| 国产亚洲av高清不卡| 99热国产这里只有精品6| 欧美精品高潮呻吟av久久| 一级毛片电影观看| 大香蕉久久网| 国产精品熟女久久久久浪| 超色免费av| 18禁观看日本| 又粗又硬又长又爽又黄的视频| 黄片小视频在线播放| 嫩草影院入口| 久久免费观看电影| 男人舔女人的私密视频| 日本猛色少妇xxxxx猛交久久| 99re6热这里在线精品视频| 一级毛片我不卡| 久久久亚洲精品成人影院| 久久久久久人人人人人| 成人三级做爰电影| 亚洲精品美女久久久久99蜜臀 | 日本欧美视频一区| 我的亚洲天堂| 国产av码专区亚洲av| 国产精品免费视频内射| 欧美日韩一级在线毛片| 日韩电影二区| 啦啦啦在线免费观看视频4| 国产成人精品久久久久久| 麻豆精品久久久久久蜜桃| 亚洲伊人久久精品综合| 国产精品国产av在线观看| 91精品伊人久久大香线蕉| 精品福利永久在线观看| 中文字幕亚洲精品专区| 熟女少妇亚洲综合色aaa.| 国产一区二区三区综合在线观看| 免费日韩欧美在线观看| 亚洲天堂av无毛| 国产成人系列免费观看| 天美传媒精品一区二区| 亚洲七黄色美女视频| 国产精品久久久久久精品古装| 一本—道久久a久久精品蜜桃钙片| 亚洲成人国产一区在线观看 | tube8黄色片| 两个人看的免费小视频| 肉色欧美久久久久久久蜜桃| 在线观看www视频免费| 极品人妻少妇av视频| 另类亚洲欧美激情| netflix在线观看网站| 亚洲精品视频女| 久久精品国产a三级三级三级| www.熟女人妻精品国产| 老司机影院毛片| 一级黄片播放器| 国产精品av久久久久免费| 亚洲熟女毛片儿| 国产成人91sexporn| av视频免费观看在线观看| 大片免费播放器 马上看| 亚洲精品自拍成人| 精品人妻一区二区三区麻豆| 国产片内射在线| 亚洲av日韩精品久久久久久密 | 免费黄网站久久成人精品| 欧美日韩亚洲国产一区二区在线观看 | 国产精品久久久av美女十八| 日韩成人av中文字幕在线观看| 亚洲欧美一区二区三区黑人| 如何舔出高潮| 男女边吃奶边做爰视频| 午夜福利在线免费观看网站| 欧美日韩av久久| 一区二区av电影网| 亚洲精品一二三| 午夜日韩欧美国产| 日韩av在线免费看完整版不卡| 久久久久久久国产电影| 久久久精品94久久精品| 最近中文字幕2019免费版| 国产亚洲一区二区精品| 亚洲国产欧美在线一区| 国产成人精品福利久久| 97精品久久久久久久久久精品| 亚洲av男天堂| 免费在线观看完整版高清| av不卡在线播放| 日本午夜av视频| 午夜福利乱码中文字幕| 99久久99久久久精品蜜桃| 人成视频在线观看免费观看| 黑人巨大精品欧美一区二区蜜桃| 中文字幕最新亚洲高清| 久久人妻熟女aⅴ| 亚洲国产成人一精品久久久| 欧美另类一区| 在线天堂最新版资源| 国产一级毛片在线| www.精华液| 亚洲成色77777| 亚洲五月色婷婷综合| 国产精品亚洲av一区麻豆 | 欧美乱码精品一区二区三区| 十八禁人妻一区二区| 亚洲成人免费av在线播放| 看免费av毛片| 日韩一本色道免费dvd| 国产野战对白在线观看| 亚洲国产精品一区三区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美激情在线| 各种免费的搞黄视频| 大香蕉久久网| 国产日韩欧美视频二区| 国产男人的电影天堂91| 久久女婷五月综合色啪小说| 日韩一区二区三区影片| 中文精品一卡2卡3卡4更新| 亚洲av日韩精品久久久久久密 | 男女午夜视频在线观看| 亚洲精品久久午夜乱码| 色精品久久人妻99蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 国精品久久久久久国模美| 亚洲精品日韩在线中文字幕| av线在线观看网站| 国产精品女同一区二区软件| 亚洲一码二码三码区别大吗| 亚洲av在线观看美女高潮| 人人妻人人添人人爽欧美一区卜| 电影成人av| 天天躁狠狠躁夜夜躁狠狠躁| 久久国产亚洲av麻豆专区| 免费高清在线观看视频在线观看| 精品一区二区三卡| 美女福利国产在线| 香蕉国产在线看| 欧美变态另类bdsm刘玥| av不卡在线播放|